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Abstract

Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmo-

spheric transport and regional patterns of surface emission and uptake. Here we present

a study of changes in the observed high northern latitude CO2 seasonal cycle. We

report new estimates for changes in the phase and amplitude of the seasonal varia-5

tions, indicative of biospheric changes, by spectrally decomposing multi-decadal records

of surface CO2 mole fraction using a wavelet transform to isolate the changes in the ob-

served seasonal cycle. We also perform similar analysis of the first derivative of CO2 mole

fraction, ∆tCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments,

we quantify the aliasing error associated with independently identifying trends in phase and10

peak uptake and release to be 10–25 %, with the smallest biases in phase associated

with the analysis of ∆tCO2. We report our analysis from Barrow, Alaska (BRW) during

1973–2013, which is representative of the broader Arctic region. We determine an ampli-

tude trend of 0.09± 0.02ppmyr−1 , which is consistent with previous work. Using ∆tCO2

we determine estimates for the timing of the onset of net uptake and release of CO2 of15

−0.14± 0.14 and −0.25± 0.08days yr−1 , respectively, and a corresponding net uptake pe-

riod of −0.11± 0.16days yr−1, which are significantly different to previously reported es-

timates. We find that the wavelet transform method has significant skill in characterizing

changes in the peak uptake and release. We find a trend of 0.65± 0.34% yr−1 (p < 0.01)

and 0.42± 0.34% yr−1 (p < 0.05) for rates of peak uptake and release, respectively. Our20

analysis does not provide direct evidence about the balance between uptake and

release of carbon when integrated throughout the year, but the increase in the sea-

sonal amplitude of CO2 together with an invariant net carbon uptake period provides

evidence that high northern latitude ecosystems are progressively taking up more

carbon during spring and early summer.25
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1 Introduction

Combustion of fossil fuel and cement production represent the dominant annual source of

atmospheric CO2. There is also a minor source from the combustion of biomass and a dif-

fuse source from the emissions and oxidation of reduced carbon (Suntharalingam et al.,

2005). On an annual basis approximately 50 % of those emissions remain in the atmo-5

sphere with the remainder taken up by the land and ocean (Ballantyne et al., 2012). Re-

gional changes to the net biospheric flux of CO2, and consequent changes in atmospheric

CO2, are due to (a) spatial and temporal changes in climate, (b) different responses of veg-

etation to these changes in climate, and (c) other factors that may dominate over climate,

e.g., nutrient availability. A recent study, building on extensive literature (e.g. Keeling et al.10

(1996)), has reported substantial increases in the amplitude of the seasonal exchange of

CO2 since the 1950s, particularly at mid to high northern latitudes (Graven et al., 2013).

Here, we use the wavelet transform to isolate changes in the CO2 seasonal cycle, reveal-

ing new insights about the growth rate, and changes in the amplitude and phase of CO2

associated with the growing season.15

Many previous studies have used atmospheric measurements of CO2 to analyse

changes in the seasonal cycle. These studies have typically employed curve fitting tech-

niques (e.g. Bacastow et al., 1985; Thompson et al., 1986; Keeling et al., 1996; Piao et al.,

2008; Barichivich et al., 2012, 2013), and spectral filtering methods such as complex de-

modulation (Thompson and Clark, 2008; Thompson, 2011). The most commonly used20

method is a combination of curve-fitting and spectral filtering (e.g. Thoning et al.

(1989)) . We apply a wavelet transform, which uses a pre-defined wave-like oscillation that

is non-continuous in time or space to decompose a time series into time-frequency space,

allowing us to investigate the dominant modes of variability and how they change with time.

We use the wavelet transform as a filter, to simultaneously decompose the CO2 time25

series into seasonal, long-term and residual components while retaining information

about phase and amplitude in the seasonal cycle (Torrence and Compo, 1998) . We

show through extensive analysis of synthetic time series that using the time derivative of

3
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CO2, ∆tCO2, provides more accurate estimates of changes in the phase of the CO2

seasonal cycle and that the common use of the zero crossing points of the detrended

CO2 seasonal cycle is flawed. We show that we can also faithfully reproduce changes in

the rates of peak uptake and peak release of CO2, allowing us to understand observed

changes in the amplitude of the seasonal cycle.5

In the next section we describe measurements of CO2 mole fraction, the isotope ratio

δ13C, surface temperature, and vegetation indices; and the approach we have employed to

impute these data. In Sect. 3, we describe the wavelet transform that we use to spectrally

decompose these data, including a characterisation of the aliasing error associated with

independent inference of changes in phase, amplitude and the magnitude and timing of the10

peak uptake and release of CO2. In Sect. 4, we present our analysis of CO2 growth rates,

changes in the phase and amplitude of the CO2 seasonal cycle. We conclude our paper in

Sect. 5.

2 Data

2.1 CO2 mole fraction data15

Figure ?? shows the sites from the National Oceanic and Atmospheric Administration

(NOAA) Global Greenhouse Gas Reference Network (GGGRN, Dlugokencky et al., 2014)

, which include at least 15 years of CO2 mole fraction data. We focus on high northern lati-

tude sites where (a) seasonal contributions of CO2 are predominantly driven by boreal

vegetation and (b) contributions to observed CO2 from continents at these latitudes are20

approximately equal (Fig. ??). We report our CO2 analysis for the site of Barrow, Alaska

(BRW) because it is generally considered to be representative of the broader Arctic region,

and report our analysis from other sites in Appendix C.

