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Abstract. Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmo-

spheric transport and regional patterns of surface emission and uptake. We report new estimates

for changes in the phase and amplitude of observed high northern latitude CO2 seasonal variations,

indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2

mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We5

also perform similar analysis of the first time derivative of CO2 mole fraction, ∆tCO2, that is a crude

proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associ-

ated with independently identifying trends in phase and peak uptake and release to be 10–25%, with

the smallest biases in phase associated with the analysis of ∆tCO2. We report our analysis from

Barrow, Alaska (BRW) during 1973–2013, which is representative of the broader Arctic region. We10

determine an amplitude trend of 0.09±0.02 ppm/yr, which is consistent with previous work. Using

∆tCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of -

0.14±0.14 and -0.25±0.08) days/yr, respectively, and a corresponding uptake period of -0.11±0.16

days/yr, which are significantly different to previously reported estimates. We find that the wavelet

transform method has significant skill in characterizing changes in the peak uptake and release. We15

find a trend of 0.65±0.34% (p<0.01) and 0.42±0.34% (p<0.05) for rates of peak uptake and re-

lease, respectively. Our analysis does not provide direct evidence about the balance between uptake

and release of carbon, but changes in the peak uptake and release together with an invariant growing

period length provides indirect evidence that high northern latitude ecosystems are progressively

taking up more carbon.20
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1 Introduction

Combustion of fossil fuel and cement production represent the dominant annual source of atmo-

spheric CO2 variation. There is also a minor source from the combustion of biomass and a diffuse

source from the emissions and oxidation of reduced carbon (Suntharalingam et al., 2005). On an

annual basis approximately 50% of those emissions remain in the atmosphere with the remainder25

taken up by the land and ocean biosphere (Ballantyne et al., 2012). Regional changes to the net

biospheric flux of CO2, and consequent changes in atmospheric CO2, are due to a) spatial and tem-

poral changes in climate, b) different responses of vegetation to these changes in climate, and c)

other factors that may dominate over climate, e.g., nutrient availability. A recent study, building on

extensive literature, have reported substantial increases in the amplitude of the seasonal exchange of30

CO2 since the 1950s, particularly at mid to high northern latitudes (Graven et al., 2013). Here, we

use the wavelet transform to isolate changes in the CO2 seasonal cycle, revealing new insights about

the growth rate, and changes in the amplitude and phase of CO2 associated with the growing season.

Analysis of atmospheric measurements of CO2 to describe changes in the seasonal cycle has

been explored in previous studies. These studies have typically employed curve fitting techniques35

(e.g. Bacastow et al. (1985), Thompson et al. (1986), Keeling et al. (1996), Piao et al. (2008),

Barichivich et al. (2012) and Barichivich et al. (2013)) or filtering methods such as complex de-

modulation (Thompson and Clark (2008) and Thompson (2011)). We apply a wavelet transform

(Torrence and Compo, 1998), which uses a pre-defined wave-like oscillation that is non-continuous

in time or space to decompose a time series into time-frequency space, allowing us to investigate the40

dominant modes of variability and how they change with time. The wavelet transform can decom-

pose CO2 time series into its seasonal cycle and long-term trend while retaining information about

phase and amplitude (Torrence and Compo, 1998). Not accounting for these simultaneous changes

can compromise the isolation of frequencies that contribute to the seasonal cycle and potentially

leads to erroneous conclusions about changes in the CO2 seasonal cycle. We show through exten-45

sive analysis of synthetic time series of the first time derivative of CO2, ∆tCO2, that the wavelet

transform can better separate changes in the phase and amplitude of the seasonal cycle than analysis

of CO2 mole fraction. We also show that the wavelet can also faithfully reproduce changes in the

rates of peak uptake and peak release of CO2, allowing us to understand observed changes in the

amplitude of the seasonal cycle.50

In the next section we describe measurements of CO2 mole fraction, δ13C, surface temperature,

and vegetation indices; and the approach we have employed to impute these data. In section 3, we

describe the wavelet transform that we use to spectrally decompose these data, including a charac-

terisation of the aliasing error associated with independent inference of changes in phase, amplitude

and the magnitude and timing of the peak uptake and release of CO2. In section 4, we present our55

analysis of CO2 growth rates, changes in the phase and amplitude of the CO2 seasonal cycle. We

conclude our paper in section 5.
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2 Data

2.1 CO2 mole fraction data

Figure 1 shows the high latitude sites from the NOAA Cooperative Global Air Sampling Network60

(Dlugokencky et al., 2014), which include at least 15 years of CO2 mole fraction data. We focus on

high northern latitude sites where a) transport is relatively zonal so that observed variations of CO2

are due to CO2 fluxes at the same latitude band (Figure 2) and b) contributions to observed CO2

from continents at these latitudes are approximately equal. We report our CO2 analysis for BRW

because it is generally considered to be representative of the broader Arctic region, and report our65

analysis from other sites in an appendix.

Twin air samples are collected weekly at the sites and analysed for CO2 at NOAA ESRL in Boul-

der, Colorado using a non-dispersive infrared analyser. These data are suitable to study variations

on weekly and higher timescales. Single measurement uncertainties are calculated based on the

ability to propagate the World Meteorological Organisation (WMO) XCO2 scale to working stan-70

dards (±0.03 ppm, Zhao and Tans (2006)), the analytical repeatability of the analysers for a sample

measurement (±0.03 ppm), and the agreement between pairs of samples collected simultaneously

(±0.1 ppm across the entire sampling network). The sum of these uncertainties is negligible in

comparison to the magnitude of CO2 variability observed at northern high latitudes.

2.2 Imputation of mole fraction data75

The wavelet transform method (described below) requires a continuous time series regularly spaced

in time. To fill a missing value in a time series we take it from a local temporally mean seasonal

cycle (3 years either side of the missing value) and a value from a deseasonalised reference time

series (Figure 3), accounting for large-scale anomalies in the growth rate. Any remaining missing

datapoints are extracted from a piecewise cubic spline curve-fit. Parts of the time series that contain80

significant sections of missing data are likely to be unreliable, however prolonged periods are rare

and we find that isolated missing data points do not significantly impact the determination of long

term trends in the phase and amplitude.

Figure 4 shows an example of our imputation approach using the CO2 mole fraction and δ13C

time series from Cold Bay Alaska.85

2.3 δ13CO2 data

We also use measurements of δ13C that are colocated with the CO2 mole fraction data. These help

us attribute observed changes of CO2 mole fraction to land biospheric uptake and release. The ratio
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δ13C is defined as:

δ13C =


[

13C
12C

]
sample[ 13C

12C

]
standard

−1

×1000, (1)90

where
[

13C
12C

]
sample

is the ratio of 13C to 12C within the sample, and
[

13C
12C

]
sample

is the ratio of
13C to 12C in a standard (a substance with a known, unchanging 13C to 12C ratio). Individual

measurements of 12C and 13C are determined by isolating the CO2 in a subsample of air from each

flask and using a mass spectrometer to determine the isotopic composition.

