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Abstract

We present mean altitude profiles of NOx, NOy, O3, and CO as measured by the DLR
Falcon aircraft during the MINOS 2001 campaign over the Mediterranean in August
2001 and compare the data with results from other aircraft campaigns, namely the SIL
1996 (North Atlantic flight corridor), the POLINAT-2 (North Atlantic flight corridor), and5

the EXPORT 2000 (central Europe) campaigns. The MINOS NOy, O3, and CO mixing
ratios in the free troposphere, especially between 4–8 km, are very similar to those
measured during the EXPORT 2000 campaign. However, compared to the other cam-
paigns the MINOS O3 and CO were significantly higher in the boundary layer, by about
20 ppbV and 50 ppbV, respectively. In the second part of the paper the ∆[O3]/∆[NOy],10

∆[O3]/∆[CO], ∆[CO]/∆[NOy], and ∆[NOx]/∆[NOy] trace gas correlations were calcu-
lated for the MINOS 2001 campaign. It was found that, within the scatter of the data,
the overall average altitude profiles of the correlations compared well with data from
a literature survey. The analysis of the mean vertical correlation profiles as measured
during MINOS 2001 does therefore not single out special meteorological conditions15

and air mass origins over the Mediterranean in summer but reflects a more general
condition of the free troposphere in the northern hemisphere. Correlation analyses for
single flights at different altitudes, however, unambiguously identify air masses influ-
enced by the stratosphere, whereas pollution plumes could only be identified with the
help of back trajectories.20

1. Introduction

Extensive measurements of trace gases and aerosol parameters were performed on
board the DLR research aircraft Falcon during the Mediterranean Intensive Oxidant
Study (MINOS) over the eastern Mediterranean Sea out of Heraklion, Crete, in Au-
gust 2001. The objective of the MINOS campaign was to study the main processes25

involved in the Mediterranean pollution build-up, i.e. (a) the transport of pollution from
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Europe and from remote sources, (b) the chemical mechanisms that contribute to
the build-up of oxidants and aerosols, and (c) the export of pollutants to the global
environment, e.g. towards south-east Asia, see also Lelieveld et al. (2002), and
http://www.mpch-mainz.mpg.de/∼reus/minos/. During the campaign fourteen mea-
surement flights plus ferry flights from and to Germany were made, comprising mea-5

surements of e.g. NO, NOy (=NO+NO2+HNO3+HONO+PAN+NO3+...), O3, J(NO2),
CO, CH4, CO2, PAN, aerosol parameters, selected carbonyl compounds, alcohols, and
hydrocarbons. Supplementary ground-based observations were made during the cam-
paign from Finokalia, Crete.

In an overview of MINOS, presented in Lelieveld et al. (2002) air pollution in different10

altitude regimes over the Mediterranean in summer was traced to several source re-
gions, see also Millan et al. (1997, 2002). While the boundary layer is mainly influenced
by northerly winds carrying West- and East-European emissions, the composition of
the free troposphere is dominated by a mixture of Asian, North Atlantic, and North
American air masses from the west. In the upper troposphere outflow from the Asian15

monsoon is brought into the Mediterranean from the east. This is also illustrated in
Fig. 1 which shows a qualitative analysis of the air mass origins as an altitude plot over
Crete during August 2001, based on the 6-hourly output from model runs with ECHAM4
(T63) (Roelofs et al., this issue). The “lifetime” of the color encoded idealized tracers
was set to 14 days. It should be noted that the contour lines in Fig. 1 are arbitrary20

and give no information about total values of tracers. According to the model results
the overall picture of the origins in August 2001 suggests a strong influence of Euro-
pean pollution (yellow) on the Crete planetary boundary layer (PLB) up to about 2 km
altitude. In the free troposphere (≈3–8 km) a layer with tracers of stratospheric origin
(blue) is mixed with North American (red) and North Atlantic (green) tracers. During25

most of the campaign the upper tropospheric air was found to be strongly influenced
by monsoon outflow being uplifted from the PBL over Asia (orange). This very sharp
layering weakened after 15 August 2001, and eventually broke up until the end of the
campaign, see also Roelofs et al., this issue.
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One of the main objectives of this paper is to present and discuss mean vertical
profiles of (a) the trace gas mixing ratios and (b) the trace gas correlations derived
from the MINOS 2001 aircraft dataset, in support of the analysis of trace gas source
regions and types.

Mean altitude profiles of the NOx, NOy, O3, and CO volume mixing ratios measured5

during the fourteen MINOS 2001 flights will be shown in Sect. 3.1. These data will be
discussed and compared with data from former studies, i.e. the SIL 1996 (“Schadstoffe
in der Luftfahrt”), the POLINAT-2 (“Pollution from Aircraft in the North Atlantic Flight
Corridor”), and the EXPORT 2000 campaigns which were carried out in other regions
and during different seasons.10

In Sect. 3.2 the ∆[O3]/∆[NOy], ∆[O3]/∆[CO], ∆[CO]/∆[NOy], and [NOx]/∆[NOy] cor-
relations obtained during MINOS 2001 will be analysed. These correlations refer to (a)
mean altitude profiles during the campaign, and (b) single observed plumes, along the
flight tracks as time series, and as altitude profiles from single measurement flights.
Case studies of single flights together with back trajectory analyses will be shown in15

this section. Finally, the MINOS 2001 correlations will be compared with data from
earlier studies.

2. Experimental

The in situ aircraft measurements of NO, NOy, the photolysis frequency of NO2 (JNO2),
ozone (DLR), carbon monoxide (MPI-CH), and the meteorological parameters (DLR)20

during MINOS 2001 were performed on board the DLR Falcon. Detailed descriptions of
the equipment are reported elsewhere (Ziereis et al., 1999, 2000a, 2000b; Junkermann
et al., 1989, Volz-Thomas et al., 1996; Wienhold et al., 1998).

