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Abstract

In this paper we present an Evolution Strategy (ES) approach towards the estimation
of the location and strength of surface emissions of trace gases based on atmospheric
concentration measurements and back-trajectory analyses. The details of the ES de-
veloped are outlined. The ES is tested using artificial emission maps at different grid5

resolutions and the results compared to those obtained on the same problems using
Singular Value Decomposition (SVD). In almost all cases, the ES improves on SVD at
equivalent resolutions. In addition, a number of insights, which the ES approach brings
to the problem of source location and emission strength, are discussed, particularly the
limitations on the use of measurement and meteorological data in the determination of10

emission source distribution.

1. Introduction

In this paper, we present a novel approach towards constructing regional scale emis-
sion maps from the long term monitoring of atmospheric conditions at remote sites.
A common problem in atmospheric monitoring is relating measurements made at par-15

ticular observation stations to emission sources that have influenced the sampled air
mass (Seinfeld and Pandis, 1998). The motivation here is to estimate emission source
strength and location using field measurements so that these independent results may
be compared with emissions inventories of anthropogenic and natural sources based
on economic, production and other statistical data sources. Also it is desirable to be20

able to generate estimates for species and processes for which inventories are unavail-
able.

Taking precise measurements of the concentration of important trace gases and
other species in the atmosphere is both labour and capital intensive. Furthermore
a limited number of suitable locations exist where the site is sufficiently remote from25

local influences as to allow the collected data be interpreted as an indicator of regional

1334

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1333/acpd-3-1333_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1333/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 1333–1366, 2003

An evolution strategy
to estimate emission
source distributions

P. O’Brien et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

activity. Therefore, one has data which is expensive to gather, restricted to a few
locations (often just a single site), from which one wishes to extract as much information
as possible. In this paper, we present methods by which measurements taken at two
locations can be used to estimate emissions: the remote, baseline station at the Mace
Head Atmospheric Research Station, on the west coast of Ireland and a suburban field5

site at Royal Holloway University near London (RHUL). Although the present discussion
will be based on artificial measurement time series, the locations coincide with actual
atmospheric monitoring stations, data from which will be incorporated into the models
at a later date.

When the measurement data is combined with meteorological data, it becomes pos-10

sible to ascribe source locations to the observed concentrations (also referred to as the
excess concentrations or excess) at least qualitatively. For the Mace Head and RHUL
data, contributions to the excess can come from a variety of sources particularly, but
not exclusively, mainland Europe. Attempts to quantify the locations and strength of
emissions sources from Mace Head, and similar data from other locations, have how-15

ever met with varying degrees of success (Ashbaugh et al., 1985; Vasconcelos, 1996a,
b; Stohl, 1996).

Recently, Ryall et al. (2001) have used a heuristic approach for determining emis-
sions strengths and locations. The approach was based on the rational idea that those
regions more or less often associated with higher detected gas concentrations must20

have higher or lower emission strengths. In this paper, we present preliminary results
of an alternative heuristic approach. By casting the problem as an optimisation, we
investigate the use of an evolution strategy in determining the spatial distribution and
strength of emissions.

2. Back trajectory analysis25

A popular meteorological tool to investigate emission is the transport model, including
the trajectory-type model (Simmonds et al., 1993; Vasconcelos, 1996a, b; Deininger
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and Saxena, 1997), and the dispersion-type model (Derwent et al., 1998a, b; Ryall et
al., 1998, 2001; Zhang et al., 1999; Wang and Bentley, 2002). To determine emis-
sion source strength and location, the model may be scaled to match observational
data (Ryall et al., 2001), alternatively data assimilation techniques such as the ad-
joint method (Houweling et al., 1999) or Kalman smoother (Zhang et al., 1999; Wang5

and Bentley, 2002) can be applied. In this work, we use back-trajectory analysis and
implement source characterisation using an evolution strategy.