2.4 Ancillary data95

We use the University of East Anglia Climate Research Unit TS3.10 land temperature dataset (Harris

et al., 2013) to help interpret observed variations in the CO2 time series. This data has a 0.5×0.5

degree spatial resolution and monthly time resolution.

To investigate large-scale vegetation change, we use the Global Inventory Modeling and Mapping

Studies normalized difference vegetation index (GIMMS NDVI3g) dataset derived from the NOAA100

Advanced Very High Resolution Radiometer (AVHRR) (Pinzon et al., 2005; Tucker et al., 2005).

NDVI, calculated from the visible and near-infrared light reflected by vegetation, is strongly corre-

lated with photosynthetic activity in vegetation canopies; although we acknowledge photosynthesis

may not accompany greenness a) at high latitudes when water is frozen and b) during drought when

stomates are mostly closed. These NDVI data have a spatial resolution of approximately 8 km and a105

twice monthly temporal resolution from 1982 to the end of 2006. The dataset has been corrected for

calibration, viewing geometry, volcanic aerosols, and other effects not related to vegetation change.

We remove pixels that have a time series mean NDVI value of <0.1, to ensure that areas with bare

or sparse vegetation are not included in spatial averages.

3 Wavelet transform110

We use a wavelet transform to spectrally decompose the observed CO2 variations into individual

frequency bands that can be attributed to the responsible biological and physical processes.

In general a wavelet transform Wn uses a wavelet function ψ0, a pre-defined wave-like oscilla-

tion that is non-continuous in time or space, to decompose a time series into time-frequency space,

allowing us to investigate the dominant modes of variability and how they change with time. This115

improves on the Fourier transform that determines frequency information using sine and cosine

functions.

The wavelet transform of a time series xn is defined as

Wn(s) =

N−1∑
k=0

x̂kψ̂∗(sωk)eiωknδt, (2)
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where x̂k is the discrete Fourier transform of xn, N is the number of points in the time series,120

k=0...N−1 is the frequency index and ψ̂ ∗(sωk) is the complex conjugate of the Fourier transform

of a normalized, scaled and translated version of ψ0(η), where s is the scale and ωk is the angular

frequency. We use the Morlet wavelet (Torrence and Compo, 1998), a plane wave modulated by a

gaussian envelope:

ψ0(η) =π−1/4eiω0ηe−η
2/2, (3)125

where ω0 is the nondimensional frequency and η is the non-dimensional time-parameter. We chose

the Morlet wavelet because it is nonorthogonal, which is an attractive property for the analysis of

smooth and continuous variations such as those exhibited by CO2 mole fraction time series. The

wavelet is comprised of a real and imaginary part, providing information about amplitude and phase,

respectively.130

We can recover the original time series from wavelet space using the corresponding inverse trans-

form (Torrence and Compo, 1998) and summing over all frequencies from the real part of the wavelet

transform or a subset of frequencies if we are interested in isolating signals:

Ŵn =
δjδt1/2

Cδψ0(0)

J∑
j=0

<{Wn(sj)}
s

1/2
j

, (4)

where ψ0(0) removes the energy scaling and s1/2
j converts the wavelet transform to an energy den-135

sity. Cδ and ψ0(0) are constants determined for the specific wavelet function.

To minimize edge effects associated with the Fourier transform, we add synthetic data to pad the

start and end of the time series. For our calculation we repeat the first (last) data point backward

(forward), accounting for a growth rate based on following (preceding) years. We also “zero pad”

the time series so that the number of points used is an integral power of two, which further reduces140

edge effects and speeds up the transform. The addition of the padded data allows us to use the edges

of the time series by ensuring that there is negligible additional error introduced by edge effects, but

uncertainty in the spectral decomposition is still likely to be largest at these points. The padded data

at the edges of the time series are removed post wavelet decomposition and prior to analysis.

We quantify the numerical error associated with the wavelet transform by applying it to synthetic145

time series, which are representative of CO2 time series with a prescribed trend. We find that the

value forCδ previously reported (Torrence and Compo, 1998) introduces a small trend in the original

minus reconstructed residual, and find that Cδ=0.7784 results in a much smaller, unbiased residual

with a typical value<0.05ppm for monthly data and<0.002ppm for weekly data (not shown). Table

1 shows the wavelet parameter values that we used in our analysis.150

Additional uncertainties may arise in the long term trend and detrended seasonal cycle as a result

of spectral power being assigned to the incorrect frequency band. This could, for example, result

in concentration changes caused by anthropogenic emissions being misattributed to the natural (sea-

sonal) cycle of CO2, and vice versa. However, this is a common weakness of any method used to
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decompose such time series.155

We find that for atmospheric CO2, the wavelet power spectrum peaks at periods (reciprocal of

frequency) of 6 and 12 months (Appendix A), with a spread across these periods associated with the

sampling of the data. To study annual changes in phase and amplitude we retain period of 3 to 18

months, and assume that periods longer than 18 months are indicative of the growth rate and periods

shorter than three months are due to local/regional sources that are unrelated to the seasonal cycle160

(described using an example in Appendix A).

4 Results

4.1 Growth rates

Figure 5 shows how the decadal atmospheric growth rate has changed from the 1980 to 2009 as

a function of latitude. We find that in the 1980s and 1990s the growth rates are approximately165

the same in the southern hemisphere, but diverge further north. The 1980-1989 growth rate rises

sharply towards the northern high latitudes while there is a dip in the 1990–1999 in the same latitude

band. We anticipate that this is partially due to the collapse of the Soviet Union but also due to

changes in biospheric uptake in the northern hemisphere. It should be noted that the number of CO2

monitoring stations in the 1980s is considerably more sparse. The 2000-2009 decadal mean growth170

rate is significantly higher than both of the previous decades by ∼ 0.35ppm yr−1 and rises from the

southern hemisphere to mid-latitude northern hemisphere before dropping off again in the northern

high latitudes. We find that our annual CO2 growth rates at Mauna Loa are within a fraction of a

percent of NOAA values.

By subtracting anthropogenic fossil fuel emission estimates from the atmospheric CO2 signal175

(Table 2) we can effectively isolate uptake by the oceans and terrestrial biosphere, acknowledging

the uncertainties associated with the emission estimates and that we have not accounted for land

use change emissions. The residual growth rate is negative, as expected (Ballantyne et al., 2012).