Briefly, NO is measured with a well characterized chemiluminescence detector
(CLD). NOy is measured with a second CLD in combination with an Au converter25

heated to 300◦C with CO (0.2%) as the reduction agent. Calibration of the CLDs
is performed before the flights using a diluted mixture of 2.97 ppmV ±1% NO in N2
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(Messer-Griesheim) with purified air. The pressure dependent efficiency of the NOy
conversion is determined with a known amount of NO2 generated from gas phase titra-
tion of NO with O3 and is 0.92–0.99 for the pressure range discussed in this study.
The detection limits of the instruments are 5 pptV for NO, and 15 pptV for NOy. The
accuracies of the measurements are 5% and 12% for NO and NOy, respectively.5

The photolysis frequency J(NO2) is obtained from the sum of two filter radiometers
(Meteo Consult GmbH) with 2π viewing geometry. One of the radiometers is installed
on top of the aircraft, the second on the downward facing side of the aircraft body.
The detectors have been optimized for flight applications (Volz-Thomas et al., 1996)
and have recently been characterized in our laboratory (Hauser, 2002). The overall10

uncertainty of the J(NO2) measurements is about 17%.
To obtain the NOx (=NO+NO2) mixing ratios the NO2 concentrations were computed

assuming simple photostationary steady state conditions (e.g. Leighton 1961; Atkinson
2000)

[NO2] =
k(NO + O3)

J(NO2)
× [NO] × [O3], (1)

15

where the temperature dependent reaction rate coefficient k(NO + O3) was calculated
from the data given in Sander et al. (2000). The overall uncertainty of the nitrogen
dioxide mixing ratios depends on the experimental uncertainties of NO and O3, J(NO2),
k(NO + O3), and on the unknown amount of NO2 produced by molecules other than
O3 (e.g. RO2) and is estimated to be about 25%.20

UV-absorption measurements of ozone were performed with a modified TE 49 instru-
ment (Thermo Environmental) calibrated with a O3 41M ozone generator (ANSYCO)
which is frequently calibrated against a standard device from the Global Atmosphere
Watch system (GAW) (http://www.wmo.ch). The accuracy of the ozone measurements
is 5%, the time resolution is 4 s.25

Carbon monoxide measurements were performed using a tunable diode laser (TD-
LAS) instrument with a precision of 1.5 ppbV (1σ) and a calibration accuracy of 1.5%

1995

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1991/acpd-3-1991_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1991/comments.php
http://www.copernicus.org/EGU/EGU.html
http://www.wmo.ch


ACPD
3, 1991–2026, 2003

Aircraft
measurements of

NOx, NOy, O3, and CO
during MINOS 2001

J. Heland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

for 1 s integration times (Wienhold et al., 1998). Since the TDLAS measured two ad-
ditional trace gases with approximately the same time resolution the CO data were
obtained every 4–6 s.

To reduce the number of experimental data and to obtain a dataset on the same time
scale 10 s averages of all quantities were calculated.5

3. Results and discussion

3.1. Altitude profiles of trace gases

3.1.1. Altitude profiles of NOx, NOy, O3, and CO measured during MINOS 2001

The mean altitude profiles of NOx, NOy, O3 and CO measured during the 14 MINOS
flights are shown in Fig. 2. The averaged tropospheric data (defined as O3<160 ppbV)10

including 1 standard deviation (±1σ) are plotted. The highly variable NOx data in the
boundary layer with average volume mixing ratios (VMR) of about 0.4 ppbV decrease
with altitude to about (0.04±0.03) ppbV in the free troposphere between 4–8 km. Above
8 km altitude the NOx VMR increases again. Mean NOy VMRs in the boundary layer
were about (1.5±1.0) ppbV during the MINOS campaign. These data decrease with15

increasing altitude to about (0.5±0.4) ppbV in the free troposphere and increase again
slightly towards the tropopause. The average O3 mixing ratios measured during the
MINOS campaign up to about 8 km altitude range between 60 and 80 ppbV and in-
crease slightly at higher altitudes. The mean VMRs of CO decrease from roughly
(150±30) ppbV in the boundary layer to (100±20) ppbV at 4 km altitude. From the20

lower to the upper free troposphere the CO VMRs slightly decrease from approximately
100 ppbV.

According to the classification presented in Emmons et al. (2000) the shapes of the
NOx, O3 and CO profiles measured during MINOS 2001 resemble those influenced by
industrial pollution and/or biomass burning.25
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3.2. Comparison with other aircraft measurements

To reveal differences and similarities of the MINOS 2001 dataset with other northern
extratropical campaigns, i.e. under different pollution levels in the Atlantic and Euro-
pean continental region, the MINOS data from the troposphere were compared with
tropospheric data from earlier campaigns. The campaigns used for the comparison5

are

(a) the SIL 1996 campaign of the German national programme “Schadstoffe in der
Luftfahrt” (SIL 1996) (e.g. Schumann 1998, 2002) in which data were sampled in
the North American flight corridor based out of Prestwick, Scotland (Ziereis et al.,
1999).10

(b) the POLINAT-2 campaign with 14 flights conducted in September/October 1997
from Shannon, Ireland, with the main focus to study the impact of air traffic on
the composition of the atmosphere at altitudes between 9 and 13 km (Ziereis et
al., 2000a; Schlager et al., 1999; Schumann et al., 2000, http://www.pa.op.dlr.de/
polinat).15

(c) the DLR EXPORT 2000 campaign with 9 flights based out of Oberpfaffenhofen,
Germany, in July/August 2000 over central Europe with the aim to study the export
of pollutants out of source regions over Europe.

The direct comparison of the NOx, NOy, O3, and CO profiles is shown in Fig. 3. To
obtain a clearer picture of the comparison, the MINOS data are plotted as the average20

values with the corresponding standard deviations, whereas for the other campaigns
only the averages are printed. It will be highlighted in the text whenever very high or
low standard deviations were observed.

NOx (Fig. 3A). At first glance the observed NOx VMRs from the EXPORT 2000
campaign seem to be higher than the data from all other campaigns. However the25

EXPORT 2000 data up to about 6 km altitude do also show strong variations and the
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1σ standard deviations (not shown in the plot) are extremely high and close to 100%
of the absolute values. This indicates extreme variations of the NOx mixing ratios due
to fresh emissions and convection over central Europe in summer. Comparing the
POLINAT-2 and SIL 1996 NOx profiles with the MINOS data reveals that the MINOS
NOx VMRs are slightly higher above ≈8–10 km. Again, according to the classification5

given in Emmons et al. (2000) the profiles from both datasets, EXPORT 2000 and
MINOS 2001, can be best described as “profiles influenced by industrial emissions
and/or biomass burning”.

