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1. Introduction

While clouds represent one of the largest modulators of Earth’s radiation, with their impact
dependent on a variety of cloud physical and radiative properties, they remain one of the
more difficult components to represent in global climate models (Jiang et al. 2012).
Passive satellite observational datasets such as those from MODIS (Moderate Resolution
Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer),
HIRS (High-spectral Infrared Sounder), and ISCCP (International Satellite Cloud
Climatology Project) provide long-term, global cloud observations (Heidinger et al. 2013;
King et al. 2013; King et al. 2003; Rossow 1991; Rossow; Schiffer 1999; Wylie; Menzel
1999). However! assessing the uncertainties in the cloud radiative properties retrieved by
these sensors has proved to be a complex and difficult task. Until recently, validation of
these retrievals was limited to ground and aircraft inter-comparisons. But with the
successful launch of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations) and CloudSat in April 2006 as part of the NASA-led Afternoon
Constellation (A-Train) (Stephens et al. 2002; Winker et al. 2010), researchers now have
access to a near-continuous global record of vertically resolved observations of cloud and
aerosol properties with nearly coincident observations from MODIS Aqua//Since launch,
the CALIPSO lidar (the Cloud Aerosol Lidar with Orthogonal Polarization, or CALIOP)
has proven to be a valuable tool for developing and evaluating passive cloud retrievals
(Ackerman et al. 2008; Delanoé; 'Ij-lji)gan 2010; Holz et al. 2008; J irw&ﬁglsiri 2013; Kahn et

al. 2007). CALIOP can directly measure cloud-top height with sensitivities that are-an~

order-ef=magnitude greater than @ passive retrievals, while the CALIOP depolarization
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and attenuated backscatter measurements provide vertically resolved cloud phase
discrimination (Hu et al. 2009) for cloud layers up to a cumulative optical depth of about 3.

Ice Optical Thickness (IOT) has also proved to be one of the more challenging
properties to retrieve from space-based passive sensor measuremen‘f In particular, it is
guite difficult to infer the microphysical and radiative properties of optically*thin upper
tropospheric ice clouds (cirrus) from observations made by passive space-borne
instruments due to C)/t\f:(nuous nature, extensive spatial scales, complex particle shapes,
and a wide range of particle sizes. There is a pressing need to conduct independent
validation to examine systematic biases between MODIS Collection 5 (C5) and CALIOP
Version 3 (V3) retrievals of tenuous IOT (< 3.0). To this end, we use a month of collocated
A-Train observation to compare the aforementioned retrieval products. A factor of two bias

AN Vi
is found between MODIS and CALIOP unconstrained retrievals (presented in Figure 1),

T

e p——

radiative processes. Here)we seek to understand and resolve the CALIOP and MODIS 10T
biases.

Both MODIS and CALIOP IOT retrievals require a priori information concerning
the ice particle scattering properties that relate the measured reflectance (MODIS) or
attenuated backscatter (CALIOP) to the cloud’s 10T and potentially the effective particle
size. MODIS ice cloud forward radiative calculations in the visible/near-infrared (VNIR)

depend directly on the ice particle phase function assumption, and to a first order on the

associated asymmetry parameter (g). For CALIOP, an assumed extinction-to-backscatter

—
ratio is required for se=tated“unconstrained® retrievals where the algorithm is unable to
et 0
make reliable estimates of cirrus IOT by measusiag the attenuated backscatter coefficients
- Lk\()nux_— CJ—\‘CL

in some clear air region immediately below cloud base (Young and Vaughan, 2009).



100 Because solar background signals greatly reduce the signal-to-noise ratio (SNR) of the
101 CALIOP daytime measurements, the vast majority of CALIOP daytime IOT estimates are
102 derived from unconstrained retrievals.ﬁenaimies in the ice scattering property
103 assumptions of either MODIS and/or CALIOP could account for the biases found in Fig. 1.
104 As will be discussed, an infrared (IR) cirrus IOT retrieval is relatively insensitive to ice
105 particle size and scattering details compared to MODIS and CALIOP VNIR measurements,
106  and thus provides an independent means to assess thin to moderately opticaliy“thick cirrs e
107 retrievals (IOT ~ 0-3). In addition, an IR retrieval provides radiative closure with solar

108  reflectance basedal’\;bODIS IOT retrievals in the sense that consistency in the two retrieved

109 IOTs also implies forward model consistency with the respective top-of-atmosphere (TOA)

110 VNIR and IR observations.

111 Using the NASA-funded SSEC Atmosphere Product Evaluation and Test Element

112 (PEATE), now re-named the Suomi-NPP Atmosphere Science Investigator Processing

113 System (SIPS), the sensitivity of MODIS retrievals to ice single’scartering properties are

114 investigated by repeated analyses of collocated January 2010 CALIOP and MODIS

115  observations using a variety of ice crystal habits (Yang et al. 2012) and size distributions.

116 ~ Based on comparisons against IR retrievals, the MODIS MYDO06 Collection 6 (C6) ice

117 cloud optical property algorithm uses a single habit — severely roughened aggregated

118  columns (Yang et al. 2012) — instead of the size-dependent multi-habit model (Baum et al.

119 2005) used for C5. The MYDO06 C6 results 380 compare well with a new CALIOP version

120 that uses a modified (larger) extinction-to-backscattering ratio for unconstrained 10T

121 retrievals.
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122 2. Ice Cloud Optical Thickness Retrieval Datasets

123 An overview of the relevant retrieval methodologies is presented here with a focus on the

P .
124 forward cloudy radiative transfer modeling assumptions and IR cirrus-eptieal-thickness

125  retrievals developed specifically for this study.

