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Abstract 15 

Assessing the ability of global and regional models to describe aerosol optical properties is 16 

essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate 17 

and to improving confidence in future projections. Here we evaluate the skill performance of 18 

high-resolution simulations conducted using the Weather Research and Forecasting model with 19 

coupled chemistry (WRF-Chem) in capturing spatio-temporal variability of aerosol optical 20 

depth (AOD) and Ångström exponent (AE) by comparison with ground- and space- based 21 

remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 22 

12 km for a representative year (2008). A small systematic positive bias in simulated AOD 23 

relative to observations is found (annual MFB=0.175 and 0.50 when comparing with MODIS 24 

and AERONET respectively), whereas the spatial variability is well captured during most 25 

months. The spatial correlation of observed and simulated AOD shows a clear seasonal cycle 26 

with highest correlation during summer months (r=0.5-0.7) when the aerosol loading is large 27 
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and more observations are available. AE is retrieved with higher uncertainty from the remote 28 

sensing observations. The model is biased towards simulation of coarse mode aerosols (annual 29 

MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation 30 

for AE with observations is 0.3-0.5 during most months, despite the fact that AE is retrieved 31 

with higher uncertainty from the remote sensing observations..  WRF-Chem also exhibits high 32 

skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly 33 

simulate the location and relative intensity of an extreme aerosol events (i.e. AOD>75th 34 

percentile) varies between 30 and 70% during winter and summer months respectively. 35 

 36 

1. Introduction and Objectives 37 

Atmospheric aerosol particles (aerosols) play a major role in dictating Earth’s climate by both 38 

directly interacting with solar radiation (direct effect) and acting as cloud condensation nuclei 39 

and thus changing cloud properties (indirect effect) (Boucher et al., 2013). The global mean 40 

aerosol direct effect is estimated to be -0.27 (possible range of -0.77 to +0.23) W m–2, while the 41 

indirect effect is -0.55 (-1.33 to -0.06) W m-2 (Stocker et al., 2013). Therefore their combined 42 

radiative forcing is likely a significant fraction of the overall net anthropogenic climate forcing 43 

since pre-industrial times (i.e. 1.13-3.33 W m-2 (Stocker et al., 2013)) and a substantial source 44 

of uncertainty in quantifying anthropogenic radiative forcing.  45 

Accurate quantification of direct aerosol radiative forcing is strongly dependent on aerosol 46 

precursor and primary aerosol emissions. Both have evolved over the past two decades in terms 47 

of their spatio-temporal distribution and absolute magnitude. Emissions have generally 48 

increased in emerging economies (Kurokawa et al., 2013), biogenic and anthropogenic 49 

emissions have altered in response to changing land use and land cover (Wu et al., 2012), and 50 

the implementation of pollution control strategies particularly in North America and Europe 51 

have resulted in declines in air pollutant emissions (Xing et al., 2015;Giannouli et al., 2011). 52 

Therefore there is evidence that aerosol burdens and thus direct climate forcing has varied 53 

markedly in the past and may change substantially in the future. Further, although best estimates 54 

of global anthropogenic radiative forcing from the aerosol direct and indirect effect are -0.27 55 

and -0.55 W m-2 (Stocker et al., 2013) respectively, the short residence time and high spatio-56 

temporal variability of aerosol populations mean their impact on regional climates can be much 57 

larger than the global mean but are even more uncertain. 58 
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Long-term measurements of aerosol properties are largely confined to aerosol mass (total, PM10 59 

or PM2.5) in the near-surface layer which may or may not be representative of either the total 60 

atmospheric burden (Ford and Heald, 2013;Alston et al., 2012), or radiation extinction and 61 

hence climate forcing. Further, aerosol composition measurements are often a 24-hour 62 

integrated sample taken only 1 in 3 days and thus are subject to under sampling. Hence they 63 

provide an incomplete description of temporal variability and mean aerosol burdens for model 64 

performance evaluation. Long-term continuous and high precision measurements of aerosol 65 

properties are largely confined to aerosol mass (total, PM10 or PM2.5) in the near-surface layer 66 

which may or may not be representative of either the total atmospheric burden (Ford and Heald, 67 

2013;Alston et al., 2012), or radiation extinction and hence climate forcing. Columnar remote 68 

sensing measurements of aerosol optical properties are available from a range of ground-based 69 

and satellite-borne instrumentation, but have only a relatively short period of record, are subject 70 

to non-zero measurement uncertainty (and bias), and under-sample the range of atmospheric 71 

conditions due to cloud masking and infrequent satellite overpasses. Therefore, regional and 72 

global models are most commonly used to quantify historical and contemporary aerosol direct 73 

radiative forcing based on simulated properties such as the aerosol optical depth (AOD) and 74 

Ångström exponent (AE) (Boucher et al., 2013).  75 

Most global models that include aerosol microphysics have been run at fairly coarse resolution 76 

(spatial resolution of the order of 1-2.5°) (Table 1) usually for periods of a few years. The 77 

resulting fields of AOD (and less frequently AE) have been evaluated relative to ground-based 78 

and satellite-borne remote sensing optical properties measurements (Table 1). However, aerosol 79 

populations (and dynamics) are known to exhibit higher spatial variability (and scales) than can 80 

be manifest in those models (Kovacs et al.,2006;Kulmala et al., 2011;Santese et al., 2007; 81 

Schutgens et al., 2013;Sinzuka and Redemann, 2011). However, aerosol populations (and 82 

dynamics) are known to exhibit higher spatial variability (and scales) than can be manifest in 83 

those models (Kulmala et al., 2011;Spracklen et al., 2010). Despite recent improvements in the 84 

sophistication of aerosol processes and properties within global models, there are still 85 

substantial regional and latitudinal discrepancies in both the magnitude of AOD and other 86 

aerosol properties which impact aerosol direct radiative forcing and the degree of model-to-87 

model agreement (Myhre et al., 2013). Thus the skill of these models in reproducing the spatio-88 

temporal variability in the aerosol size distribution, composition, concentration and radiative 89 

properties is incompletely characterized. Further large model-to-model variability both in the 90 

global mean direct aerosol forcing and in the spatial distribution thereof exists (Kulmala et al., 91 
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2011;Myhre et al., 2013) leading to high uncertainty in quantification of aerosol climate 92 

forcing. The skill of these models in reproducing the spatio-temporal variability in the aerosol 93 

size distribution, composition, concentration and radiative properties is incompletely 94 

characterized. Accordingly, there is large model-to-model variability both in the global mean 95 

direct aerosol forcing and in the spatial distribution thereof (Kulmala et al., 2011;Myhre et al., 96 

2013). Although a direct comparison between the studies summarized in Table 1 is inherently 97 

very difficult due to the different performance metrics reported, and variations in both the model 98 

resolution and aerosol descriptions, there is a consistent finding of high spatial variability in 99 

model bias, both in sign and magnitude. Correlation coefficients of monthly and seasonal mean 100 

AOD from model simulations versus satellite-based measurements are typically in a range ~0.6-101 

0.8 both in global (Colarco et al., 2010;Lee et al., 2015) and regional (Nabat et al., 2015) 102 

simulations. However, these correlations are largely reflective of the ability of the models to 103 

capture the seasonal cycle and columnar aerosol properties from remote sensing and thus ignore 104 

substantial variability on the synoptic (Sullivan et al., 2015) and meso-scales (Anderson et al., 105 

2003). A wider range of correlation coefficients are reported when comparisons are made to 106 

high frequency observations of AOD at the hourly/daily timescale both in global (Sič et al., 107 

2015) and regional (Rea et al., 2015) simulations (r ~0.3-0.8). The largest range of correlation 108 

coefficients ([-0.99, 0.9]; Table 1) is reported when simulated AOD is compared with 109 

observations from the AErosol RObotic NETwork (AERONET), and appear to be function of 110 

temporal averaging, location of AERONET sites and model resolution. Correlations between 111 

time series of simulated AE versus AERONET observations are reported less frequently, and 112 

when conducted for monthly mean values range from ~0.4 (Li et al., 2015) to ~0.8 (Colarco et 113 

al., 2010). 114 

At least some of the variability in model skillperformance, as indicated by the mutual variability 115 

with observations described by correlation coefficients, and model-to-model agreement shown 116 

in AeroCom Phase II may be attributable to variations in model resolution, differences in gas 117 

and particle phase parameterizations and aerosol descriptions. However, there are also 118 

variations in the way in which model skill is evaluated and divergent opinions regarding 119 

prioritization of future research directions.However, there are also variations in the way in 120 

which model skill is evaluated leading to ambiguity in terms of prioritizing future research 121 

directions. The direct effect remains poorly quantified at the regional scale, due to uncertainty 122 

in aerosol loading, uncertainty and spatio-temporal variability in aerosol physical properties 123 

(Colarco et al., 2014) and a relative paucity of rigorous model verification and validation 124 
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exercises. Confidence in projections of possible future aerosol radiative forcing requires 125 

detailed assessment of skill in the current climate, and the need for and benefits of regional 126 

downscaling and/or use of high-resolution global models requires careful quantification. 127 

