
Response to Referee #1 
 
We are grateful to the reviewer for the thorough and thoughtful comments that have led 
to important improvements of the original manuscript. Our detailed responses to general, 
major and minor comments are listed below. Reviewer’s comments are in italic, and 
anthers’ responses are in dark blue font. Page and line numbers refer to discussion paper 
Atmos. Chem. Phys. Discuss., 15, 11763–11797, 2015. 

1. General comments. 

Zheng et al. present a study that attempts to link large-scale observations and simulations 
of isoprene emissions and concentrations. They do so with a regression analysis between 
observation-derived estimates of GPP and formaldehyde variability and their climatic 
drivers (as well as regression between the GPP and formaldehyde estimates), which are 
compared with the respective regressions obtained from an Earth system model, and with 
the respective regressions to simulated isoprene emissions. 

The study is a brave attempt to overcome one of the largest problems in isoprene 
chemistry modelling: The lack of constraints from large-scale observations on the 
magnitude and spatial patterns of isoprene emissions (or concentrations). Although the 
results obtained in the study give little confidence in the possibility to obtain such 
constraints from observations, the attempt is worth documenting and can provide insight 
for many researchers in the fields of emission modelling and atmospheric chemistry 
modelling. As such, I think that this manuscript should be published. 

However, I have a major concern that should be addressed prior to publication. The two 
data sets used (global estimates of gross primary production derived from upscaled eddy 
covariance measurements of CO2 exchange and variability of column-integrated 
formaldehyde content obtained from satellite observations) bear large uncertainties in 
their estimates, and so do the isoprene models, which is illustrated e.g. by the large 
spread in global isoprene emissions obtained from the three models used. These 
uncertainties are mentioned in the manuscript, but I think that they should be 
acknowledged more concretely in the methods used for the analysis. Specifically, the 
comparison between observations and models is performed very indirectly, by comparing 
correlations between the drivers and the isoprene proxies for the models and the 
observations separately, which is probably a result of the abovementioned uncertainties. 
I think the authors should discuss why they have chosen to do this rather than comparing 
simulated GPP or formaldehyde concentrations directly with the observations. Maybe 
such an attempt could be added as an illustration to show the large discrepancies in 
absolute amounts between models and observations. 

All in all, I think that this paper, despite the lack of a strong conclusion with regard to the 
applicability of large-scale data sets for constraining isoprene emissions or 
concentrations, should be published after accounting for this, as well as for the remarks 
below. 

Response: We agree that the datasets we use (gross primary productivity dataset derived 



from FLUXNET and tropospheric formaldehyde column concentrations retrieved from 
OMI), as well as the isoprene models bear large uncertainties. We have added uncertainty 
analysis in the Methods and Results sections (see below). We have also added the direct 
comparison of absolute amounts of simulated and FLUXNET-derived GPP, and of 
simulated and satellite-retrieved tropospheric HCHO columns in the supplementary 
materials (see Supplementary Section S1 and Figure S1, Figure S2). However, we 
emphasize that direct comparison of simulated and measured absolute magnitude 
quantities is not a main goal of this particular study. For instance, modelers can easily 
tune parameters such as basal isoprene emission factors, Vcmax etc. to match 
measurements. The goal of this work is to investigate the large-scale observationally-
derived climatic covariance and correlations in the photosynthesis-HCHO system, and to 
assess the models’ ability to reproduce these observationally-derived biosphere-
atmosphere system sensitivities and to expose the implications for isoprene emission. 

After 11767/16, we added: “The main steps of the upscaling procedure are processing 
FLUXNET observational data and calculating GPP for each site, training model-tree-
ensembles (MTEs) for each GPP using site-level explanatory variables, and applying the 
established MTEs using global gridded datasets of the same explanatory variables to 
obtain the global GPP estimates (Jung et al., 2011). Twenty-nine explanatory variables 
are used to train the MTEs, including the fraction of absorbed photosynthetically active 
radiation (fAPAR), precipitation, temperature and other climate and land cover data 
(Jung et al., 2011). The uncertainties are mainly from but not limited to (1) measurement 
of eddy covariance fluxes (Lasslop et al., 2008; Richardson et al., 2006), (2) the choice of 
explanatory variables (Jung et al., 2011), (3) gap filling and extrapolation to different 
environmental domains and temporal periods (Jung et al., 2009), (4) global gridded 
explanatory variables (Hicke, 2005; Zhao et al., 2006). The derived GPP in tropical and 
subtropical regions is less well constrained with observations and has larger uncertainties 
compared to the mid-latitudes (Beer et al., 2010; Jung et al., 2011).” 