A back trajectory is an estimate of the recent movements of an air parcel, backwards
in time from the moment when the air parcel was sampled at the monitoring station. A
large number of trajectory models exist, each with their own assumptions and limita-10

tions (Kud at al., 1985; Merril at al., 1986; Draxler, 1987; Deininger and Saxena, 1997;
Stohl, 1998), however all models output essentially the same type of data, which is the
estimated geographical location of the air mass at preceding time intervals. Often an
estimate of the height of the air parcel above the surface at the various locations visited
is also part of the trajectory model output. The model results used in this paper are from15

the Irish Meteorological Service Global Trajectory Model (GTM) using ECMWF analy-
ses, details of which are given in McGrath (1989). An example of the back-trajectory
data is presented in Table 1.

The injection of gas species into an air parcel depends on the parcel height and on
the mixing height at the time it passed over a location. If the air parcel is above the20

mixing height, it is assumed ground source emissions do not influence concentration.
Otherwise, it is assumed that the ground emissions are mixed uniformly within the
mixing height. A constant mixing height of 1000 m was used in this study and the
height of the air parcel is estimated using the pressure difference between the air parcel
and the surface. A consequence of these simplifying assumptions is that the solution of25

“real-world” problems cannot be attempted. Instead the intention is to establish a “proof
of concept” where a methodology for this notably complex problem is first developed
and tested on artificial scenarios, but will in the future be modified to incorporate more
sophisticated models of mixing height (Marik et al., 1995; Biraud et al., 2000), or actual
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mixing height measurements.

3. Rationale

A reasonable proposition is to combine the measurement and trajectory data in order
to generate quantitative estimates of sources and their location. Following Seinfeld
and Pandis (1998) the excess concentration of a species within an air mass can be5

considered to be a result of recent influences, that is the recent emission into the air
mass as it passed over source locations on its trajectory. The excess of a particular
species C (as measured in ppb) arising from a trajectory j would then be the sum
of emissions e (where a constant mixing height is assumed), from the geographical
locations on this trajectory φt (a parametric curve sampled at discrete intervals of time10

t):

Cj =
∑
t

ej (φt). (1)

By identifying those sites, i , visited in a set of trajectories, and assuming that the
emission from each location is independent of the trajectory used (also equivalent to
time independence on the timescale of the trajectory set), this equation can be rewritten15

as

Cj =
∑
i

ni , jei , (2)

where ni , j is a weighting factor which incorporates per trajectory the frequency with
which a location has been visited and the dependence on mixing height during these
visits. The weighting factor can be made as detailed as one feels necessary and can20

include descriptions of other physical and chemical processes influencing the injection
and removal of the species into the air mass. With a suitable number of observations
it should be possible to solve the resulting set of simultaneous equations for ei using
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standard approaches to matrix inversion (see e.g. Veltkamp at al., 1995). Unfortu-
nately, the resultant matrix is sparse, can be under or over-determined, depending on
the resolution of the location sampling, and, susceptible to error and model assump-
tions.

4. Evolution strategy-cost function5

An evolution strategy (ES) is an artificially intelligent global optimisation technique
based loosely on the theory of evolution, i.e. survival of the fittest. The general op-
eration of this technique is as follows. The vector Xopt = (x1...xn) at which the function
f (X ) is a minimum/maximum is to be determined. In general f (X ) is referred to as a
cost function if the objective is minimisation and a fitness function if maximisation (here10

minimisation will be considered). For a vector space of many dimensions with a com-
plicated surface geometry, the problem will be intractable analytically. The approach
of an ES is to create a population of random solution vectors Xj referred to in ES ter-
minology as chromosomes. The elements of the vectors are referred to as genes in
keeping with the genetic analogy. The process of solving for Xopt involves continually15

establishing the cost of each chromosome and iteratively breeding new populations
until the cost function is a minimum. Usually the breeding of new populations involves
the operations of selection followed by recombination/crossover and mutation. The ES
is closely related to the Genetic Algorithm (Mitchell, 1996) and the distinction between
these approaches is often blurred.20

In the methodology of an ES a trial solution is attempted, the so-called chromosome
from above, and rated according to how close it is to the desired solution. Its sur-
vival into successive iterations of populations and its influence on the optimum solution
depends on this rating. The method of rating requires a cost function which is now
considered.25

