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Response to Reviewers of Manuscript acp-2015-144 

First, I would like to thanks the anonymous referees for their comments that will improve 

the quality of the paper. Our revised version will include several of their suggestions. 

Response to Anonymous Referee # 1 

The curse of dimensionality (Bellman, R.; 1961) is a problem of both the data and the 
algorithm being applied. Solutions to this problem involve changing the algorithm or 
processing the data into a lower dimensional form. This can be done in many problems 
since high dimensional data sets can be reduced to lower-dimensional without 
significant information loss. For example, in Bayesian statistics where posterior 
distributions have multiple dimensions, this problem was overcome with the 
implementation of the Markov Chain Monte methods. This will be discussed shortly 
in connection with our concrete problem, as suggested by the referee. 
 
Reference: 

Bellman, R. (1961), Adaptive Control Processes: A Guided Tour, Princeton University 

Press. 

Response to Anonymous Referee # 2 

All the referee’s observations regarding the Stochastic Simulation Algorithm (SSA) of 

Gillespie (1975a) will be incorporated in the revised version of the paper. 

In our paper we did just want to remark the fact that in Gillespie (1972), the evolution 

equation for the probability of finding a given number of m-drops of a particular size at 

time t, does not allow to solve for );,( tmnP . This is due to the fact that the right hand side 

contains a set of unknown conditional probabilities (Gillespie, 1972). Then, the simplest 

way to proceed in order to close the system was to ignore the correlations.  

1. Comparison between the Gillespie’s SSA and the numerical algorithm. 

As we know, in the Gillespie’s SSA, the ensemble mean for the number of droplets of 

each droplet mass is calculated from the expression (Gillespie, 1975a): 
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where Nr is the number of realizations of the stochastic algorithm, );( tmN i  is the 

number of droplets of mass m in the i-realization at time t, and );( tmN is the ensemble 

mean. From expression (1), it is clear that in order to obtain the correct expected values 

));(( tmN at the large end of the droplet size distribution; we will need a huge number of 

realizations of the stochastic algorithm (> 109). 
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To further investigate this question, the evolution of a cloud system with an initial 

monodisperse droplet size distribution of N0=30 droplets of 14 μm in radius (droplet 

mass 1.1494×10-8g) at t0, and a volume of 1cm3 was calculated with both the numerical 

algorithm and the SSA of Gillespie.  

The results obtained by the two methods, were then compared with the analytical 

solution of the master equation (Eq.(13) our paper) obtained by Tanaka and Nakazawa 

(1993) for the same conditions.  

The averages calculated from the Gillespie’s method for Nr=103 realizations, and the 

analytical solution at t=1200 are displayed in Fig. 1. As can be observed both the Monte 

Carlo averages and the analytical solution are closely coincident for the small end of the 

droplet size distribution. However, due to the small number of realizations, the SSA fails 

to reproduce the distribution for the expected values at the large end (See Table 1).    

 

FIG. 1. For the sum kernel, size distribution obtained from the analytical solution of the 
master equation (line) and the SSA of Gillespie for 103 realizations (circles) at t=1200 sec. 
Calculations were performed with the initial condition 1)0;0,...,0,0,0,30( P  and the sum 

kernel ( , ) ( )i jK i j B x x  , with B=8.82×102 cm3 sec-1. 
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FIG. 1. For the sum kernel, size distribution obtained from the analytical solution of the 
master equation (line) and the numerical algorithm proposed in this paper (circles) at t=1200 
sec. Calculations were performed with the initial condition 1)0;0,...,0,0,0,30( P  and the sum 

kernel ( , ) ( )i jK i j B x x  , with B=8.82×102 cm3 sec-1. 

For a more detailed analysis, the expected number of particles for each droplet size 
calculated from the analytical solution, the numerical algorithm and the SSA of Gillespie 
(for 1000 and 10,000 realizations) are displayed in Table 1. As can be checked in the 
table, the size distributions are almost identical for the small end, but they differ 
substantially at the large end since the SSA produces no particles larger than 12v0 and 
16v0 for 1000 and 10,000 realizations respectively (v0 =1.1494×10-8g, mass of a 14 μm 
droplet). 

For 1000 realizations, the Monte-Carlo averages differ from the analytical solution for 
bin numbers larger than 8. For 10,000 realizations we have the same situation for bin 
numbers larger than 13.  
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Table 1. Expected values for each droplet mass obtained at t=1200 sec. for the analytical 
solution, the numerical algorithm proposed in this work, and the Gillespie’s SSA (for 1000 and 
10,000 realizations). Calculations were performed with the initial condition 

1)0;0,...,0,0,0,30( P  and the sum kernel ( , ) ( )i jK i j B x x  , with B=8.82×102 cm3 sec-1. 

