
Response to the comments of Anonymous Referee #1 on “Inverse 

modeling of black carbon emissions over China using ensemble data 

assimilation” by P. Wang et al. 

We thank the Referee for the constructive feedback. We respond to each specific 

comment below. The original comments by the Referee are shown in bold italics. Our 

reply is shown in blue. 

General comments:This paper uses an ensemble optimal interpolation (EnOI) data 

assimilation technique to reduce emission bias of black carbon (BC) in China. The 

bottom-up emission inventories in China are associated with large uncertainties. 

The authors demonstrated that using the EnOI approach can considerably bring the 

model prediction closer to observed BC concentration. The manuscript is well 

organized and the results are clearly presented. The findings presented here 

provide a reliable alternative to predict BC variations in China in the absence of 

accurate emission inventories. Hence, I recommend publishing this manuscript after 

the following comments being satisfactorily addressed. 

Thanks for the comments! 

Specific comments: 

 1. While inverse modeling can provide a simplified solution, the processes 

contributing to the model bias go beyond emission. Therefore, emission inversing is 

likely to lump up uncertainties from other processes into emission.  

reply: Yes, this is quite right, so we added this comment and uncertainty analysis of  

inverse estimation in our manuscript. we conducted the Monte Carlo simulation to 

quantify the uncertainty of the total bottom-up emission and the inversed emission 

inventory in China. The lognormal distribution was assumed, and the standard 

deviation was calculated by combining the root-mean-square error between 

observation and simulation with standard deviation of the inventory. Monte Carlo 

simulations with randomly selected values within the PDFs were repeatedly 

implemented for 10000 times. The uncertainty in Chinese BC bottom-up emission 

and inversed emission inventory at the 95% were obtained, as shown in Fig. 10. The 



mean value, 2.5th percentile value, and 97.5th percentile value were 1570, 321, and 

5138 Gg (bottom-up) and 2650, 1114, 5471 Gg (inversed emission), respectively. 

Therefore, the uncertainty of these two emission inventory were about [-80%, 227% ], 

and [-58, 102%], correspondingly. Using the ensemble inversion modeling, the 

uncertainty of BC emission inventory decreased by 50%. We also compared our 

estimation with results from previous study. Streets et al (2003) estimated the 1.05Tg 

BC emission in China for the year 2000 with ±360% uncertainty measured as 95% 

confidence intervals. Zhang et al (2009) estimation of the China BC emission is 1.61Tg. 

Qin and Xie (2012) estimated the 1.57Tg BC emission in China for the year 2005 with 

[-51%, 148] uncertainty. Our estimation are nearly 40% higher than these bottom-up 

inventories. One reason is there was very little emissions for the northwest China 

and northeast China in all of these emission inventory. They are so similar low in 

these regions probably because these bottom-up inventories are based on the same 

statics data source. Based on top-down regression method, Fu et al (2012) estimated 

the annual BC emission is 3.05±0.78Tg which is higher than our estimation. One 

possible reason is that their estimation may be biased high in central China which 

had been pointed out in their paper. 

 

2. There are a number of formulas given but not all variables are explicitly denoted. 

Suggest a throughout checking of the manuscript on this matter. For instance, Eq. 

10 and 12. 

reply: We have done a throughout checking of the manuscript to make sure that all 

variables in the formulas are explicitly denoted. Thank you very much. 

 

3. P20858, L22-24, how was the subset of assimilation or verification sites chosen 

from CAWNET?  

reply: We chose the verification sites because 1) they had less missing value, 2) at 

least one more site not far away from them so there would be a inversion increment. 

 

4. P20858, L26: “city’s average elevation” is confusing. May choose another term, 



such as above ground level.  

reply: Thank you, modified as suggested. 

 

5. P20859, L3: [at] a 5min time [interval]. 

reply: Fixed as suggested.  

 

6.L5: [the] optical absorption.  

reply: Fixed as suggested.  

 

7. L13-14: How representative is the monthly mean to the actual daily and hourly 

variability? It may be useful to provide some measures, such as standard deviation, 

from at least observations to gauge the robustness of this choice. 

reply: Yes, we have calculated the standard deviation of daily observations and used 

them to represent the error of the measurements in the inversion process. We also 

presented them in the Table 3. 

 

8. P20860, L12: [than] Scheme A. I wonder how the RMSE from Scheme B compared 

to that from A.  

reply: the RMSE of Scheme A is 2.10 and Scheme B is 2.58 . This also indicated that 

Scheme B is better than Scheme A because good ensemble should not only include 

the observation but also have large spread to contain large possibility. 

 

9. P20861-P20863: The observed BC concentrations are five-fold of the model 

prediction (5.2 vs 1.1 ug/m3). An increase of emission by 1.8 times will reduce the 

model bias by 50%. Why is that? 

reply: The increase of emission by over 1.8 times refers to increment at the 

nationwide scale. Yet, the model bias reduced by 50% is calculate by the BC 

concentration of observation site shown in table 3 where emission rate were 

significantly corrected by EnOI. However, there was a typo in Table 3, observation 

and model E2 were labeled opposite, and had been corrected. Thank you!  