Twin air samples are collected weekly at the sites and analysed for CO2 at NOAA Earth

System Research Laboratory (ESRL) in Boulder, Colorado using a non-dispersive infrared25

analyser. These data are suitable to study variations on weekly and longer time scales.
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Single measurement uncertainties are calculated based on the ability to propagate the

World Meteorological Organisation (WMO) XCO2 scale to working standards (±0.03ppm,

Zhao and Tans, 2006), the analytical repeatability of the analysers for a sample measure-

ment (±0.03ppm), and the agreement between pairs of samples collected within 20 sec-

onds of one other (±0.1ppm across the entire sampling network). The sample pairs are5

not collected simultaneously, so that the agreement contains an element of real at-

mospheric variability. The sum of these uncertainties is negligible in comparison to

the magnitude of CO2 variability observed at northern high latitudes.

2.2 Imputation of mole fraction data

The wavelet transform method (described below) requires a continuous time series that is10

regularly spaced in time. To fill a missing value in a time series we add a value from

7-year average seasonal cycle (calculated using the 3 years on either side of and

including the year of interest) to a value from a deseasonalised reference time series

(Fig. ??), which accounts for large-scale anomalies in the growth rate in 30◦ latitude

bands. This ensures that gradual changes in the seasonal cycle amplitude/phase are15

preserved. Any remaining missing data points are extracted from a piecewise cubic spline

curve-fit. Parts of the time series that contain significant sections of missing data are likely

to be unrepresentative of real changes, however prolonged periods are rare and we find

that isolated missing data points do not significantly impact the determination of long-term

trends in the phase and amplitude.20

Figure ?? shows an example of our imputation approach using the CO2 mole fraction

and δ13C time series from Cold Bay, Alaska.

2.3 δ13CO2 data

We also use measurements of δ13C that are colocated with the CO2 mole fraction data. The

isotope samples are analysed at the Stable Isotope Laboratory at The Institute of Arctic25

and Alpine Research (White and Vaughn, 2011) using flasks of air provided by the NOAA

5
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GGGRN. These help us to attribute observed changes in CO2 mole fraction to land bio-

spheric uptake and release. The ratio δ13C is defined as:

δ13C =







[

13C
12C

]

sample
[

13C
12C

]

standard

− 1






× 1000, (1)

where
[

13C
12C

]

sample
is the ratio of 13C to 12C (mol/mol) within the sample, and

[

13C
12C

]

sample
is

the ratio of 13C to 12C of the internationally accepted Pee Dee Belemnite standard. Indi-5

vidual measurements of 12C and 13C are determined by isolating the CO2 in a subsample of

air from each flask and using a mass spectrometer to determine the isotopic composition.

2.4 Ancillary data

We use the University of East Anglia Climate Research Unit TS3.10 land temperature

dataset (Harris et al., 2013) to help interpret observed variations in the CO2 time series.10

This data has a 0.5◦ × 0.5◦ spatial resolution and monthly time resolution.

To investigate large-scale vegetation change, we use the Global Inventory Modeling and

Mapping Studies normalized difference vegetation index (GIMMS NDVI3g) dataset derived

from the NOAA Advanced Very High Resolution Radiometer (AVHRR) (Pinzon et al., 2005;

Tucker et al., 2005). NDVI, calculated from the visible and near-infrared light reflected by15

vegetation, is strongly correlated with photosynthetic activity in vegetation canopies; al-

though we acknowledge photosynthesis may not accompany greenness (a) at high latitudes

when water is frozen and (b) during drought when stomates are mostly closed. These NDVI

data have a spatial resolution of approximately 8 km and a twice monthly temporal resolu-

tion from 1982 to the end of 2006. The dataset has been corrected for calibration, viewing20

geometry, volcanic aerosols, and other effects not related to vegetation change. We remove

pixels that have a time series mean NDVI value of < 0.1, to ensure that areas with bare or

sparse vegetation are not included in spatial averages.

6
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3 Wavelet transform

We use a wavelet transform to spectrally decompose the observed CO2 variations into

individual frequency bands that can be attributed to the responsible biological and physical

processes.

In general a wavelet transform Wn uses a wavelet function ψ0, a pre-defined wave-like5

oscillation that is non-continuous in time or space, to decompose a time series into time-

frequency space, allowing us to investigate the dominant modes of variability and how they

change with time. This improves on the Fourier transform that determines frequency infor-

mation using sine and cosine functions.

The wavelet transform of a time series xn is defined as10

Wn(s) =
N−1
∑

k=0

x̂kψ̂ · (sωk)e
iωknδt, (2)

where x̂k is the discrete Fourier transform of xn, N is the number of points in the time

series, k = 0 . . .N − 1 is the frequency index and ψ̂ · (sωk) is the complex conjugate of the

Fourier transform of a normalized, scaled and translated version of ψ0(η), where s is the

scale and ωk is the angular frequency. We use the Morlet wavelet, a plane wave modulated15

by a gaussian envelope:

ψ0 (η) = π−1/4eiω0ηe−η2/2, (3)

where ω0 is the nondimensional frequency and η is the non-dimensional time-parameter.

We chose the Morlet wavelet because it is nonorthogonal, which is an attractive property

for the analysis of smooth and continuous variations such as those exhibited by CO2 mole20

fraction time series. The wavelet is comprised of a real and imaginary part, providing infor-

mation about amplitude and phase, respectively.

