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Abstract

Among significant issues in climate change studies are the possible connections be-
tween the carbon balance of ecosystems and aerosol-cloud-climate interactions. Car-
bon dioxide is a greenhouse gas, whereas the net effect of atmospheric aerosols is
to cool the climate. Here, we investigated the connection between forest-atmosphere5

carbon exchange and aerosol dynamics in the continental boundary layer by means
of multiannual data sets of particle formation and growth rates, of CO2 fluxes, and of
monoterpene concentrations in a Scots pine forest in southern Finland. We suggest
a new, interesting link and a potentially important feedback among forest ecosystem
functioning, aerosols, and climate: Considering that globally increasing temperatures10

and CO2 fertilization are likely to lead to increased photosynthesis and forest growth, an
increase in forest biomass would increase emissions of non-methane biogenic volatile
organic compounds and thereby enhance organic aerosol production. This feedback
mechanism couples the climate effect of CO2 with that of aerosols in a novel way.

1. Introduction15

In 2001, the Intergovernmental Panel on Climate Change (IPCC) estimated the global
and annual radiative forcing due to greenhouse gases and aerosols, along with natu-
ral changes associated with solar radiation. Emphasis was placed on the complexity
of the combined direct and indirect forcing from both aerosols and gases as well as
on the importance of improving our understanding of the role each of these three in-20

dividual components plays in an integrated system. Such knowledge would reduce
the uncertainty in current estimates of radiative forcing and enable a better prediction
of the effects of anthropogenic activity on global change. The most important issue
to resolve is how the different components affecting radiative forcing interact with one
another. Here we propose a mechanism that couples the effect of CO2 and aerosol25

particles on climate. This suggestion is based on connections among CO2-induced
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climate change, increased vegetation productivity, emissions of non-methane biogenic
volatile organic compounds (BVOCs), and their ability to form aerosol particles.

2. Background

Aerosol particles affect the climate directly by reflecting or absorbing solar radiation and
indirectly by acting as cloud condensation nuclei (CCN). Either way, aerosols reduce5

the amount of solar radiation reaching the Earth’s surface. Among the key questions
in reducing the uncertainties relating to radiative forcing of particles are how they are
formed, how they grow from clusters of a few molecules to CCN sizes (>100 nm),
and how they form cloud droplets. Formation of nanometre-sized aerosol particles and
their subsequent growth to CCN sizes have been observed frequently in the continental10

boundary layer all around the world (Kulmala et al., 2003): from sub-arctic Lapland to
the remote boreal forest in southern Finland (Mäkelä et al., 1997) and from central
Europe (Birmili and Wiedensohler, 2000) to rural United Kingdom (Coe et al., 2000).
Once formed, clouds influence Earth’s radiation budget extensively by contributing to
albedo and greenhouse effects. With global warming, cloud properties are likely to15

change due to warmer and moister conditions and also evidently due to increased
aerosol particle concentrations from both primary (such as wind-generated sea spray)
and secondary processes (from biogenically and anthropogenically influenced gas-
to-particle conversion processes). The formation and growth of aerosol particles are
related to the properties and transport of air masses as well as to biological activity20

and depend in a highly non-linear way on concentrations of nucleating and condensing
vapours, temperature and relative humidity (Kulmala et al., 2000, 2001; Mäkelä et al.,
2002; O’Dowd et al., 2002).

Terpenoids, among the most important BVOCs emitted by the vegetation, are known
to lead to aerosol formation through rapid reactions with atmospheric oxidants such as25

ozone (O3), hydroxyl (OH) radicals, and nitrate (NO3) radicals (Seinfeld and Pandis,
1998). The products of these reactions possess low volatility due to various func-
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tional groups including, for instance, carboxylic acids. Therefore, they readily take
part in gas-to-particle conversion processes (Atkinson, 2000; Calogirou et al., 1999).
Plants synthesize terpenoids by two distinct pathways, the mevalonic acid (Bohlmann
et al., 1998) and the 1-deoxy-D-xylulose-5-phosphate (Lichtenthaler, 1999). The first
route is attributed to production of terpenoids (such as some monoterpenes) that are5

stored in specialized storage tissues and whose emissions follow the ambient temper-
ature (Fuentes et al., 2000). The latter pathway, involved, for instance, in synthesis of
isoprene and α-pinene, is coupled with a variety of environmental variables such as
CO2 concentration, temperature, or light intensity (Staudt and Bertin, 1998), and has
been associated with carbon fixed immediately prior to synthesis (Loreto et al., 1996).10

