
Response to Anonymous Referee #1 
 

We would like to thank the referee for their review of this manuscript and their useful 
comments which have helped to improve the paper. Below we provide our response to the 
comments. Text in blue refers to text that has been added to or adjusted in the manuscript.  

1) In Section 3.2.1 the methodology for the comparison between FRP-PIXEL product 
and other geostationary fire products is described. For FIR and WFABBA products, 
the less conservative classes of fire detections are excluded by the analysis. (For 
WFABBA, only filtered fire detections have been used in the analysis. This product has 
also different classes of outputs (Processed, Saturated, Cloud Contaminated, High 
Probability, Medium Probability, Low Probability). Have all of them been included in the 
analysis?). This comparison analysis shows that in general the FRP-PIXEL product 
generates a much higher number of fires detections with respect to the other geostationary 
fire products. In the light of this, do the authors think that it would be of interest 
to include in this comparative analysis also the less conservative detections for the 
other satellite fire products? If not related to the exclusion of the less probable classes 
of detection, what are, according to the authors, the main reasons of the differences 
observed with the other active fire products derived from the same Meteosat SEVIRI 
observations. 

As suggested by the reviewer, we have updated the comparison between the different 
SEVIRI active fire datasets and now include all four variations of the WFABBA dataset. These 
are the inclusion of all active fire detections, all fire detections WFABBA ‘filtered’ dataset 
(where SEVIRI fire pixels that area only detected once during 24 hrs are removed) and 
WFABBA ‘filtered’ detections keeping only the higher probability fires (WFABBA flags 0 to 3) 
and high and medium probability fires (WFABBA flags 0 to 4). Figure 5 (in the manuscript; 
and shown below) has been updated to show the diurnal cycle of fire pixel detections which 
now includes the different variations of the active fire datasets. The full WFABBA dataset 
provides a marginally greater number of active fire detections than the filtered WFABBA 
dataset using all detections irrespective of detection confidence. Both of these datasets 
detects fewer active fire pixels than even the LSA SAF FRP-PIXEL dataset screened to only 
include pixels with an FRP >50 MW (which are generally the high confidence detections). 
Table 2 in the manuscript (and shown below) has been adjusted to include this new analysis : 

 

Table 2 : Summary of active fire pixel detection errors of omission and commission of the four 
SEVIRI-derived active fire products explored herein (LSA SAF FRP-PIXEL product; Wooster et al., 2015, 
WF-ABBA; Prins et al., 1998, Fire Detection and Monitoring - FDeM; Amraoui et al., 2010, and FIR 
Active Fire Monitoring; Joro et al., 2008). Data were collected over the LSA SAF southern Africa 
geographic region during August 2014, when fire activity is widespread in this area. The MODIS 
active fire products (MOD14 and MYD14; Giglio et al., 2003) acted as the independent data source 
for the comparison. 
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  All 
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33414 15610 13008 9736 8832 7664 7151 

SEVIRI fire pixels detected 
by MODIS  

29037 14521 12284 9369 8496 7260 6730 

Commission error (%) 13 7 6 4 4 5 6 

Omission error (%) 77 82 84 87 88 92 95 

 

 

 

Figure 5:  Diurnal cycle of active fire detections made by the four SEVIRI active fire products 
discussed herein over the LSA SAF southern Africa geographic region (Figure 1) on a single 
day (30th August 2014). The products are the LSA SAF FRP-PIXEL product (Wooster et al., 
2015), Wildfire-ABBA (WFABBA; Prins et al., 1998), Fire Detection and Monitoring (FDeM; 
Amraoui et al., 2010) and Active Fire Monitoring (FIR; Joro et al., 2008). All confirmed active 
fire detections made in each product are included here for completeness, and results are 
shown in terms of the local solar time of detection. For the FRP-PIXEL product, three active 
fire time-series are shown; 1) all detections, and those only those detections from fire pixels 



