
Here, I have four viewpoints for the authors and the editor to improving this paper. 

1. Mineral composition has questions. 

This manuscript adopted the relative volume abundance of minerals deduced from single 

particle analysis to calculate the mass distribution as a function of particle size for common 

airborne minerals in Figure 1. The original data is from Table 1 of Kandler et al. (2009) with 

identified specific mineral phases. In Kandler et al. (2009) used the method in Kandler et al. 

(2007) to classified the mineral phases, but this method only identified the whole silicate 

(which could not further classified as illite, kaolinite and chlorite) and Kandler (2009) also 

written as “All silicates except quartz are sorted into the silicates class, as the different silicate 

minerals cannot be distinguished from each other reliably by the elemental composition only.” 

in section 4.3.2.1 line 11-14. The content of Table 1 in Kandler (2009) is low quality and 

unusable. This question directly influence the second challenge mentioned in Page 3501.  

 

2. iron oxides: 

The reported hematite abundances in Table 1 of Kandler et al. (2009) were obtained from the 

measured content of elemental Fe by EDX, and then each value multiply 20%. Thus, the result 

is almost similar values (0.5%-0.8%) in different size bins. To my experimental experience, the 

size of hematite particle is presented as particles less than 10 um. But the iron-rich particles 

indentified by individual particle analysis actually are the assemble of hematite, goethite, 

wuitite and so on. These iron-rich particles is the so called “pure crystalline form” and as an 

external mixture with other minerals. For hematite with nanometer sizes which attached to 

phyllosilicates is hard to be identified by individual particle analysis, and this attachment is also 

the external mixing. Because the internal mixing is meaning that “a small particle was coated 

or partly immersed into a larger particle”. Once nano-sized hematite particles attached to 

phyllosilicates would not effectively change size of silicates. The volume contribution is mainly 

from the iron-rich particles with micrometer sizes. As mentioned above, the usage of volume 

fraction of hematite in Fig. 11 of Kandler et al. (2009) is more plausible for calculation in Fig 1 

of this manuscript.   

The usage of “internal mixture” and “external mixture” in this paper is easy to comprehend as 

terms for calculating the complex refractive indices for optical properties of mineral mixtures.  

 

3. settling speed 

As mentioned in page 3519 line 1-3, Settling speeds are proportional to mineral density, and 

the minerals have nearly identical densities except for iron oxides. Quartz has similar density 

(2.67 g/cm3) with compare to phyllosilicates (such as Kaolinite with 2.67 g/cm3), this means that 

both quartz and kaolinite have almost the same settling speed. Phyllosilicates with flake shape is 

easy fly in air than quartz, and the difference of morphology will obviously affect the settling 

speed (Li and Osada, 2007). If possible, the effect of morphologies of different mineral particles 

on their settling speeds should be taken into account in future works. 

 

4. The core of the paper is built on the brittle fragmentation theory of Kok et al. (2011).  

Once the core collapsed, and this manuscript will be collapsed.  

Many models simulate the dust size distribution as a sum of lognormal modes 

(e.g., Balkanski et al., 2007 and Zhao et al., 2010). This approach is computationally efficient for 
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models using the modal method, but Kok et al., (2011a) concluded that measurements of the 

dust size distribution at emission and in situ near source regions do not generally support the 

idea that the dust PSD at emission is a sum of a few lognormal modes (Fig. 1 in Kok et al. (2011b), 

Fig. 3 in Kok et al. (2011a) and Fig. 3 in Mahowald et al. (2013)). This mistake conclusion was 

conducted by selected measure data and plotted the dots with union color (black) in a Figure, 

which indicates that the author want to represent the multi-modes distribution with a 

deformation of Weibull distribution which suitable for size range of 1-12 um. Actually, it is clear 

that the multi-modes distribution for each single size distribution in the following Figure c and d 

than a.  

 

  

(a)                    (b)                   (c)                  (d) 

              All of above four figures are coped from published papers and books. 

Kok (2011b) proposed a theory for the size distribution of emitted dust aerosols that assumes 

that most dust emission is the result of fragmentation of soil dust aggregates by impacting 

saltators. As also noted by Gill et al. (2006), stressed dry soil aggregates are known to fail as 

brittle materials (Braunack et al., 1979, Lee and Ingles, 1968, Perfect and Kay, 1995 and Zobeck et 

al., 1999). Therefore, Kok (2011b) hypothesized that the impact energy of a saltating particle 

shatters aggregates of dust particles in soils in much the same way that glass shatters upon a 

sufficiently energetic impact. Since the patterns in which cracks are created and eventually merge 

in brittle materials is scale-invariant  (Astrom, 2006), and thus does not require detailed 

knowledge of the strength of interparticle bonds in the dust aggregate, this hypothesis produced 

a relatively straightforward expression for the size distribution of emitted dust aerosols. 

Specifically, Kok (2011b) derived 
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where dV  is the normalized volume of dust aerosols with size dD , vc = 12.62 μm is a 

normalization constant, and s ≈ 3.0 and sD  ≈ 3.4 μm are the geometric standard deviation 

and median diameter by volume of the log-normal distribution of a typical arid soil size 

distribution in the < 20 μm size range. The parameter   denotes the propagation distance of 

side branches of cracks created in the dust aggregate by a fragmenting impact, and Kok 

(2011b) obtained   = 12 ± 1 μm using least-square fitting to dust PSD measurements. 
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To our knowledge, the probability density function of the three-parameter Weibull distribution is 

given by 
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A higher similarity is presented between (2a) and (2). 