NOy (Fig. 3B). In contrast to the high variability of the NOx data the EXPORT 2000
NOy data are smoother and exhibit lower standard deviations (not shown). However,10

the average total NOy profiles from these campaigns are almost identical to the MINOS
data, at least up to altitudes of about 8 km. This shows, that despite of the different
airmass origins and transport times during the different campaigns, the average volume
mixing ratios at different altitudes are very similar. However, compared to the MINOS
data the POLINAT-2 NOy data are almost 0.5 ppbV lower in the upper troposphere.15

O3 (Fig. 3C). Compared to the other campaigns the mean MINOS ozone mixing ra-
tios are approximately 10–20 ppbV higher in the lower troposphere, but are similar to
the measurements during EXPORT 2000 in the upper troposphere. The SIL 1996 and
POLINAT-2 datasets indicate about 20 ppbV lower ozone values in the middle and up-
per troposphere up to altitudes of about 11 km. According to Emmons et al. (2000) the20

profiles from all campaigns can best be described as influenced by industrial pollution.
CO (Fig. 3D). At altitudes above 6 km the CO mixing ratios from the different datasets

are all approximately 100 ppbV and are all within one standard deviation of the MINOS
2001 data. Below these altitudes the MINOS data are up to about 50 ppbV higher than
during the other campaigns with a maximum slightly above 1 km altitude. The EXPORT25

2000 data show an almost identical profile but with lower absolute concentrations. The
POLINAT-2 profile deviates below 6 km with much lower values between 1 and 3 km
and an increase again towards 6 km altitude, where all profile are within the scatter of
the MINOS data.
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In summary, according to Emmons et al. (2000) the trace gas profiles of the two
campaigns conducted over Europe, MINOS 2001 and EXPORT 2000, do show the
same features as other data from areas with major industrial pollution. In the case of
the EXPORT 2000 campaign fresh emissions lead to high variability in the NOx data.
The profiles from SIL 1996 and POLINAT-2 do not show the “industrial profile features”5

so pronounced. However, in the free troposphere the volume mixing ratios of the trace
gases were almost identical during all campaigns. From Figs. 3C and 3D it is also
evident that O3 and CO levels in the lower troposphere over the Mediterranean Sea
are markedly higher than over central Europe during the same season.

3.3. Trace gas correlations10

3.3.1. Mean correlations during the MINOS 2001 flights

In addition to the mean VMR altitude profiles the altitude dependences of the mean
correlations between O3 and NOy, O3 and CO, CO and NOy, and NOx and NOy in
ppbV/ppbV were calculated from the MINOS dataset containing the 10 s averages of
all flights. These correlations represent the slopes of linear regressions in the plots be-15

tween two species and are to some degree representative for the origin of the sampled
air masses, see below (e.g. Murphy et al., 1993).

The altitude profiles of the correlations were calculated in altitude bins of 200 m and
in steps of 50 m, i.e. the first correlation is calculated in the 0–200 m bin, the second
correlation in the range 50–250 m, and so on. The expressions given for the slopes20

and the errors of the slopes are, for instance, given in Försterling and Kuhn (1971).
The results of the calculations are shown in the four panels of Fig. 4 as (a) the

correlations themselves, (b) the r2 value and (c) the number of experimental data points
used to calculate the correlations.
∆[O3]/∆[NOy]. Figure 4A shows the altitude profile of the most prominent correlation25

between ozone and the total reactive nitrogen species NOy. The ∆[O3]/∆[NOy] data
show a steady increase with altitude from values below 10 in the boundary layer up
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to 150–220 in the upper troposphere at about 13 km. However, r2 indicates only poor
correlations up to about 4 km altitude, whereas the data are well correlated above 4 km.

These observed ratios fit well into the range of literature values of which a selec-
tion is summarized in Table 1. It should be noted that stratospheric ozone research
predominantly revealed an almost constant ∆[O3]/∆[NOy] ratio of ≈330 in the lower5

stratosphere below 20 km and for > 10◦ latitude on both hemispheres and of ≈1000
in the tropical stratosphere for < 10◦ latitude (Murphy et al., 1993; Fahey et al., 1996;
NASA, 1993). The robustness of this ratio is explained by the similar chemical life-
times of the two species in the lower stratosphere in combination with transport and
mixing processes (e.g. Murphy et al., 1993). Due to the entrainment of stratospheric10

air into the troposphere ratios of up to 150 to 250 have been found e.g. at the Mauna
Loa Observatory (3400 m a.s.l.) and between 3–6 km altitude above Alaska (Atlas et
al., 1996; Wofsy et al., 1992; Hübler et al., 1992a). Furthermore, the values of about
83 at altitudes between 5–11 km measured by Ridley et al. (1994) over New Mexico
agree well with the MINOS data of 50–100 between 4–10 km altitude. Although the MI-15

NOS correlations in Fig. 4A are not very significant in the boundary layer, the data also
agree well with the O3/NOy slopes of approximately 10 near the surface as measured
by other groups at these altitudes in photochemically aged rural air masses (e.g. Tov
et al., 1997; Buhr et al., 1996; Trainer et al., 1993; Olszyna et al., 1994; Ridley et al.,
1994).20

Buhr et al. (1996) and Ridley et al. (1994) pointed out that if a correlation between
ozone and NOy exists in the lower and middle troposphere the air masses are either
influenced by downward mixing of upper tropospheric or lower stratospheric air and/or
the air has been photochemically aged and the ratio provides a measure for the “pho-
tochemical age” of the air mass. Therefore, many authors have also used the slope25

of ∆[O3]/∆[NOz] with [NOz]= [NOy]–[NOx] as an estimate for the upper limit of the
ozone production efficiency in photochemically aged polluted air masses (Carpenter
et al., 2000; Liu et al., 1987; Trainer et al., 1993; Olszyna et al., 1994; Tanner et al.,
1998). The number of ozone molecules found per number of NOx molecules oxidized
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to NOz was found to be in the range 4 to 30 in the free troposphere in spring during
the FREETEX 98 campaign over the Alps (Carpenter et al., 2000). Figure 5 shows
the ∆[O3]/∆[NOz] altitude profile inferred from the MINOS dataset which shows up to a
factor of 2 higher values of about 50–80 in the free troposphere between 4–10 km over
the Mediterranean in summer indicating a much higher ozone production efficiency5

during the MINOS campaign than during the FREETEX measurements, being more
in line with airborne measurements during the SOS Nashville Ozone Study 1995 of
approximately 60 (Tanner et al., 1998).
∆[O3]/∆[CO]. Another correlation which is often used to estimate the photochemical