Monoterpene emissions from boreal tree species such as Pinus sylvestris, Picea abies
and Betula pubescens have also been attributed to light (Hakola et al., 2001; Janson,
1993; Schürmann et al., 1993). Recent measurements from Scots pine in Hyytiälä,
Southern Finland, showed a significant reduction in monoterpene emissions in dark
conditions (Bäck et al., 2003) and suggest that both temperature and light play a role15

in controlling emission rates.

3. Proposed mechanism

Figure 1 shows the proposed mechanism and coupling among processes in forest
ecosystems (vegetation productivity and BVOC emissions), aerosols, and climate.
Photosynthesis drives ecosystem gross primary production (GPP), the difference be-20

tween net ecosystem exchange of CO2 (NEE) and total ecosystem respiration (TER).
In the boreal zone, photosynthesis occurs predominantly in sunlight during the growing
season (Hari and Mäkelä, 2003) and is inhibited in winter (Ottander et al., 1995). A neg-
ative feedback exists between atmospheric CO2 concentrations and plant growth: In-
creasing CO2 concentrations accelerate photosynthesis which in turn consumes more25

CO2 (Lenton, 2000; Nemani et al., 2003). On the other hand, forest ecosystems also
act as significant sources of atmospheric aerosols (Kulmala et al., 2001). Terrestrial
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vegetation contributes substantially to emissions of a variety of BVOCs (Fuentes et al.,
2000) and newly formed particles in forested areas have been found to contain large
amounts of organic material (O’Dowd et al., 2002). The ratio of BVOC emission to
carbon assimilation is generally a few percent (Grace and Rayment, 2000; Guenther
et al., 1995), and if increased CO2 concentrations enhance vegetation productivity, we5

suggest that emission of aerosol-forming BVOCs may increase and possibly modify
the aerosol particle formation routes (Kulmala et al., 2001).

In order to be able to test our hypothesis of the connection between aerosol formation
and forest ecosystem activity, we analysed six years of field measurement data from
Hyytiälä, Southern Finland (61◦51′ N, 24◦17′ E, 181 m above sea level). Measurement10

of aerosol formation and growth (Kulmala et al., 2001), of surface fluxes as well as
of meteorological variables and trace gases (temperature, radiation, O3 etc.) have
been performed continuously in Hyytiälä since 1996 (Vesala et al., 1998). Since the
beginning of 2001, also BVOC concentrations in the air have been measured every
third day (Hakola et al., 2003). We calculated formation rates for 3 nm particles (J3)15

as well as particle diameter growth rates (GR) directly from measured particle size
distributions obtained with aerosol mobility spectrometers (Aalto et al., 2001). J3 varied
between 0.02 and 2.3 cm−3 s−1, with a mean value of 0.36 cm−3 s−1. The GR were
obtained from an analysis of the size distribution evolution of 361 particle formation
events observed from 1996 to 2001. The GR varied between 0.1 and 14.2 nm/h, with20

a mean of 3.1 nm/h. GPP was calculated as NEE-TER; NEE was measured by the
eddy covariance technique (Markkanen et al., 2001; Suni et al., 2003), and TER was
modelled on the basis of night-time NEE measurements. For more details of the site
and corresponding measurement techniques (see e.g. Kulmala et al., 2001; Suni et al.,
2003).25

The growth rate of nucleation-mode particles has a clear maximum in summer. Fig-
ure 2 shows the monthly mean values, averaged over 6 years, for GPP, GR and air
temperature (Tair). The figure also shows the monthly mean of the product of total
monoterpene concentrations and global radiation (Rg), which is used here as a proxy
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for the formation of BVOC oxidation products from OH-reactions. Similar annual be-
haviour of the different parameters is clearly visible. In particular, GR peaks the same
way (maximum in July) as does the proxy for the OH-oxidation products. The OH oxida-
tion mechanism has recently been found to explain roughly 30–50% of the growth rates
(Boy et al., 2003). Furthermore, GPP and Tair show almost exactly the same seasonal5

behaviour, suggesting that both light- and temperature-dependent BVOC emissions
play an important role in the particle formation and growth process.

