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General comments 

 

This paper aims to improve the accuracy of sea spray source function defined via the whitecap 

method – where the source flux is defined as the product of whitecap fraction, W, and the aerosol 

produced per unit area whitecap over the lifetime of the whitecap. It aims to improve the accuracy 

of this approach by reducing the uncertainty in the parameterization of W “by better accounting for 

its natural variability”. We feel it fails to demonstrate such a reduction in uncertainty.  

While the paper focuses on the issue of parameterizing W, it is worth noting that this is not the only 

source of uncertainty in the parameterization of the sea spray source function by this method; there 

is also uncertainty in the aerosol produced per unit area whitecap – this is inherently assumed here 

to be a constant, but is almost certainly not. A study on which one of the co-authors here is also a co-

author (Norris et al. (2013)) has demonstrated that the aerosol flux per unit area whitecap varies 

with the wind/wave conditions. 

 

Much of the material in the paper is very similar to that presented in Salisbury et al. (2013, 2014 – 

both widely cite throughout). The authors could use this to their advantage by removing repeated 

background material, most notably in section 2.  

 

The recent paper by Paget et al, (2015) needs to be considered too given that it uses the same data 

set and one of its main focuses is parameterisation of satellite W. In particular, Paget et al. address 

the use of equivalent neutral winds in the satellite W database. Here, the inherent difference 

between QuikSCAT winds and ECMWF winds is an important point, and warrants more than a 

passing comment (section 4.2.1). 

 

 

Use of independent wind speed 

 

A novel aspect of the paper, and a key difference from the Salisbury et al. studies, is the aim to assess 

the impact of intrinsic correlation between W and the QuikSCAT-derived U10 values used in the 

Salisbury et al papers, because the same U10 data is used in part of the W retrieval. However, the 

approach adopted fails to properly address the issue. 

To avoid the potential self-correlation of W and UQuikSCAT the simple approach would be to fit W to the 

independent measure of U10. Here the ECMWF model values, UECMWF, are adopted; however, instead 

of this, the authors fit W to UQuikSCAT (eqn 7), then fit UECMWF to UQuikSCAT (eqn 8), rearrange (8) and 

substitute UECMWF for UQuickSCAT in (7) to give (9). There are multiple problems here, both conceptual, 

and in implementation.  

 

Implementation issues: 

1) A potentially minor issue, but in fitting UECMWF to UQuikSCAT the authors adopt a fit forced through 

zero, rather than an unconstrained fit. No justification is given for doing so. 

2) When substituting UECMWF for UQuickSCAT in (7), the authors completely neglect the scaling coefficient 

with the result that (9) is identically equal to (7) – the authors even note this themselves, and that it 

is a result of rounding the coefficients, and that the error introduced is up to 10%! There is no 

justification for doing this. In effect the authors are using the parameterization of W in terms of 



UQuikSCAT, and claiming it is in terms of an independent UECMWF. 

As an aside, equation (8) essentially states “ax=y implies x = y/a” – this is so trivial that it really 

shouldn’t need stating. 

 

Conceptual issues: 

A serious problem here is that even if the substitution of UECMWF for UQuickSCAT was correctly done (no 

rounding of coefficients), this approach would not give an estimate of W unbiased by any inherent 

correlation with UQuickSCAT, it would simply scale the value of W
0.5

 by the coefficient relating UECMWF 

and UQuickSCAT. In order to achieve what the authors claim to do, W must be fitted to UECMWF directly. 

Note that the is considerable scatter between UECMWF and UQuickSCAT, thus any given estimate of W is 

likely to be paired with a different value of UECMWF than UQuickSCAT and the functional form of the fit 

may be different. 

This point essentially invalidates one of the stated aims/conclusions of the paper. 

 

 

Functional form of W(U10) parameterization 

 

When fitting W as a function of U10, the authors adopt an assumed quadratic relationship. No 

justification is given for this assumption, and it is largely unsupported by previous studies. As the 

authors themselves noted, Salisbury et al. (2013) found different power laws for W10 and W37 (U
2.26

 

and U
1.59

) respectively for the same data set used here.  