 

 

Fig. 10 Uncertainty analysis for annual Chinese BC bottom-up and inversed 

emission inventory 
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Table 1 Observation site information 

num observation sites LON LAT ALT description
1 AKeDaLa (AK) 87.97 47.12 562 background site
2 TaZhong (TZ) 83.67 39 1099.3 rural site
3 HaMi (HM) 93.52 42.82 737.2 rural site
4 EJiNaQi (EJ) 101.07 41.95 940.5 urban site
5 DunHuang (DH) 94.68 40.15 1140 rural site
6 WaLiGan (WL) 100.92 36.28 3816 background site
7 ZhuRiHe (ZR) 112.9 42.4 1151.9 rural site
8 YuLin (YL) 109.2 38.43 1105 urban site
9 YuShe (YS) 112.98 37.07 1041.4 urban site
10 LongFengShan (LF) 127.6 44.73 330.5 rural site
11 XiLinHaoTe (XL) 116.12 43.95 1003 rural site
12 TongLiao (TL) 122.27 43.6 178.7 urban site
13 FuShun (FS) 123.95 41.88 163 urban site
14 GuCheng (GC) 115.8 39.13 11 urban site
15 DaLian (DL) 121.63 38.9 91.5 urban site
16 ChengDu (CDu) 104.04 30.65 553 urban site
17 ZhuZhang (XG) 99.73 28.02 3580 background site
18 ZhengZhou (ZZ) 113.68 34.78 110 urban site
19 XiAn (XA) 108.97 34.43 410 urban site
20 GuiLin (GL) 110.3 25.32 164.4 rural site
21 LinAN (LA) 119.73 30.3 138.6 rural site
22 LuShan (LS) 115.99 29.57 1165 rural site
23 NanNing (NN) 108.35 22.82 172 urban site
24 PanYu (PY) 113.35 23 131 urban site
25 GaoLanShan (GLs) 105.85 36 2161.5 rural site
26 ChangDe (CD) 111.71 29.17 565 rural site
27 ShangDianZi (SD) 117.12 40.65 293.3 background site
28 ShenYang(SY) 123.41 41.76 110 urban site
29 Beijing (BJ) 116.47 39.8 31.3 urban site
30 HuiMin (HM) 117.53 37.48 11.7 urban site
31 JinSha (JS) 114.2 29.63 330.5 rural site  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 Model simulations and surface observations of monthly mean BC 

concentrations at assimilation sites and verification sites (units: μg/m3) and the 

relative error percentage ( =(|model − obs| / obs) × 100% ).  

AK 0.07 0.44 0.51 0.34 86.9 13.0
TZ 0.04 1.08 2.20 0.79 98.4 51.1
HMi 0.06 2.21 4.90 3.15 98.9 54.9
EJ 0.05 2.67 7.84 4.03 99.4 66.0
DH 0.06 1.02 3.55 1.93 98.4 71.4
WL 0.13 1.03 0.94 0.61 85.7 9.3
ZR 0.14 1.00 3.37 1.29 95.7 70.2
YL 0.31 0.89 1.88 1.60 83.6 52.9
YS 2.70 5.56 6.94 3.61 61.1 19.9
LF 0.58 2.23 5.16 3.81 88.8 56.8
XL 0.14 0.37 0.93 0.76 84.7 59.8
TL 0.47 2.97 7.42 3.05 93.6 59.9
FS 2.00 4.82 7.06 4.09 71.7 31.6
GC 3.79 7.60 14.24 8.06 73.4 46.7
DL 1.74 4.13 4.85 2.21 64.1 14.8
CDu 1.45 7.14 9.71 5.21 85.0 26.5
XG 0.20 0.21 0.30 0.18 34.8 29.2
ZZ 3.28 10.68 10.89 4.41 69.9 2.0
XA 1.02 3.57 3.66 1.73 72.1 2.5
GLs 0.26 1.92 4.99 2.75 94.8 61.5
LA 1.00 4.19 6.19 2.88 83.8 32.3
LS 0.73 2.69 2.08 1.12 65.0 29.4
NN 0.55 2.26 6.36 3.32 91.3 64.5
PY 0.55 2.15 8.69 4.64 93.6 75.2
GL 0.46 1.82 4.11 2.13 88.8 55.8
CD 0.71 3.02 4.38 1.86 83.7 31.0
SD 1.39 1.38 0.81 0.73 71.8 70.5
BJ 3.45 8.68 11.96 5.57 71.2 27.4
HM 4.27 6.41 8.06 4.96 47.0 20.4
JS 3.20 4.47 5.35 2.61 40.1 16.4
SY 0.89 3.14 3.05 1.69 70.7 2.8

Assi_sites

mean
0.88 2.93 4.96 2.60 82.2 42.9

Veri_sites

mean
2.95 5.67 7.10 3.71 57.2 16.8

All_sites

mean
1.15 3.28 5.24 2.75 79.0 39.5

site
observation

std

Relative

error

percentage

(E1)

Relative

error

percentage

(E2)

Model

(E1)
observation

Model
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