We can recover the original time series from wavelet space using the corresponding

inverse transform (Torrence and Compo, 1998) and summing over all frequencies from the

7
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real part of the wavelet transform or a subset of frequencies if we are interested in isolating

signals:

Ŵn =
δjδt1/2

Cδψ0(0)

J
∑

j=0

ℜ{Wn(sj)}

s
1/2
j

, (4)

where ψ0(0) removes the energy scaling and s
1/2
j converts the wavelet transform to an

energy density. Cδ and ψ0(0) are constants determined for the specific wavelet function.5

To minimize edge effects associated with the Fourier transform, we add synthetic data

to pad the beginning and end of the time series. For our calculation we repeat the first

(last) three years of the time series backwards (forwards) in time, accounting for con-

tinuity of the growth rate based on the following (preceding) years. The synthetic data

used in the padding should be close to what we expect, but is essentially unknown,10

and this uncertainty penetrates the first and last year of the time series. We also “zero

pad” the time series so that the number of points used is an integral power of two, which

further reduces edge effects and speeds up the transform. The padded data at the edges

of the time series are removed post wavelet decomposition and prior to analysis.

We quantify the numerical error associated with the wavelet transform by applying it to15

synthetic time series, which are representative of CO2 time series with a prescribed trend.

We find that the value for Cδ previously reported (Torrence and Compo, 1998) introduces

a small trend in the original minus reconstructed residual, and find that Cδ = 0.7785 results

in a much smaller, unbiased residual with a typical value< 0.05ppm for monthly data and

< 0.002ppm for weekly data (not shown). Table ?? shows the wavelet parameter values20

that we used in our analysis.

Additional uncertainties may arise in the long term trend and detrended seasonal cycle

as a result of spectral power being assigned to the incorrect frequency band. This could, for

example, result in concentration changes caused by anthropogenic emissions being misat-

tributed to the natural (seasonal) cycle of CO2, and vice versa. However, this is a common25

weakness of any method used to decompose such time series.

8
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We find that for atmospheric CO2, the wavelet power spectrum peaks at periods (recip-

rocal of frequency) of 6 and 12 months (Appendix A), with a spread across these periods

associated with the sampling of the data. To study annual changes in phase and amplitude

we retain period of 3 to 18 months, and assume that periods longer than 18 months are in-

dicative of the growth rate and periods shorter than three months are due to local/regional5

sources that are unrelated to the seasonal cycle (described using an example in Appendix

A).

4 Results

4.1 Growth rates

Figure ?? shows how the decadal atmospheric growth rate has changed from the 1980s to10

the 2000s as a function of latitude. We find that in the 1980s and 1990s the growth rates

are approximately the same in the Southern Hemisphere, but diverge further north. The

1980–1989 growth rate rises sharply towards the northern high latitudes while there is a dip

in the 1990–1999 in the same latitude band. We anticipate that this is primarily due to

changes in biospheric uptake in the Northern Hemisphere. It should be noted that the15

number of CO2 monitoring stations in the 1980s is considerably more sparse relative to

later years, but this should not matter too much given the decadal averaging and the

fact that the sites have been selected to be representative of background conditions.

The 2000–2009 decadal mean growth rate is significantly higher than both of the previous

decades by ∼ 0.35ppmyr−1 and rises from the Southern Hemisphere to mid-latitude North-20

ern Hemisphere before dropping off again in the northern high latitudes. We find that our

annual CO2 growth rates at Mauna Loa are within a fraction of a percent of NOAA values.

By subtracting anthropogenic fossil fuel emission estimates from the atmospheric CO2

signal (Table ??) we can effectively isolate uptake by the oceans and terrestrial biosphere,

acknowledging the uncertainties associated with the emission estimates and that we have25

not accounted for land use change emissions. The residual growth rate is negative, as ex-

9
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pected (Ballantyne et al., 2012). We find that during the 1980s the net annual uptake by

the terrestrial biosphere and ocean was typically −1.03± 0.11ppmyr−1 when averaged

across all sites and where the uncertainty is equal to 1σ . This rate increases dramat-

ically in the 1990s to approximately −1.54± 0.06 and to −1.89± 0.08ppmyr−1 in 2000s.

This change in the growth rate supports the notion that the natural component of the carbon5

cycle is increasing the amount of carbon it takes up in response to the amount of carbon

present in the atmosphere, although the last two decades show a smaller increase in net

annual uptake. This apparent equilibrium state results in an approximate mean airborne

fraction of 55.8± 18.2% (including only fossil fuel) and 44.1± 14.4% (including fossil fuel

and land use change), consistent with previous work (Gloor et al., 2010). For the purpose10

of the following calculations we have removed the annual growth rate from the observed

CO2 concentrations, following the method described in Appendix A.

4.2 Phase and amplitude analysis

We use several metrics to interpret the CO2 mole fraction time series, but focus on

phase changes and estimates of peak uptake (PU) and peak release (PR) from the15

first differential of CO2, ∆tCO2, a proxy for the net flux of CO2 . As we discuss below

and report in Appendix B, analysis of ∆tCO2 leads to less biased estimates for trends in

the phase of the CO2 seasonal cycle. As part of our analysis we report 95 % confidence

intervals, the Pearson correlation coefficient r, and p values that denote the probability of

reproducing a result by chance; for practical purposes p values> 0.05 represent a result20

that is not significant.