Regional models represent an opportunity to assess if running higher resolution simulations 128 

over specific regions of interest improves the characterization of aerosol optical properties of 129 

relevance to direct radiative forcing. Assessment of value added (or lack thereof) from high 130 

resolution regional versus global coarse resolution models has not been clearly quantified in 131 

previous studies (Table 1).Assessment of value added (or lack thereof) from high resolution 132 

regional versus global coarse resolution models is not quantifiable from prior studies alone.  133 

Although high-resolution simulations, comparable to those presented herein, have been run, 134 

they are over a small temporal and spatial domain (e.g. (Tuccella et al., 2015)), or lack 135 

quantitative assessment of aerosol optical properties (e.g. (Tessum et al., 2014)). Thus, 136 

quantification of the skill of high-resolution modeling of aerosol optical properties is presented 137 

here along with a preliminary analysis of model performance as a function of spatial 138 

aggregation. Forthcoming work will include direct comparison to coarser resolution 139 

simulations to quantify the value added (or lack thereof) from increased model resolution.  140 

We evaluate the skill of state-of-the-art high-resolution regional model simulations of climate-141 

relevant aerosol properties using a range of inferential descriptive statistics and investigate 142 

possible sources of discrepancies with observations. The impact of aerosols on climate and 143 

human health are strengthened under conditions of enhanced aerosol concentrations, thus it is 144 

necessary to study and diagnose causes of ‘extreme aerosol events’ (Chu, 2004;Gkikas et al., 145 

2012), and to evaluate the ability of numerical models to simulate their occurrence, intensity, 146 

spatial extent and location. Prior analyses of Level-3 (1 resolution) MODIS AOD over the 147 

eastern half of North America have indicated the frequency of co-occurrence of extreme AOD 148 

values (> local 90th percentile) are coherent over decreases to below 50% at regional scales (~ 149 

150 km) from a central grid cell located in southern Indiana, but is above that expected by 150 

random chance over almost all of eastern North America (Sullivan et al., 2015).  Thus, our 151 

evaluation exercise also includes an analysis of the spatio-temporal coherence of extreme 152 

events. 153 

We applied the Weather Research and Forecasting model with coupled Chemistry (WRF-Chem 154 

version 3.6.1) at high resolution (12×12 km) over eastern North America during the year 2008, 155 

in the context of a pseudo type-2 downscaling exercise in which the high-resolution model is 156 
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nested within reanalysis boundary conditions (Castro et al., 2005). The choice of this spatial 157 

resolution is taken in part to match the resolution of North American Mesoscale Model that is 158 

used for the meteorological lateral boundary conditions and to ensure we capture some 159 

mesoscale variability while remaining computationally feasible. 160 

Our evaluation is designed to investigate spatio-temporal variability of aerosol optical 161 

properties (i.e. AOD and AE) in their mean and extreme values. Thus, we conduct our 162 

evaluation of the simulations using: 163 

(i) High-frequency, disjunct time series data from columnar point measurements at 164 

AERONET stations. 165 

(ii) Relatively high-resolution spatial data from lower frequency (once daily or lower) 166 

data from polar orbiting satellites (i.e. MODIS and MISR). 167 

We also include intercomparison with daily mean PM2.5 concentrations from 1230 surface 168 

stations and near-surface PM2.5 composition using data from 123 IMPROVE sites. The PM2.5 169 

concentrations se data for 2008 were obtained from the US Environmental Protection Agency 170 

(EPA) AirData web site and represent all available outdoor near-surface 24-hour mean PM2.5 171 

measurements in the model domain. Most of these stations report values on a 1 day in 3 172 

schedule.  Daily average PM2.5 chemical compositions are also available on 1 day in 3 and were 173 

accessed online through the IMPROVE data wizard. We further evaluate the WRF-Chem 174 

simulations of a key meteorological parameter – precipitation – relative to observations from 175 

the Delaware gridded dataset (Matsuura and Willmott, 2009).  This data set includes monthly 176 

accumulated precipitation data on a 0.5×0.5 grid which is estimated by interpolating station 177 

observations from the Global Historical Climatology Network using the spherical version of 178 

Shepard's distance-weighting method (Shepard, 1968;Willmott et al., 1985). 179 

This paper is structured as follows. We first describe the settings used in our WRF-Chem 180 

simulations and introduce the remote sensing and other data used for model evaluation (Sect. 181 

2). A description of statistical metrics used for the evaluation is also provided. Section 3 182 

presents results of the evaluation of simulated AOD and AE versus observations, as well as 183 

findings on extreme AOD values. In Section 4 we summarize our findings and draw 184 

conclusions.  185 
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2. Methods 186 

2.1 WRF-Chem simulations  187 

The Weather Research and Forecasting Model with coupled chemistry (WRF-Chem, version 188 

3.6.1) (Grell et al., 2005;Fast et al., 2006) is used to simulate aerosol processes over eastern 189 

North America during the whole of 2008. The simulation domain comprises 300×300 grid 190 

points with 12 km resolution and is centered in southern Indiana (86W, 39N). The calendar 191 

year 2008 was selected because it is representative of average climate and aerosol conditions 192 

in the center of the model domain (near Indianapolis, IN). In 2008, mean Tmax, Tmin, 193 

precipitation, and wind speed as measured at the National Weather Service Automated Surface 194 

Observing Systems (NWS ASOS) station at Indianapolis International Airport are within 0.25 195 

standard deviations () of the 2000-2013 seasonal means. Further, mean seasonal AOD from 196 

Level-3 MODIS retrievals is within 0.2 of 2000-2013 mean values. Additionally, choice of 197 

this year ensures availability of multiple sources of ground- and space-based measurements of 198 

aerosol properties for evaluation of the simulations.  199 

Table 2 provides details of the WRF-Chem simulations. In brief, we used 32 vertical levels up 200 

to 50 hPa with telescoping to allow for a good vertical resolution in the boundary layer (i.e. 201 

approximately 10 layers below 1 km for non-mountainous regions). Meteorological lateral 202 

boundary conditions are provided every 6 hours from the North American Mesoscale Model 203 

(NAM) applied at 12 km resolution. The initial and boundary chemical conditions are based on 204 

output from the offline global chemical transport model MOZART-4 (Model for Ozone and 205 

Related chemical Tracers, version 4), driven by meteorology from NCEP/NCAR-reanalysis 206 

(Pfister et al., 2011;Emmons et al., 2010). Anthropogenic emissions are from the POET 207 

(Precursors of Ozone and their Effects in the Troposphere) and the EDGAR (Emissions 208 

Database for Global Atmospheric Research) databases. The land cover is specified based on 209 

the USGS 24-category data at 3.7 km resolution (Anderson et al., 1976). Anthropogenic point 210 

and area emissions at 4 km resolution are input hourly from the U.S. National Emissions 211 

Inventory (NEI-05) (US-EPA, 2009) and specified for 19 vertical levels (see Fig. 1 for an 212 

overview of the primary aerosol emissions). Biogenic emissions of isoprene, monoterpenes, 213 

other biogenic VOC (OVOC), and nitrogen gas emissions from the soil are described as a 214 

function of simulated temperature and photosynthetic active radiation (for isoprene) using the 215 

model of Guenther (Guenther et al., 1993;Guenther et al., 1994;Simpson et al., 1995). Aerosol 216 

and gas phase chemistry are described using the second generation Regional Acid Deposition 217 
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Model (RADM2) chemical mechanism (Stockwell et al., 1990) and the Modal Aerosol 218 

Dynamics Model for Europe (MADE) which incorporates the Secondary Organic Aerosol 219 

Model (SORGAM) (Ackermann et al., 1998;Schell et al., 2001). The correct characterization 220 

of aerosol optical properties is strongly related todependent on model skill in describing particle 221 

composition and mixing state (Li et al., 2015;Curci et al., 2014). With this in mind, it is worthy 222 

of note that aerosol components are assumed to be internally mixed within each mode (although 223 

the composition differs by mode). For theThe standard deviation on the log-normal Aitken and 224 

accumulation modes the median diameters are 10 nm and 70 nm with standard deviations of 225 

are fixed at 1.6 and 2, respectively. The choice of a modal representation of aerosol size 226 

distribution is dictated by the high computational demand of more sophisticated approaches 227 

(e.g. sectional description of the aerosol size distribution) for long-term simulations. With the 228 

current settings, the 1-year run was completed without restart in 9.5 days (230 hours) on the 229 

Cray XE6/XK7 supercomputer (Big Red II) owned by Indiana University using 256 processors 230 

distributed on 8 nodes, thus indicating feasibility of this configuration for climate scale 231 

simulations. Aerosol, and gas phase concentrations and meteorological properties are saved 232 

once hourly. AE from the WRF-Chem simulations is computed using: 233 

nm

nm

AOD

AOD

AE nm

nm

400

600
ln

ln
600

400

                                  (1). 234 

AOD at wavelengths (λ) of 500 and 550 nm for comparison with MODIS and MISR 235 

respectively, are derived using the Ångström power law: 236 

 AE

AODAOD




300

300


                     (2).  237 

We investigated the wavelength dependence on AE calculation using λ at 300 nm and 1000 nm 238 

as proposed in (Kumar et al., 2014) and found that, although AOD estimates are independent 239 

on the wavelength range selected, AE400-600nm is systematically lower than AE300-1000nm. 240 