 

Cubic or quadratic forms have been forced in previous studies based on theoretical arguments. But 

these arguments are based on idealised conditions such as a wind input – wave dissipation energy 

balance. If anything, secondary factors could be expected to lead to a deviation from a strict 

quadratic or cubic dependence on U10 alone. In general making an a priori assumption about the 

exponent in such relationships is likely to lead to biases over at least part of the wind speed range. 

Here it is evident from figure 4 and figure 5(a,b) that the adopted function does not fit the data at 

either very low or very high wind speeds. There is no reason why the exponent should be an integer 

value, and it seems likely that many of the results and conclusions in this paper (e.g. Section 3.1.2) 

are a direct result of this unjustified choice. 

 

The authors state (p21232, line 5) that “The √W(U10) values at 10GHz for wind speeds below 3 m s
−1

 

were discarded in the analysis because, as shown in Fig. 4, the linear relationship breaks up at about 

this wind speed” – the fact that a portion of the data doesn’t fit a functional form that has been 

chosen without justification is not a good reason for discarding it. This is tantamount to cherry 

picking data that fits a pre-conceived idea. The fact that the data doesn’t follow the chosen function 

is evidence that the function is not appropriate. 

 

Regional W distributions 

 

The analysis of W(U10) functions by geographical region is a potentially interesting and useful 

approach. Both this study and Salisbury et al. (2013, 2014) note the significant difference between 

global maps of W parameterized from this data set and by Monahan and O’Muircheartaigh (1980). 

The prime reason for that difference is that the Monahan and O’Muircheartaigh (1980) study used 

tropical data only, and thus represented a specific wind/wave/water-temperature regime, and 

further with a maximum wind speed of order 17 m s
-1

, much lower than common high wind speeds 

at high latitudes. Monahan has emphasised that this is a regionally specific function, but its wide-

spread adoption in models means it commonly gets applied globally, and at wind speeds well above 

its range of validity. 

 



The different functions obtained here for different regions should similarly represent different 

wind/wave regimes, and the influence of other environmental factors such as sea surface 

temperature (SST), surfactant concentrations, etc. This point is touched on, but then the various 

functions are simply averaged to give a single ‘globally applicable’ function. In fact, as is 

demonstrated by the differing regional functions, this single function is not truly globally applicable 

at all – although the bias in any given region may be modest, it will be a mean bias, not random 

variability, and hence potentially significant in terms of global budgets.  

 

The analysis and discussion of the regional/seasonal relationships seems superficial, and perhaps 

misleading. The authors suggest that the smaller variability in fits with month of year in region 5 vs 

that between all the different regions for the month of march implies “extreme yet sporadic seasonal 

values of the major forcing factor such as U10 at a given location contribute less to the W variations 

than varying environmental conditions from different locations” – but the comparison is of dissimilar 

effects. The regional differences result from differences in mean conditions (wind/wave regime, SST, 

surfactant concentrations,...), whereas ‘extreme  yet sporadic’ events will by their nature affect only 

a small fraction of the data points. Further, region 5 is not necessarily representative of other areas; 

figure 6 indicates that region 4 (North Atlantic) has a much larger seasonal cycle than other regions, 

while region 6 (tropical) has very little seasonal cycle. The statements cited above thus draw rather 

general conclusions from a small, and not necessarily representative, subset of the data. 

 

The analysis of regional/seasonal variations presented in figures 6 and 7 seems a curious approach. 

Only the intercepts of the linear fits of √W37 to U10 are examined – these are effectively the mean 

offsets in √W37 between regions & month of year, the value of √W37 at U10 = 0. As noted above, the 

fits do not represent the data well at low wind speeds, the intercepts thus greatly overestimate W at 

U10 = 0 – theoretically W should be zero here. 