4.2.1 Practical definitions and theoretical calculations

Figure ?? shows, using example data from BRW, how the detrended CO2 and ∆tCO2

variations are related. The amplitude of the seasonal cycle, defined as the peak-to-peak

difference (maxima minus minima) of the seasonal CO2 mole fraction time series, has25

been used in previous studies as a measure of biological activity (e.g. Keeling et al., 1996;

10
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Graven et al., 2013). This metric alone cannot tell us whether net uptake or release is re-

sponsible for observed variations, so it is typically used as an indicator of overall carbon

exchange. Recent work has shown that the intense period of uptake during summer in the

high northern latitudes contributes more to the seasonal amplitude than the longer period

of emission in autumn.5

Based on ∆tCO2 we define three periods during an annual cycle: (1) an uptake period

when ∆tCO2 < 0 and there is a net negative CO2 flux to the atmosphere (photosynthesis

is higher than respiration), (2) a release period when ∆tCO2 > 0 and there is a net source

of CO2 to the atmosphere; and (3) a dormant period, defined between the latter half of

winter and the start of the next uptake period, when plant activity is very low due to frozen10

ground so that ∆tCO2 is typically small (but non-zero due to transport of CO2 from the lower

latitudes).

To look at changes in phase, previous studies have used the zero-crossing point

(ZCP) of CO2 which refers to times when the detrended seasonal cycle is equal to

zero (e.g., Piao et al., 2008). In one seasonal cycle there is a downward and upward15

ZCP (DZCP and UZCP, respectively), where the DZCP is typically taken as a proxy

for Northern Hemisphere spring onset of net carbon release and the UZCP is taken

as a proxy for the onset of autumn net carbon release. The ZCPs of the CO2 con-

centration can only be estimated from the detrended seasonal cycle. The long-term

increase in CO2 is driven by changes in net flux, and by detrending, the seasonal20

cycle is shifted up or down relative to the zero line, such that the annually integrated

flux is equal to zero. As such, an increase in net uptake in one year will cause a shift

to the CO2 DZCP and UZCP even if there is not a real change in phase. We refer to

this error, associated with detrending the time series, as the aliasing error. As the

first derivative is closely related to the actual flux, it is less affected by this shifting25

up or down of the seasonal cycle relative to the zero-line. This is shown in Figures ??,

?? and ??.

The ∆tCO2 DZCP is particularly difficult to determine accurately using the seasonal

cycle at high-latitude sites because small mole fraction variations during the dormant pe-

11
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riod (which has a near-zero flux) are sufficient to bring ∆tCO2 below zero before the carbon

uptake period associated with the main growing season. To address this we tested a num-

ber of phase thresholds which represent the timing of when certain magnitudes of

∆tCO2 are reached (e.g. 25 % of PU). We find that using the 25 % of PU is a more

robust indicator of the beginning of the net carbon uptake period and use this as5

our “spring” phase metric. In contrast, the ∆tCO2 UZCP is well defined and trivial

to calculate and so we use this as our “autumn” phase metric. We define a carbon

uptake period (CUP), which is the difference between the autumn and spring phase metrics

defined above. PU and PR refer to the minima and maxima of the flux time series, respec-

tively. As we show below using theoretical calculations these peak values are related to10

annual release and uptake.

The ability to isolate changes in the phase and amplitude of the seasonal cycle

with fidelity is critical for our analysis. We use Monte Carlo numerical experiments to

characterize the errors associated with independently identifying changes in phase and

amplitude that can result in the misinterpretation of these data and/or underestimation of15

uncertainties (Appendix B). These errors are not unique to using the wavelet transform

but are more pronounced when using the detrended CO2 seasonal cycle as opposed

to ∆tCO2. To our knowledge, no previous study has quantified these errors when

estimating phase changes in the CO2 seasonal cycle. We generally find that analysis

of ∆tCO2 produces more reliable and less biased estimates than CO2 trend estimation of20

either phase with an estimated 25 % systematic aliasing error (Appendix B). Unless explic-

itly stated all subsequent results will refer to our analysis ∆tCO2. We also find that we can

capture at least 80 % of independent trends in the PU and PR of the ∆tCO2 seasonal cycle,

which has not been reported previously and allows us to study changes in characteristics

more closely related to annual changes in biological release and uptake of CO2 (Appendix25

B).

12



D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

4.2.2 Analysis of NOAA CO2 mole fraction data

Figure ?? shows that changes in spring and autumn phases determined from BRW ∆tCO2

are −0.14 days yr−1 (p < 0.05) and −0.25days yr−1 (p < 0.01) respectively, with a corre-

sponding CUP change of −0.11 days yr−1 (p > 0.1); the analysis of the other study sites

is shown in Appendix D. We find no evidence using phase changes of CO2 or ∆tCO2 for5

a significant change in CUP throughout the measurement period.

The concomitant observed changes in ∆tCO2 and in ∆tδ
13C (Appendix E) supports the

idea that observed CO2 variations are primarily due to changes in the terrestrial biosphere.