126 2.1 IR retrievals and radiative closure

127  The MODIS channel suite includes a range of IR channels extending well into the CO,
128  absorption region (13-15 pm). The calibration of the IR channels has been extensively
129  validated and proven to have high accuracy with uncertainties less than 0.5 K across a
1 Dlhaz s wda

130  broad temperature range (Tobin et al. 2006). For cizmas, #e IR radiative transfer is
131  dominated by absorption, and thus is less complex than for the VNIR retrieval. In this
132 sectionjwe discuss the IR radiative transfer methodology that is used both to retrieve the
133 IR IOT as well as evaluate the MODIS and CALIOP retrievals.

134 The goal of radiative closure study is to relate the differences in the CALIOP and
135  MODIS retrieved 10T to the measured TOA channel radiance or Brightness Temperature
136  (BT) in the MODIS 11 um channel. To calculate the TOA cloudy radiances requires an
137  accurate radiative transfer model, knowledge of the cloud boundaries, and well-
138 characterized surface temperature/emissivity and atmospheric thermodynamic profiles.
139 LBLDIS (Turner et al. 2003), a cloudy radiative transfer model, is used for this analysis.
140  The model elegantly combines the clear sky Line By Line Radiative Transfer Model
141  (LBLRTM) (Clough; Moncet 1992) with the Discrete Ordinates Radiative Transfer
142 (DISORT) (Stamnes et al. 1988), a proven and accurate cloudy radiative transfer model.

143 The inputs required for LBLRTM are surface temperature and emissivity, vertically—

144 resolved temperature and water vapor profiles, and information regarding trace gas
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concentrations such as CO, and Os. For this analysis}fﬁe surface temperature and
thermodynamic profiles are extracted from the NOAA Global Data Assimilation System

(GDAS) files that provide profiles at 1° spatial resolution every 6 hours. For each

P ‘colscud ~A7
MODIS and CALIOP ffeld of view (FOW, the closest (iﬁ\bpth time and space) GDAS
AN

profile is selected. A fixed CO, concentration of 380 ppm and a\c{imatological Os profile

is used. Given these inputs )LBLRTM is run on the selected @V;ﬁltered using the

C\G\_é
collocated CALIOP V3 5km layer products (described in Section 3). The results of the

clear sky validation are discussed in Section 4
The cloud microphysics and thermodynamics are defined with a vertical

resolution of 500 meters within the cloud boundaries defined by the CALIOP layer
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an optical thickness of 0.5. Using this methodology the vertical temperature profile is << %wsm,,u
J

product. For example a cloud with a geometrical thickness of 1.5 km is divided into 3
layers) with each layer defined by an optical thickness, effective radius and ice scattering
model. For example]for a cloud with a total optical thickness of 1.5 each layer will have

: L . i . O u.»-.&tujﬁ?\
accounted for in the radiative transfer. For daytime IR forward model calculations, the 5

-

effective radius from the MODIS optical property retrieval is used for all cloud layers.

For@httimé CALIOP comparisons, a fixed effective radius of 40 um is used in the IR

e oW w\";‘-:ﬁ‘}""—‘&.é N LT T U \v&—\-;&\)-xt ey ;_‘_L\,:w‘-\—cu,:‘t\r&-m&.—a.

D

calculations.

The last remaining variable needed to calculate the TOA IR radiance is IOT.
LBLDIS is run independently using either the MODIS or CALIOP retrieved 10T,
resulting in high spectral resolution TOA radiances with the only differences being the
assumed IOT (i.e., MODIS or CALIOP). The spectrally‘resolved radiances are then

integrated over the MODIS Aqua 11 um channel (band 31) spectral response function
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resulting in a simulated TOA radiance that can be directly compared to the measured
MODIS 11 um observations.

In addition to LBLDIS spectral calculations, TOA longwave fluxes are calculated
using the Rapid Radiative Transfer Model (RRTM) (Mlawer et al. 1997) that is also
based on DISORT and LBLRTM and utilizes a correlated-k method for gas absorption
along with broadband ice cloud parameterizations from [Fu et al.(.:ZOOO). Identical inputs
are used for RRTM and the LBLDIS TOA calculations with the only variable being IOT.
The TOA fluxes are subsequently used to quantify the impact of the IOT biases on the
global characterization of ice cloud radiative forcing.

IR observations provide the independent reference to understand differences
between MODIS and CALIOP 10T retrievals. While radiance closure provides valuable
information regarding TOA radiances and fluxes it does not provide a direct assessment
of the individual CALIOP and MODIS IOT biases. To convert observed IR TOA
radiance to 10T, two different retrieval approaches were used. First, we developed an IR
window IOT retrieval that uses the collocated MODIS and CALIOP observations. This
“reference” retrieval uses cloud boundary information from CALIOP coupled with the
LBLDIS forward model and then retrieves the IR 10T using the MODIS 11 um window
channel observations that are coincident and collocated with CALIOP. A second method
uses the spectral emissivity retrieved from the MODIS CO; emissive cloud-top pressure
retrieval that is then related to the IOT and effective radius using a pre-computed lookup
table (Heidinger et al. 2015). This method has the advantage of being computationally
very efficient, not requiring the CALIOP cloud boundaries, and providing 10T for the
entire MODIS swath. Both IR retrieval methods are discussed in more detail in the

following sub-sections.

cotes
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2.1.1. Combined MODIS IR Window and CALIOP Retrievals