At 11768/20, we added: “The uncertainties on the gridded OMI vertical columns, mainly 
due to cloud contamination, the a priori modeled isoprene emissions and the HCHO 
vertical column retrieval, are estimated at 5-20%.”  

At 11773/23, we added: “The goal of this work is to investigate the large-scale 
observationally-derived climatic covariance and correlations in the photosynthesis-
HCHO system, and to assess the models’ ability to reproduce these observationally-
derived biosphere-atmosphere system sensitivities and to expose the implications for 
isoprene emission. Therefore, instead of direct comparison between simulated and 
observed GPP and HCHO columns, we conduct a multiple linear regression (MLR) 
analysis in Section 3.1 and a correlation analysis in Section 3.2, and use the 
observationally-derived climatic covariance and correlations to evaluate the NASA 
ModelE2-YIBs model embedded with three isoprene algorithms. The direct comparison 
results are included in the supplementary materials for reference: simulated and 
FLUXNET-derived GPP are of comparable absolute amounts (Figure S1); while 
simulated tropospheric HCHO columns are considerably higher than that obtained from 
the OMI retrieval by about a factor of 2 (Figure S2), which is likely due to the large 
uncertainties in the models as well as the satellite retrieval.” 



In Supplementary materials, we added Section S1 to compare the direct amounts of 
observationally-derived and simulated GPP and HCHO columns as follows: 

“S1. Comparison of observationally-derived and simulated GPP and tropospheric 
HCHO columns  

“In Figure S1, we compare the simulated GPP averaged in each season (second column) 
with the observational-derived GPP from FLUXNET (first column), and the differences 
are shown in the third column. The simulated GPP in three model runs Y-PS, Y-MEGAN 
and Y-MEGAN-SM are identical. The model consistently overestimates GPP in the 
southeast US. The annual and summertime relative differences are 24% and 16%, 
respectively.  In the Amazon, the simulated GPP is always lower than the FLUXNET-
derived GPP: the differences in each season are: -1.5, -2.3, -3.1 and -1.8 g[C] m-2 day-1 
and the relative difference of annual mean GPP is -30%. The model underestimates GPP 
in most Northern Hemisphere boreal regions in MAM and JJA. Globally, the model 
simulates a total GPP flux of 116.7 Pg[C] year-1, which is 10% lower than the 
FLUXNET-derived GPP (129.6 Pg[C] year-1). 

“The simulated HCHO columns are considerably higher than the OMI-retrieved HCHO 
by about a factor of 2 (Figure S2). This discrepancy is a result of the large uncertainties in 
both the satellite HCHO retrieval and the HCHO chemistry in the model. In Figure S2, 
OMI-a, OMI-b and OMI-c represent OMI-retrieved HCHO based on the AMFs of Y-PS, 
Y-MEGAN and Y-MEGAN-SM, respectively. The models’ seasonal averaged spatial 
patterns are similar. Thus, Figure S2 shows only OMI-a with Y-PS simulated HCHO 
columns.  HCHO columns from OMI and from the models show similar spatial patterns 
and seasonality in the low- and mid-latitudes. In NH high-latitudes, the satellite-based 
HCHO columns show an opposite seasonality pattern compared to the models, i.e. higher 
in winter and lower in summer, which might be unrealistic due to retrieval bias under 
light-limited conditions (De Smedt et al., 2008; Wittrock et al., 1997).” 

2. Major comments. 

I consider it misleading to present the GPP product as a "global observation" 
(11765/22): It is essentially an empirical upscaling from a large, but geographically 
unevenly distributed, set of CO2 exchange-derived GPP estimates. Although the product 
is indeed often presented as a global one, there are large regions (notably the tropics and 
subtropics) for which it is poorly constrained with observations. The nature of this 
product, which uses amongst others climatic parameters to do the upscaling, differs 
fundamentally from the satellite-derived HCHO observations. It is no surprise that the 
product results in good partial regression coefficients (11775/4): the climatic parameters 
used to determine the regression are an important subset of the parameters used to 
perform the upscaling. I suggest that the authors highlight this difference when 
discussing the results of the regression and account for it in their interpretation. 

Response: We agree with the referee’s important point and made the following 
modifications. 
 



At 11765/22, “global observations” has been changed to “global observational-based 
datasets”. 
 