Analyses of AE reported in this study are obtained using λ =wavelengths at  400 and 600 nm 241 

since they are closer to those used in AE satellite retrievals.  242 

2.2 Remotely-sensed data 243 

Consistent with previous research (Sect. 1 and Table 1), we evaluate the WRF-Chem 244 

simulations using four primary remote sensing products – three are drawn from instruments on 245 
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the Aqua and Terra satellites, while the fourth is from ground-based radiometers operated as 246 

part of the AERONET network. The data sets are as follows: 247 

1. The MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the 248 

polar-orbiting Terra (~1030 overpass local solar time (LST)) and Aqua (~1330 LST) 249 

satellites. They have measured atmospheric aerosol optical properties since 2000 and 2002 250 

respectively, with near-global daily coverage (Remer et al., 2005). Herein we use the Level 251 

2 (L2; 10 km resolution) “dark-target” products of AOD at 550 nm and AE from 470 – 660 252 

nm (Collection 5.1; (Levy et al., 2010)). The L2 AOD uncertainty is  0.05  0.15AOD 253 

over land relative to global sun photometer measurements from AERONET; even when no 254 

spatiotemporal averaging is used in the comparison (i.e. all combinations of MODIS 255 

retrievals within 30 km of an AERONET site and all AERONET retrievals within 30 min of 256 

the satellite overpass), 71% of MODIS retrievals fall within a  0.05  0.2 AOD envelope 257 

relative to AERONET over E. CONUS (Hyer et al., 2011). The L2 AOD uncertainty is  258 

0.05  0.15AOD over land relative to global sun photometer measurements from 259 

AERONET.  AE is retrieved with higher uncertainty, and tends to exhibit a bi-modality in 260 

retrieved values (Levy et al., 2010;Remer et al., 2005) (see SM Fig. S1). For this reason 261 

where we compare WRF-Chem simulated AE with values from MODIS we treat AE as a 262 

binary variable, wherein AE<1 is taken as representing coarse mode dominated aerosol 263 

populations and AE>1 indicates fine mode dominated populations (Pereira et al., 264 

2011;Valenzuela et al., 2014).  265 

2. The Multi-angle Imaging Spectroradiometer (MISR) instrument is also aboard the Terra 266 

satellite, and measures radiances at four wavelengths from 446 – 886 nm at nine viewing 267 

angles from nadir to 70.5°. MISR (L2, 17.6 km resolution) retrieves AOD with lower 268 

uncertainty than MODIS ( 0.05x×AOD relative to AERONET), but with lower temporal 269 

resolution (global coverage in ~ one week) (Kahn et al., 2010;Kahn et al., 2005). Herein, we 270 

use the 0.5° ×x 0.5° gridded Level 3 (Ver. 31) AOD (at 555 nm) and AE (calculated from 271 

AOD at 443 and 670 nm). 272 

3. Ground-based sun-photometer measurements from 22 AErosol RObotic NETwork 273 

(AERONET) (Holben et al., 1998) stations are also used in this study (Fig. 1). This network 274 

is highly spatially inhomogeneous, but under cloud-free conditions the observations are 275 

available at multiple times during daylight hours. AOD is measured directly by the 276 

AERONET sun photometers at seven wavelengths (340, 380, 440, 500, 670, 870, and 277 
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1020 nm) with high accuracy (i.e. AOD uncertainty of < 0.01 for  > 440 nm (Holben et 278 

al., 2001)). The Ångström Exponent (AE) is calculated for all available wavelengths within 279 

the AOD range. The AE 870-440 nm includes the 870, 670, 500 and 440 nm AOD data. 280 

Level-2 aerosol products from AERONET (i.e. cloud screened and quality assured) have 281 

been used extensively in satellite and model validation studies (including many of those 282 

summarized in Table 1) and are used herein.  283 

To avoid the discontinuity in the MODIS retrieval algorithm due to different assumed aerosol 284 

types (Levy et al., 2007), we confine our analyses of model skill to longitudes east of 98W. 285 

Only WRF grid cells with cloud fraction = 0 during the satellite over pass of each grid cell are 286 

used in comparison to MODIS/MISR observations, and only grid cells with at least 5 valid 287 

observations (both from MODIS/MISR and cloud-screened WRF) during a given month are 288 

included in the analyses presented herein. To avoid the discontinuity in the MODIS retrieval 289 

algorithm due to different assumed aerosol types (Levy et al., 2007), we confine our analyses 290 

of model skill to longitudes east of 98W. All comparisons of modeled aerosol optical 291 

properties relative to MODIS observations (e.g. monthly mean values) only include grid cells 292 

for which at least 5 valid coincident observations are available during a given month after 293 

applying a cloud screen for overpass hours with cloud fraction larger than zero. It is worth 294 

noting that setting a threshold of 10 observations does not significantly affect the results. For a 295 

uniform assessment, L2 MODIS and L3 MISR data have been interpolated from their native 296 

grids (and resolutions of 10 km and 0.5˚×0.5˚, respectively) to the WRF-Chem 12 km resolution 297 

grid by computing the mean of pixels with valid data within 0.1˚/0.3˚ for MODIS/MISR from 298 

the model centroids0.1˚ (~20 km) from the model centroids. The choice of averaging over a 299 

slightly larger area than model resolution is dictated by the sparsity of valid MODIS satellite 300 

retrievals. For AERONET vs. MODIS comparison, we only use the nearest MODIS data (after 301 

regridding to WRF) to each site. Where hourly WRF-Chem output is compared with data from 302 

AERONET stationssites, a station is only included if there are at least 20 simultaneous estimates 303 

available, . and each AERONET measurement is compared to the nearest WRF-Chem time step 304 

and to the grid cell containing the station. 305 

2.3 Statistical methods used in the model evaluation 306 

The primary error metric of overall model performance used herein is the Mean Fractional Bias 307 

(Boylan and Russell, 2006): 308 
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0

2

1
                                (3). 309 

MFB is a useful model performance indicator since it equally weights positive and negative 310 

biases. It varies between +2 and -2 and has a value of zero for an ideal model. Where MFB is 311 

reported for WRF-Chem versus MODIS or/ MISR/AERONET, Cm is the monthly mean AOD 312 

or AE simulated by WRF-Chem at a specific location, C0 refers to the same quantify from 313 

MODIS or MISRremote sensing data  (Table 3) and N is the sample size. Where MFB is 314 

reported in comparisons of WRF-Chem with AERONET, the monthly average in the model 315 

grid cell containing the AERONET site is compared with monthly averaged observations (C0).  316 

The evaluation of WRF-Chem simulations of AOD and AE relative to satellite retrievals 317 

(MODIS and MISR) is also summarized using Taylor diagrams (Taylor, 2001) produced from 318 

the monthly means for the grid cells with simultaneous data availability. Taylor diagrams 319 

synthesize three aspects of model skill focused on evaluations of the spatial fields of the 320 

parameter of interest. The correlation coefficient of the modeled vs. observed field which is 321 

expressed by the azimuthal position, the root mean squared difference which is proportional to 322 

the distance between a point and the reference point on the x-axis (at 1, 0), and the ratio of 323 

simulated and observed spatial standard deviation which is proportional to the radial distance 324 

from the origin.  325 

To investigate model performance at given locations through time, empirical quantile-quantile 326 

(EQQ) plots are constructed using high frequency realizations of AOD and AE at individual 327 

locations (AERONET sites) relative to WRF-Chem values simulated in the grid cell containing 328 

the measurement site. EQQ plots are thus generated for each of the AERONET stations using 329 

all hours when there are simultaneous estimates available from the direct observations and from 330 

the numerical simulations. The advantage of EQQ plots is that they make no assumptions 331 

regarding the underlying form of the data, and can be readily used to determine which parts of 332 

the modeled distribution deviate from the observations (and thus fall away from a 1:1 line).   333 

The validity of AE estimates is a function of both the absolute magnitude of AOD and the 334 

uncertainty in the wavelength dependent AOD. AE provides information regarding the relative 335 

abundance of fine to coarse particles. Thus, here we quantify the model skill in reproducing 336 

spatial patterns of fine and coarse mode particles observed by MODIS (Terra) by comparing 337 

the frequency distribution of AE lower and higher than 1 to distinguish populations dominated 338 
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by coarse and fine aerosols respectively in WRF-Chem and MODIS (Valenzuela et al., 339 

2014;Pereira et al., 2011). The choice of this threshold reflects the AE distribution. AE 340 

simulated by WRF-Chem generally conforms to a single normal distribution centered on 1 341 

during January-April and on 1.3 from May-June to December; AERONET time series also tend 342 

to conform to a single mode, while MODIS estimates typically are bimodally distributed (see 343 