We find that during the 1980s the net annual uptake by the terrestrial biosphere and ocean was

typically -1.03±0.11 ppm/year. This rate increases dramatically in the 1990s to approximately -180

1.54±0.06 ppm/year and to -1.89±0.08 ppm/year in 2000s. This change in the growth rate supports

the notion that the natural component of the carbon cycle is increasing the amount of carbon it takes

up in response to the amount of carbon present in the atmosphere, although the last two decades

show a smaller increase in net annual uptake. This apparent equilibrium state results in an approxi-

mate mean airborne fraction of 55.8±18.2% (including only fossil fuel) and 44.1±14.4% (including185

fossil fuel and land use change), consistent with previous work (Gloor et al., 2010). For the pur-

pose of the following calculations we have removed the annual growth rate from the observed CO2

concentrations, following the method described in Appendix A.
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4.2 Phase and amplitude analysis

We use several metrics to interpret the detrended CO2 mole fraction time series: the seasonal ampli-190

tude and zero-crossing points for CO2 and for the first differential of CO2 (∆tCO2), and the rate of

change of peak uptake (PU) and peak release (PR) for ∆tCO2. We use ∆tCO2 mole fraction data as

a crude proxy for the responsible net flux of CO2. As we discuss below and report in Appendix B,

analysis of ∆tCO2 leads to less biased estimates for trends in the PU and PR and phase of the CO2

seasonal cycle. As part of our analysis we report 95% confidence intervals, the Pearson correlation195

coefficient r, and p-values that denote the probability of reproducing a result by chance; for practical

purposes p-values >0.05 represent a result that is not significant.

Practical definitions and theoretical calculations

Figure 6 shows, using example data from BRW, how the detrended CO2 and ∆tCO2 variations

are related. The amplitude of the seasonal cycle, defined as the peak-to-peak difference (maxima200

minus minima) of the seasonal CO2 mole fraction time series, has been used in previous studies as

a measure of biological activity (e.g., Keeling et al. (1996); Graven et al. (2013)). In theory, this

metric alone cannot tell us whether net uptake or release is responsible for observed variations, so it

is typically used as an indicator of overall net seasonal carbon exchange, although recent work has

shown that the intense period of uptake at high northern latitudes contributes more to the seasonal205

amplitude than the longer period of emission.

Based on ∆tCO2 we define three periods during an annual cycle: 1) an uptake period when

∆tCO2 < 0 and there is a net negative CO2 flux to the atmosphere (photosynthesis is higher than

respiration); 2) a release period when ∆tCO2 > 0 and there is a net source of CO2 to the atmosphere;

and 3) a dormant period, defined between the latter half of winter and the start of the next uptake210

period, when plant activity is very low due to frozen ground so that ∆tCO2 is typically small (but

non-zero due to transport of CO2 from the lower latitudes). Zero-crossing points (ZCP) refer to

times when the detrended seasonal cycle is equal to zero (e.g., Piao et al. (2008)). For a seasonal

cycle there is a downward and upward ZCP (DZCP and UZCP, respectively) within one year. The

DZCP is a proxy for northern hemisphere spring onset of CO2 uptake, and similarly the UZCP is a215

proxy for the onset of net carbon release in northern hemisphere autumn. ∆tCO2 phase thresholds

are analogous to the CO2 mole fraction ZCPs that look at the timing of when vegetation becomes

a net CO2 source or sink, but also take into account that observed variations can introduce local

maxima/minima particularly associated with the DZCP. The ∆tCO2 DZCP is particularly difficult to

determine using the BRW seasonal cycle because small mole fraction variations during the dormant220

period (which has a near-zero flux) are sufficient to bring ∆tCO2 below zero before the carbon

uptake period associated with the growing season. To address this we have tested a number of phase

thresholds which represent the timing of when certain thresholds in ∆tCO2 are reached (e.g. 25%

7

manuel
Sticky Note
do you mean compared to using CO2 ? if yes say it



of PU). We find that using the 25% of PU is a more robust indicator of spring timing rather than the

DZCP. In contrast, the ∆tCO2 UZCP is well defined and trivial to calculate. We define a carbon225

uptake period (CUP), which is the difference between the autumn and spring phase metrics defined

above. PU and PR refer to the minima and maxima of the flux time series, respectively. As we show

below using theoretical calculations these peak values are related to annual release and uptake.

The ability of the wavelet transform to isolate changes in the phase and amplitude of the seasonal

cycle with fidelity is critical for our analysis. We use Monte Carlo numerical experiments to charac-230

terize the aliasing errors associated with independently identifying changes in phase and amplitude

that can result in the misinterpretation of these data and/or underestimation of uncertainties (Ap-

pendix B). These errors are not unique to the wavelet transform but to our knowledge they have not

been reported by previous studies focused on time series analysis of CO2 mole fractions. We gen-

erally find that analysis of ∆tCO2 produces more reliable and less biased estimates than CO2 trend235

estimation of either phase with an estimated 25% systematic aliasing error (Appendix B). Unless

explicitly stated all subsequent results will refer to our analysis ∆tCO2. We also find that the wavelet

transform can capture at least 80% of independent trends in the PU and PR of the ∆tCO2 seasonal

cycle, which has not been reported previously and allows us to study changes in characteristics more

closely related to annual changes in biological release and uptake of CO2 (Appendix B).240

Analysis of NOAA CO2 mole fraction data

Figure 7 shows that changes in downward and upward phases at BRW are -0.14 days/yr (p<0.05) and

-0.25 days/yr (p<0.01), respectively, with a corresponding CUP change of -0.11 days/yr (p>0.1); the

analysis of the other study sites is shown in Appendix C. We find no evidence using phase changes

of CO2 or ∆tCO2 for a significant change in CUP throughout the measurement period. Analysis of245

CO2 shows a much tighter coupling between the timing of the downward and upward phases with

values of -0.20 days/yr (p<0.01) and -0.18 days/yr (p<0.05) respectively. This results in a more

conserved CUP, with a trend of 0.02 days/yr (p>0.1), which is consistent with the ecosystem having

an intrinsic uptake period (not shown). Recent work using changes in CO2 has reported a change of

-0.17 days/yr for the downward phase over a similar time period (Graven et al., 2013).250

The concomitant observed changes in ∆tCO2 and in δ13C (Appendix D) supports the idea that

observed CO2 variations are primarily due to changes in the terrestrial biosphere. Analysis of surface

temperature analyses and space-borne observations of NDVI also corroborate the downward phase

change of ∆tCO2 (Appendix D). We find the start of the thermal growing season (defined as the

continuous period above 5◦C, Appendix D) is advancing two (three) times faster at latitudes >45◦N255

(>60◦N), which agrees with previous studies (e.g., Barichivich et al. (2012)). However we find an

anticorrelation of autumn phase changes with NDVI and temperature anomalies. The NDVI anoma-

lies during summer have not significantly increased on large spatial scales over the measurement

period (1982–2006) compared with spring and autumn anomalies. This suggests that the increase

8
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in net exchange of carbon between vegetation and the atmosphere is likely a result of increased ac-260

tivity during spring and autumn but this not consistent with analyses of CO2 time series that show

more uptake uptake in spring and summer. A number of studies have linked increases in NDVI and

subsequent carbon uptake with a CO2 fertilisation effect (Lim et al., 2004; Kaufmann et al., 2008;

Los, 2013)) which may also be partly responsible for the observed increases in carbon uptake. Our

analysis of NDVI data shows that increases of vegetation greenness in spring and autumn have led265

to significant lengthening of the photosynthetic growing season over the measurement period, where

autumn greening is changing in most regions at a greater rate than spring greening.