ozone production rates during the transport of air masses is the ratio between ozone10

and the relatively long-lived anthropogenic tracer CO which has a lifetime of about 1
month in the free troposphere in summer (Chin et al., 1994, Parrish et al., 1993a).
Parrish et al. (1993a), for instance, used the slope of the O3/CO regression line from
several ground stations downwind from the North American emission sources to es-
timate the amount of photochemically produced O3 exported to the free troposphere15

over the North Atlantic Ocean.
The altitude profile of the ∆[O3]/∆[CO] correlation during the MINOS 2001 flights is

plotted in Fig. 4B. Relatively significant values of approximately 0.1 to 0.2 are found in
the boundary layer. The ratio increases between 4 and 5 km up to values of about 1
which may indicate ozone production (see below). Between 5–9 km, almost no corre-20

lation is found. In line with the expected anticorrelation of the two species in the strato-
sphere, the ratio becomes significantly negative in the upper troposphere (e.g. Herman
et al., 1999; Fischer et al., 2000). As shown in Table 2, which gives an overview of lit-
erature values, the slope of the O3/CO correlation was found to be amazingly constant
in the planetary boundary layer and lower troposphere with typical values ranging from25

approximately 0.2 to 0.4 (McGovern et al., 1996; Parish et al., 1993a; Wofsy et al.,
1992; Buhr et al., 1996; Carpenter et al., 2000; Chin et al., 1994; and references
therein). This is slightly higher than the values derived from the MINOS dataset in the
planetary boundary layer, but lower than the MINOS correlations of ∼1 between 4–
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6 km altitude where, as indicated above, photochemical ozone production is expected
(Lelieveld et al., 2002).
∆[CO]/∆[NOy]. A compact correlation between CO and NOy indicates a common

source of these two combustion products in the troposphere. Wofsy et al. (1992),
for instance, used this ratio in connection with the O3/CO ratio to categorize plumes5

influenced by biomass burning. In their study ∆[CO]/∆[NOy] values of 120 were found
in a haze layer influenced by biomass burning which was well in the range of 25–
350 of this ratio expected from a literature survey (Wofsy et al., 1992; and references
therein). Buhr et al. (1996) found a ratio of 12 over a polluted area in the USA. While no
correlation is expected in the “clean” free troposphere, an anticorrelation is expected10

in stratospheric air masses (Hübler et al., 1992a, 1992b). Panel C of Fig. 4 shows the
altitude dependence of the ∆[CO]/∆[NOy] ratio derived from the data of the MINOS

2001 flights. Values with r2 > 0.5 are in the range of 40–50 in “layers” below 5 km
altitude. However, it should be noted that the CO vs NOy ratio depends strongly on
single “pollution plumes” as observed during many of the MINOS 2001 flights (see15

below), and the average ∆CO/∆NOy over all flights should not be “overinterpreted”.
As expected, the ratio becomes strongly negative when the air is influenced by the
stratosphere in the upper troposphere.
∆[NOx]/∆[NOy]. Panel D of Fig. 4 shows the altitude profile of the slope of the

NOx vs NOy ratio, which – because oxides of nitrogen from combustion processes and20

lightning are mainly emitted as NOx ( =NO+NO2) and are afterwards converted into
NOy species – can be used as a measure of the age of emissions. A quite common
definition for the ratio in photochemically aged air is e.g. a ratio of ∆[NOx]/∆[NOy<0.3]
(e.g. Tov et al., 1997; and references therein). The MINOS dataset shows remarkably
high values of 0.3–0.8 in the lowest 500 m indicating fresh emissions. Values with25

r2 > 0.5 are about 0.6 between approximately 200 and 300 m altitude. In the free
troposphere up to about 10 km the correlation coefficients are generally below 0.4.

2002

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1991/acpd-3-1991_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1991/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 1991–2026, 2003

Aircraft
measurements of

NOx, NOy, O3, and CO
during MINOS 2001

J. Heland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

3.3.2. Correlation analyses during single flights and in single plumes

For a more detailed analysis of single plumes during the MINOS flights the correla-
tions between the trace gases were calculated as linear least-squares-fits (a) in time
intervals of 600 s during the flight, (b) in altitude bins of 750 m, and (c) for dedicated
analyses of single plumes which could be traced back by trajectory calculations (Traub5

et al., this issue). For each set of calculations one case study will be discussed in the
following.

The absolute values of a correlation was plotted only when the r2-value of the cal-
culation exceeded 0.5. The number of available data points used for one correlation
value was in the range 15–200. It is important to note that the absolute values of the10

correlations change with the size of the intervals used for the calculations, e.g. the alti-
tude ranges and the time intervals. The resolution of the time and altitude correlations
for these investigations was chosen to be 60 s and 100 m, respectively, e.g. the altitude
correlations were calculated in bins between 0–750 m and 100–850 m, etc.

(a) Case Study 1 Sampling of stratospheric air along the flight track. According to15

the meteorological forecast for 16 August 2001 there was a region with high poten-
tial vorticity (> 2 PVU) at the 300 hPa level (≈9 km altitude) over north-west of Crete
and partially over the Greek mainland indicating a low tropopause. Since very high
tropopause heights (> 15 km) prevailed during most of the campaign (see Roelofs et
al., this issue) and the Falcon aircraft only has a ceiling altitude of about 13 km, the20

goal of MINOS flight 8 on 16 August 2001 was to try to sample stratospheric air in this
region.

Due to lacking CO data at the beginning of the flight Fig. 6 only shows the time
series of the correlation analysis between 12:15 and 14:45 UTC. Two penetrations
of stratospheric air masses can unambiguously be identified at 12:50–12:55 UTC25

and ≈13:25 UTC by high values of the ∆[O3]/∆[NOy] and negative values of the
∆[O3]/∆[CO] ratio. During these events no correlation between NOx and NOy is ob-
served, whereas – as expected – the CO/NOy ratio is negative.
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Due to fresh emissions in the boundary layer the NOx/NOy ratio increases during
the descent at the end of the flight at approximately 14:20 UTC with the slope of
∆[O3]/∆[NOy] at typical boundary values of 11±2.

(b) Case study 2 Altitude profile of trace gas correlations during one flight. The ob-
jective of flight 2 of the MINOS campaign on 3 August 2001 was to observe forecasted5

pollution from Eastern Europe at lower flight altitudes and to capture expected outflow
from the Asian monsoon region at higher altitudes, as shown in Fig. 1. The altitude
dependence of the correlations measured over the northern Aegean Sea over Lesvos
is shown in Fig. 7, indicating the sources of the measured trace gases.