SM Fig. S1). A χ2-test is applied to assess if the frequency distribution of fine and coarse 344 

particles is the same between MODIS and WRF-Chem. We therefore consider the data in the 345 

form of a contingency table (Table 4) and compute the a χ2 -test to assess if the frequency 346 

distribution of fine and coarse particles is the same between MODIS and WRF-Chem. The χ2 347 

statistic is applied with with one degree of freedom from:  348 

 






N

i i

ii

E

EO

1

2

2

 (4) 349 

where Oi is the frequency of observations of type i and Ei is the expected frequency of type i 350 

which is computed as the product of the row total with the column total, divided by the total 351 

number of observations. Herein we apply and aa 99% confidence limit to assess significance of 352 

the χ2 statistic. 353 

As described above, the impact of aerosols on climate and human health are strengthened under 354 

conditions of enhanced aerosol concentrations, thus two analyses were undertaken to evaluate 355 

the ability of the WRF-Chem simulations to represent extreme AOD values: 356 

1. Evaluation of the spatial patterns of extreme events. Using daily estimates of AOD in 357 

each grid cell and month we identified the 75th percentile value across space (i.e. p75) 358 

as threshold for extreme AOD for WRF-Chem and MODIS separately. Grid cells with 359 

AOD exceeding that threshold were classified as exhibiting extreme values. The 360 

consistency in the spatial distribution of extreme values as simulated by WRF-Chem 361 

relative to MODIS are quantified using three skill statistics: the Accuracy, Hit Rate (HR) 362 

and Threat Score (TS) defined in equations 5-74-6. In these equations, WE, ME, WN 363 

and MN correspond to occurrence frequency of extreme conditions in WRF-Chem (WE) 364 

or MODIS (ME) or not (WN or MN):  365 

MNWNMEWNMNWEMEWE

MNWNMEWE
Accuracy

////

//






                   (54) 366 
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///

/


                                             (76) 368 

The Accuracy describes the fraction of grid cells co-identified as exceeding p75 or not 369 

in MODIS and WRF-Chem, and thus equally weights event and non-event conditions. 370 

Since the Accuracy quantifies model skill in correctly identifying both extreme and non-371 

extreme aerosol loadings, it is thus indicative of model performance in capturing the 372 

overall AOD spatial variability. In this application, where extreme is identified as the 373 

75th percentile, a value of 0.5 would indicate none of the grid cells experiencing extreme 374 

events were reproduced by the model, while 1 would indicate perfect identification of 375 

events and non-events. The HR and TS metrics give ‘credit’ only those grid cells 376 

identified as ‘extreme’. For these metrics, a value of 0 indicates no correct identification 377 

of grid cells with extreme values, while a perfect model would exhibit a value of 1. 378 

2. Evaluation of the scales of coherence of extreme AOD. For each day during the overpass 379 

time and hours of clear sky conditions, we determine if AOD simulated at our reference 380 

location (i.e. the center of the domain, in Southern Indiana) is equal or larger than the 381 

local p75 for that grid cell and season and then identify all grid cells in the domain that 382 

also satisfy the condition of AOD ≥ local p75. The reference location represents the 383 

center of gravity of the domain and was previously used by Sullivan et al. (2015) for 384 

assessing scales of coherence. In that work they also found the spatial scales of 385 

coherence are not sensitive to the precise choice of reference location. For each season, 386 

we thus compute the probability of extreme AOD co-occurrence at our reference site 387 

and any other grid cell as the frequency of co-occurrence divided by the number of 388 

extreme occurrences at the reference location. The spatial scales of extreme AOD are 389 

then estimated by binning the radial distance of each grid cell centroid from the domain 390 

center into 100 km distance classes. An analogous procedure is applied to L2 MODIS 391 

data to compare with simulations. 392 

3. Results  393 

3.1 Evaluation of AOD  394 

Overall WRF-Chem is positively biased relative to remotely-sensed AOD. The spatial MFB is 395 

0.1520 (0.14) when computed using all available MODIS measurements from Terra (Aqua) 396 
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and 0.50 relative to data from the AERONET stations (Table 3). The sign of this bias is 397 

consistent across the entire simulation domain (Fig. 2). These results agree with findings from 398 

previous regional studies that have also shown an overestimation of AOD by WRF-Chem over 399 

eastern North America and Europe (i.e. regions dominated by sulfate aerosols), and 400 

underestimation in western US and most of the rest of the globe (Zhang et al., 2012;Colarco et 401 

al., 2010;Curci et al., 2014) (Table 1). Higher biases of WRF-Chem simulated annual mean 402 

AOD are found in the southern portion of the domain (Fig. 2) where the model also exhibits a 403 

positive bias in daily mean near-surface PM2.5 relative to observations from 1230 US EPA sites 404 

(see Fig. 3 and SM Fig. S2). We further investigated the bias in PM2.5 by comparing WRF-405 

Chem simulations with ground-based measurements of particle composition at 123 IMPROVE 406 

sites over our domain. We computed the MFB on a seasonal basis between sulfate and nitrate 407 

concentrations in fine mode particles (i.e. Aitken and accumulation mode) versus observations 408 

(Fig. 4) and found sulfate concentrations are underestimated almost over the entire domain 409 

during winter, whereas a positive bias is present in the other seasons. Conversely, nitrates tend 410 

to be overestimated during winter and fall at most sites, whereas they are underestimated during 411 

summer. Thus the positive bias in AOD and PM2.5 mass particularly during the summer appears 412 

to be associated with excess sulfate concentrations. 413 

The MFB of WRF-Chem relative to MODIS estimates of AOD is lower than the MFB relative 414 

to most of the AERONET stations except for a few sites located along the coast, one polluted 415 

site in the northeast and a few land sites in the North/North-West (Fig. 2c 1 and 45a). This is 416 

possibly a result of an inability of the model to capture variations in aerosol optical properties 417 

occurring at a local scale (below the resolution of 12 km). However, the evaluation statistics 418 

for WRF-Chem relative to AERONET did not vary consistently with the classification of 419 

AERONET stations. Indeed, the mean MFB for AOD in coastal, polluted and land sites varies 420 

between 0.26 (coastal) and 0.67 (land), whereas for AE it varies between -0.72 (coastal) and -421 

0.50 (land). When MODIS is compared to the 22 AERONET stations the MFB is -1.23 422 

suggesting an underestimation of AOD from AERONET relative to MODIS. The large bias can 423 

be explained noting that the number of co-samples between MODIS is quite small and that 424 

MFB is strongly impacted by a few outliers. When we remove the three most biased sites (one 425 

land site in the North and two sites along the East coast) the MFB decreases to -0.91. 426 

Using very limited data, prior research indicated mesoscale variability (horizontal scales of 40–427 

400 km and temporal scales of 2–48 h) is a common and perhaps universal feature of lower-428 

tropospheric aerosol light extinction [Anderson et al., 2003]. However, we are not aware of 429 
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prior systematic attempts to quantify and test the universality of AOD scales of coherence over 430 

the contiguous US. To test the sensitivity of the MFB in simulated AOD to spatial aggregation, 431 

we excluded the first 12 cells to the left and to the top of the simulated domain and averaged 432 

the remaining 1212 km grid cells over the following scales: 2424, 3636, 4848, 7272, 433 

9696, 144144, 192192, 216216, 288288, 384384, 432432, 576576, 864864, 434 

11521152, 17281728, 34563456 km. The last spatial average corresponds to a single grid 435 

cell encompassing the entire domain (excluding the outer 12 cells located to the West and North 436 

of the simulation domain). Each spatial average at a coarser resolution is computed as the mean 437 

of all valid 1212 km grid cells within the averaging area. We then computed the MFB for the 438 

regridded WRF-Chem and MODIS data pair and found that, on a yearly basis, MFB is highest 439 

at 12km (0.14 for Aqua and 0.15 for Terra) and reaches a first minimum at 72 km for Aqua 440 

(MFB=0.13) and 384 km for Terra (MFB=0.13) (see Fig. 6). However, the MFB and hence 441 

systematic error in AOD relative to MODIS exhibits only a weak dependence on the level of 442 

spatial aggregation.  443 

Spatial patterns of monthly mean AOD show largest differences relative to MODIS during 444 

winter months in the southern states and near the coastlines, which show MFB up to 0.7, and 445 

lower spatial correlation (see Fig. 5a7a). This may be due to the larger uncertainty in MODIS 446 

retrievals near the coast (Anderson et al., 2013), the smaller sample size in the observations 447 

(particularly at high latitudes) during December to March or the lower overall AOD. 448 

Conversely, the spatial correlation is maximized over during the summer (r=0.5-0.7) for 449 

MODIS and August for MISR, when most data are available. The spatial variability of monthly 450 

mean AOD fields is also well simulated by WRF-Chem during the warm season (months May-451 

August), as indicated by the ratio of the spatial standard deviation which is close to 1. However, 452 

σ(AOD) it is usually higher in MODIS and/or MISR than in WRF-Chem. The RMSD is largest 453 

and the spatial correlation is lowest during September and October, when MFB is also > 0.4 in 454 

part because WRF-Chem simulates high AOD and aerosol nitrate and sulfate concentrations 455 

over large regions in eastern North America (Fig. S3 and Fig. 4). The high positive bias in these 456 

months is also reflected in the near-surface PM2.5 concentrations and its composition (SM Fig. 457 