Observed changes in amplitude at BRW (0.09±0.02 ppm/yr) are consistent in percentage terms

with previous work over the same time period (Graven et al., 2013). As mentioned above, using

the wavelet transform to isolate the seasonal cycle we also have skill at attributing the changes in270

the peak-to-peak amplitude to corresponding changes in the rates of PU and PR (Appendix B). We

find that the observed change in amplitude at BRW is due to an increase in PR (0.42±0.34 ppm/yr,

p>0.05) and a larger increase in PU (0.65±0.34 ppm/yr, p<0.01). Figure 8 shows that statistically

significant trends (p<0.05) in PU are observed at five of the seven high latitude sites (ALT, BRW,

CBA, ICE and ZEP, SOM). In most of these cases, the change in PU is significantly larger than the275

change in PR, and we show that changes in amplitude are determined mainly by changes in uptake

(Appendix C). Previous analysis of these data has shown that changes in atmospheric transport

cannot explain changes in the amplitude (Graven et al., 2013).

5 Concluding remarks

We have used a wavelet transform to spectrally isolate changes in the seasonal cycle of atmospheric280

CO2 mole fraction. The wavelet transform can simultaneously separate the long-term trend and

seasonal cycle while retaining information about changes in amplitude and phase. We focused on

high northern latitude sites where transport is a) relatively zonal so that observed variations are due

to fluxes at the same latitude band, and b) contributions to sampled CO2 from continents at these

latitudes are approximately equal.285

We found that the atmospheric growth rate of CO2 at these sites are within a few percent of

reported values from NOAA. Our growth rates show large decadal changes, as expected, and once

the anthropogenic signature has been removed we find strong evidence of a natural biospheric signal

that is responding to increasing atmospheric CO2 concentrations. This results in a near-constant

airborne CO2 fraction of 55.8±18.2% (including only fossil fuel) and 44.1±14.4% (including fossil290

fuel and land use change), consistent with previous studies.

Using the detrended CO2 time series (original data minus growth rate) we examined the change

in phase and amplitude of the seasonal cycle. Using a series of synthetic experiments we showed

that the wavelet transform approach of isolating the seasonal cycle retained our ability to observe
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independent changes in phase and peak uptake and release. We also showed that using the first295

time derivative of CO2, ∆tCO2, resulted in smaller biases in the independent estimation of trends in

phase, within 10–25% of the “true” values.

We reported an increase in amplitude of 0.09±0.02 ppm/yr, consistent with previous studies,

which can be crudely associated with an increase in biological activity. Using a series of Monte

Carlo experiments we showed that the isolated seasonal cycle was sufficiently robust that we can300

identify changes in the magnitude and timing of peak uptake and release. We showed that the

increase in amplitude is due to increasing respiration (peak) and greater drawdown (trough) with the

drawdown increasing at a significant and faster rate.

We diagnosed phase changes using thresholds associated downward and upward zero crossing

points when the seasonal cycle of ∆tCO2 is zero during the downward and upward phases, respec-305

tively. These phase thresholds take into account that observed ∆tCO2 variations can introduce local

maxima/minima particularly associated with the downward zero crossing point. To address this we

use the threshold of 25% of peak uptake, which we find is a more robust indicator of spring tim-

ing. We reported changes in the downward and upward phase of -0.14±0.14 day/yr and -0.25±0.08

days/yr, respectively, and a corresponding revision of the uptake period of -0.11±0.16 days/yr. Given310

that we characterized the method used to determine the change in phase, including a measure of un-

certainty, and showed that analyzing ∆tCO2 produced less biased estimates for these changes we

argue that our values are a more faithful depiction of the truth.

Our analysis does not provide direct evidence about the balance between uptake and release of

carbon, but changes in the peak uptake and release together with an invariant growing period length315

provides indirect evidence that high northern latitude ecosystems are progressively taking up more

carbon. Changes in atmospheric CO2 mole fraction tell us only part of the underlying carbon cycle

story in terms of how the underlying ecosystems are changing. Clearly, additional measurements

and models needs to be applied for us to understand observed changes in atmospheric CO2. A more

frequent inspection of these data using advanced statistical tools such as the wavelet transform also320

have a role to play.

Appendix A Example of spectral decomposition

Figure 10 shows, as an example, the spectral decomposition of CO2 mole fraction measurements at

Mauna Loa. The wavelet transforms decomposes the 1-D time series into a 2-D power spectrum,

describing energy per unit time, as a function of frequency (the reciprocal of period) and time. The325

cone of influence is the boundary below which wavelet coefficients are most compromised by edge

effects. We have padded the edges of the CO2 time series with additional synthetic data so we are

able to analyse the entire CO2 time series (section 3). We find that most of the power is in the

annual and semi-annual periods, as expected, but also peaks in power at period > 1 year but this
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is likely a result of responses of the CO2 growth rate to large scale climate variability, e.g., the El330

Niño-Southern Oscillation. This is supported by the global wavelet power spectra (integrated over all

time). The interannual growth rate is determined by taking the value of the long term trend (periods

> 18 months) on January 1st in one year, and subtracting the value from the previous year to leave

the net change in concentration.

As discussed above, we use the spectrally decomposed dataset to interpret the observed variability335

of CO2 mole fraction data. Figure 10 shows two example applications: 1) as a lowpass filter to

deseasonalize the CO2 data (removing periods < 18 months); and 2) the associated annual growth

rate (ppm/year), which we find is within <0.1 ppm of the reported values from NOAA (not shown).

Appendix B Error characterisation of phase and amplitude estimates

We use synthetic CO2 time series data, defined with specific changes in amplitude and phase, to340

characterize aliasing errors due to application of the wavelet transform of CO2 concentration data

or its first time derivative (∆tCO2). Insights from this synthetic analysis are directly applied to our

interpretation of NOAA mole fraction measurements in the main paper.

B1 Synthetic model framework

We use a simple box model based on the CO2 mole fraction time series at Barrow, Alaska (BRW,345

Figure 11). BRW is the most suitable site for this purpose because is has a long time series and as it

is representative of high latitude CO2 in the Northern Hemisphere. We take the first time derivative

of the detrended time series at BRW to get the “flux” time series. We then take the mean seasonal

cycle of the CO2 flux and adjust it so that in its initial state, the source and sink terms are balanced.