In the boundary layer below 2 km altitude fresh emissions can unambiguously be10

identified by high ∆[NOx]/∆[NOy] ratios and a slightly negative slope of ∆[O3]/∆[NOy].
The ∆[O3]/∆[CO] correlations at these altitudes reveal typical boundary layer values
below 1. In addition, the good correlation of ∆[CO]/∆NOy] indicates common sources
of these two species. Just below 3 km altitude the ∆[O3]/∆[NOy] ratio increases sharply
in connection with negative ∆[O3]/∆[CO] and ∆[CO]/∆[NOy] correlations. This is a15

strong indication for air masses of stratospheric origin being transported into the lowest
part of the free troposphere below 3 km into a very thin layer.

Between 6 and 7 km altitude enhanced ∆[O3]/∆[CO] ratios are observed, whereas
the other species do not correlate, which may indicate O3 production during trans-
port. Other interesting features are the relatively constant and low ∆[O3]/∆[NOy] and20

∆[O3]/∆[CO] ratios indicating boundary layer air, together with ∆[NOx]/∆[NOy] ratios
exceeding 0.2 at approximately 11–12 km which, according to the forecasts in Fig. 1,
may be associated with the Asian monsoon outflow.

In order to verify the origin of the air masses back trajectory calculations were per-
formed. Figure 8 shows the 1-min averaged trajectory analyses for flight 2 during the25

time when the northern vertical profile was flown between 08:30 and 09:05 UTC in
steps of 5 minutes. Figure 8A shows the longitude-latitude plot of the trajectories,
Figure 8B shows the altitudes of the trajectories as a function of the travel time of
the air parcels. As expected, the trajectories in the upper troposphere originate from
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the Asian monsoon region (Fig. 8A). The trajectories ending at altitude levels of ap-
proximately 6 km originate from the North-American continent subsiding from 8 to 6 m
during the previous 10 days (with enhanced O3/CO ratios) indicating that the air was
being photochemically processed. Air masses with trajectories ending in the boundary
layer have picked up fresh pollution from north-east Europe about one week earlier.5

A notable trajectory ending at approximately 3 km altitude (08:59 UTC) originated
from the upper troposphere at ≈10 km ten days before it crossed the Falcon flight track,
giving rise to the very clear signature of stratospheric air in Fig. 7 at a remarkably low
altitude. In contrast to the other trajectories in Fig. 8, this air parcel (08:59 UTC) did
not travel very far and stayed over the Mediterranean during the previous 10 days.10

Even without further knowledge about the origin of these air masses and the meteo-
rological situation, the stratospheric signature is unambiguous.

(c) Single plume correlations During the 14 MINOS flights numerous plumes at
different flight altitudes have been captured. An overview of the correlations in the
single plumes is given in Table 3. The origins of the single plumes in the different15

altitude regimes could be identified from the trajectory analyses described by Traub et
al. (this issue).

As an example Fig. 9 shows the altitude profiles of the analyzed trace gases of
MINOS flight 9 on 17 Aug. 2001, measured during a step profile flown south of Crete.
It should be noted that at the altitudes with large scatter of the data, i.e. at 2.4 km,20

3.7 km, 5.8 km, 8.5 km, and 11.2 km, the aircraft flew long flight legs at constant altitude
and sampled several different air masses.

From the surface up to about 2.5 km the influence of polluted boundary layer air is
clearly visible in the NOx, NOy, and CO data. The data in the free troposphere appear
relatively smooth, except for an enhancement of O3 and NOy between 6 and 7 km al-25

titude. However, the most striking feature during this flight is the enhancement of O3,
NOx, and NOy at constant CO mixing ratios at altitudes between 9 and 10 km indicat-
ing a layer of aged air masses. Figure 10 shows the single correlation plots of the
trace gas measurements in this plume. All ratios except ∆O3/∆CO exhibit high corre-
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lation coefficients. It is also worth looking at the intercepts in the different plots. The
∆[O3]/∆[NOy] fit intercepts the y axis at (75±5) ppbV ozone indicating enhanced O3 in
the free troposphere which may be due to photochemical production and/or mixing with
stratospheric air. Due to the poor correlation between O3 and CO the intercept is quite
uncertain with values of (34±24) ppbV ozone at negligible carbon monoxide. The rea-5

son for the slightly negative intercept of the NOx vs NOy plot is the ±25% uncertainty
associated with the calculation of the NOx mixing ratios (see Sect. 2).

The majority of the trajectories ending at altitudes between 9–10 km during this flight
indicate that these air masses started 5 days earlier from the west coast of North
America (≈ 52◦ N, 40◦ W) at about 11 km altitude, travelling over the North Atlantic10

Ocean to the Mediterranean region, slightly descending from north-easterly directions.
(d) Overview and comparison with earlier studies In the planetary boundary layer

(PBL) the average ∆[O3]/∆[NOy] correlations (see Sect. 3.2.1) and the data from the
single plume case studies in Table 3 agree well. The derived value of about 10 in the
PLB from this study is in line with the findings in the literature, as given in Table 1.15

In the free troposphere the larger ∆[O3]/∆[NOy] ratio is reflected in the MINOS 2001
as well as in the literature data. However, the literature values up to ≈11 km altitude
show a variation in the range 20–250 whereas the MINOS correlations vary within 20–
100. This could be due to the fact that the tropopause height over the Mediterranean
during MINOS was quite high (see Fig. 1 and Roelofs et al., this issue) and downward20

mixing of stratospheric ozone down to the ceiling altitude of the Falcon aircraft (≈13 km)
was not very efficient. An additional explanation for the relatively low values of O3
vs NOy in the upper troposphere during MINOS is the influence of the Asian outflow
carrying relatively fresh emissions (NOx/NOy≥0.3) in these altitudes (Scheeren et al.,
this issue). The measured lower stratospheric value for the O3/NOy ratio of about 13025

in Table 3 is also a little lower than expected from most of the former studies in Table 1,
but in excellent agreement with the values given in Lerner et al. (1994).