S2 and Fig. 4). A possible explanation for the relatively poor model performance during 458 

September and October may derive from the simulation of precipitation. During the majority 459 

of calendar months, domain averaged precipitation as simulated by WRF-Chem is slightly 460 

positively biased relative to the gridded observational data. However, during September and 461 

October, the model exhibits a negative bias (of 8-10% relative to observations) and substantial 462 
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underestimation of precipitation in regions of typically high AOD such as the Ohio River valley 463 

and along the east coast (SM FFig. 3S4). We also examined the impact of spatial aggregation 464 

(at 12, 24, 36, 48, 72 and 96 km resolution) on the seasonality of model performance. For AOD 465 

the spatial correlations are largest for most months when data are aggregated to a resolution of 466 

24×24 km and the ratio of spatial standard deviation is also closer to 1 when AOD are spatially 467 

aggregated, possibly indicating that the spatial patterns simulated by WRF-Chem at a fine scale 468 

do not always match those observed by MODIS (Fig. 8). For AE both spatial correlations and 469 

ratio of standard deviations do not vary significantly when data are aggregated to a coarser 470 

resolution (Fig. S5).  471 

Empirical quantile-quantile plots of AOD at AERONET stations computed for both 472 

simultaneous MODIS observations and WRF-Chem with AERONET observations indicate that 473 

the positive bias in WRF-Chem simulated values of AOD is evident across much of the 474 

probability distribution (5th to 95th percentile values) at most AERONET stations. However, it 475 

is worthy of note that WRF-Chem comparisons with AERONET observations occupy much of 476 

the same observational range as simultaneous MODIS and AERONET at those sites (Fig. 9a), 477 

although the EQQ plot does not necessarily compare the same MODIS-AERONET and WRF-478 

Chem-AERONET data pairs (i.e. the sample used to compare AERONET and MODIS may 479 

differ from that used to compare WRF-Chem and AERONET due to the cloud screening 480 

procedure)same parameter space as simultaneous MODIS and AERONET observations at 481 

those sites (Fig. 6a). Thus, model simulations reproduce the range and probability of low-482 

uncertainty AERONET measured AOD nearly as well as MODIS.  483 

3.2 Evaluation of AE 484 

Despite the low confidence in AE retrievals from MODIS, the comparison of WRF-Chem with 485 

the remote sensing estimates indicates some degree of agreement. The overall MFB of WRF-486 

Chem vs MODIS Terra is -0.09 (-0.11 vs. Aqua) and the correlation between WRF-Chem and 487 

MODIS monthly mean AE seems to be independent of season and lies between 0.20 and 0.54 488 

for all months except April, May and November when it is lower, whereas r is always < 0.14 489 

when comparing with MISR (Fig. 7b).As described above, AE is retrieved with much lower 490 

confidence than AOD from the MODIS measurements. Nevertheless, the correlation between 491 

WRF-Chem and MODIS monthly mean AE seems to be independent of season and lies between 492 

0.28 and 0.52 for all months except April, May and November when it is lower, whereas r is 493 

always < 0.25 when comparing with MISR (Fig. 5b).  As for AOD, we computed the 494 
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Spearman’s rank correlation coefficient to reduce the possible bias due to few outliers and the 495 

smaller sample size in MISR data (N varies between 2300-5500 depending on the month and is 496 

approximately 5 times smaller than the sample size for MODIS). The AE RMSD relative to 497 

MODIS or MISR does not exhibit a clear seasonal pattern and the ratio of spatial standard 498 

deviations in the AE fields is always lower than 1, indicating more spatial variability in the 499 

satellite retrievals than in WRF-Chem. The degree to which these results are symptomatic of 500 

the difficulties in retrieving AE from the remote sensing observations is unclear. When the AE 501 

values are treated as binary samples (AE < 1 indicating coarse mode aerosols dominate, while 502 

AE > 1 indicating a dominance of the fine mode) and presented as a contingency table, WRF-503 

Chem and MODIS simultaneously identify coarse mode dominance (i.e. AE  <  1) in 18% of 504 

grid cells (Table 5). After cloud screening, WRF-Chem simulates 31% of grid cells as 505 

exhibiting annual mean AE > 1, while MODIS indicates a larger fraction of grid cells with AE 506 

> 1 (80%, Table 5). Both WRF-Chem and MODIS indicate the highest prevalence of fine mode 507 

particles during the warm months with highest agreement for co-identification (above 50%) 508 

during June-September. Co-identification of coarse mode particles is highest in the winter and 509 

spring months (above 20% during February-May and December, Table 5). However, when a χ2 510 

test is applied to the frequency of fine and coarse particles identified by WRF-Chem and 511 

MODIS, for all months except January and April, the p-value is <0.01, thus we reject the null 512 

hypothesis of equal distribution of fine and coarse mode particles identified by MODIS and 513 

WRF-Chem. The two data sets agree on 29% of the cases when trying to identify fine mode 514 

particles and approximately 53% of the cells are misclassified with MODIS usually identifying 515 

a high prevalence of fine aerosols than WRF-Chem. AE from WRF-Chem is also negatively 516 

biased relative to AERONET observations, with MFB = -0.59 indicating WRF-Chem is 517 

simulating a greater prevalence of coarse mode aerosols in the simulations (Table 3, Fig. 2 and 518 

Fig. 4b).  519 

EQQ plots for all sites show good accord between WRF-Chem and AERONET observations, 520 

as indicated by the relatively consistent fractional error across the entire range of simulated and 521 

observed AE (Fig. 6b9b). Simulations from previous studies have also shown a systematic 522 

negative bias of simulated AE versus MODIS observations. AE is very difficult to derive from 523 

the MODIS measurements and the uncertainty in AE scales with AOD (AE is very uncertain at 524 

AOD < 0.2). Further, AE is derived from wavelength dependent AOD, thus the uncertainties 525 

on the measurements are certainly correlated. As indicated in Figure 5, for some AERONET 526 

sites there is evidence that positive bias in AOD is associated with high negative bias in AE, 527 
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but this does not uniformly occur over eastern North America (e.g. for the site at 77.8W 55.3N 528 

WRF-Chem exhibits positive bias in AOD across the entire pdf while the simulated AE is 529 

negative biased, but the site at 84.28W 35.95N exhibits relative good accord for AOD but is 530 

negative biased in AE almost to the same amount as the northern station).  Highest biases have 531 

been noted in regions dominated by dust aerosols or when the model overestimates the dust 532 

loading, since aerosol population mean diameter is inversely proportional to AE (Colarco et al., 533 

2014;Balzarini et al., 2014). Sources of the biases in our study, include the simplified treatment 534 

of the size distribution, weaknesses in the emission inventory or uncertainties in meteorological 535 

variables affecting particle growth (e.g. temperature and relative humidity). Future work will 536 

focus on examining these sensitivities. 537 

3.3 AOD Extremes 538 

Averaged across the entire simulation period, WRF-Chem correctly identifies 70% of locations 539 

with extreme and non-extreme AOD in the MODIS observations (i.e. the Accuracy = 70%, 540 

Table 6). The overall TS and HR also indicate the geographic location of extreme AOD is 541 

similar between the model and satellite retrievals. The annual mean HR, which is defined as the 542 

proportion of grid cells with extreme AOD co-identified by WRF-Chem and MODIS relative 543 

to MODIS extremes, is 41%. The annual mean TS, which also takes into account false alarms, 544 

is 27% (Table 6).  545 

For each month, the HR is significantly higher than the probability of co-identification of 546 

extremes by random chance (i.e. p0 = 0.252=0.0625), since the test statistic
 
N
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2
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 is 547 

always larger than the critical value at 1% (i.e. 2.575). HR and TS vary seasonally, with highest 548 

skill during summer months (HR up to 70% and TS up to 54%), and lowest skill during winter 549 

and early spring (minimum HR=29% and minimum TS=17%) (Table 6 and Fig. 710). The 550 

relatively low skill in identifying the spatial occurrence of high AOD during winter and spring 551 

may reflect the relatively low AOD and low spatial variability during this season, which means 552 

‘extreme’ AOD may differ only marginally from the ‘non-extreme’ areas (see SM Fig. 4 S6 for 553 

monthly comparisons of extreme area identification). 554 

The spatial distribution of extreme AOD also displays some seasonality with areas of AOD > 555 

p75 concentrated over coastal regions and the southern states during summer months and 556 
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smaller areas during winter and early spring (Fig. 710). Despite the relatively low simultaneous 557 

identification of extremes during cold seasons, the location of extremes moves from the coast 558 

to the Great Lakes region and Midwest states in both the model and MODIS (see SM Fig. 3S6). 559 

During winter and spring months WRF-Chem simulates more areas with extreme AOD over 560 

coastal regions, whereas MODIS shows more spatial variability and predicts higher AOD in 561 

the Great Lakes area and in the states west of Illinois. Conversely, WRF-Chem underestimates 562 

areas of extreme AOD relative to MODIS in the northern regions of the domain, possibly due 563 

to the underestimation of sulfate-aerosol. These two observations may be explained by noting 564 

that the mass fraction of aerosol nitrate in the accumulation and coarse mode predicted by WRF-565 