Included in the response to general comments above, after 11767/16, we added 
“…Twenty-nine explanatory variables are used to train the MTE, including the fraction 
of absorbed photosynthetically active radiation (fAPAR), precipitation, temperature and 
other climate and land cover data (Jung et al., 2011)… The derived GPP in tropical and 
subtropical regions is less well constrained with observations and has larger uncertainties 
compared to the mid-latitudes (Beer et al., 2010; Jung et al., 2011).” 
 
At 11775/6, we removed “Several reasons are responsible for the difference in 
significance…”, and replaced this text with: “It is not surprising that the FLUXNET-
derived GPP climatic covariance results have high statistical significance values because 
this product is an empirically upscaled dataset based on machine learning techniques (see 
Section 2.1) using a large set of climatic and land cover explanatory variables, and the 
driving variables Ts, PAR and P used to determine the MLR in this study are an 
important subset of the original explanatory variables. In contrast, remotely-sensed 
HCHO columns are relatively noisy due to the satellite retrieval method (Palmer et al., 
2001; De Smedt et al., 2008). Other reasons for the differences in statistical significance 
include: satellite-based HCHO columns have many missing values due to product quality 
control (e.g. contamination by clouds) and the biomass burning removal (see Section 
2.1); the GPP dataset has a longer record (1982-2011) than the HCHO dataset (2005-
2013); unlike GPP which has a simple near-parabolic relationship with Ts, HCHO 
dependence on Ts is more complex. For instance, increasing Ts promotes isoprene 
emission and oxidation to HCHO, but also accelerates the chemical destruction of HCHO 
(see supplementary and Fig. S4).” 
 
The regression analysis is consequently shown for three rather than four seasons. Why do 
you ignore DJF in your analysis? 

Response: We ignore DJF results because in the boreal winter, most regions in the 
Northern Hemisphere mid- and high-latitudes have low GPP and isoprene emission 
values. Under such conditions, the MLR and correlation coefficients become noisy, 
nonrealistic and not instructive. Thus, we set a minimum threshold for GPP in all our 
analyses. 
 
Before 11773/24, we added: “In the following analysis, we apply a minimum threshold 
for GPP (monthly mean GPP > 0.01 g[C] m-2 day-1) to avoid inclusion of meaningless 
noise, especially in boreal winter (December-January-February) when most NH regions 
have very low GPP and isoprene emissions.” 
 
In the description of the regression performed, it should be noted that all regressions are 
temporal, and that spatial regression is not attempted here (if my interpretation is 
correct). As the regressions are performed on standardized variables (expressed in units 
of standard deviations), it is the temporal variability that is addressed. I do not 
understand why the authors express this explicitly by referring to HCHO variability as 
"HCHOv", but do not use "GPPv" for GPP variability. 



Response: We agree that in the regression analysis, the regression coefficients are 
expressed in units of standard deviations and represent temporal variability. “HCHOv” 
refers to HCHO zonal anomalies, not the temporal variability. Before we performed the 
regression, we first calculated “HCHOv”, defined as the difference between the total 
HCHO column in each grid point and the zonal mean HCHO column (see 11768/24). The 
goal of using “HCHOv” instead of the absolute HCHO columns is to remove the HCHO 
background, mostly from CH4 oxidation, and to better represent non-CH4 VOC 
emissions, which are dominated by isoprene.  
 
To improve clarity in the definition and its limitations, after 11768/27, we added: “There 
are two main limitations in using HCHOv as a proxy for isoprene emission: (1) HCHO 
from CH4 oxidation is not strictly zonally uniform, thus HCHOv does not purely 
represent the influence of the non-methane VOCs; (2) HCHOv is dominated by isoprene 
emission but their relationship is smeared by other VOCs such as biogenic terpenes and 
anthropogenic VOCs.” 
 
The application of a soil moisture dependence in the models is presented as a crucial 
aspect to get correct large-scale estimates, but the study does not prove that such a 
dependence is necessary for obtaining the right response - the improved correlation may 
be the result of other differences between these algorithms (e.g., the soil moisture-
independent algorithm Y-MEGAN obtains considerably higher isoprene emissions). The 
improved correlation does not necessarily point at a causal effect, and interpretation of 
this should be done with care. Also, the discussion of water stress effects on isoprene is 
rather concise: There is ample literature on these effects at smaller scales, which could 
be used here to support the conclusions regarding soil moisture. 