This cycle is then repeated for 40 years (equivalent to the timespan of the BRW data) and integrated350

to convert the flux to CO2 concentration. For our experiments, described below, we introduce trends

and variability to various aspects of ∆tCO2 before integrating with respect to time to recover CO2

mole fraction. Detrending is as as described in the main paper.

B2 Numerical Experiments

The starting point of our numerical experiments is the detrended time series of atmospheric CO2355

mole fraction. Our analysis here as it is in the main paper does not provide direct evidence about the

balance between uptake and release of carbon. The detrending process results in a seasonal cycle

that integrates to zero over a year, which can if not properly accounted for introduce false trends and

variability in the seasonal cycle metrics. We combine the metrics defined above to provide indirect

evidence of trends in the carbon balance of the Northern Hemisphere.360

The following three broad set of experiments are designed to identify the best metrics to describe

changes in the contemporary cycle from detrended CO2 mole fraction measurements. First, we
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perturb the timing of spring or autumn by adding or subtracting a smooth gaussian curve with a flat

top centered roughly about the onset of net uptake or release, and increase the magnitude of the

curve each year to introduce a trend across the time series. Second, we perturb the magnitude of365

net uptake or net release by multiplying the uptake (negative ∆tCO2) or release (positive ∆tCO2)

by some factor, and increase the factor each year to introduce a trend. Finally, we add year to year

variability (or noise) to the time series to assess the ability of our spectral method to extract trends

from the data. We compare each metric by calculating the percentage difference in trend from the

input time series and the wavelet detrended time series.370

Perturbing the timing of the spring and autumn phases

Figure 12 shows the results of our analysis of a time series for which we introduced a progressively

earlier onset of net CO2 uptake of 0.50 days/yr for ∆tCO2 DZCP. The ∆tCO2 DZCP is very sensi-

tive to the curve we use to perturb the time series due to the relatively flat period of near-zero flux

during the dormant period preceding it (it does not take much to bring this below zero). While for375

the synthetic example, we have used a smoothed version of the BRW time series, in practice there

is substantial variability in the spring shoulder so that it is often difficult to accurately define a trend

in the ∆tCO2 DZCP. To address this we use an operational definition that is defined as 25% from

zero to the PU, which in this case has a trend of 0.35 days/yr. The ∆tCO2 metrics were found to be

better at capturing the springtime trend to within 23% and 16% respectively, than the equivalent CO2380

mole fraction metric that underestimates the trend by 63% with implications for using this metric

to interpret changes in phase. There is little change in any of the UZCP metrics (typically <0.025

days/yr) as a result of aliasing. The wavelet detrending introduces a -0.01%/yr trend in peak CO2

uptake and a concurrent increase in peak CO2 release of 0.14%/yr corresponding to -0.4% and 5.6%

across the 40 year time series respectively. This is considered an aliasing error when interpreting the385

real data in the main paper and is relatively small considering the large trends introduced in spring

uptake.

Figure 13 shows the same calculation but for introducing an earlier autumn onset of net CO2

release of 0.30 days/yr. We find that the metrics for spring phase respond to the prescribed change

in autumn phase due to aliasing, where the mole fraction and ∆tCO2=0 metrics had non-zero trends390

up to ∼-0.16 days/yr. All three UZCP phase metrics underestimate the change in the defined phase

change by amounts ranging from 11–22% where the CO2 UZCP performed the best. The earlier

onset of net CO2 release aliases into a 2.5% decrease in peak CO2 release and a 5% increase in peak

CO2 across the entire time series.

Perturbing the magnitude of net uptake and release of CO2395

Figure 14 shows the results of introducing a progressive enhancement of CO2 uptake of roughly

0.70% yr−1, equivelant to a 28% increase over 40 years. We introduce the trend by multiplying the
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negative flux by an increasing amount each year, which does not have an effect on timing of net

CO2 uptake or release. We also introduce two exceptional years to emulate the effect of interannual

variability such as that driven by climate phenomena like ENSO.400

We find that the wavelet transform attributes the 0.70%/yr increased uptake as 0.59%/yr uptake

and 0.20%/yr release. The mole fraction metrics infer non-zero UZCP and DZCP phase changes of

0.06 days/yr and 0.16 days/yr, respectively, while the 25% ∆tCO2 UZCP and DZCP metrics, our

operational metrics, exhibits negligible trends as expected. The exceptional years are captured in the

PU and PR metrics, while the CO2 UZCP is the most affected out of the phase metrics. In addition,405

information from the exceptional years of uptake is aliased into the CO2 UZCP and is spread over a

number of years rather than just one. This is not the case for the ∆tCO2 metrics indicating that they

are better for estimating interannual variability.

Simultaneous variations in phase and peak uptake and release

Figure 15 shows the results from a final experiment that describes a calculation in which we si-410

multaneously perturb the phase of the spring and autumn, as diagnosed by the ∆tCO2=0, and the

PU and PR. We also superimpose gaussian random noise within ±10 days and ± 25% to describe

year-to-year changes to the phase and to the PU and PR, respectively.

Despite large interannual variability, there is a negligible trend in the spring timing of CO2 uptake

(-0.02 days/yr) which is captured by the ∆tCO2 phase metric (0.02 days/yr). The CO2 DZCP trend415

has the opposite sign and additionally overestimates the magnitude of the trend by a factor of four.

The trend in the autumn ∆tCO2 phase metric (0.05 days/yr) underestimates the expected trend (0.09

days/yr) by ∼45%, while the CO2 UZCP overestimates it by a factor of 2.8. The estimated trend in

PU is 0.54% yr which is 80% of the expected trend (0.68% yr), while the estimated PR trend (0.14%

yr) is opposite in sign and double the magnitude of the expected trend (-0.07%). The estimated CUP420

trend is positive but roughly zero, which is a little smaller than the expected trend of 0.12 days/yr.

The increase in PU (which is a factor of three larger than the rise in PR) and the roughly zero trend

estimated for the CUP hints at a probable increase in annually integrated net uptake. The trend in

net flux in this example is indeed negative with an increase in uptake of -0.16ppm CO2/yr.