The region of interest is a geographical map whose graticule is the rectilinear coor-
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dinates x, y (see Fig. 1). We rewrite Eq. (2) in terms of the indices x, y ,

Cj =
∑
x

∑
y

nx, y, jex, y . (3)

Sites not visited are also included in this formulation, but for these nx, y, j = 0 and they
are not included in the calculations (see also below). The objective is then given a
set of observations Cj and associated back-trajectory data from which nx, y, j can be5

calculated, to determine the map ex, y which satisfies Eq. (3). This condition can be
rewritten in terms of the function fj

fj (ex, y ) = Cj −
∑
x

∑
y

nx, y, jex, y = 0 (4)

and the problem becomes one of optimisation by requiring a value of ex, y which min-
imises the cost function.10

F (ex, y ) =
∑
j

|fj (ex, y )| (5)

5. Evolution strategy-algorithm

We now describe in detail the operation of the ES which minimises the cost function of
Eq. (5). The first step involved is the formation of the initial population of trial solutions
ex, y . This population is generated with as few a priori assumptions as possible. In15

general for inverse emission modelling methods, it is necessary to supply a priori infor-
mation about the source activity, and perhaps more importantly the uncertainty of the
emission strength. The a priori source locations are typically derived from inventories
compiled from economic statistics and other literature sources. Whilst these methods
progress to constrain and modify the initial information, the methodology here will al-20

low the investigation of species, and sources, which are poorly, or falsely, reported in
1339
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the literature, for example, emissions from activities that are neither socially nor eco-
nomically important. The ES will eventually provide a means of estimating emissions
from regions, e.g. the north Atlantic; for species, e.g. DMS; and for processes, e.g.
methane seepage from ocean floor methane hydrate deposits, for which inventory are
not currently available, or are far from reliable. Application of the ES, in the future, to5

such species as methane will provide a competitive testing ground for this method of
source location and quantification against the positive results of the myriad of other
approaches.

To formulate the trial solutions, use is made of two conditions. Firstly, it is impractical
to assign an emission strength to a cell (where a cell is an individual element of the10

matrix ex, y ) which has not been visited by the set of back trajectories i.e. those for
which nx, y, j = 0. Secondly, the maximum emission possible from a given cell, denoted

eT
x, y , is never expected to exceed the minimum concentration detected at the sampling

site for any of back trajectories which have passed over the cell. In general this is
probably a generous over estimate of the possible emission from a given cell. This15

condition also places a heavy weighting on the validity of the individual trajectory with
the minimum concentration. Other schemes for limiting the first guess emission from
a cell can be devised, for example using the mean observed concentration associated
with the given cell rather than the minimum.

Subject to these conditions the trial solution consists of a random number of visited20

cells. A random emission strength is assigned to each cell which is less than or equal to
the minimum site concentration associated with any trajectory that has passed over that
cell. In total a population of typically 40 trial solutions or chromosomes is generated.

The ES then progresses as follows. The population is rated according to the cost
function of Eq. (5). Subsequently the lower performing 20% of the population are25

replaced. The methodology of replacing these solutions is now described. Firstly
selection occurs. Two solutions X and Y are chosen from the surviving population,
i.e. the top 80%, and combined to produce two “offspring” x and y. X is chosen at
random from the top 20% of the population while Y is chosen from the entire surviving
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population. Those solutions of the lowest 20% are thus prevented from being involved
in the replacement process.

Subsequently reproduction takes place. A weighted random binary mask typically
75% in favour of the chromosome X is generated which is used to perform a non-
uniform crossover between the genes or elements of X and Y to form x and y. In this,5

75% of the gene material of x comes from X, the remainder from Y and vice versa for
y. The gene information is so far unchanged. Mutated offspring are also generated.
To do this a random number of genes in both x and y are replaced (typically 10%) to
produce xm and ym. For those cells selected to be mutated, the algorithm employed is
the following10

em
x, y =

(
rand(0 → ±1) ∗ eT

x, y

M

)
+ ex, y

em
x, y =


em
x, y 0 < em

x, y ≤ eT
x, y

eT
x, y em

x, y > eT
x, y

rand(0→1)∗eT
x, y

M em
x, y ≤ 0

(6)

with M =
√
Ngen for what is termed restrained mutation and M = 1 for unrestrained

mutation. Here Ngen is the number of new populations which have been generated
since the ES commenced. For restrained mutation the mutation rate decreases as the15