Expected values for each droplet size: <ni> 

t=1200 sec. 

   Bin Number            Analytical Solution                   Numerical algorithm               SSA                         SSA 

                                                                                                                                    (Nr= 1000)            (Nr= 10,000)        

1.000 1.5633E+01 1.5622E+01 1.5612E+01 1.5619E+01 

2.000 3.5302E+00 3.5303E+00 3.5250E+00 3.5425E+00 

3.000 1.1754E+00 1.1762E+00 1.1870E+00 1.1712E+00 

4.000 4.5543E-01 4.5609E-01 4.4800E-01 4.5050E-01 

5.000 1.9017E-01 1.9057E-01 2.2300E-01 1.9600E-01 

6.000 8.2592E-02 8.2824E-02 7.2000E-02 8.2000E-02 

7.000 3.6583E-02 3.6709E-02 3.6000E-02 3.6800E-02 

8.000 1.6320E-02 1.6387E-02 1.6000E-02 1.6100E-02 

9.000 7.2696E-03 7.3034E-03 3.0000E-03 6.5000E-03 

10.000 3.2117E-03 3.2284E-03 2.0000E-03 3.5000E-03 

11.000 1.3997E-03 1.4077E-03 1.0000E-03 1.2000E-03 

12.000 5.9891E-04 6.0263E-04 0.0000E+00 4.0000E-04 

13.000 2.5049E-04 2.5216E-04 0.0000E+00 4.0000E-04 

14.000 1.0197E-04 1.0269E-04 0.0000E+00 3.0000E-04 

15.000 4.0229E-05 4.0529E-05 0.0000E+00 0.0000E+00 

16.000 1.5312E-05 1.5431E-05 0.0000E+00 1.0000E-04 

17.000 5.5954E-06 5.6404E-06 0.0000E+00 0.0000E+00 

18.000 1.9526E-06 1.9687E-06 0.0000E+00 0.0000E+00 

19.000 6.4672E-07 6.5217E-07 0.0000E+00 0.0000E+00 

20.000 2.0189E-07 2.0361E-07 0.0000E+00 0.0000E+00 

21.000 5.8917E-08 5.9419E-08 0.0000E+00 0.0000E+00 

22.000 1.5913E-08 1.6048E-08 0.0000E+00 0.0000E+00 

23.000 3.9295E-09 3.9622E-09 0.0000E+00 0.0000E+00 

24.000 8.7349E-10 8.6634E-10 0.0000E+00 0.0000E+00 

25.000 1.7127E-10 1.7176E-10 0.0000E+00 0.0000E+00 

26.000 2.8809E-11 2.8765E-11 0.0000E+00 0.0000E+00 

27.000 3.9922E-12 3.9906E-12 0.0000E+00 0.0000E+00 

28.000 4.2746E-13 4.2803E-13 0.0000E+00 0.0000E+00 

29.000 3.1450E-14 3.1525E-14 0.0000E+00 0.0000E+00 

30.000 1.1930E-15 1.1962E-15 0.0000E+00 0.0000E+00 
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As expected, for 1000 and 10000 realizations, no states with droplets 30 times larger 
than monomer-sized ones were realized. A minimum number of Nr realizations must be 
performed in order to obtain expected values larger or equal to 10-Nr. 

At the same time, the numerical algorithm performed very well, with expected values 

that are very close to the analytical solution. 

We can conclude that our method will be suitable if we need to accurately calculate the 

large end of the droplet spectrum for small systems, with <50 monomer droplets in the 

initial state. As for that case the SSA requires a large number of realizations, it will be 

computationally very expensive. Then, our method will be a good alternative, as it 

provides the desired accuracy to detect the possible small differences between different 

numerical approaches. It can also work as a benchmark for different Monte Carlo 

methods for the collision coalescence process. 

A comparison of results and efficiency with Gillespie’s method will be included in 

the revised version of the paper. 

2. On Seeβelberg’s variation of Gillespie’s SSA. 

In its original version, the Gillespie’s Stochastic Simulation Algorithm (Gillespie, 1975a) 

was formulated as a particle accounting algorithm, as it keeps track of every individual 

particle in the system. Unfortunately, this type of algorithm can be computationally very 

demanding, as a system of N particles requires storage of 2/)1( NN  transition 

probabilities. Then, although it yields exact realizations of the coalescence process, the 

requirements of computational storage strongly limit its applicability. 

The algorithm of Seeβelberg’s et al. (1996) found a way to overcome this problem by 

dividing the drop population into classes and storing only the transitional probabilities 

between classes.  The problem with that approach was the method of removal of the 

coalescing drops from “colliding classes”, a process that introduces an error. 