Chem during most of fall and winter months dominates the sulfate fraction over virtually all of 566 

the domain (see SM Fig. 5S3), whereas point observations indicate aerosol nitrate mass fraction 567 

is dominant only over the Central Great Plains (Hand et al., 2012). This may be related to an 568 

overestimation of aerosol-nitrate in winter and fall (Fig. 4) as a result of the impact of air 569 

temperature and relative humidity on aerosol ammonium nitrate (NH4NO3) stability 570 

(Aksoyoglu et al., 2011), as well as an underestimation of aerosol sulfate, mostly during winter 571 

(Fig. 4), likely due to underestimation of the rate of SO2 gaseous and aqueous (missing) 572 

oxidation, or underestimation of the nighttime boundary layer height which impacts sulfate 573 

formation near the surface (Tuccella et al., 2012). Localized negative biases in the model over 574 

the coast may be associated with the higher uncertainties in MODIS retrievals at coastlines 575 

(Anderson et al., 2013).  576 

Extreme AOD exhibits relatively large spatial scales of coherence in both the WRF-Chem 577 

simulations and MODIS L2 observations (Fig. 811). Consistent with prior analyses of L3 578 

MODIS data (Sullivan et al., 2015), the largest scales of coherence are found in fall. In all 579 

seasons except for winter the probability of co-occurrence of extremes at the domain center and 580 

any other grid cell in the simulation domain is > 0.5 up to a distance of 300 km. The simulated 581 

mean seasonal scales of extreme coherence are comparable to L2 MODIS AOD (Fig. 811), 582 

despite the larger variability in the MODIS data due to the limited retrievals with simultaneous 583 

extreme AOD at the reference location and each other grid cell. Thus, consistent with prior 584 

research this analysis indicates the occurrence of extreme AOD occurs on large spatial scales 585 

and therefore may significantly impact regional climate. 586 
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4. Discussion and concluding remarks 587 

Aerosol direct and indirect radiative forcing on the climate system are highly uncertain. A 588 

systematic assessment of the ability of global and regional models to reproduce aerosol optical 589 

properties in the contemporary climate is essential to increasing confidence in future 590 

projections. We contribute to this growing literature by presenting high resolution (12 km) 591 

simulations from WRF-Chem conducted over eastern North America during a year 592 

representative of average meteorological and aerosol conditions. We evaluate the simulations 593 

relative to , and compare the results with daily MODIS and MISR observations, highas well as 594 

with high frequency AERONET measurements of AOD and AE and near-surface PM2.5 mass 595 

and composition measurements.  Results from this study show: 596 

 After grid cells with any cloud presence are removed and considering only overpass 597 

hours, the domain averaged simulated mean AOD is 0.22. Simulated AOD is positively 598 

biased relative to observations, with MFB=0.14 when comparing with MODIS-Aqua 599 

and 0.39 50 relative to AERONET (Fig. 2 1 and 42). A clear north-south gradient in 600 

AOD bias vs. MODIS is also observed. This positive bias is consistent across the entire 601 

probability distribution at most AERONET stations (Fig. 69), and is also evident in 602 

comparison of modeled near-surface PM2.5 mass relative to daily mean observations 603 

distributed at 1230 stations across the domain (Fig. 3). 604 

 Model skill in reproducing the spatial fields of monthly mean AOD as measured by the 605 

spatial correlation and ratio of the spatial variability with MODIS is maximized during 606 

the summer months (r ~ 0.5-0.7, and ratio of  ~ 0.8 to 1.2). During this season observed 607 

AOD is higher and more observations are available (Fig. 57). Lowest model-608 

observations agreement is found in September and October and is at least partially 609 

attributable to a dry bias in precipitation from WRF-Chem (SM Fig. 3S4). 610 

  611 

 In part because of the difficulties in retrieving robust estimates of AE, few previous 612 

studies have evaluated model simulated AE values. We show that AE as simulated by 613 

WRF-Chem over eastern North America is negatively biased relative to MODIS 614 

(MFB=-0.10) and AERONET (MFB=-0.6459). This bias indicates WRF-Chem 615 

simulates a larger fraction of coarse mode particles than is evident in the remote sensing 616 

observations (see Table 3 and 5). While some of the bias relative to MODIS may reflect 617 

high observational uncertainty,, the  large bias relative to AERONET is consistent with 618 
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prior research (Table 1), and is symptomatic of substantial systematic error in the 619 

aerosol size distribution. 620 

 the bias relative to AERONET is consistent with prior research (Table 1) and is 621 

symptomatic of relatively poor model performance for this metric. Causes of the model 622 

error may include insufficiently detailed treatment of size distribution or inaccurate 623 

representation of aerosol composition and mixing state which affect the simulated size 624 

distribution and thus AE (Li et al., 2015;Curci et al., 2014)).  Further, weaknesses in the 625 

emission inventory (e.g. size resolution of primary emissions), as suggested by the 626 

systematic bias in simulated PM2.5 concentrations relative to ground-based observations, 627 

and/or biases in the representation of meteorological conditions critical to determining 628 

aerosol nitrate concentrations may also affect model performance. Currently it is not 629 

possible to fully attribute the relative importance of these error sources. 630 

 The majority of prior model evaluation exercises have tended to focus on mean AOD 631 

valuesthe central tendency of the AOD probability distribution. However, the climate 632 

and health impacts of aerosols are maximized greater under high aerosol loadings. We 633 

demonstrate that WRF-Chem exhibits some skill in capturing the spatial patterns of 634 

extreme aerosol loading, especially during summer months. During this season, the Hit 635 

Rate for AOD > p75 reaches 70%. Largest biases are found during winter months and 636 

near the coastlines where AOD from MODIS also exhibits largest retrieval uncertainty.  637 

Despite the encouraging performance of WRF-Chem both in terms of simulation efficiency and 638 

in reproducing AOD (mean and extreme values) and the partial skill in reproducing AE over 639 

eastern North America, further investigations are needed to properly quantify the value added 640 

by running high-resolution simulations by direct comparison with analogous runs at coarser 641 

resolution. Future simulations will also involve assessment of accuracy of different aerosol 642 

schemes (i.e. sectional vs. modal approaches) to represent the size distribution. The inclusion 643 

of a direct description of new particle formation processes within WRF-Chem may also 644 

improve estimates of ultrafine particle concentrations and thus of simulated aerosol optical 645 

properties.  646 
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Tables 937 

Table 1. Synthesis of some recent prior studies comparing simulated aerosol optical properties from global or regional model simulations with 938 

remote sensing products. The first column summarizes the model used, the second the domain and the time period simulated and the third shows 939 

the model resolution and summarizes the description of the aerosol size distribution. Columns 4 to 9 summarize the evaluation statistics in terms 940 

of the overall correlation coefficient (R), bias (as described using the mean fractional error (MFE)) and root mean square error (RMSE) or mean 941 

absolute error (MAE) relative to satellite or AERONET observations as reported in the references shown in column 10. 942 

Model 

Domain, 

Time 

Resolution, 

Aerosol Approach 

R 

AOD vs. Satellite 

bias 

AOD vs. Satellite 

R 

AOD vs. 

AERONET 

bias 

AOD vs. 

AERONET 

R 

AE vs. 

AERONE

T 

RMSE, 

MAE 

AE vs. 

AERONET 

Ref 

TOMAS in GISS 

 

 

Global, 

2000-2003 

2°x2.5°, 

Sectional: 15 bins 

from 3 nm-10 μm 

0.63 (average of monthly 

from 2004-2006, MODIS), 

0.73 average of monthly 

from 2004-2006, MISR) 

MFE: -29% (average of 

monthly from 2004-

2006, MODIS), -34% 

(average of monthly 

from 2004-2006, 

MISR) 

-0.7-0.99 

(monthly, 

28) 

-77-72% 

(monthly, 28) 
N/A N/A 

(Lee et 

al., 2015) 

GOCART with 

GEOS DAS 

CONUS, 

2006-2009 

1°x1.25°, 

not specified 

N/A N/A 

0.5 (2 hr. 

average at 

MISR 

overpass, 

32) 

N/A 

0.43 (2 hr. 

average at 

MISR 

overpass, 

32) 

N/A 
(Li et al., 

2015) 
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GEMS/MACC 

aerosol module in 

CNRM-GAME 

and CERFACS 

Global, 

1993-2012 

1.4°, 

Sectional, 

12 bins 

N/A 

Mean relative bias -41-

(-52)% (monthly, 

MISR) 

<0-0.9 

(monthly, 

166) 

N/A N/A N/A 

(Michou 

et al., 

2015) 

CNRM-RCSM5 

Mediter., 

Summer 2012 

50 km, 

Sectional, 

12 bins 

0.64 (seasonal, MODIS), 

0.77 (seasonal, MISR), 

0.65 (seasonal SEVIRI) 

N/A 
0.7 (daily, 

30) 

RMSE~1.75 

(daily, 30) 
N/A N/A 

(Nabat et 

al., 2015) 

CHIMERE 

chemical 

transport model 

with WRF 

meteorology 

Europe, 

Mediter. 