A single?hanne] IR window IOT retrieval was developed for this study using combined
CALIOP and MODIS observations and the LBLDIS forward radiative transfer modeling
discussed in the previous section. The method constrains the cloud boundaries using the
collocated CALIOP 5km layer products and uses surface and atmospheric temperatures
information from GDAS. TOA radiances are simulated using LBLDIS with [OT retrieved
by minimizing the measured MODIS channel 31 (11 um) and calculated BT differences.
The retrieval assumes the cloud extinction is evenly distributed in the vertical throughout
reXriss ol
the cloud. This simplification has the potential to bias the HOTFforEGV where the [OT is

distributed non-uniformly in the vertical (Maestri; Holz 2009). The cloud geometric

thickness is thus limited to no greater than 4 km to reduce 10T biases that can be
e

introduced by non-homogeneous layers. fey Pheelma A Bty e
,&v A L)._\c:ov-\_’ﬂ ‘\ 7
SRV B USIET JT - \
X e i A-AL (\—Q_.A\:‘SE/U 8
2.1.2. MODIS IR Spectral Emissivity Retrievals ¢ . :&\Q%

The MODIS C6 CO;slicing algorithm provides retrieved spectral emissivity for the 8.5,
11, and 12 pm channels (channels 29, 31, 32) that have sensitivity to both the IOT and
effective radius. As described in (Parol et al. 1991), B ratios can be approximated based
on these emissivities and are related to the asymmetry parameter (g), single-scattering

albedo (@), and extinction efficiency (Q.) as follows:

Qe, (1 — wo2,92 )/
1 — Yed b A Posctaton
(1 Biya, Qe,;_z(l - mo,)l.zgﬁz) - = o
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Thus f is the ratio of the scaled absorption extinction in two spectral channels (4,and 1,).
The effective radius is first retrieved by matching simulated ice single-scattering
calculations of g(r), wy(r), and Q(r), each integrated over the appropriate MODIS
spectral response functions, to the retrieved MODIS B ratios. For this analysis the
scattering properties of severely roughened aggregated columns (Yang et al. 2012) are
used to be consistent with the MODIS C6 cloud optical property retrievals.

Using the effective radius to define g(7), wy(r), and Q.(r), the extinction optical
thickness is then retrieved by relating the 11 pm emissivity to the extinction optical

thickness in the form ((Van de Hulst 1974))§)

@) Tois = = (2] .

-6; (1-wog)

where 7,4, is the IR absorption optical thickness and 7, is the extinction optical
thickness at 532 nm. This derivation assumes that the ratio between the absorption and
extinction optical thickness is a factor of 2 in the IR. Based on ice cloud single-scattering
calculations (Yang et al. 20122)and assuming that the majority of ice clouds have an
effective radius greater than 10 pum, this assumption is expected to have introduce no
more than 10% uncertainty. (Heidinger et al. 2015) provides a more detailed discussion
of the retrieval methodology. This approach can be applied without the need for the

CALIOP cloud boundaries, and provides full swath IR IOT retrievals. We leverage this

capability to investigate the MODIS [OT retrieval biases as a function of view angle.

2.2 CALIOP Ice Cloud Optical Thickness Retrievals

CALIOP is a twowwavelength elastic backscatter lidar that measures attenuated

backscatter components polarized parallel and perpendicular to the transmitted laser light
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at 532 nm and total attenuated backscatter at 1064 nm (Hunt et al. 2009). Once the
received signals have been background-subtracted and calibrated (Powell et al. 2009), a
tightly’integrated suite of retrieval algorithms is used to detect layer boundaries (Vaughan
et al. 2009) and classify layers as either clouds or aerosols (Liu et al. 2009). Layers
classified as clouds are further classified according to thermodynamic phase as either ice
clouds or water clouds (Hu et al. 2009). Layer optical thickness (including 10T) is then
retrieved using one of two techniques: constrained or unconstrained retrievals (Young;

Vaughan 2009). Constrained retrievals are applied whenever the effective two-way

transmittance of a layer,

layer base
ayer top

3) Teffz = exp(—2nt) = exp (—anl ac(r)dr)

2

can be directly and reliably measured. In this expression)r is the layer optical depth (IOT
for ice clouds), oc(r) is the range-resolved cloud extinction coefficient, and 1 is a multiple

scattering correction factor whose value depends on the lidar sensing geometry and the

scattering characteristics of the particulates being measured. While T;f estimates can be

obtained from measurements of clear air, opaque water clouds, and ocean surfaces (see

S T ———

@set et al. 2012; Yongxiang et al. 2007; Young 1995); respectively), the CALIOP V3

_/

algorithm only implements the clear air technique, in which Tjj. can be obtained directly

from the ratio of the mean attenuated scattering ratios calculated in regions of clear air

located immediately above cloud top and below cloud base (Vaughan et al. 2005).

Retrieving IOT from measurements of Tf” requires knowledge of the appropriate
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multiple scattering factor (Winker 2003). For CALIOP measurements of cirrus clouds,
(Josset et al. 2012) determined the mean multiple scattering factor to be 0.61 + 0.15. In
the CALIOP V3 algorithm, n is fixed at 0.6 for all cirrus clouds.