I will detail introduce them as following: 

Several phenomenological models have been proposed for the homogeneous fragmentation of 

solid (non-porous) materials. Depending upon the assumptions made, the resulting fsd ’s may 

conform to a log-normal distribution (Epstein, 1947), a Rosin–Rammler distribution (Bennett, 

1936; Gilvarry, 1961), or a Gates-Gaudin–Schuhmann (power-law) distribution (Griffith, 1943; 

Turcotte, 1986). While it is possible to successfully parameterize soil fsd ’s using all three of these 

models (Perfect et al., 1993b), such efforts are fundamentally flawed. 

Fragmentation is a process whereby a coherent body breaks apart into smaller pieces or 

fragments as a result of externally applied stresses. Soils are formed by weathering of geological 

parent material. The weathering results in a fragmentation of the initial solid rock or sediment.  

Soil fragmentation occurs naturally as a result of wetting/drying and freezing/thawing cycles 

(Edwards, 1991; Grant et al., 1995). However, the major cause of fragmentation in most 

agricultural soils is anthropogenic, i.e. primary and secondary tillage. The fine particles (PM20) 

are easy to attach to larger particles and form aggregates (Note that this aggregate is 

heterogeneous due to different mineral composition of particles). The salating with impact will 

disperse the aggregate (the progress that fragmentation of heterogeneous aggregate), but at the 

same time, the larger particle will further fractal fragment to more homogenous particles (which 

equal to the former wetting/drying and freezing/thawing cycles). Thus, the dust emission 

progress should be the assemble of muti-modes of fractal fragmentation distributions.So both 

log-normal distribution and power-law distribution (contain Weibull distribution) could be used 

to fit the size distribution of emitted dust particles, and the distribution of Kok (2011b) is just a 

asymmetric curve for size range of 1-12um. 

It has been recognized that the products of fragmentation in nature can often be described with 

fractal concepts. For different types of objects, a power-law relation between the number and 

size of objects has been proposed (Mandelbrot, 1982; Matsushita, 1985; Turcotte, 1986) 

  fDCRRrN 
                                           (3) 

where  RrN   is the number of objects per unit volume having a radius r larger than R, C is 

a constant of proportionality, and fD  is the fractal dimension. 30  fD (Brown et al., 

1995). The volume-based or mass-based power-law form is expressed as (Rosin and Rammler, 

1933; Turcotte, 1986; Wohletz et al., 1989; Tyler and Whetcarft, 1992; Zobeck et al., 2003) 
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where  RrV   is the volume of soil particles with a radius less than R, TV is the total 



volume of particles with radius less than the upper size limit for fractal behavior uR (which is the 

side crack propagation length  in Kok et al. (2011a) ),  is a power-law exponent. The 

power-law relation given in Eq. (32) has also a lower limit lR  of validity (Turcotte, 1992; Bittelli 

et al., 1999).Taking the derivatives of Eq. (31) and (32) with respect to the radius R yields, 

respectively, 
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For incremental particle numbers and volumes, we have 

dVdNR 3                                                   (6) 

Substituting Eq. (5) in to (6) gives (Turcotte, 1992; Bittelli et al., 1999) 

131 
 RRR fD                                              (7) 

from which it follows that (Tyler and Whetcarft, 1992) 

 3fD                                                    (8) 

Experiments show that, the distribution at larger sizes becomes exponential as a result of a 

Poisson process, which introduces a large-scale cutoff (A˚stro¨ m et al., 2004) and the resulting 

large-size cutoff can be approximately described by the product of the power law (Eq. (33)) with 

an exponential function in terms of the fractal dimension (Turcotte, 1986; Bittelli et al., 1999) 
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Once we follow the assumption in Kok et al. (2011a) that the production of aerosols of size R is 

proportional to the volume fraction of soil particles with size RRs  , 


R

ss dRRP
dR

dN
0

)( ,                                           (10) 

where )( sRP  is the size distribution of soil particles in the form of log-normal distribution or 

Weibull distribution. As the distribution of fully disaggregated soil particles is usually described as 

a log-normal distribution  
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where sR  is the median size by volume, and s  is the geometric standard deviation. 

The cumulative distribution functions for log-normal distribution and Weibull distribution are 

expressed as 

http://www.pnas.org/content/108/3/1016.full#disp-formula-1
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we got that 
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Recently, some researchers (Zobeck et al., 2003; Hwang 2004; Zhao et al. 2008; Zhao et al. 2011; 

Zhap et al., 2012) have proved that the PSD of soils with silt contents ranging from about 0 to 82% 

followed [estimated value from Fig. 2 of Hwang et al. (2004) ] a Weibull (1951) curve distribution. 

 

In the above figure, green line is the curve of kok’s distribution, the cure with orange color is a 

single Weibull distribution, and the blue line Weibull distribution with two modes. The purple line 

is Weibull distributions with different ratios between two modes which compare to the blue 

curve. 
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