ES progresses.
Subsequent to mutation, the cost of all new chromosomes are evaluated and a new

member of the population is taken from either x or xm depending on which has the
lowest cost. The same is true of y and ym. The process of selection and reproduction
is then repeated until the lower 20% of the population is replaced. The population20

is once again ordered according to minimum cost and the entire process repeated
until a maximum number of iterations/generations (taken here to mean one complete
processing of the population) is exceeded or the cost-value of the function falls below
a desired tolerance, and an optimum solution is determined.

1341

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1333/acpd-3-1333_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1333/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 1333–1366, 2003

An evolution strategy
to estimate emission
source distributions

P. O’Brien et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

It is a matter of personal judgement what proportion of the population is discarded
per generation. If a large proportion of the population is discarded, there may be lim-
ited diversity in the remaining population. In effect the gene pool is reduced sharply.
A stable population of similar solutions is thus attained in a relatively small number of
generations before convergence on an optimum solution is obtained. Discarding a low5

proportion of the population, in contrast, guarantees greater diversity in the population,
at least in the earlier generations, allowing poorer solutions to progress into later gener-
ations, and allowing the possibility of their gene material to contribute to later offspring.
As a result it may take a greater number of generations to tend towards an optimum
solution, but that solution may be of lower cost.10

6. Case studies

To investigate the ES approach for the estimation of emission source distributions a “re-
verse engineering” strategy was adopted (Doyle et al., 1999). Artificial emission maps
were generated, then using a catalogue of back-trajectory analyses from 1996 to 2000
(McGrath, 1989) for Mace Head and RHUL (Lowry et al., 2001), an artificial time series15

of concentration measurements at the sample sites was constructed. In principle given
the artificial series and the associated back-trajectory data, the ES approach should be
able to re-generate the corresponding emission map. For comparison, Singular Value
Decomposition (SVD) was also applied to this synthetic data. SVD (Press et al., 1994)
is a well understood method of solving simultaneous equations which ignores incon-20

clusive or ambiguous data in favour of generating a more robust and realistic solution.
Three test geometries were considered (see Fig. 2). For the area and distributed

source test geometries the grid cell size is 200 × 200 km2, for the enclosing source
the grid cell size is 100 × 100 km2, and in all cases the emission rate per source cell
is 100 ppb/hr (recall a constant mixing height of 1000 m is assumed). The distributed25

source problem consists of a 7 × 5 array of isolated sources with a horizontal spacing
of 1000 km for column elements 2 to 5, a spacing of 1800 km for column elements 1
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to 2 and a vertical spacing of 600 km. The area source problem consists of a 5 × 3
array of sources located to the northwest of Ireland. Finally the enclosing source has
a hexagonal outline consisting of 60 connected sources.

The ES and SVD were applied to the distributed and area geometries at 3 grid reso-
lutions, with cell sizes of 100 × 100 km2, 200 × 200 km2, and 400 × 400 km2. In Fig. 3,5

the number of visitations by the back-trajectories per cell is shown. As the resolution of
the grid increases, on average the number of visitations per cell decreases. The benefit
of improved resolution might therefore be expected to be at the cost of less information
per cell upon which to base any estimation of emission.

The general parameters used for the ES and SVD are outlined in Table 2. As men-10

tioned earlier two methods of mutation are available and to test this, adopting a grid
size comparable to the test problem resolution, both methods were implemented on
the area source problem. The convergence data for this test is shown in Fig. 4 which
clearly demonstrates the significantly faster convergence character of unrestrained mu-
tation. Notice also the characteristic exponential like convergence of the ES approach15

a recognised advantage of such techniques. Given the improved performance, unre-
strained mutation was adopted for subsequent ES applications.