The comparison of the hardly significant O3/CO slopes found during MINOS in Ta-
ble 3 and former studies (Table 2) shows very good agreement in the boundary layer
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and in free tropospheric air masses. However, whereas Fischer et al. (2000) did not
find any correlation in the troposphere during the STREAM 97 campaign, we find a
value of ∆[O3]/∆[CO] = 2.6 at an altitude between 10–11 km in one of the North At-
lantic/North American plumes during MINOS. In line with the findings of Fischer et al.
(2000) a negative O3/CO ratio was found in stratospherically influenced air masses.5

The CO/NOy slopes found in single plumes in this study are well in the range of the
data given in the literature, i.e. mainly positive correlations in the troposphere and an
anticorrelation in the stratosphere.

In summary, it was found that the trace gas correlations calculated for the MINOS
2001 dataset, both the absolute values and the altitude profiles, are in the range of10

the data described in the literature. The absolute values of the correlations at different
altitudes can therefore be regarded to be more typical for an altitude range than for
the origin of the airmass. One possible explanation for the minor differences between
the literature and MINOS 2001 data is the exceptionally high tropopause and the Asian
monsoon outflow events during the MINOS campaign over the Mediterranean. Fur-15

thermore, in this study the origin of stratospheric air could unambiguously be identified
by correlation analyses.

4. Summary and conclusions

We presented mean altitude profiles of NOx, NOy, O3, and CO as measured by the DLR
Falcon during the MINOS 2001 campaign over the Mediterranean in August 2001, and20

compared with data from other aircraft campaigns. The SIL 1996 (North Atlantic flight
corridor), the POLINAT-2 (North Atlantic flight corridor), and the EXPORT 2000 (central
Europe) campaigns were conducted at different latitudes and seasons. It was found
that at least the MINOS NOy, O3, and CO mixing ratios in the free troposphere between
4–8 km are very similar to those measured during the EXPORT 2000 campaign. During25

the MINOS campaign it was found that the main influence at these altitudes came
from the North Atlantic and from North America (Lelieveld et al., 2002) with the mean
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mixing ratios showing very small scatter (standard deviations). However, compared to
the other campaigns the MINOS O3 and CO volume mixing ratios were significantly
higher in the boundary layer, by about 20 ppbV and 50 ppbV, respectively. According
to Emmons et al. (2000, and references therein) the shape of the trace gas vertical
profiles from these two campaigns can best be described as “influenced by industrial5

pollution and/or biomass burning”.
In Sect. 3.2 the ∆[O3]/∆[NOy], ∆[O3]/∆[CO], ∆[CO]/∆[NOy], and ∆[NOx]/∆[NOy]

trace gas correlations were calculated for the MINOS 2001 campaign. It was found
that, within the scatter of the data, the overall/average altitude profiles of the corre-
lations compared well with data from a literature survey. The analysis of the mean10

vertical correlation profiles as measured during MINOS 2001 does therefore not reflect
the special meteorological conditions and air mass origins over the Mediterranean in
summer (e.g. Lelieveld et al., 2002; and references therein) but reveals a more gen-
eral feature of the troposphere which is also found in other regions in the northern
hemisphere.15

However, case studies of correlation analyses during single flights at different alti-
tudes allowed the unambiguous identification of air masses influenced by the strato-
sphere. The origins of other plumes captured during MINOS 2001 could only be iden-
tified with the help of back trajectories. The overall analysis of the times series and
altitude profiles of the correlations during single flights in connection with back trajec-20

tory data revealed signatures from stratospheric air, the Asian monsoon outflow, and
European pollution.
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G., and Murphy, P. C.: Ozone production in the rural troposphere and the implications for
regional and global ozone distributions, J. Geophys. Res., 92, 4191–4207, 1987.10

McGovern, F. M., Jennings, S. G., O’Connor, T. C., and Simmonds, P. G.: Aerosol and trace gas
measurements during the Mace Head experiment, Atmos. Environ., 30, 3891–3902, 1996.

Millán, M. M., Mantilla, E., Salvador, R., Carratal, A., Sanz, M. J., Alonso, L., Gangoiti, G., and
Navazo, M.: Ozone cycles in the western Mediterranean Basin: Interpretation of monitoring
data in complex terrain, J. Appl. Meteorol., 39, 487–508, 2000.15

Millán, M. M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant dynamics in the Mediter-
ranean basin in summer: Results from European research projects, J. Geophys. Res., 102,
8811–8823, 1997.

Murphy, D. M., Fahey, D. W., Proffitt, M. H., Liu, S. C., Chan, K. R., Eubank, C. S., Kawa, S. R.,
and Kelly, K. K.: Reactive nitrogen and its correlation with ozone in the lower stratosphere20

and upper troposphere, J. Geophys. Res., 98, 8751–8773, 1993.
NASA: Reference Publication 1292, The atmospheric effects of stratospheric aircraft: Report

of the 1992 models and measurements workshop, Vol. III – special diagnostic studies, M.J.
Prather and E.E. Remsberg (eds.), National Aeronautics and Space Administration (NASA),
Washington, DC, USA, 1993.25

Olszyna, K. J., Bailey, E. M., Simonaitis, R., and Meagher, J. F.: O3 and NOy relationships at a
rural site, J. Geophys. Res., 99, 14 557–14 563, 1994.

Parrish, D. D., Holloway, J. S., Trainer, M., Murphy, P. C., Forbes, G. L., and Fehsenfeld, F.
C.: Export of North American ozone pollution to the North Atlantic Ocean, Science, 259,
1436–1439, 1993.30

Parrish, D. D., Buhr, M. P., Trainer, M., Norton, R. B., Shimshock, J. P., Fehsenfeld, F. C., Anlauf,
K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman,
L., Bowersox, V. C., Olszyna, K. J., Bailey, E. M., Rodgers, M. O., Wang, T. Berresheim, H.,

2011

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1991/acpd-3-1991_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1991/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 1991–2026, 2003

Aircraft
measurements of

NOx, NOy, O3, and CO
during MINOS 2001

J. Heland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

Roychowdhury, U. K., and Demerjian, K. L.: The total reactive oxidized nitrogen levels and
the partitioning between the individual species at six rural sites in eastern North America, J.
Geophys. Res., 98, 2927–2939, 1993.

Peleg, M., Luria, M., Setter, I., Perner, D., and Russel, P.: Ozone levels in central Israel, Israel
J. Chem., 34, 375–386, 1994.5

Ridley, B. A., Walega, J. G., Dye, J. E., and Grahek, F. E.: Distributions of NO, NOx, NOy, and
O3 to 12 km altitude during the summer monsoon season over New Mexico, J. Geophys.
Res., 99, 25 519–25 534, 1994.