-10°-40°E, 

30°-55°N, 

Summer 2012 

50 km, 

Sectional: 5 bins 

40 nm-40 μm 

0.35-0.75 (hourly, 

MODIS) 

RMSE: 0.04-0.1 

(hourly, MODIS) 

0.44-0.73 

(hourly, 65) 

RMSE: 0.8-

0.11 (hourly, 

65) 

N/A N/A 
(Rea et 

al., 2015) 

MOCAGE Global, 2007 

2°x2°, 

Sectional: 6 bins 

per species 

0.322 (daily MODIS) 
normalized mean bias 

0.098 (daily MODIS) 
N/A N/A N/A N/A 

(Sič et 

al., 2015) 

WRF-Chem 

0°-10°E, 50°-

55°N; 

-10°-15°E, 

46°-57°N; 

-15°-30°E, 

nested 2 - 30 km, 

modal 

N/A 

0.38±0.12 and 

0.42±0.10 domain 

average AOD from 

MODIS and model 

respectively 

N/A N/A N/A N/A 

(Tuccella 

et al., 

2015) 
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36°-62°N, 

14-30 May 

2008 

GOCART in 

GEOS 

Global, 

2000-2006 

1°x1.25°, dust (8 

bins 0.1-10 μm), 

sea salt (5 bins 

0.03-10 μm), 

carbonaceous/sulfat

e (modal) 

0.747, 0.72 E.US 

(monthly, MODIS) 
N/A 

0.707 

(monthly, 

53) 

rms: 0.133 

(monthly, 53) 

0.81 

(monthly, 

53) 

rms: 0.285 

(monthly, 

53) 

(Colarco 

et al., 

2010) 

EMAC 

Global, 

Year 2006 

1.1°x1.1°, 

modal 

N/A 
Negative (North 

America) 

0.27-0.60 

(North 

America) 

RMSE=0.1-0.2 
>0.5 

(Europe) 
N/A 

(de Meij 

et al., 

2012) 

GEOS-Chem 

N. America, 

06 July - 14 

Aug 2004 

2°x2.5°, 

modal 

N/A N/A 

0.87 (study 

period mean, 

24) 

N/A N/A N/A 
(Drury et 

al., 2010) 

WRF-Chem 

Europe and N. 

Africa, 

Year 2010 

 

23 km, 

Modal and 

sectional (4 bins: 

0.04-10 μm) 

N/A N/A 

0.52 (mod) 

0.51 (sect) 

NMB=-

0.06(mod) 

NMB=−0.21 

(sect) (daily, 12 

stations) 

N/A N/A 

(Balzarin

i et al., 

2014) 

RegCM4 South Asia, 50 km, N/A N/A 0.47-0.71 N/A N/A N/A 
(Nair et 

al., 2012) 
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2005-2007 Sectional (4 bins: 

0.01-20 μm) 

Monthly, 6 

 943 
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Table 2. Physical and chemical schemes adopted in the WRF-Chem simulations presented 944 

herein. 945 

Simulation settings Values 

Domain size 300 × 300 cells 

Horizontal resolution 12 km 

Vertical resolution 32 levels up to 50 hPa 

Timestep for physics 72 s 

Timestep for chemistry  5 s 

Physics option Adopted scheme 

Microphysics WRF Single-Moment 5-class 

Longwave Radiation Rapid Radiative Transfer Model (RRTM) 

Shortwave Radiation Goddard 

Surface layer Monin Obhukov similarity 

Land Surface Noah Land Surface Model 

Planetary boundary layer Mellor-Yamada-Janjich 

Cumulus parameterizations Grell 3 

Chemistry option Adopted scheme 

Photolysis Fast J 

Gas-phase chemistry RADM2 

Aerosols MADE/SORGAM 

Anthropogenic emissions NEI (2005) 

Biogenic emissions Guenther, from USGS land use 

classification 

 946 

  947 



34 

 

Table 3. Spatial Mean Fractional Bias (MFB) over the entire year. Recall 948 

 , where Cm is the monthly mean AOD or AE simulated by WRF-Chem 949 

at a specific location and C0 refers to the same quantity from MODIS/MISR/AERONET. Thus 950 

a negative value indicates the model is negatively biased relative to the observations. The total 951 

sample size N is 358,048 and 359,633 when comparing WRF-Chem with MODIS onboard 952 

Terra and Aqua respectively. The comparison between MODIS and AERONET is affected by 953 

a few outlier sites, so in parenthesis is the MFB when the three most biased sites are removed. 954 

The mean domain averaged AOD and AE from WRF-Chem (after applying the cloud screen 955 

and selecting only MODIS overpass hours) are 0.222 and 1.089, respectively. 956 

Comparisons MFB AOD MFB AE 

WRF-MODIS (Terra) 0.2015 -0.09 

WRF-MODIS (Aqua) 0.14 -0.11 

WRF-MISR (Terra) 0.16 -0.11 

WRF-AERONET 0.50 -0.59 

MODIS (Terra)-AERONET -1.23 (-0.91) -0.13 (-0.11) 

 957 

 958 

  959 
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Table 4. Contingency table used to compare the fraction of grid cells classified as fine (AE > 960 

1) and coarse (AE < 1) by MODIS and WRF-Chem. 961 

  MODIS 

  Fine Coarse 

WRF-Chem 
Fine WF/MF WF/MC 

Coarse WC/MF WC/MC 

 962 

  963 
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Table 5. Contingency table showing the fraction of grid cells simultaneously identified as fine 964 

(WF/MF) or coarse (WC/MC) mode particles by WRF-Chem and MODIS, as well as cells with 965 

different classification (columns 4 and 5). Recall a threshold of AE = 1 is used to define fine 966 

(AE>1) and coarse mode (AE<1) dominance. Months in bold indicate the distribution of 967 

observed and simulated fine/coarse mode fractions are significantly different (p-value < 0.01) 968 

according to the χ2 test described in Sect. 2.3. 969 

Month WF/MF WC/MC WF/MC WC/MF 

1 0.025 0.176 0.007 0.792 

2 0.030 0.241 0.004 0.725 

3 0.005 0.297 0.001 0.697 

4 0.013 0.230 0.004 0.753 

5 0.141 0.204 0.028 0.628 

6 0.541 0.122 0.055 0.283 

7 0.623 0.094 0.030 0.252 

8 0.520 0.061 0.017 0.402 

9 0.561 0.118 0.032 0.288 

10 0.486 0.145 0.088 0.281 

11 0.321 0.179 0.058 0.442 

12 0.164 0.248 0.015 0.573 

mean 0.286 0.176 0.028 0.510 

 970 

  971 
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Table 6. Synthesis of the skill with which WRF-Chem identifies the spatial distribution and 972 

location of extreme AOD values. Cells with extreme AOD are identified as exceeding the 75th 973 

percentile computed on a monthly basis across space from monthly averaged daily means. The 974 

second column reports the Accuracy, which indicates the spatial coherence of extremes and 975 

non-extremes between WRF-Chem and MODIS. The Accuracy metric is computed as the sum 976 

of cells co-identified as exceeding the 75th percentile and not exceeding that threshold by WRF-977 

Chem and MODIS (Terra) relative to the total number of cells with valid data (fifth column, 978 

N). The third column reports the Threat Score (TS) which indicates the probability of correctly 979 

forecasting extreme AOD conditional upon either forecasting or observing extremes. The fourth 980 

column shows the Hit Rate (HR) (i.e. probability of correct forecast), which is the proportion 981 

of cells correctly identified as extremes by WRF-Chem relative to MODIS extremes. Values in 982 

parenthesis refer to the same metrics when comparing WRF-Chem and MODIS onboard the 983 

Aqua satellite.  984 

Month Accuracy TS HR N 

Jan 0.664 (0.651) 0.196 (0.178) 0.328 (0.302) 14899 (15051) 

Feb 0.654 (0.583) 0.182 (0.091) 0.308 (0.167) 13721 (13643) 

Mar 0.656 (0.647) 0.185 (0.173) 0.312 (0.295) 16641 (16541) 

Apr 0.645 (0.680) 0.169 (0.219) 0.289 (0.360) 25265 (24974) 

May 0.664 (0.699) 0.196 (0.248) 0.327 (0.397) 32770 (31239) 

Jun 0.796 (0.800) 0.420 (0.428) 0.592 (0.600) 36148 (34654) 

Jul 0.850 (0.823) 0.538 (0.477) 0.700 (0.646) 36055 (35480) 

Aug 0.834 (0.832) 0.500 (0.496) 0.667 (0.663) 39173 (39130) 

Sep 0.667 (0.665) 0.200 (0.197) 0.333 (0.329) 35883 (35081) 

Oct 0.656 (0.665) 0.185 (0.198) 0.311 (0.330) 29662 (26456) 

Nov 0.703 (0.696) 0.254 (0.245) 0.405 (0.393) 21630 (19538) 