Constrained retrievals are the preferred method for retrieving IOT from CALIOP
measurements. However, because solar background light significantly degrades the
CALIOP SNR during daylight operations, V3 constrained retrievals occur almost
exclusively during nighttime observations, thus severely limiting direct comparisons with
MODIS IOT retrievals derived from VNIR solar reflectance. For the vast majority of

daytime observations, CALIOP IOT retrievals use an unconstrained technique that

requires a priori knowledge of the cirrus extinction-to-backscatter ratio (i.e., lidar ratio),

) Se =20 ,
where o.(r) and Bc(r) are, respectively, the cloud extinction and backscatter coefficients.
IOT is then obtained by solving the lidar equation using specified values of 1 and S,
(Young; Vaughan 2009). Note that while the cloud extinction and backscatter coefficients
are explicitly range-dependent, their ratio is assumed to be range-invariant. Although S,
for \cmts n";ost likely varies depending on crystal habit and size distribution, the CALIOP
V3 unconstrained retrievals use a globally constant default value of S, =25 + 10 sr. This
value was determined prior to launch from the best information available from numerous
ground-based and airborne data sets (e.g., fHolz 2002; Sassen 2001; Yorks et al. 201 lf).
Errors in lidar ratio selection for unconstrained retrievals generate corresponding
errors in the resultant estimates of IOT. In particular, an underestimate of S, will result in

CALIOP underestimating IOT. The selection of the default CALIOP lidar ratio is thus

one of the potential major sources of bias in the CALIOP unconstrained retrievals that



281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

30

o

can be investigated using IR observations from either MODIS or the CALIPSO IIR

(Imaging Infrared Radiometer) instrument (Garnier et al. 2015).

2.4 MODIS Ice Cloud Optical Thickness Retrievals

The MODIS imager provides measurements in 36 spectral channels, covering the Visible
Near Infrared (VNIR), Shortwave Infrared (SWIR), Midwave Infrared (MWIR), and
thermal IR portions of the spectrum. Spatial resolution is 250 m in“;.\:o VNIR channels,
500m ir?? VIS/SWIR channels, and 1 km in the remaining channels.

The MODIS cloud optical/microphysical property algorithm is used to generate a
single cloud product designated by the NASA Earth science data type (ESDT) names
MODO06 and MYDO06 for Terra and Aqua MODIS, respectively (hereafter referred to as
MYDO06 since the algorithms are essentially identical and this study is focused on
MODIS Aqua observations). For daytime measurements, the 1km cloud retrieval
algorithm uses multiple spectral channels (primarily six VNIR, SWIR and MWIR
channels, as well as several thermal channels) to simultaneously retrieve cloud optical
thickness, effective radius (and derived water path) and thermodynamic phase for liquid
and ice phase clouds. In addition to the 1km MODIS Level-1B calibrated radiance
product, the algorithm requires the following input: MODIS cloud mask (MYD35)
including 250m mask information (Ackerman et al., 1998), the cloud-top pressure
portion of MYDO06 (Ackerman et al. 2008; Holz et al. 2008), and a variety of ancillary
datasets. Heritage algorithm work is discussed in §King et al. @OOS)JNakajima; King

@9())) Platnick; Twomey @994}jplamick etal. 200 ljj Platnick et al. 2003},
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distinct layers in cases where the base of the upper layer is separated from the top of the
lower layer by as little as a single range bin (60m). For a passive retrieval such as from
MODIS, a 60 m vertical separation will have little impact on the retrieval results).

assuming both layers are ice. To improve the comparison yield) and provide a more

representative distribution of single layer ice clouds for inter-comparing the passive ¢

observations, CALIOP 5 km ice cloud layers with a vertical separation of 3 km or less are
merged to form single, vertically_’contiguous layers. The CALIOP extinction profile is
then integrated for each profile using the redefined layer boundaries, thus providing an
aggregated I0T. Ice clouds with total geometrical thickness greater thanfci;k/m uging this
single layer definition are excluded from the comparison.

The MODIS [OT retrievals are filtered using the C5 MODIS Quality Assurance
(QA) parameters and a horizontal heterogeneity threshold. MODIS 10T retrievalshée.,
with the QA usefulness flag set to 1 and the QA confidence flag set to 3) are used in the
comparison. Using this filtering provides the highest quality MODIS retrievals and
removes all cloud edges from the comparison. To reduce uncertainties resulting from
spatial sampling differences between MODIS and CALIOP, the standard deviation of a
5x5 pixel box centered over the collocated pixel is computed. Only collocated pixels
where the MODIS IOT standard deviation is less than 0.5 are used; we find, however,
that the comparison results are relatively insensitive to this threshold. 5 1

Figure 1 reveals a systematic bias between the MODIS and CALIOP(I/OT’S, with
MODIS approximately a factor of two larger than the CALIOP unconstrained retrievals.
An independent methodology is needed to assess this difference since both retrievals

depend on ice scattering property assumptions. As discussed in the methodology section,

the IR observations provide sensitivity to the IOT given well-constrained cloud
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boundaries with uncertainties that are independent of the CALIOP and MODIS VNIR
retrievals. Spectrally—resolved TOA radiances are calculated for the three different
retrieval methods — MODIS, CALIOP unconstrained (daytime measurements), and
CALIOP constrained (nighttime measurements) — using LBLRTM and LBLDIS. All
three calculations use identical cloud boundaries defined by the merged CALIOP 5km
layer heights and the same thermodynamic profiles and ocean surface temperatures
(GDAS), with the only difference being the 10T used in the calculation. The spectrally ~
resolved TOA radiances are then integrated over the MODIS channel 31 (11 um) spectral
response function. To investigate the accuracy of the combined GDAS and TOA clear
_ colloaudon
sky LBLRTM calculations, simulated TOA 11 pum BT for clear sky ES¥s identified
using both the MODIS and CALIOP cloud masks were compared to the measured
_ clear-s k%
MODIS 11 um channel BTs. The mean bias between the simulated and observed BT is
less than 0.2 K, which is within the expected calibration uncertainty of MODIS (Tobin et
al. 2006).