Sander, S. P., Friedl, R. R., DeMore, W. B., Ravishankara, A. R., Golden, D. M., Kolb, C. E.,
Kurylo, M. J., Hampson, R. F., Huie, R. E., Molina, M. J., and Moortgat, G. K.: Chemical kinet-10

ics and photochemical data for use in stratospheric modeling, supplement to evaluation 12:
Update of key reactions, JPL Publication 00-3, NASA Panel for Data Evaluation, Evaluation
Number 13, 8 March 2000, Jet Propulsion Laboratory, Pasadena, California, 2000.

Schlager, H., Schulte, P., Flatoy, F., Slemr, F., v. Velthofen, P., Ziereis, H., and Schumann,
U.: Regional nitric oxide enhancements in the North Atlantic flight corridor observed and15

modeled during POLINAT 2 – a case study, Geophys. Res. Lett., 26, 3061–3064, 1999.
Schumann, U.: Research on the effects of aircraft and spacecraft upon the atmosphere (Edito-

rial), Atmos. Environ., 32, 3065–3066, 1998.
Schumann, U.: Aircraft Emissions, Encyclopedia of Global Environmental Change, Vol. 3,

’Causes and Consequences of Global Environmental Change, Ian Douglas (ed.), 178–186,20

John Wiley & Sons, Ltd, Chichester, 2002.
Schumann, U., Schlager, H., Arnold, F., Ovarlez, J., Kelder, H., Hov, O., Hayman, G., Isaksen, I.

S. A., Staehelin, J., and Whitefield, P. D.: Pollution from emissions in the North Atlantic flight
corridor: Overview on the POLINAT projects, J. Geophys. Res., 105, 36050–3631, 2000.

Singh, H. B., Chen, Y., Gregory, G. L., Sachse, G. W., Talbot, R., Blake, D. R., Kondo, Y.,25

Bradshaw, J. D., Heikes, B., and Thornton, D.: Trace chemical measurementsfrom the north-
ern midlatitude lowermost stratosphere in early spring: Distributions, correlations, and fate,
Geophys. Res. Lett., 24, 127–130, 1997.

Tanner, R. L., Valente, R. J., and Meagher, J. F.: Measuring inorganic nitrate species with
short time resolution from an aircraft platform by dual-channel ozone chemiluminescence, J.30

Geophys. Res., 103, 22 387–22 395, 1998.
Tov, D. A.-S., Peleg, M., Matveev, V., Mahrer, Y., Seter, I., and Luria, M.: Recirculation of

polluted air masses over the east mediterranean coast, Atmos. Environ., 31, 1441–1448,

2012

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1991/acpd-3-1991_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1991/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 1991–2026, 2003

Aircraft
measurements of

NOx, NOy, O3, and CO
during MINOS 2001

J. Heland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

1997.
Trainer, M., Parrish, D. D., Buhr, M. P., Norton, R. B., Fehsenfeld, F. C., Anlauf, K. G., Botten-

heim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman, L., Bowersox,
V. C., Meagher, J. F., Olszyna, K. J., Rodgers, M. O., Wang, T., Berresheim, H., Demerjian,
K. L., and Roychowdhury, U. K.: Correlation of ozone with NOy in photochemically aged air,5

J. Geophys. Res., 98, 2917–2925, 1993.
Volz-Thomas, A., Lerner, A., Pätz, H. W., Schulz, M., McKenna, D. S., Schmitt, R., Madronich,
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Table 1. Survey of ∆[O3]/∆[NOy] correlations at different altitudes from field measurements.

Whenever available the r2 are given in parentheses
 

 

 
Altitude ∆∆∆∆[O3]/∆∆∆∆[NOy] 

 
Area Comment References 

PBL 6-10 (0.73-0.9) Mediterranean, Israel photochemically aged air, rural site, no 
correlation in fresh plumes 

Peleg et al. 1994 

PBL 10.9 (0.98) Mediterranean, Israel transported aged polluted air, NOy limited Tov et al. 1997 
PBL ≈ 10 USA, Gulf of Maine  Buhr et al 1996 
PBL no corr. marine air, < 600 m  Hübler et al. 1992b 
PBL ≈ 11 US ground stations photochemically aged air masses Trainer et al. 1993 
PBL 10 continental USA stations  Olszyna et al. 1994 

     
2-2.5 km ≈ 33 New Mexico  Ridley et al. 1994 
2-3 km ≈ 22 Alaska haze layer, forest fire emissions Wofsy et al. 1992 
> 3 km ≈ 95 Mauna Loa Observatory + aircraft 

measurements 
free troposphere, data from different 
campaigns > 3 km 

Hübler et al. 1992a 

3.4 km 185 Mauna Loa Observatory remote free troposphere Atlas et al. 1996 
3-6 km 158-173 Alaska "background" Wofsy et al. 1992 

4.4-6.1 km 167-250 marine and continental USA free troposphere, marine air Hübler et al. 1992b 
5-11 km ≈ 83 New Mexico  Ridley et al. 1994 
FT & LS 130±3.4 (0.99) England 1990/91, summer campaigns Lerner et al. 1994 

     
LS ≈ 185 (0.97) 37-57deg N  Singh et al. 1997 
LS 189-256 > 60 deg N POLSTAR 1, 1997 Ziereis et al. 2000a 
LS 278-417 > 60 deg N POLSTAR 2, 1998 Ziereis et al. 2000a 
LS ≈ 200-250 40-90 deg N, 10-12 km alt.  Weinheimer et al. 1993 
LS ≈ 200 N2O:170-310 ppbV  Chang et al. 1996 
S ≈ 1000 

≈ 330 
≤ 10°N/S, 50-70 hPa 
≥ 10°N/S, 50-70 hPa 

(18-20 km) Fahey et al. 1996, Murphy 
et al. 1993 
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Table 2. Survey of ∆[O3]/∆[CO] correlations at different altitudes from field measurements.
Whenever available the r2 are given in parentheses

 

 

Altitude ∆∆∆∆[O3]/∆∆∆∆[CO] 
(ppbV/ppbV) 

Area Comment References 

PBL 0.34 (0.86) Mace Head, Ireland no biomass burning, in case of biomass 
burning, no correlation was found. 