with FRP magnitudes 2) >40 MW and 3) >50 MW since it is known that increasing 
undercounting of active fire pixels occurs around these limits (Roberts and Wooster, 2008). 
For the WFABBA active fire detections, four versions of the dataset are included 1) all active 
fire detections, 2) the WFABBA 'filtered' detections where active fire pixels only detected 
once during 24 hrs are removed; and the WFABBA filtered detections keeping only 3) the 
high probability fires (flags 0 to 3) and 4) high and medium probability fires (flags 0 to 4). 
The LSA SAF FRP-PIXEL product detects a total of 89781 active fire pixels over the day which 
reduces to 53561 and 39461 when restricted to fire pixels with FRP magnitudes >40 MW 
and >50 MW respectively. For the WFABBA detections, the total number of active fire 
detections is 35759, the WFABBA filtered dataset contains 35759 detections which reduces 
to 30751 and 23957 when low and medium probability fire detections are removed. The 
FDeM and FIR detect only 13477 and 14645 active fire pixels respectively.  

If not related to the exclusion of the less probable classes of detection, what are, according 
to the authors, the main reasons of the differences observed with the other active fire 
products derived from the same Meteosat SEVIRI observations? 
 
As the revised Figure 5 indicates, the exclusion of fire pixel detections which are deemed to 
have a lower detection confidence reduces the total number of detections significantly. 
Differences in the number of active fire detections between active fire datasets are also the 
result of the inputs to the algorithm (e.g. cloud and land cover masks), pre-processing (e.g. 
atmospheric correction) and the algorithm itself (e.g. the type and value of the thresholds 
applied to discriminate fire affected pixels from non-fire affected pixels). The majority of the 
performance difference is very likely due to the detection algorithm methods and 
thresholds, but other factors are important. For example, Freeborn et al. (2014) found that 
the sensitivity of the SEVIRI cloud mask accounted for 30% of the LSA SAF FRP-PIXEL 
products omission rate when compared against the MODIS active fire product. It is difficult 
to exactly partition the cause of the differences in the number of fire pixel detections 
between the various SEVIRI active fire products, in part because with the exception of the 
LSA SAF FRP-PIXEL product no additional information is provided with the other products 
other than that of the detected active fire pixels. Therefore, we are unable to determine the 
effect of algorithm threshold difference on the numbers of detected fire pixels verses, for 
example, the different cloud mask used. Nevertheless, it is clear from the results that the 
LSA SAF FRP-PIXEL product is by far the most sensitive to the presence of active fires. 

As a demonstration of the different algorithm sensitivities, we further analysed the per-pixel 
FRP frequency-magnitude distribution of each SEVIRI active fire product using one month of 
SEVIRI observations (August 2014). The FDeM and FIR products don’t provide FRP estimates 
for detected active fire pixels, whilst the WFABBA algorithm uses a different approach 
(Dozier method) to measure FRP. Therefore, for consistency, we used the FRP values from 
the FRP-PIXEL product that are coincident with MODIS active fire detections as the basis for 
the assessment, and compared only active fire detections from the FRP-PIXEL, FDeM, FIR 
and WFABBA datasets that are spatially and temporally coincident with these in the analysis. 
This approach does not account for active fire detections present in the non FRP-PIXEL 
products but not in the FRP-PIXEL active fire detections. However, these are small in number 
since the FRP-PIXEL product delivers by far the greatest number of active fire counts. 

Results, shown in Figure 1 below, indicate that the FRP-PIXEL product detects a greater 



number of low FRP pixels compared to the other products, and can detect fires with an FRP 
are low as 30 MW with confidence. The "pins" mark the point at which there is a decline in 
algorithm fire detection performance, i.e. when the algorithm starts to become obviously 
weaker at discriminating the thermal radiance emitted from small and/or lower intensity 
fires. This occurs below around 50 MW for the filtered WFABBA product, around 80 - 100 
MW for the FIR and FDEM products respectively. The percentage of pixels from each dataset 
which are not coincident with a FRP-PIXEL and MODIS active fire detection are 21% 
(WFABBA), 29% (FDeM) and 19% (FIR). Because this analysis only includes detections 
coincident with the FRP-PIXEL product and with MODIS fire pixels it includes only ~70 - 80% 
of the pixels present in all of the analysed SEVIRI active fire datasets, so the results do not 
fully represent these products and we do not include the analysis in the manuscript. 
However, it is broadly indicative of performance and we include it here for the benefit of 
the review and for completeness.  