We find that the analysis of synthetic time series indicates that ∆tCO2 metrics can reproduce425

prescribed phase changes to within 30%, but trends with a magnitude of<0.1 days/yr were uncertain

in magnitude and sign. Strong shifts in spring and autumn phase caused changes in PU and PR of

<6% due to aliasing. Strong trends in PU and PR were estimated to within 25%. Estimates of

changes in PU, PR and CUP were used to estimate whether net increases in uptake or release were

taking place.430
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B3 Monte Carlo simulations

We used a Monte Carlo Simulation (MCS) to study the ability of the wavelet transform to simulta-

neously determine the PU, PR and changes in phase. We generated a thousand synthetic time series

with random trends and variability such as the one illustrated in Figure 15, where Figure 16 shows

the probability distributions of the trends introduced in the net carbon fluxes and changes in the CUP.435

Integrated uptake and release of carbon was in the range of -0.25 to 0.25 ppm/yr, while changes in

the phase were within 1 day/yr. We then regressed the expected trends in phase, PU and PR against

the values we estimated using our analysis. The regression coefficient was used as an estimate of the

mean bias, while the Pearson correlation coefficient r is indicative of consistency in the bias and the

likelihood of the estimates to deviate far from the expected value.440

Figure 17 shows some of the results from the MCS regression analysis where we compare ex-

pected and estimated trends. The figure also shows estimates where we detected the wrong sign of

the trend and the quantity of statistically significant trends (p<0.05) that were and were not detected

in the analysis. The results of the MCS indicated a large mean negative bias in the CO2 DZCP trend

(-0.57±4%), but also a large spread about the mean bias that suggests that the CO2 DZCP is more445

susceptible to aliasing. On the other hand, the use of ∆tCO2=25% PU resulted in a relatively small

mean bias (-14±2%) with high consistency (r2=0.94). Although the mean bias was less in the MCS

for the CO2 UZCP (-1±3%), it was less consistent (r2=0.80). The ∆tCO2 UZCP had a mean bias of

-23±1% (r2=0.97). Differences between the spring and autumn phase biases calculated from CO2

and ∆tCO2 phase metrics carry through to the respective CUP estimates, where the ∆tCO2 CUP450

had a mean bias of -28±1% (r2=0.93) relative to a bias of -55±1% (r2=0.45) in the CO2 CUP. Es-

timates of ∆tCO2 phase metrics tended to be more consistent, and while it resulted in significantly

more accurate estimates of the trend in spring phase, the autumn phase was better represented by the

CO2 UZCP. We expect that this is a result of the asymmetry of the high latitude CO2 seasonal cycle.

Analysis of peak rates of uptake and release resulted in mean biases of -18±2% and -28±2% for PU455

and PR respectively. In general, the trend estimates from the analysis had the correct sign so long as

the trend was sufficiently large (>0.25%/yr for PU and PR, and >0.1 days/yr for changes in phase).

The CO2 phase metric trend estimates were the most likely to have the wrong sign compared to the

∆tCO2 phase metrics by 4.5, 4 and 1.5× for the DZCP, UZCP and CUP respectively. Finally, the

∆tCO2 metrics were far more effective at detecting statistically significant trends where the CO2460

metrics typically missed 33–50% of them.

Figure 18 shows a regression of the linear trend in integrated CO2 uptake and release against the

estimated seasonal amplitude from the individual MCS runs. We find that the linear trends in an-

nually integrated CO2 uptake (ppm/yr2) are correlated with the amplitude trend (ppm/yr). Previous

work has shown this is due to the rapid temporal variation in CO2 associated with the uptake than465

the release outside of the growing period (Graven et al., 2013).
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Appendix C Analysis of other sites

Table 3 summarises the analysis of all the high northern latitude stations we have considered in this

study.

Appendix D Analysis of ancillary data470

D1 Surface temperature and NDVI

Table 4 shows that mean surface land temperature has warmed significantly at high-latitudes since

1970. We define a thermal growing season (TGS) with a threshold temperature of 5◦C, the min-

imal temperature typically required for the onset of photosynthesis, following Barichivich et al.

(2012). We find that an earlier onset of the mean temperature reaching 5◦C in spring, TGSBEG,475

and a delay in the temperature dropping below 5◦C in autumn, TGSEND, results in a significant

lengthening of the thermal growing season, TGSLEN since 1970 for a number of high latitude re-

gions. Of the Transcom regions, we find that Europe exhibits the largest change in TGSLEN of

∼3.41±0.9 days/decade, resulting from equal shifts in TGSBEG and TGSEND. Europe is followed

by roughly equal changes in Boreal North America and Asia, however these regions exhibit differ-480

ent changes in spring and autumn temperature. The largest overall changes are seen >60◦N where

TGSLEN has increased by up to 5±1.7 days/decade where a larger proportion of this change is

due to autumn warming. This increase in TGSLEN suggests that the potential period during which

plant growth is not hindered by low temperatures has been significantly extended by approximately

11 days (>45◦N) and 20 days (>60◦N) since 1970, consistent with previous findings (Linderholm485

(2006), Barichivich et al. (2012)). Table D2 shows the relationship between northern high latitude

land surface temperature anomalies with the BRW CO2 and ∆tCO2 phase metrics throughout 1973–

2012. We find there are significant results depending on whether CO2 and ∆tCO2 phase metrics are

used.

The warming-induced earlier onset of springtime carbon uptake is also supported by observed490

increases in vegetation greenness described by NDVI inferred from space-borne sensors (Gong and

Shi, 2003; Mao et al., 2012; Cong et al., 2013). Increases in autumn NDVI have also been observed

and while this is indicative of increased photosynthetic activity is not necessarily inconsistent with

the observed early onset of net carbon release. This is because it does not provide information

about respiration processes. Our analysis of NDVI data (not shown) finds an increases of vegetation495

greenness in apring and autumn have led to significant lengthening of the photosynthetic growing

season over the measurement period, where autumn greening is changing in most regions at a greater

rate than spring greening.
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D2 δ13C data

Figure 4 shows δ13C data over CBA, with the corresponding CO2 mole fraction data. Measurements500

of δ13C show a strong seasonal variation, which is anti-correlated with CO2. Plants preferentially

take the lighter carbon 12C isotope out of the atmosphere through photosynthesis during spring and

summer resulting in an increase in δ13C, and release more 12C than 13C during autumn and winter

resulting in a decrease in δ13C.

Figure 9 shows a similar phase analysis for (-1)×δ13C and (-1)×∆δ13C, comparing it with vari-505

ability and trends with the corresponding CO2 values. Table D2 shows regression coefficients and

mean statistics for the spring and autumn phase and the CUP. We find that atleast 68% of the ob-

served trend in CO2 DZCP and UZCP can be explained by variations in colocated measurements

of δ13C. This suggests that the terrestrial biosphere is largely responsible for observed CO2 vari-

ability with the remainder due to atmospheric transport and other minor source variations. This510

result is consistent with previous work (Graven et al., 2013) that showed using an atmospheric trans-

port model that atmospheric transport variations contributed <7% of the observed variation in CO2

seasonal amplitudes at high northern latitudes.
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Table 1. Parameters used by the control wavelet transform for monthly and weekly spectral decomposition of

CO2 mole fraction.

Parameter δt=1/12 δt=1/52

δj 0.25 0.01

s0 2δt δt

Cδ 0.7784 0.7784

ψ0 π− 1
4 π− 1

4

Table 2. Global decadal mean growth rates (ppm/yr) and the corresponding growth rate due to fossil fuel

combustion.