The numerical difficulties of Gillespie (1975a) were significantly overcome in the 

modified version proposed by Laurenzi et al. (2002). Within their approach, they define 

collisions between species (that are hydrometeors with the same attributes: mass and 

composition).By using this framework, there is only the need to store the probabilities of 

“aggregation reaction” between species, with a considerable reduction of computer 

memory requirements. After a collision, the reactant (colliding) and product species are 

updated without any approximation, and not any kind of systematic errors are 

introduced. 
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3. On the finite volume approach 

In defense of the finite system approach, it might be argued that, in the early stages of 

precipitation formation, due to small terminal velocities of the droplets, the coalescence 

process is a fairly localized process. Then, two droplets in widely separated parts of the 

cloud are not going to be coalescing with each other. This was the approach followed by 

Bayewitz et al. (1974) (and endorsed in Gillespie, 1975a). In their paper, for comparing 

the stochastic and kinetic approaches, they partitioned the cloud into many sub-volumes, 

with no collisions being permitted for two droplets of different sub-volumes. 

A more complex model that uses the master equation formalism, and introduces the 

interactions between the sub-volumes was developed by Merkulovich and Stepanov 

(1990, 1994). This model is based on a scheme proposed by Nicolis and Prigogine 

(1984). Within this theory, the whole system is subdivided into subsystems that can be 

considered spatially homogeneous, and interactions between neighbors occur through 

particle exchange. That leads to a very complex set of master equations for each sub-

volume. Although very complex, it could be a starting point in order to consider the 

interactions between cells through sedimentation or other processes. 

4. On the impact of fluctuations on cloud development  

As was discussed, in systems of small populations statistical fluctuations become 

important and the outcome from kinetic equations may differ from the stochastic means. 

However, fluctuations will also be very important when the system is near a critical point. 

In the cloud physics context, a critical point could be related with the formation of a droplet 

with mass comparable to the mass of the initial system (Alfonso et al., 2013; Lushnikov, 

2004). This could be a mechanism responsible for the formation of droplet embryos that 

trigger precipitation formation. 

At this moment, fluctuations will have a significant impact in the development of the 

system and the total mass predicted by the KCE will start to decrease. This is usually 

interpreted to mean that a super particle has formed (known as a gel) and the system 

exhibits a sol-gel transition (also called gelation).  

Because the master equation employs the stochastic approach without any 

approximations, it can predict the behavior of the collection process at all times. This 

way, the expected values at the large end of the droplet size distribution can be 

calculated after the total mass predicted by the KCE starts to decrease (Lushnikov, 

2004). By using this method, an accurate comparison between the kinetic and 

stochastic methods can be performed after the super particle is formed. Then, for this 

case, it is expected to obtain broader droplet mass distributions by using the stochastic 

approach. 
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All this questions will be discussed in the revised version of the paper, as 

suggested by the referee. A follow-up paper (that is under preparation) will be devoted 

to a more detailed analysis of all this problems.  

5. Minor comments: 

a) Referee Comment: In Section 2, l. 14 author writes that to solve master 

equation directly, arrays of the size of 3 x 1020 elements would have to be used, 

where does this number come from? 

Answer to the comment:  

The number of elements in the array will be 1.34 x 1016, and not 3 x 1020 as was written 

in the paper. This number will be corrected in the revised version. The explanation 

follows: 

If we attempt to solve the master equation by brute force by using a typical 

discretization, then, for an initial monodisperse droplet distribution with N monomers, we 

will need to define an N-dimensional array (due to the fact that we have configurations 

of the form ),...;,...,,( ,21 tnnnP k ). If we have n1 =N monomers of size k=1 at t=0, then, the 

maximum number of particles for size k=2 will be [N/2], for size k=3, [N/3], and so on, 

where [N/k] denotes the closest smaller integer. (For example, the maximum possible 

number of droplets of size k=N is [N/N]=1). Of course, due to the mass conservation 

relation: 

1

N

i i T

i

x n M


                                                                      (2) 

these maximum values for each droplet size can be attained only if the number of 

droplets for the rest of the bins are set equal to zero or close to zero. The number of 

elements of the resulting array then will be the product:

]/[*)]1/([*]3/[*]2/[* NNNNNNN  . If evaluate this expression for N=50, the value of 

1.34x1016 will be obtained. 

b) Referee Comment: - In the Abstract it should be more clearly stated that the 
kinetic collection equation and Smoluchowski coagulation equation are different 
names for the same equation. 

 
Answer to the comment: The corresponding correction will be made in the revised 
version as suggested. 
 

6. Technical Comments: 
 
The corresponding modifications will be made. 
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