 

 

Figure 1. Frequency-magnitude distributions constructed from coincident active fire pixels 
detected by the FRP-PIXEL, WFABBA, FDeM and FIR products that are coincident with MODIS 
active fire detections over the southern Africa region during August 2014. The lower 
breakpoint of the distribution of each product (shown as a pin), coincides with the decline in 
each active fire detection product performance as the thermal radiance emitted from small 
and/or lower intensity fires cannot be distinguished from the background signal in each 
product. The FRP values at the lower breakpoint are 30 MW, 50MW, 100 MW, 80 MW for 
FRP-PIXEL, WFABBA, FDeM and FIR respectively.  

2) In Section 5.2.2 and in Table 4 it is not clear which enhancement factor has been 
used to adjust the bottom-up aerosol emission estimates to those observed in top-down 
inventories. 

We noticed an unnecessary adjustment factor in Equation 3 (β=1 in our study) and an 
unnecessary subscript in Equation 4, that describe the calculation of emissions from the 



Peloponnese fires. For the Peloponnese region, Table 4 contains the emissions factors (𝜂𝑠) 
for a number of gas and aerosol species for land cover type (l). In fact, the extratropical 
forest of this island is the only landcover type used in this case study. A constant (𝛼) is used 
to adjust the bottom-up aerosol emissions to those observed via top-down inventories. In 
the manuscript this was given a subscript l (𝛼𝑙) when, given the constant landcover type a 
global constant of 3.1 for aerosol emissions and 1 for gaseous smoke constituent was 
applied. This enhancement makes our calculation consistent with Ichoku and Kaufman  et al. 
(2005) and just 10% lower than Kaiser et al. (2012). The unnecessary subscript 𝑙 has been 
removed:  

𝜂𝑠 = 𝛼(𝑠) ×  𝜅𝑙(𝑠)                                   (4) 

where  𝛼 = 3.1 for aerosol emissions and 𝛼 = 1 for gaseous smoke constituents. To make 
this clearer in the manuscript, the paragraph discussing Equation 4 has been adjusted to : 
 

𝜂𝑠 = 𝛼(𝑠) ×  𝜅𝑙(𝑠)                                   (4) 
 
where 𝜅𝑙 is the land cover (𝑙) specific emissions factor for species 𝑠 and 𝛼 is a constant which is used 

to adjust bottom-up aerosol emissions estimates to those observed in top-down inventories. A 

regionally varying bias occurs between bottom-up derived aerosol emissions and MODIS AOD 

measurements, requiring the former to be adjusted when being used in air quality or climate model 

simulations (Peterenko et al., 2012). Yang et al. (2011) also found smoke emissions (PM2.5) derived 

using the bottom-up approach was underestimated by a factor of three when compared to MODIS 

AOD retrievals. Kaiser et al. (2012) recommend a global aerosol enhancement by a factor of 3.4 as 

first-order correction. These values are also broadly consistent with differences of up to a factor of 

three found by Ichoku and Kaufmann (2005) using satellite observations of FRP and AOD compared 

to measurements of 𝑐 × 𝜅𝑙(𝑠) derived from laboratory measurements. Here, we estimate emissions 

of organic matter and black carbon in exact agreement with Ichoku and Kaufmann (2005) by 

enhancing their emission factors for Andreae and Merlet (2001) with a factor of 3.1. According to 

the GFEDv3 land cover dataset, also used for our calculations in GFAS (Kaiser et al., 2012), the fire 

affected region of Greece is classed as extratropical forest and the emitted species and relevant 

emissions factors are given in Table 4.  