Response: We agree that comparing Y-PS and Y-MEGAN solely does not prove the 
necessary role of soil moisture, because the soil moisture dependence is not the only 
difference between Y-PS and Y-MEGAN. Therefore, we conducted the third experiment 
Y-MEGAN-SM, whose only difference with Y-MEGAN is the soil moisture dependence 
of isoprene emission. Compared to Y-MEGAN, Y-MEGAN-SM demonstrates better skill 
at reproducing the GPP-HCHOv correlations. Thus the Y-MEGAN-SM model 
experiment provides supporting evidence for the importance of soil moisture. For 
instance, Y-MEGAN-SM behaves more like Y-PS, i.e. ISOPe is correlated with GPP 
rather than HCHOv. This result illustrates the importance of water availability in 
modeling the photosynthesis-isoprene-HCHO system. Of course, we certainly agree with 
the referee that correlation does not imply causality. Indeed, the Y-MEGAN-SM 
experiment still does not perform as well as Y-PS in reproducing the observationally-
derived correlations. 
 
We have already discussed possible other effects e.g. at 11777/8: 
“Generally, overestimates of GPP-HCHOv r values in the models may be due to over-
simplified parameterizations of biogeochemical processes and photochemical oxidation 
mechanisms, missing, possibly important but highly uncertain, processes in the models, 
for instance nutrient availability, and the use of generic PFT-specific isoprene emission 
potentials.” 
 



To emphasize the use of the Y-MEGAN-SM experiment, at 11779/1, we added: “Since 
the only difference between Y-MEGAN-SM and Y-MEGAN is the soil moisture 
dependence of isoprene emission, this result suggests the importance of water 
availability…” 
 
After 11779/19, we added: “These results suggest water availability could be an 
important driver of isoprene emission on intraseasonal to interannual time scales.” 
 
Before 11779/20, we added the following paragraph about observational evidence of the 
water stress impacts on isoprene emission: “Multiple field experiments have studied the 
isoprene response to water deficit conditions on different time scales. Short-time mild 
drought stress on time scales of a few days affects stomatal conductance and thus the rate 
of photosynthesis, while does not essentially diminish isoprene emission because 
photosynthetic electron transport is not inhibited (Fall and Monson, 1992; Niinemets, 
2010). Several studies found increases in isoprene emission during the initial stages of 
mild drought conditions (e.g. Brilli et al., 2007; Pegoraro et al., 2004; Sharkey and 
Loreto, 1993). Severe drought or prolonged moderate drought conditions on time scales 
of weeks do result in significant reductions in isoprene emission that are presumably due 
to decreased leaf carbon availability following sustained reductions in photosynthetic rate 
(e.g. Brüggemann and Schnitzler, 2002; Funk et al., 2005; Sharkey and Loreto, 1993). 
Therefore, on the short time scales of a few days, there is a lag between isoprene 
emission and photosynthetic rate in response to water stress. On longer time scales 
(weeks to months), isoprene emission is tightly coupled with photosynthesis, both of 
which are limited by soil moisture deficit. Recent studies have shown the importance of 
water availability on photosynthesis on interannual scales: Jung et al. (2011) suggest the 
interannual variability of GPP in semi-arid to semi-humid regions is more sensitive to 
precipitation rather than temperature; Beer et al. (2010) find that GPP over 40% of the 
vegetated land is associated with precipitation. Therefore, despite the current lack of 
direct observations to constrain the soil moisture impact on the interannual variability of 
isoprene emission, we argue that water availability is likely to be a critical factor 
regulating isoprene emission on longer times.” 
 
3. Minor comments 
 
11765/15: Please define "short-term" and "long-term"  

Response: We modified: “While short-term (hours to days) weather-related fluctuations 
in isoprene emission in the temperate zone are well understood (Guenther et al., 1995, 
1991), many open questions remain as to the long-term (months to years) factors 
controlling isoprene emission.” 

11769/27: Is the PFT-specific LAI a value that is globally applicable, or do you deter 
mine it for each grid cell separately? 

Response: PFT-specific LAI is determined for each grid cell separately. We emphasize 
by adding: “Gridded spatially-varying PFT-specific leaf area index (LAI) is derived 
from….” 



11770/3: It seems somewhat crude to refer to the Farquhar model as a Michaelis-Menten 
model: It bears important elements from Michaelis-Menten kinetics to determine e.g. 
temperature dependences of the involved enzymes, but the model contains many 
important elements that are not related to Michaelis-Menten kinetics. 

Response: Corrected. Now it’s referred as the “Farquhar leaf model”. 

11771/17: The semicolon at the end of the line is not appropriate here, as there is a new 
part of the equation starting here. Please add a few words to introduce the empirical 
parameters CT and CL. 

Response: We added: “where E is the PFT-specific isoprene emission potential in units 
of µmolC m-2 s-1; CT and CL are defined as follows:”. 
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