Figure 3 shows the observed J3 from the same data set, together with the product of
mean monoterpene and ozone concentrations, which serves as a proxy for the prod-
ucts of the ozonolysis of BVOCs. The monthly patterns of these variables show some10

interesting similarities. In particular, both curves show similar peaks in spring and au-
tumn. However, the summer peak visible in the ozonolysis product curve does not ap-
pear in J3. This is probably because particle formation typically occurs during cold air
outbreaks within arctic or polar air masses (Kulmala et al., 2001; Nilsson et al., 2001),
which are not common in summer months (June–August). In summer, sub-tropical air15

masses occur with high pre-existing aerosol concentrations, suppressing new-particle
formation. The bimodal annual pattern of J3 is similar to the annual pattern of the
frequency of nucleation events. For comparison, also the mean monoterpene concen-
tration is shown in Fig. 3. This parameter exhibits its peak values significantly later
during the year and the spring peak is less pronounced.20

4. Discussion

The observed month-to-month patterns in Figs. 2 and 3 suggest firstly that the forma-
tion rate of new particles might also be linked with the rate of terpene reactions with O3
(Fig. 3) and secondly that the overall GR is correlated with the rate of terpene reactions
with OH (Fig. 2). The first of these observations could be explained by the formation25

of very low-volatility products from the ozonolysis reaction of certain terpenes as has
been observed in several laboratory studies (Bonn and Moortgat, 2003; Hoffmann et
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al., 1998), and gains special relevance considering the increase of tropospheric ozone
concentrations as a consequence of anthropogenic activities (Kanakidou et al., 2000).
The second observation demonstrates the general importance of BVOC oxidation on
particle growth and, hence, on CCN formation.

At the global scale, BVOCs are emitted from vegetation with a rate of about5

1.2×1015 gC per year (Guenther et al., 1995), which is ∼2% of the estimated global car-
bon assimilation by terrestrial ecosystems (Grace and Rayment, 2000). Under present
conditions, increased CO2 concentration will almost linearly increase CO2 assimilation
(Farquhar and von Caemmerer, 1982), which is likely to lead to increased BVOC emis-
sions as well. The increased concentrations of BVOCs will then have an important10

effect on atmospheric chemistry, for example on O3 formation (Seinfeld and Pandis,
1998), and particularly on the formation and growth of atmospheric aerosols (Kavouras
et al., 1998). They will also enhance the condensational growth of small nuclei, and
subsequently a larger fraction of aerosol particles will be able to grow to CCN sizes.
Because of the uncertainties related to the coupling between ambient CO2 concentra-15

tions and BVOC emissions, we can consider two extreme scenarios: Firstly, assuming
that no coupling exists, doubling of atmospheric CO2 concentration will not affect the
global BVOC emission rates at all. Secondly, assuming complete coupling, doubling
of atmospheric CO2 concentration will also double the emission rates. As a moderate
estimate, we assume below that the increase in BVOC emissions will be 10%. Note20

that we ignore the possible increase in BVOC emissions due to increased temperature,
lengthened growing season, nitrogen fertilization, or increased leaf area index. These
will make the increase significantly stronger.