Dec 0.648 (0.653) 0.173 (0.181) 0.295 (0.306) 14914 (14527) 

Mean 0.703 (0.699) 0.266 (0.261) 0.406 (0.399) 26397 (25526) 

 985 
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Figures 986 

987 

 988 

 989 

Figure 1. Location of the AERONET stations (colored dots) used in this study and mean daily 990 

PM2.5 emissions [mg m-2 day-1] during 2008 (gray shading). Colors indicate the AERONET site 991 

classification based on (Kinne et al., 2013): polluted (red)magenta), land (green), coastal (blue), 992 

un-classified (yellow). The numbers in panels c-d are MFB for WRF-Chem vs. AERONET 993 
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stations (red numbers indicate WRF-Chem vs. AERONET has a larger MFB than WRF-Chem 994 

vs. MODIS whereas black numbers indicate a lower bias in the comparison with AERONET).   995 



40 

 

996 

 997 
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 998 

Figure 2. Mean (a) AOD and (b) AE simulated by WRF-Chem during the year 2008. The mean 999 

values are computed after applying a cloud mask and are for the Terra overpass time. Mean 1000 

Fractional Bias (MFB) for (c) AOD and (d) AE for WRF-Chem relative to MODIS (Terra) 1001 

(similar results are found for Aqua). The numbers in panels c-d are MFB for WRF-Chem vs 1002 

AERONET stations (red numbers indicate WRF-Chem vs. AERONET has a larger MFB than 1003 

WRF-Chem vs. MODIS whereas black numbers indicate a lower bias in the comparison with 1004 

AERONET). The inner black frame indicates the entire model domain, while as stated in the 1005 

text model evaluation is only undertaken for longitudes east of 98W.  1006 

  1007 
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1008 

 1009 

 1010 

Figure 3. Mean daily PM2.5 concentrations [µg m-3] during 2008 as (a) simulated by WRF-1011 

Chem in the layer closest to the surface and (b) observed at 1230 EPA sites (note the different 1012 

colorbar). Panel (c) shows the probability distribution of daily mean PM2.5 concentrations 1013 

observed (black line) and simulated (red line) at the measurement stations. 1014 

  1015 
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 1016 

      1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

Figure 4. Mean fraction bias (MFB) of near-surface daily mean sulfate (first line) and nitrate 1028 

(second line) concentrations in fine aerosol particles as simulated by WRF-Chem and observed 1029 

in PM2.5 measurements at 123 IMPROVE sites in different seasons. A positive MFB indicates 1030 

WRF-Chem overestimates the observations. Note the scales differ between the frames shown 1031 

for sulfate and nitrate MFB and dots/diamonds refer to positive/negative MFB. 1032 

 1033 

  1034 
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 1035 

 1036 

 1037 

 1038 

 1039 

Figure 45. Summary statistics of comparisons of WRF-Chem simulations of (a) AOD and (b) 1040 

AE relative to simultaneous observations at the AERONET sites. For a location to be included 1041 

in this analysis at least 20 coincident observations and simulations must be available. The 1042 

symbols at each AERONET station report MFB (outer  circlesquare), root mean squared 1043 

difference (RMSD, correlation coefficient (r) (middleinner circle) and correlation coefficient 1044 

(r,root mean squared difference (RMSD) ( inner *). Note the different colorbar for MFB and 1045 

RMSD between the two frames. The correlation coefficient is displayed with different colors 1046 
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according with 3 classes: r <-0.1 (black), │r│<0.1 (red) and r>0.1 (white).Note:  For a location 1047 

to be included in this analysis at least 20 coincident observations and simulations must be 1048 

available. 1049 

  1050 
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 1051 

1052 



47 

 

 1053 

Figure 6. Mean Fractional Bias (MFB) on AOD from WRF-Chem as a function of spatial 1054 

aggregation relative to observations from Terra (red line) and Aqua (blue line). 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 
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 1071 

Figure 7. Taylor diagrams comparing the spatial fields of monthly mean (a) AOD and (b) AE 1072 

from WRF-Chem vs MODIS-Terra (color dots) or MISR (black squares). The numbers shown 1073 

in the frames denote the month (e.g. 1 = Jan). The numbers shown in the legend indicate the 1074 

sample size of WRF-Chem data used for computing the monthly mean and the scale of the dots 1075 

is proportional to the sample size. Note the change in scale for the ratio of standard deviations 1076 

between the frames. The red dashed lines define the sector with Pearson correlation coefficient 1077 

between (a) 0.12-0.70 for AOD and (b) 0.20-0.54 for AE which comprise at least two thirds of 1078 

the months. Each dot/square summarizes the statistics (i.e. RMSD, ratio of standard deviations 1079 

and correlation coefficient) of the WRF-Chem vs MODIS/MISR comparison for a single 1080 

month.  1081 

  1082 
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 1083 

Figure 8. Taylor diagrams for AOD when MODIS observations and WRF-Chem simulations 1084 

at 12 km are spatially aggregated to 24, 36, 48, 72 and 96 km. Numbers next to the colored 1085 

dots/diamonds indicate different months (e.g. 1 = Jan). 1086 

  1087 
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 1088 

     1089 

 1090 

 1091 

Figure 5. Taylor diagrams comparing the spatial fields of monthly mean (a) AOD and (b) AE 1092 

from WRF-Chem vs MODIS-Terra (color dots) or MISR (black squares). The numbers shown 1093 

in the frames denote the month (e.g. 1 = Jan). The numbers shown in the legend indicate the 1094 

sample size of WRF-Chem data used for computing the monthly mean and the scale of the dots 1095 

is proportional to the sample size. Note the change in scale for the ratio of standard deviations 1096 

between the frames. The red dashed lines define the sector with Spearman’s rank correlation 1097 

coefficient between (a) 0.18-0.66 for AOD and (b) 0.28-0.52 for AE which comprise at least 1098 

two thirds of the months. Each dot/square summarizes the statistics (i.e. RMSD, ratio of 1099 

standard deviations and correlation coefficient) of the WRF-Chem vs MODIS/MISR 1100 

comparison for a single month.  1101 

 1102 

1103 
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 1104 

 1105 

Figure 5. Taylor diagrams comparing the spatial fields of monthly mean (a) AOD and (b) AE 1106 

from WRF-Chem vs MODIS-Terra (color dots) or MISR (black squares). The numbers shown 1107 

in the frames denote the month (e.g. 1 = Jan). The numbers shown in the legend indicate the 1108 

sample size of WRF-Chem data used for computing the monthly mean and the scale of the dots 1109 

is proportional to the sample size. Note the change in scale for the ratio of standard deviations 1110 

between the frames. The red dashed lines define the sector with Spearman’s rank correlation 1111 

coefficient between (a) 0.18-0.66 for AOD and (b) 0.28-0.52 for AE which comprise at least 1112 

two thirds of the months. Each dot/square summarizes the statistics (i.e. RMSD, ratio of 1113 

standard deviations and correlation coefficient) of the WRF-Chem vs MODIS/MISR 1114 

comparison for a single month.  1115 

  1116 
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 1117 

 1118 

 1119 

Figure 69. Empirical quantile-quantile (EQQ) plots of (a) AOD and (b) AE of the 5th to 95th 1120 

percentile as simulated by WRF-Chem relative to 22 AERONET stations (their longitude (E) 1121 

and latitude (N) is reported in the legend). The yellow shading shows the data envelope for 1122 

EQQ plots of AERONET and MODIS. For inclusion in the analysis a location must have at 1123 

least 20 coincident observations and simulations in the grid cell containing the AERONET 1124 

station. Note MODIS uncertainty in the retrievals (±0.05) in near zero AOD conditions may 1125 

lead to negative AOD values which are considered valid. The parameter space for MODIS-1126 

AERONET comparisons of AE are not shown because AE from the MODIS L2 data product 1127 

are strongly bimodal (see examples given in Fig. 1 in the Supplementary Materials). 1128 

  1129 



53 

 

 1130 

 1131 

Figure 710. Spatial coherence in extreme AOD (i.e. the occurrence of AOD above the 75th 1132 

percentile value) from WRF-Chem and MODIS Terra during (a) March (03/2008) and (b) July 1133 

(07/2008). Green areas denote grid cells defined as experiencing extreme AOD only in the 1134 

WRF-Chem simulations, blue pixels indicate extreme values as diagnosed using MODIS, while 1135 

red pixels indicate areas where the occurrence of extreme values is indicated by both the WRF-1136 

Chem simulations and the MODIS observations. 1137 

  1138 
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 1139 

 1140 

 1141 

Figure 811. Mean and error bars (± 1 standard deviation from the mean) of the probability of 1142 

co-occurrence of extreme AOD (i.e. AOD > 75th percentile) at the reference location (i.e. 1143 

domain center) and any other simulated grid cell during different seasons. The distance between 1144 

the reference point and each grid cell centroid was binned using 100 km distance classes. Solid 1145 

lines indicate mean seasonal spatial scales simulated by WRF-Chem, whereas dashed lines are 1146 

observed means from L2 MODIS data (only the mean of the coherence ratios is plotted for the 1147 

MODIS data). 1148 

 1149 


