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Analytical solution of the flask-sampling model 
 
Editor comment from Jan Kaiser (J.Kaiser@uea.ac.uk) 
 
During the pre-discussion phase of the paper "Isotopic signatures of production and uptake of H2 by 
soil", the first author Qianjie Chen and I (as Editor) exchanged a series of emails about the mathe-
matical analysis of the flask-sampling model (Appendix A of the paper). Here, I would like to 
summarise the outcome of our email correspondence because it may be helpful for future applica-
tions involving large volume sample collection from chamber incubations. I should emphasise that 
this comment implies no request on the authors to follow this alternative data analysis approach. 
 
In my correspondence with the first author, I pointed out that the equations of the flask-sampling 
model could be solved analytically. The analytical solution is entirely equivalent to the numerical 
solution presented in the paper. Its main advantage is that it allows directly solving the flask-
sampling model in terms of k and ce for individual experiments. 
 
To derive the analytical solution, there are three different cases to consider depending on how many 
flasks are connected to the chamber and are flushed through by the sample stream (Case A: 3 flasks; 
case B: 2 flasks; case C: 1 flask). 
 
In the following, I demonstrate step-by-step the solution for case A and give the final results in the 
equivalent cases B and C. 
 
Case A: 3 flasks 
Rewriting Eqns. (A1) to (A4) in Appendix A of the paper, using g = f / V(flask), g' = f / V(chamber) 
and ce = P / k and renaming the chamber mole fraction c = c0 for simplicity, gives 

 
dc2
dt

= g(c− c2 )  (1) 

 
dc3
dt

= g(c2 − c3)  (2) 

 
dc4
dt

= g(c3 − c4 )  (3) 

 dc
dt
= !g (c4 − c)+ k(ce − c)  (4) 

To solve this system of coupled differential equations with four variables (c, c2, c3 and c4), it is 
transformed into an equivalent linear system using repeated differentiation and substitution. 
 
To eliminate c4, Eq. (4) is differentiated and Eqs. (3) and (4) are substituted into the result: 

 

d2c
dt2

= !g dc4
dt

− ( !g + k) dc
dt

= !g g(c3 − c4 )− ( !g + k) dc
dt

= !g gc3 − g
dc
dt
− kce + ( !g + k)c
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(− ( !g + k) dc

dt

= !g gc3 + g kce − ( !g + k)c#$ &'− (g + !g + k) dc
dt

 (5) 

To eliminate c3, Eq. (5) is differentiated and Eqs. (2) and (5) are substituted into the result: 
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d3c
dt3

= !g g dc3
dt

− g( !g + k) dc
dt
− (g + !g + k) d

2c
dt2

= !g g 2 (c2 − c3)− g( !g + k) dc
dt
− (g + !g + k) d

2c
dt2

= !g g 2c2 + g g kce − ( !g + k)c#$ %&− (g + !g + k) dc
dt
−
d2c
dt2

'
(
)

*
+
,
− g( !g + k) dc

dt
− (g + !g + k) d

2c
dt2

= !g g 2c2 + g
2 kce − ( !g + k)c#$ %&− g(g + 2 !g + 2k) dc

dt
− (2g + !g + k) d

2c
dt2

 (6) 

To eliminate c2, Eq. (6) is differentiated and Eqs. (1) and (6) are substituted into the result: 

 

d4c
dt4

= !g g 2 dc2
dt

− g 2 ( !g + k) dc
dt
− g(g + 2 !g + 2k) d

2c
dt2

− (2g + !g + k) d
3c
dt3

= !g g3(c− c2 )− g
2 ( !g + k) dc

dt
− g(g + 2 !g + 2k) d

2c
dt2

− (2g + !g + k) d
3c
dt3

= !g g3c− g 2 ( !g + k) dc
dt
− g(g + 2 !g + 2k) d

2c
dt2

− (2g + !g + k) d
3c
dt3

+g3 kce − ( !g + k)c#$ %&− g
2 (g + 2 !g + 2k) dc

dt
− g(2g + !g + k) d

2c
dt2

− g d
3c
dt3

= g3(kce − kc)− g
2 (g +3 !g +3k) dc

dt
−3g(g + !g + k) d

2c
dt2

− (3g + !g + k) d
3c
dt3

 (7) 