If we have 10% more condensable vapours due to an increase of 10% in BVOC
emissions, the aerosol particles grow to CCN sizes in principle in roughly 10% shorter25

time and thus experience less scavenging by coagulation. However, since coagula-
tion scavenging is a process leading to exponential decay in nucleation-mode number
concentration and is strongly dependent on particle size (as a function of time), the
effect of shorter growing times on the number concentration of CCN (cCCN) is actually
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considerably larger – cCCN may increase by much more than 10%. According to ob-
served nucleation and growth events in a boreal forest (Kulmala et al., 2001; Kulmala
et al., 2000), cCCN will increase by a factor of 2 to 4 during an event. Since there are
around 50 events per year (Kulmala et al., 2001), we can estimate that 30–60% of av-
erage total cCCN stems from formation and growth events in the boreal forest region.5

Therefore, assuming a 10% increase in the CCN formation process, cCCN will increase
by 3–6%. This will subsequently increase the optical thickness of individual clouds by
1–2%, resulting in an increase in reflection of sunlight back to space. Note that the
maximum increase in cCCN may even be close to 100% if doubled atmospheric CO2
concentration also leads to doubled BVOC emission rates (the extreme case of com-10

plete coupling). Then the optical thickness of individual clouds could increase even by
20%. According to a recent order-of-magnitude estimation, the contribution of boreal
aerosol formation to the global radiative balance is −0.03 to −1.1 Wm−2 (Kurtén et al.,
2003). Therefore, assuming a 10% increase in cCCN, the total contribution by CCN to
the radiative balance will also increase by 10%.15

5. Conclusions

The results indicate two important connections in terms of seasonal variability, one
between the growth rate of nucleation-mode aerosol particles and ecosystem gross
primary production, and another between the formation rate of nucleation-mode par-
ticles and the ozonolysis of terpenoids. In addition, the seasonal pattern of particle20

growth rates is similar to that of the formation of oxidation products from terpene reac-
tions with OH radicals. The proposed interaction between forest ecosystems, BVOC
emissions, aerosol formation and clouds emphasizes the significance of forests on cli-
mate change. Thus forests, in addition to being sinks of CO2, also act as sources
for aerosol particles. For both of these reasons, increased forest growth leads to the25

slowing down of global warming. For more quantitative estimations, laboratory experi-
ments, global climate modelling, and extensive international measurement campaigns
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are necessary.
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Schürmann W., Kotzias, D., Schönwitz, R., and Steinbrecher, R.: Emission of biosynthesized

monoterpenes from needles of Norway spruce, Naturwissenschaften, 80, 276–278, 1993.5

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to
Climate Change Wiley, New York, 1998.

Staudt, M. and Bertin, N.; Light and temperature dependence of the emission of cyclic and
acyclic monoterpenes from holm oak (Quercus ilex L.) leaves, Plant, Cell and Environment,
21, 385–395, 1998.10

Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, Ü., Maso, M.D., Kulmala, M.,
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Fig. 1. Schematic figure of coupling of atmospheric CO2 concentration, assimilation of carbon
by vegetation productivity (ecosystem gross primary production GPP), emission of biogenic
volatile organic compounds (BVOCs), and aerosol particle concentration with atmospheric tem-
perature. Increased CO2 concentration will increase temperature (+) and vegetation produc-
tivity (+). Increased temperature will enhance BVOC emissions (+) and probably also plant
productivity (+?). Increased vegetation productivity may enhance BVOC emissions (+?). In-
creased BVOC emissions will enhance aerosol formation and growth and therefore also en-
hance aerosol and CCN concentrations (+). Enhanced aerosol and CCN concentrations will
decrease temperature (−) due to increased reflection of sunlight from low clouds back to space.
This results also in the increase of diffuse radiation, which has a positive influence on photo-
synthesis (Gu et al., 2003).
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Fig. 2. Seasonal behaviour of GPP, growth rate, air temperature, and a proxy for BVOC oxi-
dation products from OH-reactions. Growth rate (GR) for all events (dark blue), gross primary
production (GPP) (pink), sum of mean monoterpene concentrations (cterp) times global radia-
tion (Rg) (green), and air temperature (Tair) (light blue). The points represent monthly means
averaged over all years 1996–2001 (2001–2002 for terpenes).
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Fig. 3. Seasonal behaviour of formation rate, monoterpene concentrations, and a proxy for
BVOC oxidation products from O3-reactions. Formation rate of 3 nm-diameter particles J3 (light
blue), mean monoterpene concentrations (cterp) (green), sum of mean monoterpene concen-
trations times mean O3 concentration. (cterp×cO3

) (dark blue). The points represent monthly
means averaged over all years 1996–2001 (2001–2002 for terpenes).
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