Figure 2a presents the MODIS C5 and CALIOP V3 BT closure results. The figure
reveals a sobering finding which is that neither the MODIS C5 nor the CALIOP V3
unconstrained IOT retrievals provide radiative closure in the window IR. Furthermore,
the respective retrievals are biased in opposite directions. For MODIS C5, the calculated
TOA BT is colder than the measured BT with a mean bias of -8.7K, implying the MODIS
IOT is on average biased high. In contrast, the TOA BT calculated using the CALIOP V3
unconstrained 10T has a mean bias of +12.1 K, suggesting the CALIOP retrieval is
biased low. The CALIOP V3 constrained retrievals, which do not require an assumed
lidar ratio but only an estimate of the multiple scattering correction, demonstrate much

better agreement with a mean bias of +1.4 K.
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398 To put the biases into a radiative context, the cloudy IR TOA ﬂuxes are computed" _‘SC—DH
%(; ~\JC reXc vmaAl

399  for each colIocated-Fe%L-usmg RRTM. The calculations use the CALIOP cloudubcflouhw\am

= o an. 2
400  boundaries, the surface and atmospheric profiles from GDAS, and the MODIS retrieved o

e—"

M
401  effective radius. For each collocatcd—F*G’Vtho RRTM calculations are computed with the
402  only difference being the IOT used (MODIS or CALIOP) with the results presented in
403  Figure 2b. The mean TOA flux difference between MODIS and CALIOP unconstrained
L > :D\/"‘U\:"Q_ \.W
VLY
404  retrievals is +23 W m™ with a standard deviation of 21 W m™. For the tenuous <itrus bemg
405  investigated, the sensitivity of the TOA flux to IOT is primarily driven by the thermal -
P

v};{’ £ C',Qr 3
406  contrast between the surface and the mean emitting temperature of the cloud. The very Pﬂ, \("
407  large differences in the wings of the distribution in Fig. 1b occur primarily near the g LL%‘

408  tropics where the thermal contrast is greatest between the cloud and the surface. For this

409  region TOA differences as large as 50 W m™ are found in Figure 2b.

410 5. IR Retrievals as a Reference Optical Thickness

411  Because the sensitivity of IR 10T retrievals to ice crystal habit selection is minimal, these
412 retrievals provide an independent means to evaluate the CALIOP and MODIS solar
413 reflectance retrievals. As discussed in Sect. 2, the main sources of uncertainty in the IR
414 10T originate from characterizing the surface temperature and having an accurate
415 determination of the cloud emitting temperature. To reduce the surface temperature
416  uncertainty, the results of this section are restricted to non-polar (+ 60 degrees) ocean-
417  only cases.

418 The comparisons with IR window IOT retrievals shown in Figure 3 reveal biases
419 in both the MODIS (a) and daytime CALIOP unconstrained (b) retrievals (high and low,

420  respectively) that are consistent with the radiative closure results presented in Figure 2.
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The magnitude of the bias relative to the IR is approximately +40% for MODIS. For

: C\:i‘\‘e-’v‘)”““:k L“v ~
CALIOP there is a@pendence between the IOT andthe negative bias relative ﬂ

(B ¢

to the IR, with the bias increasing substantially for IR IOTs greater than unity; the
CALIOP results are discussed further in Section 5.2.
A limitation of the IR window IOT data set is that only a small subset of the

MODIS across track swath can be assessed due to the very close coordination betweem_2
aud ned Lor acermude Rocd kowdarie,
the MODIS and CALIOP orbits. To investigate MODIS IOT scan angle dependencies we

use the MODIS spectral IR 10T retrieval described in Sect. 2.1.2. Figure 4a shows the
MODIS C5 liquid (warm colors) and ice (cool colors)’phase cloud optical thickness for
an example MODIS data granule (WZOIO, 06:25 UTC). Fig. 4b presents the
histogram of the ratio between the MODIS 10T and the full swath IR 10T (described in
section 2.1.2) separated by viewing angle ranges as indicated by the colored lines
overlaid on the IOT image. A ratio of unity would suggest good agreement between the
spectral IR and VNIR 10T retrievals. However, as illustrated in the following section, for

the MODIS CS5 retrievals (solid lines) the modes of the distributions vary with scan angle,
vnclead.
and the bias is seen to be an increasing as a function of scan angle. This is an important / &: Ooe< &1
. FaY \L,,Q e AL
result, as it demonstrates necessity that this scattering angle dependence can provide an bbrus? THao,
\i‘t&o"\‘%
additional constraint on ice radiative model selection. In addition, because CALIPSO and ‘ﬁj“"?‘?{?—""‘*ﬁ"‘-
o A= S L
Fay el at-e_ Yo
Sut M ToV
et \‘_&.\.{v_u__\
s I

Aqua have similar orbits, only a small range of MODIS viewing angles are included in

the collocated inter-comparison, thus the possible strong dependence on viewing angle

TRUows O ;
implies the collocated analysis is representative only of the view angle ranges sampled. r?_:\f'&-wis@

Finally, given the lack of significant scattering in the IR, the scan dependent bias further
suggests the issue is with the MODIS C5 VNIR retrievals. This is investigated in the next

section.
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5.1 Ice Radiative Model Sensitivities in MODIS

Though a primary focus of this investigation is on optimizing C6 ice models to
improve 10T intercomparisons, it is understood that ice model crystal habits also affect
the particle single scattering albedo retrieved using the SWIR and MWIR channels that
provide effective particle size information. Figure 5a and Figure 5b show the 2.13 um and
3.7 pm channel co-albedo, respectively, as a function of Cloud Effective Radius (CER)
for four habit realizations; namely the C5 habit mixture (black line) and the three severely
roughened habits solid aggregate plates (green line), solid bullet rosettes (red line), and
aggregate columns (blue line). To the extent that CER retrievals of an asymptotically
thick cloud in the SWIR/MWIR are essentially a retrieval of co-albedo, the difference
between the aggregated column and C5 model co-albedo implies an effective radius
difference of +2 um and -8 pm at the 2.1 pm and 3.7 um wavelengths, respectively, for a
CS5 effective radius of about 35 pm; smaller C5 retrieved sizes would result in larger
differences.