Analysis of surface temperature reanalyses and space-borne observations of NDVI also

corroborate the spring phase change of ∆tCO2 (Appendix E). We find the start of the10

thermal growing season (defined as the continuous period above 5 ◦C, Appendix E) is

advancing two (three) times faster at latitudes> 45◦ N (> 60◦ N), which agrees with pre-

vious studies (e.g., Barichivich et al., 2012). However we find an anticorrelation of autumn

phase changes with NDVI and temperature anomalies. The NDVI anomalies during sum-

mer have not significantly increased on large spatial scales over the measurement period15

(1982–2006) compared with spring and autumn anomalies. This suggests that the increase

in net exchange of carbon between vegetation and the atmosphere is likely a result of in-

creased photosynthetic activity during spring and autumn. In contrast, our analysis of

∆tCO2 time series shows more uptake of CO2 in spring and early summer and earlier

onset of net release of CO2 between mid-summer and autumn. A number of studies20

have linked increases in NDVI and subsequent carbon uptake with a CO2 fertilisation effect

(Lim et al., 2004; Kaufmann et al., 2008; Los, 2013) which may be partly responsible for the

observed increases in carbon uptake during this period. Our analysis of NDVI data shows

that increases of vegetation greenness in spring and autumn have led to significant length-

ening of the photosynthetic growing season over the measurement period, where autumn25

greening is changing in most regions at a greater rate than spring greening. The carbon

uptake period on the other hand has not extended but shifted earlier in the year and

retained its length. If photosynthesis has increased at the end of the growing season,
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and it is a change in the net ecosystem exchange that explains the change in phase,

this implies that respiration must have increased more than photosynthesis to cause

an advance of the phase at the end of the uptake period.

Observed changes in amplitude at BRW (0.09± 0.02ppmyr−1) are consistent in

percentage terms with previous work over the same time period (Graven et al., 2013).5

We find that the observed change in amplitude at BRW is partially due to an increase

in PR (0.42±0.34ppmyr−1 , p > 0.05) and a larger increase in PU (0.65±0.34ppmyr−1,

p < 0.01). Figure ?? shows that statistically significant trends (p < 0.05) in PU are observed

at five of the seven high-latitude sites (ALT, BRW, CBA, ICE and ZEP, SOM). In most of

these cases, the change in PU is significantly larger than the change in PR. We show10

in Figure ?? that trends in amplitude are determined mainly by changes in uptake

during the CUP (Appendix D) . Previous analysis of these data has shown that changes

in atmospheric transport cannot explain changes in the amplitude (Graven et al., 2013).

5 Concluding remarks

We have used a wavelet transform to spectrally isolate changes in the seasonal cycle of15

atmospheric CO2 mole fraction. The wavelet transform can simultaneously separate the

long-term trend and seasonal cycle while retaining information about changes in amplitude

and phase. We focused on high northern latitude sites where (a) seasonal contribu-

tions of CO2 are predominantly driven by boreal vegetation and (b) contributions to

observed CO2 from continents at these latitudes are approximately equal.20

We found that the atmospheric growth rate of CO2 at these sites are within a few percent

of reported values from NOAA. Our growth rates show large decadal changes, as expected,

and once the anthropogenic signature has been removed we find strong evidence of a nat-

ural biospheric signal that is responding to increasing atmospheric CO2 concentrations.

This results in a near-constant airborne CO2 fraction of 55.8± 18.2% (including only fossil25

fuel) and 44.1±14.4% (including fossil fuel and land use change), consistent with previous

studies.
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Using the detrended CO2 time series (original data minus growth rate) we examined the

change in phase and amplitude of the seasonal cycle. Using a series of synthetic ex-

periments we showed that using the first differential of CO2 provided more accurate

estimates of independent changes in phase and peak uptake and release of CO2, to

within 10–25 % of the “true” values.5

We reported an increase in amplitude of 0.09± 0.02ppmyr−1 , consistent with previous

studies, which can be crudely associated with an increase in biological activity. Using a se-

ries of Monte Carlo experiments we showed that amplitude changes are strongly cor-

related with trends in net carbon uptake during spring and summer, but had a weak

relationship with changes in net release of CO2 in autumn and winter. We showed10

that in percentage terms, the rate of peak uptake has increased at a significant and

faster rate when compared with the rate of peak release.

We diagnosed phase changes using thresholds of ∆tCO2, taking the timing of up-

take reaching 25% of peak uptake as the beginning of the CUP, and the timing of

∆tCO2 switching to positive as the end of the CUP. These phase thresholds take into15

account that observed ∆tCO2 variations can introduce local maxima/minima particularly

associated with the beginning of the CUP. We reported changes in the downward and up-

ward phase of −0.14± 0.14 and −0.25±0.08days yr−1, respectively, and a corresponding

revision of the uptake period of −0.11± 0.16days yr−1 . Given that we characterized the

method used to determine the change in phase, including a measure of uncertainty, and20

showed that analyzing ∆tCO2 produced less biased estimates for these changes we argue

that our values are a more faithful depiction of the truth.

Our analysis does not provide direct evidence about the balance between uptake and

release of carbon, but changes in the peak uptake and release together with an invariant

growing period length provides indirect evidence that high northern latitude ecosystems25

are progressively taking up more carbon in spring and early summer. The period of

net carbon uptake has not lengthened, but has become more intense. However, it

is possible that this increase may be offset by a prolonged period of respiration

due to warmer autumn temperatures. Changes in atmospheric CO2 mole fraction tell us
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only part of the underlying carbon cycle story in terms of how the underlying ecosystems

are changing. Clearly, additional measurements and models needs to be applied for us to

understand observed changes in atmospheric CO2. A more frequent inspection of these

data using advanced statistical tools such as the wavelet transform also have a role to play.