In Figs. 5 and 6 results of the ES (after 300 iterations) and SVD methods are shown
for the distributed and area test geometries at each of the differing resolutions. Inspec-
tion of the data clearly demonstrates that in almost all cases the ES improves over the20

SVD results when compared at equivalent resolutions.
For both the artificial area and distributed source problems, the best ES solutions

are for the grid with element size 200 × 200 km2, the resolution at which the test prob-
lems were generated. In the case of the area solution a mean area emission rate of
99.9 ppb/hr (σ = 1.2) is obtained.25

The ES does not generate an adequate solution for the distributed point source array
problem at the lowest resolution and misses the sources entirely. The cause of this
effect is the initialisation scheme. During the initialisation of the ES, the maximum
emission value for a given cell is constrained to never exceed the minimum observed
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concentration associated with any trajectory which has passed through the cell. The
validity of this approach however depends on the grid resolution. As seen from the
visitation map (Fig. 3) as the grid cell size becomes larger an increasing number of
trajectories will pass through a given cell on average. Consider now a source in a cell
with physical size smaller than the grid resolution. The larger the trajectory number that5

pass through the cell the greater the likelihood that one or more of these trajectories
will not intersect the source within it. The cell strength may then be constrained by
emissions from a trajectory external to the source, which is incorrect. The minimisation
constraint will only be valid provided the grid cell size is smaller than the source size.
The same effect is responsible for the diminished extent of the area distribution solution10

at low resolution. It is worth pointing out that this constraint can be relaxed or even
removed and an improved solution likely obtained. The trade- off would be an increase
in the number of iterations required for convergence.

For the distributed source array at the lowest resolution (400 × 400 km2) SVD does
not present a realistic solution, but at medium resolution the sources are visible. The15

area emission source is only clearly identifiable at a medium resolution where the mean
area source emission rate is 99.3 ppb/hr (σ = 0.9) compared with the correct solution
of 100 ppb/hr. Importantly, in all SVD solutions there is large area coverage of spurious
emission which is both positive and unphysically negative. Without prior knowledge
of the distribution it would be impossible to distinguish the true distribution of sources20

from artefact sources.
At the highest resolution 100×100 km2 for both the distributed and area source prob-

lems the correct solution is matched by the ES, though a variation in source solution
emission is evident. The variation is most likely caused by the increasing number of
unknowns at higher resolution and the limit imposed on the maximum number of ES25

iterations. In Fig. 7 the convergence trend for the high resolution distributed source is
presented, and reveals continuing convergence beyond the 300 iteration limit. In stark
contrast SVD fails completely at this resolution and provides no result. Even though the
information available to the ES approach is limited, a strength of the technique is that
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it manages to use this information efficiently to determine a solution approximation.
Scattergram plots at the benchmark 300 iterations for the ES solutions of the area

source problem are presented in Fig. 8. The plots display the correlation between site
concentrations for each back trajectory, calculated from the optimum solutions, versus
the actual site concentrations generated from the corresponding artificial maps. For5

an exact solution a regression coefficient of unity would be obtained. From the plots it
is possible to see the trend, already apparent in the solution maps above, is repeated
with the best solutions obtained for the medium and high resolution grids.

One potential difficulty with the ES is the presence, particularly to the northwest, of
false sources being located at the extremities of the map (see Fig. 5). This behaviour10

is a recurring feature, though not exclusively, of the ES technique. In Fig. 6, in addition
to a background of spurious emission, similar false sources can be identified for the
SVD solutions, particularly to the east. In both cases, without prior knowledge of the
distribution, it could be impossible to distinguish the true sources from artefact sources.
In contrast to SVD however, the spurious emission appears to be confined in the ES15

solutions only to specific areas and might therefore be identified by other means. For
example comparison of the cell visitation map with the solution map shows clearly that
the artefacts are located within a region of low trajectory visitation.

