

Comment [law208 1]: Fire location has been added to all figures and the location of Melbourne has also been labelled where it is visible in the figure.

1 2

Fig 1a. Air mass back trajectory corresponding to BB1 Period A, fresh BB plume. Three back

3 trajectories have been run and finish at 3:00, 4:00 and 5:00 on 16th February 2006 Australian

4 Eastern Standard Time (AEST). Yellow circle indicates approximate fire location.

Comment [law208 2]: The times that the back trajectories correspond to have been added for all figures

2 Fig 1b. Air mass back trajectory corresponding to BB1 Period B, particle growth event. Three back

Comment [law208 3]: These back trajectories have been rerun

3 trajectories have been run and finish at 8:00, 10:00 and 12:00 on 16th February 2006 Australian

4 Eastern Standard Time (AEST). Yellow circle indicates approximate fire location.

5

2 Fig 1c. Air mass back trajectory corresponding to BB1 Period C, mainland influence (background).

3 Four back trajectories have been run and finish at 21:00 on the 16 February, 0:00, 3:00 and 6:00 on

4 17th February 2006 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire

5 location.

6

2 Fig 1d. Air mass back trajectory corresponding to BB1 Period D, mainland influence (urban). Five

3 back trajectories have been run and finish at 8:00, 9:00, 10:00, 11:00 and 12:00 on 17th February

4 2006 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire location.

5

2 Fig 1e. Air mass back trajectory corresponding to BB1 Period E, clean marine air. Four back

3 trajectories have been run and finish at 15:00, 16:00, 17:00 and 18:00 on 17th February 2006

4 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire location.

5

- 3 influence. Four back trajectories have been run and finish at 6:00, 11:00, 16:00 and 21:00 on 18^{th}
- 4 February 2006 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire
- 5 location.

2 Fig 2a. Air mass back trajectory corresponding to BB2 Period A, fresh BB plume. Ten back trajectories

3 have been run and finish at 1:00, 2:00. 3:00, 4:00, 5:00, 6:00, 7:00, 8:00, 9:00 and 10:00 on 24th

4 February 2006 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire

5 location.

6

3 Fig 2b. Air mass back trajectory corresponding to BB2 Period B, mainland influence (background). .

Comment [law208 4]: Back traj been rerun for this figure

- Four back trajectories have been run and finish at 1:00, 2:00. 3:00, 4:00 on 25th February 2006
 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire location.
- 6

- 3 Fig 2c. Air mass back trajectory corresponding to BB2 Period C, mainland influence (urban). Four
- 4 back trajectories have been run and finish at 9:00, 11:00, 13:00 and 15:00 on 25th February 2006
- 5 Australian Eastern Standard Time (AEST). Yellow circle indicates approximate fire location.

6

3 Fig 2d. Air mass back trajectory corresponding to BB2 Period D, clean marine air. Back trajectory

4 ends at 23:00 on the 25th February 2006 Australian Eastern Standard Time (AEST). Yellow circle

5 indicates approximate fire location.

6

Compound	formula	EF (g kg -1) ^a	EF (g kg ⁻¹) ^b
methane	CH_4	3.8	2.5
hydrogen	H ₂	0.93	0.64
ethane	C_2H_6	0.41	0.30
hydrogen cyanide (m/z 28)	HCN	0.73	0.49
methanol (m/z 33)	CH₃OH	2.07	1.4
acetonitrile (m/z 42)	C_2H_3N	0.32	0.17
acetaldehyde (m/z 45)	CH₃CHO	0.92	0.62
acetone/propanal (m/z 59)	C ₃ H ₆ O	0.54	0.36
acetic acid (m/z 61)	CH₃COOH	0.75	0.52
furan/isoprene (m/z 69)	C_4H_4O	1.69	1.15
MVK/MAK (m/z 71)	C₄H6O	0.38	0.26
methylglyoxal/methyl ethyl ketone (m/z 73)	C ₄ H ₈ O	0.35	0.24
benzene (m/z 79)	C_6H_6	0.69	0.47
unknown (m/z 85)	unknown	0.57	0.39
unknown (m/z 87)	$C_4H_6O_2$	0.39	0.27
toluene (m/z 93)	C ₇ H ₈	0.30	0.20
phenol (m/z 95)	C_6H_5OH	0.35	0.24
xylenes (m/z 107)	C ₈ H ₁₀	0.26	0.18
unknown (m/z 113)	unknown	0.25	0.17
C ₃ -benzenes (m/z 121)	C ₉ H ₁₂	0.27	0.18
monoterpenes (m/z 137)	$C_{10}H_{16}$	0.11	0.08
methyl chloride	CH₃CI	0.28	0.21
methyl bromide	CH₃Br	0.019	0.015
methyl iodide	CH₃I	0.0025	0.0019
black carbon	n/a	0.16	0.22
1 emission factors for selected species calculated using ^a carbon mass balance metho			

ethod and ass ba calculated us sh ıg

^b ER to CO method. EF for CO taken from temperate forest (Akagi et al 2011)

EFs (g/kg fuel) were calculated using the equation detailed in Andreae et al., (2001), using CO as the 4 5 reference gas:

$$6 \qquad EF(X) = ER(X/CO) \times \frac{MW(X)}{MW(CO)} \times EF(CO)$$
(1)

7 Where EF (X) is the calculated emission factor in g/kg fuel, ER (X/CO) is the molar emission ratio with respect to CO, MW(X) is the molecular weight of the trace species, MW (CO) is the molecular weight 8 of CO, and EF(CO) is the emission factor of CO. The EF (CO) used was the temperate average EF from 9 Akagi et al., (2011) (original publication) of 89 \pm 32 g CO kg ⁻¹ fuel, which corresponds to MCE of 0.92. 10

³