Appendix A: Example of spectral decomposition5

Figure ?? shows, as an example, the spectral decomposition of CO2 mole fraction mea-

surements at Mauna Loa. The wavelet transforms decomposes the 1-D time series into

a 2-D power spectrum, describing energy per unit time, as a function of frequency (the re-

ciprocal of period) and time. The cone of influence is the boundary below which wavelet

coefficients are most compromised by edge effects. We have padded the edges of the CO210

time series with additional synthetic data so we are able to analyse the entire CO2 time se-

ries (Sect. 3). We find that most of the power is in the annual and semi-annual periods, as

expected, but also peaks in power at period> 1 year but this is likely a result of responses

of the CO2 growth rate to large scale climate variability, e.g., the El Niño–Southern Oscil-

lation (ENSO). This is supported by the global wavelet power spectra (integrated over all15

time). The interannual growth rate is determined by taking the value of the long term trend

(periods> 18months) on 1 January in one year, and subtracting the value from the previous

year to leave the net change in concentration.

As discussed above, we use the spectrally decomposed dataset to interpret the observed

variability of CO2 mole fraction data. Figure ?? shows two example applications: (1) as20

a lowpass filter to deseasonalize the CO2 data (removing periods< 18months); and (2) the

associated annual growth rate (ppmyr−1), which we find is within < 0.1ppm of the reported

values from NOAA (not shown).
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Appendix B: Error characterisation of phase and amplitude estimates

We use synthetic CO2 time series data, defined with specific changes in amplitude and

phase, to characterize aliasing errors due to application of the wavelet transform of CO2

concentration data or its first derivative (∆tCO2). Insights from this synthetic analysis are

directly applied to our interpretation of NOAA mole fraction measurements in the main pa-5

per.

B1 Synthetic model framework

We use a simple box model based on the CO2 mole fraction time series at Barrow, Alaska

(BRW, Fig. ??). BRW is the most suitable site for this purpose because is has a long time

series and as it is representative of high-latitude CO2 in the Northern Hemisphere. We take10

the first derivative of the detrended time series at BRW to get the “flux” time series. We

then take the mean seasonal cycle of the CO2 flux and adjust it so that in its initial state,

the source and sink terms are balanced. This cycle is then repeated for 40 years (equiv-

alent to the time span of the BRW time series) and integrated to convert the flux to CO2

concentration. For our experiments, described below, we introduce trends and variability15

to various aspects of ∆tCO2 before integrating with respect to time to recover CO2 mole

fraction. Detrending is as described in the main paper.

B2 Numerical experiments

The starting point of our numerical experiments is the detrended time series of atmospheric

CO2 mole fraction. Our analysis here as it is in the main paper does not provide direct ev-20

idence about the balance between uptake and release of carbon. The detrending process

results in a seasonal cycle that integrates to zero over a year, which can if not properly ac-

counted for introduce false trends and variability in the seasonal cycle metrics. We combine

the metrics defined above to provide indirect evidence of trends in the carbon balance of

the Northern Hemisphere.25
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The following three broad set of experiments are designed to identify the best metrics to

describe changes in the contemporary cycle from detrended CO2 mole fraction measure-

ments. First, we perturb the timing of spring or autumn by adding or subtracting a smooth

gaussian curve with a flat top centered roughly about the onset of net uptake or release,

and increase the magnitude of the curve each year to introduce a trend across the time5

series. Second, we perturb the magnitude of net uptake or net release by multiplying the

uptake (negative ∆tCO2) or release (positive ∆tCO2) by some factor, and increase the fac-

tor each year to introduce a trend. Finally, we add year to year variability (or noise) to the

time series to assess the ability of our spectral method to extract trends from the data. We

compare each metric by calculating the percentage difference in trend from the input time10

series and the wavelet detrended time series.

B2.1 Perturbing the timing of the spring and autumn phases

Figure ?? shows the results of our analysis of a time series for which we introduced a pro-

gressively earlier onset of net CO2 uptake of 0.50 days yr−1 for ∆tCO2 DZCP. The ∆tCO2

DZCP is very sensitive to the curve we use to perturb the time series due to the relatively15

flat period of near-zero flux during the dormant period preceding it (it does not take much to

bring this below zero). While for the synthetic example, we have used a smoothed version

of the BRW time series, in practice there is substantial variability in the spring shoulder so

that it is often difficult to accurately define a trend in the ∆tCO2 DZCP. To address this we

use an operational definition that is defined as 25 % from zero to the PU, which in this case20

has a trend of 0.35days yr−1. The ∆tCO2 metrics were found to be better at capturing the

springtime trend to within 23 and 16 % respectively, when compared with the equivalent

CO2 mole fraction metric which underestimates the trend by 63 %. This has implications for

using the CO2 mole fraction ZCPs to interpret changes in the phase. There is little change

in any of the UZCP metrics (typically < 0.025days yr−1) as a result of aliasing. The wavelet25

detrending introduces a −0.01%yr−1 trend in peak CO2 uptake and a concurrent increase

in peak CO2 release of 0.14%yr−1 corresponding to −0.4 and 5.6 % across the 40 year
time series respectively. This is considered an aliasing error when interpreting the real data
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in the main paper and is relatively small considering the large trends introduced in spring

uptake.

Figure ?? shows the same calculation but for introducing an earlier autumn onset of net

CO2 release of 0.30 days yr−1. We find that the metrics for spring phase respond to the pre-

scribed change in autumn phase due to aliasing, where the mole fraction and ∆tCO2 = 05

metrics had non-zero trends up to ∼−0.16days yr−1. All three UZCP phase metrics under-

estimate the change in the defined phase change by amounts ranging from 11–22 % where

the CO2 UZCP performed the best. The earlier onset of net CO2 release aliases into a 2.5 %

increase in peak CO2 release and a 5 % increase in peak CO2 across the entire time series.