Figure 6 shows the asymmetry parameter sensitivity to habit for the same four
habits shown in Figure 5. Evidentl}} the habit-sensitivity of the asymmetry parameter is
also strong in both the 2.1um and 3.7 um MODIS channels. While the asymmetry
parameters of three severely roughened habits are not constant with effective size (though
at 2.1 pm the aggregate plates and aggregate columns are nearly constant), the C5 model
has much larger size sensitivity at both wavelengths. Aggregated columns, with smaller
asymmetry parameters relative to C5, will result in a larger retrieved CER estimates. This
is because the resulting increase in modeled SWIR reflectance for a given effective size

causes the measured reflectance to be associated with a more absorbing (i.c., larger)
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468  particle. Therefore, the effect of both co-albedo and asymmetry parameter differences
469  between the severely aggregated column habit and the C5 model act to increase retrieved
470  effective radii at 2.1 pm, while at 3.7 um some cancellation of effects can be expected.
471 The single habit radiative models shown in Figure 5 and Figure 6 are used to
472 build look-up tables that were integrated into the MODIS C6 cloud retrieval development
473  code. A month of data was processed for each habit. It was found that the habit that
474  provided the best consistency with the IR window retrievals (Sect. 2.1.1) is the severely
475  roughened aggregated column model. The IOT retrieval comparison with the IR window
476  retrievals using this model is shown in Figure 7a, where the MODIS reflectance-based
477  retrievals using the severely roughened aggregated column model are now clustered
478  around the 1-to-1 line. In addition, this aggregated column model was used to assess the
479  MODIS retrieval swath dependence previously shown in Figure 4b. The improvement of
480  the aggregated column model (dashed lines) relative to the C5 model (solid lines) is
481  significant. Both results led to the decision to use the severely roughened aggregated
482  column radiative model for the MODIS C6 cloud optical/microphysical property
483  retrievals.

484 Figure 8 shows an example of ice cloud retrievals for C5 and C6 fOI:—-iS/—];h-OOI‘l
485  Fung-Wong. The typhoon was located south of Taiwan at the time of the MODIS Aqua
486  data granule acquisition on September 20, 2014 (0530 UTC). The C5 and C6 ice (cool
487  colors) and liquid (warm colors) cloud optical thickness retrievals are shown in the
488 middle and right panels, respectively. In addition to ice radiative model differences,
489  MYDO06 C5 and C6 have different schemes for the cloud thermodynamic phase yielding
490  different ice and liquid phase pixel populations, though the optical thickness spatial

491  patterns are similar for regions having the same phase. Because of the different phase
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assignments made by these two scheme, quantifying ice model retrieval sensitivities
requires the comparisons be restricted to only those pixels for which both algorithms
generate successful retrievals that identify identical cloud phases. With this pixel
filtering, the left panel of Figure 8b shows the normalized [OT distribution for the optical
thickness range of the plot. The C6 IOT mode is roughly 27% smaller than the C5 mode,
while the mean is decreased by about 15%, from 4.16 for C5 to 3.55 for C6. The 2.1 pm
ice cloud effective particle radius retrievals are shown in the right panel, with the C6

mode and mean both increasing by about 4 um (+15%) for C6 relative to C5.

5.2 MODIS C6 model selection methodology
The MODIS IOT retrieval depends strongly on assumed ice scattering properties

that are needed to relate the measured reflectance to the retrieved I0OT. The MODIS C5
retrieval used empiricallfaerived habit and size distributions with asymmetry parameters
ranging between 0.79 and 0.88,, depending on the ice cloud effective radius (Baum et al.,
2005). By conducting an infrared closure analysis, we have shown that the CS5
parameterization is not representative of the globally“averaged ice scattering properties.
More recent investigations of the ice cloud asymmetry parameter suggest that most ice
Lev sool ]
clouds have values around 0.75 in the visible spectrum. Additionally, use of the C5 ice
cloud radiative model results in MODIS retrieval biases are strongly dependent on the
viewing angle, as demonstrated in Figure 4. These findings motivated the investigation of
new ice scattering models that have lower asymmetry parameters and weaker dependence
on ice effective radl'!%/;'ince the MODIS C5 algorithms were finalized, new ice scattering
models that incorporate roughened ice crystal parameterizations have been developed

(Yang et al. 2012). Experimentation with these new models demonstrates that a modified

gamma distribution of severely roughened aggregated columns provides a significantly
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lower visible asymmetry parameter (~0.75) that shows very little dependence on ice
effective radius. For testing purposes, the MODIS cloud retrieval algorithm team
implemented these new scattering properties in the MYDO06 retrieval algorithm. The
updated algorithm was then run on the Atmospheric PEATE and the resulting data was
collocated with CALIOP measurements. Simulated TOA cloudy MODIS 11 um brightness

-y
temperatures (BT) are then computed using the reprocessed MODIS [OT retrievals and are

compared to the MODIS measured BT, These new results presented in Figure 10b; 5: he

updated ice scattering models generate greatly improved IOT estimates that show very
close to a one-to-one correspondence with the independentlyf derived IR IOT values