It is easy to understand why errors at the extremes of the ES solutions happen; the
ES does not know when an injection occurs and therefore can assign emissions to all20

locations along a trajectory if it wishes. If a cell is visited by only one or relatively few
air masses, the cost function which is cumulative, is less sensitive to these cells than it
is to cells which are visited on many occasions. Therefore, it is efficient for the ES to
assign the relatively large emission to a single, poorly sampled cell. Under the present
formulation of the ES, there is no forcing or weighting factor which informs the ES that25

it is “wrong” to do so. Without greater a priori input, the ES cannot learn of the mistake.
In Fig. 9 the results obtained from the ES at a resolution of 100 × 100 km2, for the

enclosing source geometry, is shown. The ES has only limited success, with this ge-
ometry. Although the inner limits of the source region is clearly defined, outside the

1345

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1333/acpd-3-1333_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1333/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 1333–1366, 2003

An evolution strategy
to estimate emission
source distributions

P. O’Brien et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

circle is very poorly reconstructed. It would appear that in order for the ES to clearly
delineate a source, a “clean” pathway to the sampling site must exist nearby. The ES
needs to be able to contrast heavily burdened air masses with “clean” air masses with
a similar trajectory in order to enclose the source. The SVD failed to converge on a
solution for this test.5

Overall for the ES if the emission sources fully encompass the detection sites, or
when there is a lack of trajectory coverage, the ES has greater difficulty in reconstruct-
ing the “true” distribution. Greatest success is had with localised sources, within well
sampled regions. It can be argued therefore that high emission source regions identi-
fied by the ES which are enclosed within well sampled lower/zero emission regions on10

a reconstructed map are likely to be reliable indicators of actual source locations and
emission strength. In contrast those cells at the extremes of trajectories, or part of a
contiguous link to the extremes of the sampled region, are not conclusive indicators of
the presence of source activity within the cells involved. Note that the argument often
made, that the tendency of back trajectory studies to locate sources at the limits of their15

range indicates the real sources lie further afield, is not valid in the test case studies.

7. Conclusions

In this paper, a novel approach has been presented to estimate the distribution of
emission sources on a regional scale based on the use of evolutionary optimisation
and back-trajectory analysis. An ES, that is an artificially intelligent global optimiser,20

was developed for this purpose.
The results of the ES have been compared to the Singular Value Decomposition ma-

trix method of solving systems of linear equations. The methods have been applied to
the geometric test problems of an area source, a distributed source and an enclosing
source, where constant emission for the test source elements was chosen. To gen-25

erate both the test problems and solutions, a constant mixing height was assumed
for the back-trajectory analyses. The use of artificial test problems also excludes both
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model and measurement errors which would be present in a real world scenario. Given
these limitations, comparison of the ES to SVD is favourable at equivalent resolutions,
with the ES approach being more successful in both the location and quantification of
source emissions. At high resolution the SVD method fails to converge on any viable
solution.5

For the operation of the ES no a priori emission data was assumed. The gener-
alised approach allows, in principle, for the determination of emission locations and
strengths in cases where inventories are either unavailable or possibly incorrect. Nev-
ertheless, if reliable inventories are available this data could be used to initialise the
ES solutions. For example, a potential difficulty with the ES and also, for that matter10

SVD, is a tendency to locate false emissions at the extremes of the trajectories. For
the ES, the cost function formulated above is insensitive to the emission values asso-
ciated with infrequently visited cells. With certain species it may be possible to exclude
falsely identified regions by virtue of a priori knowledge of the nature of the emission
sources, and so further refine the cost function. As a specific example, HCFC’s are15

strictly anthropogenic, and significant sources must be land based. Therefore, one
might exclude ocean regions from the ES from the beginning. Nevertheless, it is more
often not possible to predetermine possible source regions in this manner.