B2.2 Perturbing the magnitude of net uptake and release of CO210

Figure ?? shows the results of introducing a progressive enhancement of CO2 uptake of

roughly 0.70%yr−1, equivalent to a 28 % increase over 40 years. We introduce the trend by

multiplying the negative flux by an increasing amount each year, which does not have an

effect on timing of net CO2 uptake or release. We also introduce two exceptional years to

emulate the effect of interannual variability such as that driven by climate phenomena like15

ENSO.

We find that the wavelet transform attributes the 0.70%yr−1 increased uptake as 0.59%yr−1

uptake and 0.20%yr−1 release. The mole fraction metrics infer non-zero UZCP and DZCP

phase changes of 0.06 and 0.16days yr−1, respectively, while the 25 % ∆tCO2 UZCP and

DZCP metrics, our operational metrics, exhibits negligible trends as expected. The excep-20

tional years are captured in the PU and PR metrics, while the CO2 UZCP is the most

affected out of the phase metrics. In addition, information from the exceptional years of up-

take is aliased into the CO2 UZCP and is spread over a number of years rather than just

one. This is not the case for the ∆tCO2 metrics indicating that they are better for estimating

interannual variability.25

19



D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

D

i

s




u

s

s

i

o

n

P

a

p

e

r

|

B2.3 Simultaneous variations in phase and peak uptake and release

Figure ?? shows the results from a final experiment that describes a calculation in which we

simultaneously perturb the phase of the spring and autumn, as diagnosed by the ∆tCO2 =
0, and the PU and PR. We also superimpose gaussian random noise within ±10 days and

±25 % to describe year-to-year changes to the phase and to the PU and PR, respectively.5

Despite large interannual variability, there is a negligible trend in the spring timing of CO2

uptake (−0.02days yr−1) which is captured by the ∆tCO2 phase metric (0.02 days yr−1).

The CO2 DZCP trend has the opposite sign and additionally overestimates the magnitude

of the trend by a factor of four. The trend in the autumn ∆tCO2 phase metric (0.05 days yr−1)

underestimates the expected trend (0.09days yr−1) by ∼ 45%, while the CO2 UZCP over-10

estimates it by a factor of 2.8. The estimated trend in PU is 0.54 % yr−1 which is 80 % of the

expected trend (0.68 % yr−1), while the estimated PR trend (0.14 % yr−1) is opposite in sign

and double the magnitude of the expected trend (−0.07 % yr−1). The estimated CUP trend

is positive but roughly zero, which is a little smaller than the expected trend of 0.12days yr−1.

The increase in PU (which is a factor of three larger than the rise in PR) and the roughly15

zero trend estimated for the CUP hints at a probable increase in annually integrated net

uptake. The trend in net flux in this example is indeed negative with an increase in uptake

of −0.16ppmCO2 yr
−1.

We find that the analysis of synthetic time series indicates that ∆tCO2 metrics can

reproduce prescribed phase changes to within 30 %, but trends with a magnitude of <20

0.1days yr−1 were uncertain in magnitude and sign. Strong shifts in spring and autumn

phase caused changes in PU and PR of < 6% due to aliasing. Strong trends in PU and PR

were estimated to within 25 %.

B3 Monte Carlo simulations

We used a Monte Carlo Simulation (MCS) to study the ability of the wavelet transform to25

simultaneously determine the PU, PR and changes in phase. We generated 1000 synthetic

time series with random trends and variability such as the one illustrated in Fig. ??, where
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Fig. ?? shows the probability distributions of the trends introduced in the net carbon fluxes

and changes in the CUP. Trends in integrated uptake and release of carbon was in the

range of −0.25 to 0.25ppmyr−2, while changes in the phase were within 1 day yr−1. We

then regressed the expected trends in phase, PU and PR against the values we estimated

using our analysis. The regression coefficient was used as an estimate of the mean bias,5

while the Pearson correlation coefficient r is indicative of consistency in the bias and the

likelihood of the estimates to deviate far from the expected value.

Figure ?? shows some of the results from the MCS regression analysis where we com-

pare expected and estimated trends. The figure also shows estimates where we detected

the wrong sign of the trend and the quantity of statistically significant trends (p < 0.05) that10

were and were not detected in the analysis. The results of the MCS indicated a large mean

negative bias in the CO2 DZCP trend (−0.57± 4%), but also a large spread about the

mean bias that suggests that the CO2 DZCP is more susceptible to aliasing. On the other

hand, the use of ∆tCO2 = 25% PU resulted in a relatively small mean bias (−14± 2%)

with high consistency (r2 = 0.94). Although the mean bias was less in the MCS for the CO215

UZCP (−1±3%), it was less consistent (r2 = 0.80). The ∆tCO2 UZCP had a mean bias of

−23±1% (r2 = 0.97). Differences between the spring and autumn phase biases calculated

from CO2 and ∆tCO2 phase metrics carry through to the respective CUP estimates, where

the ∆tCO2 CUP had a mean bias of −28± 1% (r2 = 0.93) relative to a bias of −55± 1%

(r2 = 0.45) in the CO2 CUP. Estimates of ∆tCO2 phase metrics tended to be more con-20

sistent, and while it resulted in significantly more accurate estimates of the trend in spring

phase, the autumn phase was better represented by the CO2 UZCP. We expect that this is

a result of the asymmetry of the high-latitude CO2 seasonal cycle. Analysis of peak rates

of uptake and release resulted in mean biases of −18± 2 and −28± 2% for PU and PR

respectively. In general, the trend estimates from the analysis had the correct sign so long25

as the trend was sufficiently large (> 0.25%yr−1 for PU and PR, and > 0.1days yr−1 for

changes in phase). The CO2 phase metric trend estimates were the most likely to have

the wrong sign compared to the ∆tCO2 phase metrics by 4.5, 4 and 1.5× for the DZCP,
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UZCP and CUP respectively. Finally, the ∆tCO2 metrics were far more effective at detecting

statistically significant trends where the CO2 metrics typically missed 33–50 % of them.