This gives the following set of equations: 

 d4c
dt4

+ (3g + !g + k) d
3c
dt3

+3g(g + !g + k) d
2c
dt2

+ g 2 (g +3 !g +3k) dc
dt
+ g3k(c− ce ) = 0  (8) 

 c2 = c+
1
!g g 2

d3c
dt3

+ (2g + !g + k) d
2c
dt2

+ g(g + 2 !g + 2k) dc
dt
+ g 2k(c− ce )
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 c3 = c+
1
!g g
d2c
dt2

+ (g + !g + k) dc
dt
+ gk(c− ce )
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 c4 = c+
1
!g
dc
dt
+ k(c− ce )
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The following ansatz is used for the time-dependent mole fraction in the chamber: 
 c = a31e

m31t + a32e
m32t + a33e

m33t + a34e
m34t + ce  (12) 

To find the coefficients m31 to m34, the following equation is solved in terms of m: 
 m4 + ( !g +3g + k)m3 +3g( !g + g + k)m2 + g 2 (3 !g + g +3k)m+ g3k = 0  (13) 

It is possible to find analytical solutions to this quartic equation, e.g. using Cardano's method and 
express them entirely in terms of the coefficients, g', g and k. I have not done this, but instead used 
a numerical method. In the case of the example given in Fig. 5 of the paper (g' = 1/11.4 min–1, g = 
1 min–1, k = 0.1 min–1), this results in the following coefficients (shown with five significant digits): 
m31 = –1.4150 min–1 
m32 = (–0.84817 + 0.45365i) min–1 

m33 = (–0.84817 – 0.45365i) min–1 
m34 = –0.076386 min–1 
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The coefficients a31 to a34 can be determined from the initial condition c(0) = c2(0) = c3(0) = c4(0) = 
ci, where ci corresponds to the initial H2 mole fraction in the system. 
Using Eqns. (9) to (12), this gives the following set of coefficients: 

 a31 =
k ( !g + k)( !g + k +m34 +m33 +m32 )+m34m33 +m34m32 +m33m32"# $%+m32m33m34

(m31 −m32 )(m31 −m33)(m31 −m34 )
(ce − ci )  (14) 

 a32 =
k ( !g + k)( !g + k +m34 +m33 +m31)+m34m33 +m34m31 +m33m31"# $%+m31m33m34

(m32 −m31)(m32 −m33)(m32 −m34 )
(ce − ci )  (15) 

 a33 =
k ( !g + k)( !g + k +m34 +m32 +m31)+m34m32 +m34m31 +m32m31"# $%+m31m32m34

(m33 −m31)(m33 −m32 )(m33 −m34 )
(ce − ci )  (16) 

 a34 =
k ( !g + k)( !g + k +m33 +m32 +m31)+m33m32 +m33m31 +m32m31"# $%+m31m32m33

(m34 −m31)(m34 −m32 )(m34 −m33)
(ce − ci )  (17) 

Again, using the example given in Fig. 5 of the paper, these coefficients have the following values: 
a31 = 3.0783 nmol mol–1 

a32 = (6.7484 – 4.8312i) nmol mol–1 

a33 = (6.7484 + 4.8312i) nmol mol–1 
a34 = 413.42 nmol mol–1 

 
The first and fourth terms in Eq. (12) describe exponential decay functions. The second and third 
terms are conjugate complex and can be re-written as a combination of exponential decay and har-
monic functions (cos ωt, sin ωt), where ω is given by the imaginary parts of m32 and m33. The time-
dependent solutions for c2, c3 and c4 then follow directly from equations (9) to (11). 
 
Case B: 2 flasks 
At time t1, the second flask is filled. Two further flasks remain connected. This changes the set of 
differential equations describing the time dependence of the mole fractions to the following: 

 
dc3
dt

= g(c− c3)  (18) 

 
dc4
dt

= g(c3 − c4 )  (19) 

 dc
dt
= !g (c4 − c)+ k(ce − c)  (20) 

Equations (10) and (11) also apply in the two-flask case. 
 