 

3) In Section 5.2.2 (pg.15939 line 9) the choice of releasing the smoke emissions in the 
lowest atmospheric level has not been discussed. Given the magnitude of the modelled  
fires, how much the authors think, the missing information of the plume penetration 
above the Planetary Boundary Layer, could have impacted the simulation of the smoke 
plume evolution? 
 
It is likely that releasing the calculated smoke emissions into the lowest atmospheric layer, 
rather than at higher altitudes, does have an impact on the modelled concentration and 
transport. For example, Leung et al. (2007) and Guan et al. (2008) found that the inclusion 



of plume injection height information in atmospheric transport models led a reduction in 
surface CO concentration around the source, since a greater proportion of the smoke 
emissions were lofted above the planetary boundary layer. However, actually estimating the 
correct smoke injection height to use in a particular fire simulation is a topic of much 
current debate and research, and is not yet solved. Even if for a particular event we could 
know the correct height from independent observations, this is not the case for the vast 
majority of fires that the Copernicus Atmosphere Service (CAMS) has to model. 

Where it is actually attempted, the parameterisation of smoke plume injection height is 
currently typically achieved using direct EO measurements from stereo-imagery or lidar 
based methods, and sometimes through using empirical or deterministic models. Paugam et 
al. (2015a) for example provide a review of current methods used to estimate smoke plume 
injection height. Typically these depend on both the fire behaviour and ambient 
atmospheric situations. During the Peloponnese fires studied here, Lui et al. (2009) have 
provided an estimate of 2.5 km for the height of the plume closest to the wildfires using 
MISR observations acquired on the morning of 26th August. From Figure 9a in our 
manuscript, it is evident that the fire emitted FRP on the morning of the 26th August was 
high, but only around half that seen on the 25th August. This, coupled with morning image 
acquisition of MISR, when fire activity is typically less intense, suggests that the injection 
heights during the Peloponnese wildfires are actually likely to exceed those derived by Lui et 
al. (2009) from MISR; particularly during periods when the fire activity was most intense. 
However, currently we do not know the true injection height on the different days and 
times of the Peloponnese fires, and nor is this information available for other fires modelled 
in the Copernicus Atmosphere Service (CAMS) to which our study is a demonstration. One 
area of research, discussed by Sofiev et al. (2012) and Paugam et al. (2015b) is the use of 
FRP measurements within plume rise models in order to provide estimates of plume 
injection height over a wider range of fires. To reflect this, the following text has been 
added to the manuscript (Section 5.2.2) : 
 
 
Smoke emissions from the Peloponnese fires were calculated using Equations 3 and 4, along with 

the emissions factors given in Table 4. The smoke emissions must be injected into the atmosphere at 

a particular height, or distribution of heights, and such injection height assumptions can have 

implications for the resulting spatio-temporal distribution of the emitted species. Leung et al. (2007) 

and Guan et al. (2008) demonstrated that use of more detailed plume injection height assumptions 

resulted in a reduction in near surface CO concentrations, since more plumes were assumed to be 

lofted above the boundary layer. Paugam et al. (2015a) provided a recent review of approaches to 

estimate smoke plume injection height, including the methods of Sofiev et al. (2012) and Paugam et 

al. (2015b) that use FRP measurements to characterise wildfire thermal properties related to plume 

rise. This research remains at a relatively early stage, but it appears that FRP measures may indeed 

have a role to play in characterising smoke plume injection height as well as the rate of emission of 

chemical and aerosol species. Here we retained the commonly used assumption that the calculated 

smoke emissions are injected into the lowest atmospheric level, since this is generally what has been 



assumed in the series of MACC projects thus far (Kaiser et al., 2012). The CAMS is anticipated to use 

injections heights from Paugam et al. (2015b) in the future.  
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4) From Section 5.3.1 SEVIRI saturation seems to be a major limitation of the FRPPIXEL 
product in describing the 2007 Greek fire episodes. Do the authors think that including 
MODIS-FRP derived emissions in the description of the selected fire episode 
could help to understand the impact that SEVIRI saturation has in underestimating the 
magnitude of the studied fire emissions? 