(Figure 7a). Additionally the view angle dependent bias is largely removed, as presented in

v S
@e 4c. l}ased on these results, the recently reprocessed MODIS C6 cloud

Optica@physical property product (now in forward production) uses a modified

gamma distribution consisting of a single habit of severely roughened aggregated columns

for ice cloud retrigvals. An additional benefit of the single habit is that it simplifies the

retrieval and increasss the reproducibility of the scattering properties by the research

) — Y
community. Teere v o © ‘%“\Q - -
Figure 10a presents the same filtered 2-D histogramc&mparing CALIOP and

MODIS as Figure ljbut using the ice radiative model modifications made for MODIS and
TN

-

the updated lidar r@r) _fr:gr CALIOP. Figure 10b presents the IR radiative closure for

the update 10T retrievals for January 2010. Notice the large bias between the MODIS and

CALIOP un-constrained IQT is significantly reduced and the IR radiative closure shows
very good agreement for all\three IOT retrievals. There is still a tendency for the MODIS

IOT to be larger than CALIOP in Figure 10a. The MODIS C6 IR closure in Figure 10b
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also demonstrates this bias, with the tail of the distribution weighted to negative BT

differences suggesting the remaining bias is specific to MODIS.

5.3 Ice Lidar Ratio Sensitivities in CALIOP

As previously discussed, CALIOP uses one of two methodséé.e., constrained and
unconstrained& to retrieve IOT. The constrained method requires high SNR in clear air
regions immediately above and below the cloud. This SNR requirement limits the
constrained retrieval primarily to nighﬁime@ufﬁﬂgﬁcause solar background light
severely degrades the clear air SNR during the daytime. This precludes direct comparison
of the constrained retrievals with the MODIS daytime optical property retrievals. The IR
retrieval, being day/night independent, allows for direct inter-comparisons between the
MODIS IR IOT retrievals and both the constrained and un-constrained CALIOP IOT
retrievals providing a means to evaluate the two retrieval methods against a consistent
reference.

Figure 3b presents the joint histogram between the unconstrained CALIOP and
the MODIS window IR 10T for January 2010 for singlaayer cirrus. The filtering criteria
are the same as in Figure 1, except both day and night observations are included. The
CALIOP layer optical thickness is filtered using the extinction quality control (QC) flags
provided as part of the L2 products. Only QC values of 0 (unconstrained solution, no
lidar ratio adjustment), 2 (unconstrained solution, lidar ratio decreased) and 4
(unconstrained solution, lidar ratio increased) were selected. Consistent with the findings

of (Garnier et al. 2015), Figure 3b shows CALIOP unconstrained 10T is significantly

low-biased with respect to the IR IOT, with a non-linear dependence as a function of
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IOT. Figure 9 compares the CALIOP constrained retrievals (QC=1) to the MODIS IR
COT for the same filtering criteria. This comparison reveals a distinct difference between
the CALIOP constrained and unconstrained retrievals (Figure 3b), as the constrained
retrievals demonstrate a significantly smaller bias relative to the IR IOT. While the
CALIOP 10T retrieval requires estimates of the multiple scattering contributions for both
the constrained and unconstrained retrievals, the un-constrained method also requires an
assumed lidar ratio whereas the constrained retrieval does not. Because both retrievals
use an identical fixed multiple scattering factors, the difference between the constrained
and unconstrained retrievals relative to the IR can be attributed to the use of an assumed
lidar ratio in the unconstrained retrieval.

To investigate the sensitivity of the CALIOP IOT retrievals to the lidar ratio, a
month of CALIOP L2 products was processed (January 2010) with the default lidar ratio
increased to 32sr. This revised value is the mean of all V3 constrained solutions of
randomlyﬂoriented ice clouds (3,091,952 cases) measured between 28 November 2007
(when CALIPSO permanently changed its pointing angle to 3° off nadir) and 30 June 2012.
It is important to note that the selection of this new default lidar ratio was based on on-
going quality assurance analyses conducted by the CALIOP algorithm team that were
wholly independent of the IR inter-comparisons. The modified CALIOP product was
ingested by the Atmospheric PEATE and collocated with both the MODIS C5 and C6
products and the MODIS IR retrievals. The modified CALIOP unconstrained retrievals
compared to the reference IR 10T is presented in Figure 7b. Compared to the standard V3
products (Figure 3b) the change in the lidar ratio significantly reduced the bias compared
to IR 10T, and the non-linear behavior at large IOT is almost completely removed. This

is because optical depth is a nonlinear function of lidar ratio, thus weakly scattering



586  layers show minimal changes in IOT while the changes in strongly scattering layers are
587  much more substantial. This result strongly suggests that the current V3 unconstrained

588  lidar ratio of 25 sr should be increased in future versions of the CALIOP data products.



589 6. Conclusions

590  FBe MODIS Collection 5 (C5) ice optical thickness (IOT) retrievals are compared to the
591 lésion 3 (V3) CALIOP IOT for one month (January 2010) of collocated singled_layer ice
592 clouds. The comparison reveals a factor of two differences between the retrievals as
o 5 s ko aXa Weraadd o e B3 1t e obaicedan

593 presented in Figure 1. Using IR observettens—fron=MOB1S as an independent means of
594  assessing the CALIOP and MODIS 10T clearly demonstrates that both retrievals have
595  significant biases, but in opposite directions: MODIS C5 systematically overestimates [OT
596  while CALIOP V3 systematically underestimates JOT.