Decade No. Stations Fossil Fuel (FF) Growth Rate (GR) GR 1σ GR - FF

1960-1969 1 1.51 0.86 N/A -0.65

1970-1979 2 2.25 1.21 0.055 -1.04

1980-1989 13 2.61 1.58 0.108 -1.03

1990-1999 38 3.02 1.48 0.056 -1.54

2000-2009 49 3.79 1.90 0.076 -1.89
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Site Info Spring Phase Autumn Phase Uptake Period C. Exchange

Site
Times-

pan

CO2

DZCP
(days/yr)

∆tCO2

DZCP
(days/yr)

∆tCO2

= 25%
PU

(days/yr)

∆tCO2

= PU
(days/yr)

CO2

UZCP
(days/yr)

∆tCO2

UZCP
(days/yr)

∆tCO2

= 25%
PR

(days/yr)

∆tCO2

= PR
(days/yr)

CO2

CUP
(days/yr)

∆tCO2

CUP
(days/yr)

Seas.
Amp.

(ppm/yr)

PU
(%/yr)

PR
(%/yr)

ALT
1986-

2013

-0.14

±0.15

(p<0.1)

-0.34

±0.83

(p>0.1)

-0.16

±0.26

(p>0.1)

-0.18

±0.26

(p>0.1)

-0.27

±0.19

(p<0.01)

-0.10

±0.17

(p>0.1)

-0.09

±0.20

(p>0.1)

0.15

±0.59

(p>0.1)

-0.02

±0.20

(p>0.1)

0.05

±0.32

(p>0.1)

0.10

±0.04

(p<0.01)

0.61

±0.60

(p<0.01)

0.40

±0.60

(p<0.1)

BRW
1973-

2013

-0.20

±0.08

(p<0.01)

-0.02

±0.47

(p>0.1)

-0.14

±0.14

(p<0.05)

-0.21

±0.15

(p<0.01)

-0.18

±0.14

(p<0.05)

-0.25

±0.08

(p<0.01)

-0.26

±0.10

(p<0.01)

-0.25

±0.10

(p<0.1)

0.02

±0.15

(p>0.1)

-0.11

±0.16

(p>0.1)

0.09

±0.02

(p<0.01)

0.65

±0.34

(p<0.01)

0.42

±0.34

(p<0.05)

CBA
1979-

2012

-0.14

±0.15

(p<0.1)

-0.56

±0.34

(p<0.01)

0.06

±0.11

(p>0.1)

-0.24

±0.37

(p>0.1)

-0.27

±0.27

(p<0.05)

-0.16

±0.17

(p<0.1)

-0.17

±0.20

(p<0.1)

0.14

±0.33

(p>0.1)

-0.07

±0.29

(p>0.1)

-0.22

±0.34

(p>0.1)

0.07

±0.04

(p<0.01)

0.66

±0.48

(p<0.01)

0.58

±0.48

(p<0.05)

ICE
1993-

2013

0.34

±0.27

(p<0.05)

0.62

±0.98

(p<0.01)

0.63

±0.65

(p<0.01)

0.25

±0.54

(p<0.1)

-0.13

±0.28

(p>0.1)

0.18

±0.25

(p>0.1)

0.22

±0.24

(p<0.1)

0.11

±0.99

(p>0.1)

-0.21

±0.33

(p>0.1)

-0.45

±0.64

(p>0.1)

0.06

±0.04

(p<0.01)

0.97

±0.94

(p<0.01)

0.92

±0.92

(p<0.05)

SHM
1987-

2012

-0.40

±0.18

(p<0.01)

-0.59

±0.45

(p<0.05)

-0.45

±0.34

(p<0.05)

-0.54

±0.40

(p<0.01)

-0.27

±0.22

(p<0.05)

-0.13

±0.23

(p>0.1)

-0.11

±0.25

(p>0.1)

-0.15

±0.33

(p>0.1)

-0.13

±0.24

(p>0.1)

0.32

±0.44

(p>0.1)

0.06

±0.05

(p<0.05)

-0.24

±0.75

(p>0.1)

-0.05

±0.69

(p>0.1)

STM
1981-

2010

-0.17

±0.14

(p<0.05)

-0.60

±0.74

(p>0.1)

-0.03

±0.65

(p>0.1)

-0.04

±0.27

(p>0.1)

-0.24

±0.25

(p<0.1)

-0.01

±0.15

(p>0.1)

-0.01

±0.18

(p>0.1)

0.16

±0.62

(p>0.1)

-0.07

±0.31

(p>0.1)

0.02

±0.66

(p>0.1)

0.05

±0.03

(p<0.01)

0.04

±0.63

(p>0.1)

0.72

±0.62

(p<0.05)

ZEP
1994-

2013

-0.01

±0.21

(p>0.1)

-1.24

±1.78

(p>0.1)

0.01

±0.61

(p>0.1)

-0.06

±0.40

(p>0.1)

0.40

±0.52

(p>0.1)

-0.16

±0.33

(p>0.1)

-0.24

±0.38

(p>0.1)

0.43

±1.20

(p>0.1)

0.12

±0.25

(p>0.1)

-0.18

±0.76

(p>0.1)

0.14

±0.05

(p<0.01)

1.00

±1.06

(p<0.05)

-0.30

±1.07

(p>0.1)

Table 3. Estimated trends of downward and upward zero crossing points (DZCP and UZCP, respectively), peak uptake and release (PU and PR, respectively), and carbon

uptake period (CUP) calculated from CO2 and ∆tCO2 data for seven high latitude measurement sites (Figure 1). The 95% confidence intervals and p-values are calculated for

each trend estimate.
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Table 4. Temperature Linear Trend Analysis (1970-2011) for the beginning and end of the thermal growing

season.

TGSBEG (Days Decade−1) Spring T (◦C Decade−1)

Region Trend unc r2 p-value Trend unc r2 p-value

ASBor -1.39 ±0.49 0.45 <0.01 0.58 0.27 0.32 p<0.01

Europe -1.67 ±0.52 0.51 <0.01 0.33 0.11 0.47 p<0.01

USBor -1.06 ±0.72 0.18 <0.01 0.34 0.25 0.15 p<0.05

>45◦ N -1.24 ±0.44 0.44 <0.01 0.41 0.13 0.49 p<0.01

>60◦ N -2.12 ±0.75 0.45 <0.01 0.45 0.18 0.40 p<0.01

TGSEND Autumn T

Region Trend unc r2 p-value

ASBor 1.07 ±0.79 0.16 <0.01 0.57 0.29 0.28 p<0.01

Europe 1.74 ±0.66 0.42 <0.01 0.38 0.12 0.49 p<0.01

USBor 1.57 ±0.69 0.35 <0.01 0.47 0.21 0.34 p<0.01

>45◦ N 1.34 ±0.47 0.45 <0.01 0.44 0.13 0.55 p<0.01

>60◦ N 2.85 ±1.04 0.43 <0.01 0.52 0.16 0.53 p<0.01

TGSLEN Annual T

Region Trend unc r2 p-value

ASBor 2.46 ±1.08 0.35 <0.01 0.45 0.16 0.45 p<0.01

Europe 3.41 ±0.90 0.60 <0.01 0.35 0.10 0.61 p<0.01

USBor 2.63 ±1.25 0.31 <0.01 0.43 0.16 0.41 p<0.01

>45◦ N 2.57 ±0.78 0.52 <0.01 0.40 0.10 0.67 p<0.01

>60◦ N 4.97 ±1.69 0.47 <0.01 0.43 0.11 0.63 p<0.01
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CO2