Figure ?? shows a regression of the linear trend in integrated CO2 uptake and release

against the estimated seasonal amplitude from the individual MCS runs. We find that the lin-

ear trends in annually integrated CO2 uptake (ppmyr−2) are highly correlated with the am-5

plitude trend (ppmyr−1), but the amplitude trends are poorly correlated with changes

in integrated release of CO2 . Previous work has shown that this is due to the rapid tempo-

ral change in CO2 during the period of net carbon uptake relative to the more gradual

release of CO2 outside of this period (Graven et al., 2013).

Appendix C: Analysis of detrended CO2 seasonal cycle10

Our analysis of phase changes in the CO2 seasonal cycle at BRW shows a much

tighter coupling between the timing of the downward and upward zero crossing

points with values of −0.20days yr−1 (p < 0.01) and −0.18days yr−1 (p < 0.05) respec-

tively. This results in a more conserved carbon uptake period, with a coefficient

of 0.02days yr−1 (p > 0.1), which is consistent with the ecosystem having an intrin-15

sic or fixed uptake period (not shown). Recent work using changes in CO2 has re-

ported a change of −0.17days yr−1 for the downward phase over a similar time period

(Graven et al., 2013). Although we have included these values for completeness, we

have already shown that there are significant weaknesses in using detrended CO2

as opposed to ∆tCO2 for this analysis.20

Appendix D: Analysis of other sites

Table ?? summarises the analysis of all the high northern latitude stations we have consid-

ered in this study.
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Appendix E: Analysis of ancillary data

E1 Surface temperature and NDVI

Table ?? shows that mean surface land temperature has warmed significantly at high-

latitudes since 1970. We define a thermal growing season (TGS) with a threshold tem-

perature of 5 ◦C, the minimal temperature typically required for the onset of photosynthesis,5

following Barichivich et al. (2012). We find that an earlier onset of the mean temperature

reaching 5 ◦C in spring, TGSBEG, and a delay in the temperature dropping below 5 ◦C in au-

tumn, TGSEND, results in a significant lengthening of the thermal growing season, TGSLEN

since 1970 for a number of high-latitude regions. Of the Transcom regions, we find that

Europe exhibits the largest change in TGSLEN of ∼ 3.41± 0.9days decade−1 , resulting from10

equal shifts in TGSBEG and TGSEND. Europe is followed by roughly equal changes in Bo-

real North America and Asia, however these regions exhibit different changes in spring and

autumn temperature. The largest overall changes are seen > 60◦ N where TGSLEN has in-

creased by up to 5± 1.7days decade−1 where a larger proportion of this change is due to

autumn warming. This increase in TGSLEN suggests that the potential period during which15

plant growth is not hindered by low temperatures has been significantly extended by ap-

proximately 11 days (> 45◦ N) and 20 days (> 60◦ N) since 1970, consistent with previous

findings (Linderholm, 2006; Barichivich et al., 2012). Table ?? shows the relationship be-

tween northern high-latitude land surface temperature anomalies with the BRW CO2 and

∆tCO2 phase metrics throughout 1973–2012. We find there are significantly different20

results depending on whether CO2 and ∆tCO2 phase metrics are used.

The warming-induced earlier onset of springtime carbon uptake is also supported by ob-

served increases in vegetation greenness described by NDVI inferred from space-borne

sensors (Gong and Shi, 2003; Mao et al., 2012; Cong et al., 2013). Increases in autumn

NDVI have also been observed and while this is indicative of increased photosynthetic ac-25

tivity is not necessarily inconsistent with the observed early onset of net carbon release.

This is because it does not provide information about respiration processes. Our analysis

of NDVI data (not shown) finds an increases of vegetation greenness in spring and autumn
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have led to significant lengthening of the photosynthetic growing season over the measure-

ment period, where autumn greening is changing in most regions at a greater rate than

spring greening.

E2 δ13C data

Figure ?? shows δ13C data over CBA, with the corresponding CO2 mole fraction data. Mea-5

surements of δ13C show a strong seasonal variation, which is anti-correlated with CO2.

Plants preferentially take the lighter carbon 12C isotope out of the atmosphere through pho-

tosynthesis during spring and summer resulting in an increase in δ13C, and release more
12C than 13C during autumn and winter resulting in a decrease in δ13C.

Figure ?? shows a similar phase analysis for (−1)× δ13C and (−1)×∆δ13C, comparing10

it with variability and trends with the corresponding CO2 values. Table ?? shows regres-

sion coefficients and mean statistics for the spring and autumn phase and the CUP. We

find that atleast 68 % of the observed trend in CO2 DZCP and UZCP can be explained by

variations in colocated measurements of δ13C. This suggests that the terrestrial biosphere

is largely responsible for observed CO2 variability with the remainder due to atmospheric15

transport and other minor source variations. This result is consistent with previous work

(Graven et al., 2013) that showed using an atmospheric transport model that atmospheric

transport variations contributed < 7% of the observed variation in CO2 seasonal amplitudes

at high northern latitudes.
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