McGovern et al. 1996 

PBL -0.345±0.025 (0.42) Barrows, Alaska dark period, air from Sibiria Harris et al. 2000 
PBL 0.3 North America photochemically aged air Chin et al. 1994 

+ ref's therein 
PBL 0.22-0.29 Atlantic coast of Canada  Parrish et al. 1993 

PBL 0-0.8 km 0.29 (0.76) Gulf of Maine, New England  Buhr et al 1996 
PBL 0.8-1.5 km 0.32 (0.50) Gulf of Maine, New England  Buhr et al 1996 

     
1.5-4.5 km 0.015-0.093 Amazonia biomass burning plumes Andreae et al. 1988 

2-3 km ≈ 0.21 Alaska haze layers, forest fire plumes Wofsy et al. 1992 
3-6 km no corr. Alaska Background air Wofsy et al. 1992 

FT 3.58 km 0.28 (0.67) Jungfraujoch Freetex'98 Carpenter et al. 2000 
< 6.5 km 0.58 USA increasing with altitude Carrol et al. 1990 
< 6.5 km 0.37 Eastern Pacific increasing with altitude Carrol et al. 1990 

Troposphere no corr.  STREAM 97 Fischer et al. 2000 
     

Stratosphere ≈ - 24  STREAM 97 Fischer et al. 2000 
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Table 3. Overview of the single plume events that showed correlations (r2 > 0.5) between the
analyzed trace gases. The r2 are given in parentheses. ((∗) 12:50–13:30 UTC) 

 

Altitude ∆∆∆∆[O3]/∆∆∆∆[NOy] (r2) ∆∆∆∆[O3]/∆∆∆∆[CO] (r2) ∆∆∆∆[CO]/∆∆∆∆[NOy] (r2) ∆∆∆∆[NOx]/∆∆∆∆[NOy] (r2) Flight # Origin 
PBL: ≈ 0.1 km 10 ± 1 (0.91) 0.22 ± 0.02 (0.63) 36 ± 2 (0.83) 0.19 ± 0.003(0.97) 13 Western European Air 
PBL: < 2 km 7 ± 1 (0.65) --- --- 0.29 ± 0.03(0.60) 14 ---"--- 
PBL: < 2 km 10 ± 1 (0.56) --- --- --- 9 Eastern European Air 

PBL: < 1.5 km 12 ± 1 (0.57) --- --- --- 8 ---"--- 

PBL: < 1.5 km South 8 ± 1 (0.51) --- --- --- 7 ---"--- 

       

FT: 3-7 km North 
FT: 3-7 km South 

22 ± 1 (0.77) 
66 ± 4 (0.86) 

0.23 ± 0.02 (0.70) 
--- 

92 ± 2 (0.95) 
--- 

--- 
--- 

7 
7 

---"--- 
---"--- 

FT: 3-8 km 72 ± 6 (0.54)   --- 3 North Atlantic Air 
FT: 6-9 km 37 ± 1 (0.75) --- --- 0.13 ± 0.01 (0.64) 9 Mixture: West + East 

FT: 7-10 km 49 ± 2 (0.81) --- --- --- 10 North American+ N. Atlantic  
FT: 6-9 km 40 ± 2 (0.81) --- --- --- 13 ---"--- 

       
UT: 10-11 km 44 ± 1 (0.94) 2.6 ± 0.1 (0.89) 16 ± 1 (0.86) --- 13 ---"--- 
UT: 9-10 km 25 ± 4 (0.74) --- 12 ± 1 (0.80) 0.21 ± 0.01 (0.96) 9 ---"--- 
UT: 8-11 km 102 ± 5 (0.59) --- --- 0.24 ± 0.01 (0.58) 14 ---"--- 
UT: > 10 km 59 ± 2 (0.73) --- --- 0.39 ± 0.02 (0.73) 1 Monsoon Outflow 
UT: > 10 km 72 ± 2 (0.80) --- --- 0.30 ± 0.01 (0.76) 2 ---"--- 

       
LS: 9.4 km(*) 133 ± 7 (0.75) -7.1 ± 0.5 (0.64) -14 ± 1 (0.63) 0.24 ± 0.02 (0.60) 8 Lower Stratospheric Air 
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Fig. 1. Qualitative analysis of tracers originating from different regions as an altitude plot over
Crete during August 2001, see Roelofs et al., this issue. Yellow indicates European tracers,
blue reflects stratospheric influence, orange Asian tracers, and red and green North American
and North Atlantic tracers, respectively.
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Fig. 2. Mean altitude profiles of NOx, NOy, O3, and CO (±1σ) measured during the MINOS
campaign in August 2001 over the Mediterranean Sea.
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Fig. 3. Comparison of trace gas altitude profiles measured during the MINOS campaign with
data from the EXPORT 2000, POLINAT-2, and SIL 1996 campaigns, see text for details.
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Fig. 4. Mean altitude profiles of the trace gas correlations calculated from the 14 MINOS 2001
flights over the Mediterranean. To the right the r2-value and the number of data points used for
the calculation are given for the different altitudes.
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Fig. 5. Altitude profile of the O3 vs NOz (=NOy–NOx) correlation calculated from the MINOS

dataset. To the right the r2-value and the number of data points used for the calculation are
given for the different altitudes.
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Fig. 6. Time series of the correlations calculated during the second part of MINOS flight 8 (16
August 2001) over the north-western Aegean Sea with the aim to sample the stratosphere at
high altitude levels of the flight. The time intervals in which stratospheric air was sampled are
highlighted.
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Fig. 7. Altitude profiles of the correlations during the northern vertical profiles of MINOS flight
2 (3 August 2001) over the northern Aegean Sea.
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Fig. 8. Longitude-latitude plot of the trajectories for the northern profile of MINOS flight # 2 on
3 August 2001 (A). The trajectories end along the flight path of the Falcon aircraft. (B) shows
the altitudes of these trajectories as a function of travel time.
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Fig. 9. Altitude dependence of the measured trace gas mixing ratios during MINOS flight 9 (17
August 2001). A remarkable feature is the layer between 9–10 km indicating aged air masses,
see text for details.
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Fig. 10. Trace gas correlations for the plume between 9 and 10 km altitude of MINOS flight
9 (17 August 2001), see Fig. 9. All plots show high correlations except for ∆[O3]/∆[CO]. The
uncertainties of the slopes and the intercepts are given in Table 3 and in the text, respectively.
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