The justification given for examining the intercept only is that the intercepts show more variability 

than the gradients (according to the values given the standard deviation of the gradients is ~3% and 

that of the intercepts about 20%). We would question the validity of this. Note that when the linear 

fits of √W are expanded to give W, the gradient scales U
2
 while the intercept affects the mean offset 

and U. As an example we reproduce figure 5f below, with the two fits with extreme gradients 

highlighted in black and green. For reference the black line is copied as a dotted line with its 

intercept adjusted to match that of the green line, allowing the relative influence of intercept and 

gradient to be assessed – clearly they have a similar overall impact. 

 

 



Figure 5f, Green line gradient = 0.0088, black line gradient = 0.0081, a difference of approximately 

8%. 

 

It is easier to see the true impact if we plot W instead of 

The black and green curves are as in figure 5f above, the difference in gradient more than 

compensates for the difference in intercepts. More dramatic is the comparison with the red line 

Green line gradient = 0.0088, black line gradient = 0.0081, a difference of approximately 

It is easier to see the true impact if we plot W instead of √W 

The black and green curves are as in figure 5f above, the difference in gradient more than 
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Green line gradient = 0.0088, black line gradient = 0.0081, a difference of approximately 

 
The black and green curves are as in figure 5f above, the difference in gradient more than 

compensates for the difference in intercepts. More dramatic is the comparison with the red line – 



the ‘global’ function given as eqn 7: √W = 0.01U10 + 0.02. It is clear here that this ‘global’ function is 

far from representative of some of the individual regions for specific seasons. 

 

In their discussion of the variations in gradients the authors give a rather vague description of why 

they believe the gradients vary little between regions, suggesting first that the use of a quadratic fit 

somehow accounts for the influence of secondary environmental forcing factors, which is clearly not 

possible, then suggesting that maybe multiple environmental factors cancel each other out, which is 

plausible but pure speculation without any evidence provided. In the discussion of the intercepts of 

the fits the authors then contradict the earlier claims by suggesting that the gradient accounts for 

the wind-speed dependence and the other environmental factors are accounted for by the intercept. 

Again, it is plausible that environmental factors such as SST or surfactant concentration would affect 

the mean offset in W37 but no evidence is presented to support the claim here.  

 

A relationship with SST is claimed from figure 7, where time series of the intercepts of monthly mean 

fits of √W37 to U10 are plotted by region, along with similar time series of monthly mean SSTs. The 

authors claim an inverse relationship between the intercept and SST. This is (we presume) inferred by 

the progression of increasing SST from regions 5 → 4 → 6 and the corresponding decrease in 

intercept between the same regions (in a mean sense, there are individual points that do not follow 

the trend). However, this assumes all the differences between regions are a result of SST, and does 

not allow for the co-variation of, for example, SST and biology, and hence surfactant concentration, 

or of SST with latitude and hence wind/wave regime. 

Also, it is hard to determine anything but the most general relationship from a plot of overlaid time 

series.  If you want to determine the relationship between the intercepts and SST, plot a scatterplot 

of intercept (y axis) against SST (x axis) and look for a functional relationship. 

 

Aerosol Flux 

The whitecap method for parameterization of the sea spray source flux is built upon the premise that 

W can be used as a scaling factor. That is, for a given shape function (the size-resolved interfacial flux 

from a unit area whitecap), any change in the production flux is linearly related to the change in W. 

Though it has been noted that this premise is likely to be incorrect (Norris et al. 2013), given the 

need for relatively simple parameterisations of SSA production rates in global climate and aerosol 

models, the community is not yet at the stage where the whitecap method can be developed to 

reflect this fact. Therefore in presenting new globally-averaged estimates (or global maps) of SSA 

emission rates calculated via the whitecap method (in its current form), little new information is 

gained. One could argue that it is worthwhile comparing the resulting new estimates of globally-

averaged SSA production rates with those of previous studies, but often these estimates simply lie 

somewhere within the large spread of previous estimates, and no further illuminating conclusions 

can be deduced. All the new and novel information is contained within the new W estimates and 

their spatial variation (Figure 9). Figure 10, therefore, adds little to the paper, especially when 

followed by the difference map [Figure 11]). We suggest that maps of the difference (bias) between 

W from the new parameterisation and those obtained from a previous parameterisation are more 

easily interpretable. 
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