597 The decision to use the single severely roughened aggregate column habit as the
598  MODIS C6 ice cloud radiative model was made solely to achieve closure with IR retrievals
599  in a global sense. Our use of this model for this purpose does not imply that it is a suitable
600  microphysical model for use in understanding ice particle physical processes, @g., size
601 distribution evolution, fall speed distribution, eta. Furthermore, the IR comparisons were
602  done in conjunction with collocated CALIOP observations that that allow for the filtering
603  of multi-layer ice phase clouds from the statistical study; A'he data set used here is clearly a
604  subset of actual scenes and so may not be reflective of the full distribution of ice clouds
605  observed by the sensors. Finally, it is recognized that using a fixed ice radiative model for
606  global retrievals is only meaningful in a climatological sense and may be expected to
607  breakdown in instantaneous and/or regional studies.

608 The severely roughened aggregated column model adopted for the MODIS C6 ice
609  cloud algorithm has a fixed aspect ratio with an asymmetry parameter of about 0.75 in the
610  visible for all effective sizes. This produces results that are quite consistent with those
611  generated using the Inhomogeneous Hexagonal Mono-crystal (IHM) model derived by

&£

612  (C.-Labonnote et al. ZOOIﬁﬁsymmetry parameter of about 0.77) that provided a good



613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

match with observed POLDER view angle-dependent VNIR reflectance. Other studies
have also suggested that featureless (i.e., smooth) phase functions indicative of
roughened or highly asymmetric aggregated habits with relatively small asymmetry
parameters are needed to match aircraft and satellite observations e.g., (Baran et al. 2001;
C. -Labonnote et al. 2000; van Diedenhoven et al. 2013).

The Generalized Habit Model (GHM) (Baum et al. 2010) was also tested but did
not the same level of radiative closure with the IR IOT retrievals compared to the
severely roughened aggregated columns (comparison shown in Fig. 7a). While there was
an improvement with respect to the C5 ice model (comparison shown in Fig. 3a), the
GHM model resulted in IOT retrievals that were still significantly larger than the IR
because of larger asymmetry parameters in the visible relative to the severely roughened
aggregated column model (about 0.77 at an effective radius of 5 pm up to 0.82 at 60 pm).
(Cole et al. 2012) also tested the GHM as well as single habit models from (Yang et al.
2012) and (Yang et al. 2003) against POLDER polarized and total reflectance
observations across a range of scattering angle=s olarized angular observations agreed
well with a severely roughened version of the GHM. However, it was concluded that
there was no single habit/model that is best in all respects for the reflectance (derived
spherical albedo) consistency tests, though the severely roughened aggregated column
model was not included in the analysis. Similarly, (Baran; Labonnote 2007) also noted
that though the IHM model provided good consistency with POLDER directional
reflectance distributions, it was less successful in matching the angular distribution of
polarized reflectances. Due to vertical size stratification in ice clouds it is possible that
different models are needed to match polarized observations (weighted towards the

uppermost portion of the cloud-top) with total reflectance observations (weighted deeper
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into the cloud), e.g., (Platnick 2000) and (Zhang et al. 201)7/Given that MODIS
retrievals are based on total reflectance, it is expected that’ directional reflectance
consistency with POLDER is the more relevant metric. Further, the study of (Zhang et al.
2010) shows there is little difference between IOT retrieved from reflectance and IR
observations for the model case study considered. (Fauchez et al. 2014) demonstrated that
for lkm IR observations, sensitivities to 3-D effects are limited to horizontal
heterogeneity (plane-parallel approximation or PPA bias) and the effect of vertical
heterogeneity is small. Though more extensive heterogeneity studies are needed, these
studies do suggest the utility of using IR IOT retrievals to assess MODIS reflectance-
based ice radiative models. Finally, we note that recent comparisons have demonstrated
consistency between Aqua MODIS C6 10T retrievals and those from AIRS Version 6
(Kahn 2015).

For CALIOP it is found that the bias relative to the IR for the V3 IOT retrievals
depends on the retrieval method used. While CALIOP can make direct measurements of
the effective two-way transmittance of the layer, the retrieved optical thickness depends
only on an estimate of the multiple scattering factor and the accuracy of the molecular
attenuated backscatter profile (calculated from a temperature and pressure profile using
Rayleigh scattering theory). However, daytime solar background noise limits the
applicability of this constrained retrieval technique to mostly nighttime observations, thus
prohibiting direct comparisons to the MODIS daytime optical retrievals. For the
constrained retrieval we find good agreement with the IR radiative closure (Figure 2) and
the IR 10T in Figure 9. However, the majority of the daytime CALIOP retrievals use the
unconstrained method that requires an a priori specification of the cloud extinction-to-

backscatter ratio. It is these unconstrained retrievals that are directly compared to the
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MODIS C5 10T in Figure 1 and to the IR in Figure 2 and Figure 3. The CALIOP V3
unconstrained [OT retrievals show a significant low bias relative to both the IR and the
constrained CALIOP retrievals. Since both CALIOP methods assume an identical multiple
scattering correction, this suggests that the default lidar ratio (25 sr) used in the V3
CALIOP unconstrained retrievals is too low. As part of this investigation the CALIOP
algorithm team processed a month of retrievals using a lidar ratio of 32 sr for the
unconstrained retrievals with results presented in Figure 7b. It is important to note that the
selection of a lidar ratio of 32 sr was not based on the IR inter-comparison studies, but
instead was derived from independent analyses of the nighttime constrained retrievals
conducted by the CALIOP algorithm team in order to improve the accuracy of the
CALIOP unconstrained retrievals and increase the consistency of I0Ts reported by the

constrained and unconstrained retrievals.
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