DZCP vs. TGSBEG UZCP vs. TGSEND CUP vs. TGSLEN

>45◦N 1.02±0.47 -0.13±0.73 0.31±0.44

(r2=0.34, p<0.01) (r2=0.01, p>0.1) (r2=0.04, p>0.1)

>60◦N 0.63±0.27 -0.11±0.34 0.14±0.22

(r2=0.38, p<0.01) (r2=0.01, p>0.1) (r2=0.04, p>0.1)

∆tCO2

DZCP vs. TGSBEG UZCP vs. TGSEND CUP vs. TGSLEN

>45◦N 0.57±0.81 -0.89±0.51 -0.42±0.48

(r2=0.05, p>0.1) (r2=0.25, p<0.01) (r2=0.08, p<0.1)

>60◦N 0.28±0.48 -0.42±0.24 -0.19±0.24

(r2=0.04, p>0.1) (r2=0.26, p<0.01) (r2=0.07, p<0.1)

Table 5. Linear regression coefficients that describe the relationship between changes in CO2, ∆tCO2 and

temperature phase metrics at different latitude bands in the high northern latitudes (1973-2012).

DZCP UZCP CUP

CO2 0.94±0.19 0.59±0.34 0.60±0.37

vs. δ13C (r2=0.84, p<0.01) (r2=0.38, p<0.01) (r2=0.34, p<0.01)

∆tCO2 0.68±0.37 0.95±0.29 0.88±0.42

vs. ∆δ13C (r2=0.41, p<0.01) (r2=0.70, p<0.01) (r2=0.48, p<0.01)

Table 6. Linear regression coefficients that describe the relationship between changes in CO2, ∆tCO2 and

δ13C at BRW during the overlapping timespan of the data (1990–2012).
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Fig. 1. The NOAA/ESRL stations used in our CO2 time series analysis. For the seasonal cycle analysis, we

split the northern hemisphere stations into three zonal bands, the high, mid and low-latitudes (blue, green and

red respectively). The stations shown in magenta are used for growth rate analysis only. The six stations with

a black border are those with the longest time series in each 30◦ latitude band. The shaded regions are the

temperate and boreal Northern Hemisphere land regions defined in the initial Transcom study, and which we

use for analysis of NDVI, temperature, and atmospheric transport.
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Fig. 2. The maximum CO2 perturbations caused by biosphere carbon fluxes from five Transcom land regions

(Figure 1) to the zonal mean concentrations over the high, mid, and low latitude northern hemisphere averaged

over 2004–2009. These values were determined by using the GEOS-Chem atmospheric transport model (see

main text for further details). The error bars denote the 1σ of the year to year variability over the six-year

period. The zonal means are defined as the mean of the gridpoints sampled nearest to the stations shown in

Figure 1. Model data from December is missing.
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Fig. 3. Reference weekly CO2 mole fraction measurements (ppm) covering various timespans for 30◦ degree

latitude bands used to impute missing data points. BRW, NWR, MLO, SMO, CGO, and SPO are codes to de-

note Barrow (71.3◦N, 156.6◦W), Niwot Ridge (40.0◦N, 105.6◦W), Mauna Loa (19.5◦N, 155.6◦W), American

Samoa (14.2◦S, 170.5◦W), Cape Grim (40.7◦S, 144.7◦E), and South Pole (89.9◦S, 24.8◦W).
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Fig. 4. Weekly (top) CO2 mole fraction (ppm) measurements (black) and (bottom) δ13C values (per mil) at

Cold Bay, Alaska (CBA, 55.2◦N, 162.7◦W) from 1980 to 2012. Imputed values, shown in red, are inferred

from a locally averaged seasonal cycle adjusted for anomalies in growth rate. Any remaining missing values

are extracted from a fitted piecewise cubic spline curve (magenta).
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Fig. 5. Decadal mean CO2 growth rates inferred from individual station measurements and averaged in 20◦

latitude bins having retained (left) and subtracted (right) the decadal mean global fossil fuel emissions (CDIAC).

The solid line with error bars represents the decadal mean growth rate in each latitude bin with ±1σ representing

the standard deviation between individual stations in that latitude bin. The global decadal mean growth rate

is indicated by the dashed lines and mean values with ±1σ representing the standard deviation between all

stations. Values for MLO, which are typically taken to be representative of the global growth rate are highlighted

with a circle. Time series of annual growth rates were determined for individual CO2 stations before first

calculating decadal mean growth rates, and second binning the decadal mean growth rates into 20◦ latitude

bins. We subtract a global mean growth rate due to fossil fuel combustion from all stations.
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from Barrow, Alaska.
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Fig. 10. Top row: weekly mean (black) and low-pass filtered (red, periods>12 months) CO2 mole fraction time
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Fig. 12. Wavelet analysis of ∆tCO2 flux time series including a prescribed earlier onset of net CO2 uptake.

Top left panel: the defined flux time series and the associated detrended time series. Top right panel: the

expected (defined) and actual change in peak uptake and release of CO2. Bottom panels: the expected (defined)

and actual change in (left) DZCP and (right) UZCP, including an operational version of the phase metric as

described in the main text.
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Fig. 13. As Figure 12 but including an earlier autumn onset of net CO2 release.
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Fig. 14. As Figure 12 but introducing a trend of 0.75%/yr trend in the peak uptake and an anomously high year

for uptake and release.
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Fig. 15. As Figure 12 but introducing simultaneous trends in spring and autumn phase and in the peak amplitude

and release of CO2. We also superimpose Gaussian random noise to describe interannual variation.
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generated for the Monte Carlo experiment where the black line is the fitted probability distribution.
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Fig. 17. Regression of expected and estimated linear trends for peak uptake (PU), peak release (PR) and the

∆tCO2 and CO2 phase metrics. Coloured points represent trends there were not (red) statistically significant,

(black) trends where we estimated the incorrect sign, (blue) statistically significant trends that were successfully

detected, and (green) statistically significant trends that were not detected in the analysis. Statistical significance

is at the 5% level. The numbers, N1..n are the number of points in each category and sum to 1000.
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Fig. 18. Scatterplot and associated linear regression coefficients of the amplitude trend (ppm/yr) against the

integrated CO2 uptake and release (ppm/yr2) from the 1000-member ensemble used in the Monte Carlo exper-

iment.
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