Comparing the operation of the ES at different resolutions has revealed that, as
might be intuitively expected, the best solution is obtained at the resolution of the orig-20

inal test problem. In a real-world application the size of sources to be identified may
not be known in advance. It has been shown, however, that at higher resolution, the
test sources are located, though at computational expense. Ultimately higher grid res-
olutions will be limited by low trajectory number per cell, which has been identified as a
likely cause of spurious source emission. At low resolution, it is expected that remov-25

ing the minimisation constraint, imposed on the initialisation of threshold emissions, will
lead to successful source identification, though its removal will also be computationally
expensive. Thus regardless of resolution, it is expected that the ES will converge on
a solution provided that the trajectory visitation per cell is sufficiently high. In this con-
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text, it would be worth exploring an adaptive grid approach, where the grid element
size distribution might be adjusted to generate an optimum trajectory visitation number
per cell.

The most exacting test piece investigated was the enclosing source, for which the
ES established the inside boundary only. Such a test may be representative of any5

sampling site where the arriving air mass always passes over an emission source, as
might be the case for a continental site, for example. SVD failed definitively for this
test, and without the contrast of a proper background or clean concentration level, it
is likely that any inverse modelling approach would have difficulty with source charac-
terisation. Nevertheless, the use of a more sophisticated physical model, such as a10

dispersion instead of a trajectory model, might lead to better characterisation, given its
more refined description of potential areas which have an influence on the sampled air
mass. It should be pointed out that the use of an ES approach need not be confined
to back-trajectory analyses. The problem need only be cast in terms of a cost function
where the model relating emissions to observation can be as complex as required.15

Regardless of the model adopted, consideration will need to be given in the future to
measurement and modelling errors for the solutions to real measurement data.

Finally, it is recognised that the presence of spurious sources undermines the results
obtained from the ES approach. This could be an indication that the information which
we seek may not be discernible from the data. Certainly the appearance of localised20

false sources in the SVD solutions would support this reasoning. The ES and indeed
other methods may yield results which reconstruct observed time series of measure-
ments for example, but there is no guarantee that the emissions maps constructed
represent reality. The constructed map is just one which is a solution to the mathemati-
cal problem posed. In this debate the authors are of the opinion that the ES represents25

an interesting new approach to the problem, which although may not (as yet) yield an
exact solution, presents important insight into the complexity of problems often hidden
in the more analytical approaches.

Acknowledgement. The authors wish to thank Met Eireann and the ECMWF for ongoing provi-
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sions of back trajectory data to the Atmospheric Physics Group at National University of Ireland,
Galway.
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Table 1. Sample back trajectory data

Trajectory number 1
Start: Lat 53.3◦ N Pressure level 1000 hpa

Time 12:00 UTC on 12.12.0
Lon 0.0◦ W
End: Time 12:00 UTC on 8.12.0
Forecast fields from Time 18:00 UTC on 12.12.0

Hours Lat Lon Level U-wind V-wind W-wind Ps

0 53.3◦ N 9.9◦ W 1000 −1.1 −5.3 −0.06 981
1 53.47◦ N 9.84◦ W 980.4 −5.5 0.9 −0.08 981.9
2 53.44◦ N 9.6◦ W 981.1 −3.5 1.7 −0.07 982.5
3 53.38◦ N 9.46◦ W 981.9 −1.8 2.4 −0.06 983.4
4 53.3◦ N 9.4◦ W 983 −0.2 3 −0.06 984.7
5 53.2◦ N 9.43◦ W 985 1.3 3.2 −0.05 986.4
6 53.09◦ N 9.54◦ W 986.8 2.9 3.6 −0.05 988.5
7 52.96◦ N 9.7◦ W 988.7 3.1 4.5 −0.06 989.8
8 52.8◦ N 9.87◦ W 989.6 3.9 6.1 −0.08 991.4
9 52.59◦ N 10.09◦ W 992.4 4.5 6.9 −0.08 993.5

10 52.35◦ N 10.35◦ W 993.6 5.9 8.7 −0.09 995.7
11 52.07◦ N 10.68◦ W 996.6 6.7 9.1 −0.08 997.7
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Table 2. Parameters used for the ES and SVD

Analysis Population Generations Mutation Crossover Replacement X/Y
ES

Enclosing
source 100 300 Unrestrained 0.25 0.2 0.2/0.8

Area Source,
long run 100 1000 Unrestrained 0.25 0.2 0.2/0.8
All other
analyses 40 300 Unrestrained 0.25 0.2 0.2/0.8

SVD Wmin threshold (Press et al., 1994)

All analysis 1.0 × 10−4 ∗ Wmax
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Fig. 1.  The map and an example of the superimposed rectilinear coordinate graticule 
with cell size 100x100 km2 used in subsequent simulations. Sample back-trajectories 
arriving at Mace Head (M) and Royal Holloway, University of London (H) are 
shown. 
 

