Atmos. Chem. Phys. Discuss., 2, S964–S965, 2002 www.atmos-chem-phys.org/acpd/2/S964/ © European Geophysical Society 2003

ACPD

2, S964–S965, 2002

Interactive Comment

Full Screen / Esc

Print Version

Interactive Discussion

Discussion Paper

© EGS 2003

Interactive comment on "Wavelength dependence of isotope fractionation in N₂O photolysis" *by* J. Kaiser et al.

J. Kaiser et al.

Received and published: 4 February 2003

Referee #1 refers to a typo on page 1741. However, the original paper is actually correct. As discussed in the quoted reference (Kaiser et al., 2002b), $O(^1D)$ is most likely produced from NO₂ photolysis and then reacts with N₂O. The contribution of $O(^1D)$ production from N₂O photolysis is not relevant and cannot account for the observed decrease in the magnitude of the fractionation constant towards higher degrees of conversion, since the N₂O mixing ratio is constantly decreasing. In contrast, the photochemical product NO₂ is likely to build up in the reactor (Kaiser et al., 2002b).

We agree with referee #1 that in terms of stratospheric N₂O photolysis, enough effort has been put into studying the isotopic fractionation of N₂O. However, it may still be interesting to investigate the difference in absorption cross sections for different isotopic cally substituted N₂O species to get a deeper insight into the dynamics and underlying molecular properties of N₂O photodissociation.

James Donaldson comments that we assume a uniform quantum yield for N₂O photolysis and neglect any temperature dependence of the absorption cross section or quantum yield. Although this is true, it is of no relevance in the present case, since we only investigate relative absorption cross sections of ¹⁴N¹⁵N¹⁶O, ¹⁵N¹⁴N¹⁶O and $^{14}N_2$ N $_2$ quantum yield is the same for all isotopomers and isotopologues and therefore cancels out, so that the fractionation factor (defined as the reaction rate ratio of the N₂O species with the heavy isotope over that with the light isotope) can be identified with the ratio of absorption cross sections for both species. To our knowledge, no measurements of the quantum yield in N₂O photolysis of individual isotopically substituted N₂O species exist. Both the recent NASA-JPL (DeMore et al., 1997) and IUPAC (Atkinson et al., 2002) evaluations of kinetic reaction data recommend a quantum yield of 1 for $O(^{1}D)$ production in N₂O photolysis. In any case, we need not worry about this assumption in the interpretation of stratospheric observations, since we would also observe the combined effects of changes in absorption cross section and quantum yield upon isotopic substitution. The temperature dependence of isotopic fractionation by N_2O photolysis has been adressed in a companion paper (Kaiser et al., 2002b). The present paper only presents measurements at room temperature. For clarity, we will address both the $O(^{1}D)$ and temperature issues in the final version which will be submitted for publication in ACP.

Interactive comment on Atmos. Chem. Phys. Discuss., 2, 1735, 2002.

ACPD

2, S964–S965, 2002

Interactive Comment

Full Screen / Esc

Print Version

Interactive Discussion

Discussion Paper

© EGS 2003