The following ansatz is used to find the time-dependent mole fraction in the chamber: 
 c = a21e

m21t + a22e
m22t + a23e

m23t + ce  (21) 

To find the coefficients m21 to m23, the following equation is solved in terms of m: 
 m3 + ( !g + 2g + k)m2 + g(2 !g + g + 2k)m+ g 2k = 0  (22) 

Again, it would be possible to solve this cubic equation analytically, using Cardano's method and 
express the solution in terms of the coefficients, g', g and k. The alternative numerical method re-
sults in the following coefficients in the case of the example given in Fig. 5 of the paper: 
m21 = (–1.0522 + 0.30491i) min–1 

m22 = (–1.0522 – 0.30491i) min–1 

m23 = –0.083327 min–1 
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The initial conditions correspond to the mole fractions at the time t1 as described by case A. They 
differ for the chamber and the two flasks, and are equal to c1 = c(t1), c31 = c3(t1) and c41 = c4(t1). 

 a21 =
g !g (c31 − c41)− ( !g + k +m23 +m22 ) !g (c41 − c1)− k(c1 − ce )#$ %&+ (c1 − ce )m22m23

(m21 −m22 )(m21 −m23)
 (23) 

 a22 =
g !g (c31 − c41)− ( !g + k +m23 +m21) !g (c41 − c1)− k(c1 − ce )#$ %&+ (c1 − ce )m21m23

(m22 −m21)(m22 −m23)
 (24) 

 a23 =
g !g (c31 − c41)− ( !g + k +m21 +m22 ) !g (c41 − c1)− k(c1 − ce )#$ %&+ (c1 − ce )m22m23

(m23 −m21)(m23 −m22 )
 (25) 

Again, using the example given in Fig. 5 of the paper, these coefficients are: 
a21 = (–1.2615 + 1.8114i) nmol mol–1 

a22 = (–1.2615 – 1.8114i) nmol mol–1 

a23 = 195.12 nmol mol–1 
 
Just as in case A, the complex exponential functions could alternatively be written as a combina-
tions of exponential decay and harmonic functions. The time-dependent solutions for c3 and c4 then 
follow directly from equations (21), (10) and (11), using the coefficients for case B. 
 
Case C: 1 flask 
At time t2, the third flask is filled. One further flask remains connected. This changes the set of dif-
ferential equations describing the time dependence of the mole fractions again: 

 
dc4
dt

= g(c− c4 )  (26) 

 dc
dt
= !g (c4 − c)+ k(ce − c)  (27) 

Equation (11) also applies in the two-flask case. 
 
The following ansatz is used to find the time-dependent mole fraction in the chamber: 
 c = a11e

m11t + a12e
m12t + ce  (28) 

To find the coefficients m31 to m32, the following equation is solved in terms of m: 
 m2 + ( !g + g + k)m+ gk = 0  (29) 

In the case of the example given in Fig. 5 of the paper, this results in the following coefficients: 
m11,12 = − 1

2 ( "g + g + k ∓ ( "g + g + k)2 − 4gk )  
m11 = –1.0965 min–1 

m12 = –0.091197 min–1 

 
The initial conditions correspond to the mole fractions at the time t2 as described by case Β. They 
differ for the chamber and the two flasks, and are equal to c2 = c(t2), c32 = c3(t2) and c42 = c4(t2). 
 

 a11 =
!g (c42 − c2 )− (k +m12 )(c2 − ce )

m11 −m12
 (30) 

 a12 =
!g (c42 − c2 )− (k +m11)(c2 − ce )

m12 −m11
 (31) 
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Again, using the example given in Fig. 5 of the paper, these coefficients are: 
a11 = –0.66385 nmol mol–1 

a12 = 85.468 nmol mol–1 

 
A time t3, the fourth flask is filled. Its H2 mole fraction is calculated from Eqs. (28) and (11). 
 
Conclusion 
The calculations above show that the flask sampling model can be described in analytically closed 
form as a function of the initial mole fraction, the known time constants of the system (g and g') and 
the sampling time points (t1, t2 and t3). The mole fractions measured in the flasks give a unique so-
lution for the H2 uptake time constant k and the equilibrium mole fraction ce, which is equal to P / k, 
and thus gives the H2 production rate. It would be sufficient to fill only three flasks (including the 
initial flask), rather than four, to solve for the two unknowns k and ce. In the case presented in the 
paper (four flasks filled in total), the analytical system is over-determined, which requires an opti-
misation approach to be taken to find the best fit. This may give different results, e.g. depending on 
whether root mean squared differences between modelled and measured mole fractions are used, or 
whether the mole fractions are first logarithmically normalised (as done in the paper by Chen and 
co-workers). 
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