The 2007 Peloponnese "mega fires" were very large and extremely intense - the greatest 
fire event recorded in Greece since the satellite era began we believe. Due to this, and the 
closely spaced nature of the fires which meant that many could be burning within a single 
SEVIRI pixel or group of pixels, the MWIR channel saturated on a number of occasions. 
Analysis shows that a maximum of 23% of the detected SEVIRI fire pixels were saturated in a 
single timeslot, on the day when the wildfires were at their most intense. Analysis of the 
total FRP record from the Peloponnese wildfires indicates that, on average, when SEVIRI and 
MODIS viewed the fires simultaneously SEVIRI measured 58% of the FRP measured by 
MODIS. Between the 24th and 26th August, when the wildfires were most intense (Figure 9a), 
MODIS made 13 overpasses and in total during co-incident observations SEVIRI measured 39% 
of the total FRP measured by MODIS.  



 
The MODIS instrument offers the advantage of providing mostly unsaturated FRP 
observations, but is only capable of providing intermittent temporal sampling and thus 
estimating FRE from MODIS' FRP observations is not trivial. Baldassarre et al. (2015) report 
far better simulations of the Antalya (2008) fire in Turkey using the SEVIRI FRP-PIXEL product 
than with MODIS-derived FRP data, despite some saturation of the SEVIRI FRP observations.  
Estimating daily fire radiative energy (FRE) and fuel consumption using the temporally 
intermittent MODIS FRP measurements has been conducted in a number of different ways. 
For example, one approach is via temporal integration of the daily FRP using an assumed 
diurnal fire cycle model (e.g. Kaiser et al., 2012; Vermote et al., 2009). Freeborn et al. (2011) 
provide a further method based on derived conversion coefficients, but all such approaches 
are often best suited to coarse spatial (e.g. 1° × 1° grid cells) and/or temporal resolution (e.g. 
1 day, 1 week) derivations, not derivations for single fire events.  This is in part evident from 
Figure 9a in the manuscript, where a fire diurnal cycle is evident for the Peloponeese fires 
but one that may not be described by an assumed diurnal cycle model (e.g. a modified 
Gaussian as assumed by some of the above MODIS-based methods). A coarser regional 
scales, such assumed fire diurnal cycles maybe more realistic fits to the true nature of fire 
activity. It is also the case that the FRP-to-FRE methods described by Vermote et al. (2009), 
and Freeborn et al. (2011), actually tend to underestimate SEVIRI FRE-derived fuel 
consumption estimates - when the latter have been adjusted to account for the low-spatial 
resolution bias of SEVIRI (Roberts and Wooster, 2008; Freeborn et al., 2011). 

Following the approach used in the Global Fire Assimilation System (GFAS) of the Copernicus 
Atmosphere Service (CAS; Kaiser et al., 2012), we have adjusted the "raw" dry matter (DM) 
combustion estimates obtained using our remotely-sensed FRP measures by a land cover 
specific coefficient (Equation 2 in the manuscript) such that the totals are in line with those 
provided by the Global Fire Emissions Database (GFED, v3.1). This will aid somewhat aid 
accounting for the impact of underestimation of FRP caused by sensor saturation, and we 
have added the following text to Section 5.3.1 of the manuscript to indicate that the SEVIRI 
estimates are affected by saturation : 

Between the 24th and 26th August, when the wildfires were most intense, MODIS made 13 
overpasses and SEVIRI measured 39% of the total FRP measured by MODIS. This 
demonstrates the massive scale of these fires, particularly given that the SEVIRI’s pixel area 
over the region is ~ 14 km2. 
 
Due to the aforementioned SEVIRI MWIR channel saturation, the SEVIRI FRP-derived fuel 
consumption estimate is considered a minimum estimate. 
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Minor comment: Page 15921, Line 11. “: : : further from the Meteosat sub-satellite point 
(SSP) : : :” 

The manuscript has been altered accordingly 

 