Fig. 1. The map and an example of the superimposed rectilinear coordinate graticule with cell
size 100× 100 km2 used in subsequent simulations. Sample back-trajectories arriving at Mace
Head (M) and Royal Holloway, University of London (H) are shown.
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(c) 
Fig. 2.  Test geometries for the artificial emission maps:  (a) distributed source (b) 
area source and (c) enclosing source. 

Fig. 2. Test geometries for the artificial emission maps: (a) distributed source (b) area source
and (c) enclosing source.
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(b) 
 

(c) 
Fig. 2.  Test geometries for the artificial emission maps:  (a) distributed source (b) 
area source and (c) enclosing source. 

Fig. 2. Continued.
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(b) 
 

(c) 
Fig. 2.  Test geometries for the artificial emission maps:  (a) distributed source (b) 
area source and (c) enclosing source. Fig. 2. Continued.
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(a) 
 

(b) 
 

(c) 
Fig. 3. A map revealing the number of cell visitations by back-trajectories at the (a) 
low 400x400 km2, (b) medium 200x200 km2 and (c) high 100x100 km2 resolutions. 

Fig. 3. A map revealing the number of cell visitations by back-trajectories at the (a) low 400 ×
400 km2, (b) medium 200 × 200 km2 and (c) high 100 × 100 km2 resolutions.
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(b) 
 

(c) 
Fig. 3. A map revealing the number of cell visitations by back-trajectories at the (a) 
low 400x400 km2, (b) medium 200x200 km2 and (c) high 100x100 km2 resolutions. 

Fig. 3. Continued.
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(c) 
Fig. 3. A map revealing the number of cell visitations by back-trajectories at the (a) 
low 400x400 km2, (b) medium 200x200 km2 and (c) high 100x100 km2 resolutions. 

Fig. 3. Continued.
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Fig. 4  The convergence trends of the ES for various start conditions for restrained 
and unrestrained mutation applied to the area source problem for a 200x200 km2 cell 
size.

ES performance with different Mutation Restraints, using Area Source test map
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Fig. 4. The convergence trends of the ES for various start conditions for restrained and unre-
strained mutation applied to the area source problem for a 200 × 200 km2 cell size.
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(a)         
 

(b)         
 

(c)         
 
Fig. 5  Solution emission maps generated by ES for the distributed source (left) and 
area source (right) at (a) low, (b) medium and (c) high resolutions. Fig. 5. Solution emission maps generated by ES for the distributed source (left) and area

source (right) at (a) low, (b) medium and (c) high resolutions.
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(a)         
 

(b)        
 
 
Fig. 6  Solution emission maps generated by SVD for the distributed source (left) and 
area source (right) problems at (a) low and (b) medium resolutions. 

Fig. 6. Solution emission maps generated by SVD for the distributed source (left) and area
source (right) problems at (a) low and (b) medium resolutions.
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Progress of ES towards minimum Cost Function for Distributed Source
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Fig. 7   The extended convergence trend for the ES solution to the distributed source 
problem at high resolution. 
 

Fig. 7. The extended convergence trend for the ES solution to the distributed source problem
at high resolution.
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Fig. 8  Scattergram plots for the ES solutions of the area source problem at low, 
medium and high resolutions. 
 

Comparison of the Original Artifical Observation Data with the Evolutionary Strategy Reconstruction at 
various Grid Resolutions for Area Source
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Fig. 8. Scattergram plots for the ES solutions of the area source problem at low, medium and
high resolutions.
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Fig. 9  Solution emission map generated by ES for the enclosing source problem. 

Fig. 9. Solution emission map generated by ES for the enclosing source problem.
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