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Abstract 12 

In this study the utility of satellite-based whitecap fraction (W) values for the prediction of sea 13 

spray aerosol (SSA) emission rates is explored. More specifically, the study is aimed at 14 

evaluating how an account for natural variability of whitecaps in the W parameterization 15 

would affect SSA mass flux predictions when using a sea spray source function (SSSF) based 16 

on the discrete whitecap method. The starting point is a data set containing W data for 2006 17 

together with matching wind speed U10, sea surface temperature (SST) T, and statistical data. 18 

Whitecap fraction W was estimated from observations of the ocean surface brightness 19 

temperature TB by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global 20 

scale assessment of the data set revealed a quadratic correlation between W and U10. A new 21 

global W(U10) parameterization was developed and used to evaluate an intrinsic correlation 22 

between W and U10 that could have been introduced while estimating W from TB. A regional 23 

scale analysis over different seasons indicated significant differences of the coefficients of 24 

regional W(U10) relationships. The effect of SST on W is explicitly accounted for in a new 25 

W(U10, T) parameterization. The analysis of W values obtained with the new W(U10) and 26 

W(U10, T) parameterizations indicates that the influence of secondary factors on W is for the 27 

largest part embedded in the exponent of the wind speed dependence. In addition, the W(U10, 28 
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T) parameterization is capable to partially model the spread (or variability) of the satellite-1 

based W data. The satellite-based parameterization W(U10, T) was applied in an SSSF to 2 

estimate the global SSA emission rate. The thus obtained SSA production rate for 2006 of 3 

4.410
12

 kg yr
-1

 is within previously reported estimates, however with distinctly different 4 

spatial distribution.  5 

 6 

1 Introduction 7 

Whitecaps are the surface phenomenon of bubbles near the ocean surface. They form at wind 8 

speeds of around 3 m s
-1

 and higher, when waves break and entrain air in the water which 9 

subsequently breaks up into bubbles which rise to the surface (Thorpe, 1982; Monahan and 10 

Ó’Muircheartaigh, 1986). The estimated global average of whitecap cover, i.e., the fraction of 11 

the ocean surface covered with whitecaps W, is 2 to 5% (Blanchard, 1963). Being visibly 12 

distinguishable from the rough sea surface, whitecaps are the most direct way to parameterize 13 

the enhancement of many air-sea exchange processes including gas- and heat transfer 14 

(Andreas, 1992; Fairall et al., 1994; Woolf, 1997; Wanninkhof et al., 2009), wave energy 15 

dissipation (Melville, 1996; Hanson and Phillips, 1999), and the production rate of sea spray 16 

aerosols (SSA) (e.g., Blanchard, 1963; 1983; Monahan et al., 1983; O’Dowd and de Leeuw, 17 

2007, de Leeuw et al., 2011), because all these processes involve wave breaking and bubbles.  18 

Measurements of the whitecap fraction W are usually extracted from photographs and 19 

video images collected from ships, towers, and air planes (Monahan, 1971; Asher and 20 

Wanninkhof, 1998; Callaghan and White, 2009; Kleiss and Melville, 2011). Whitecap 21 

fraction is commonly parameterized in terms of wind speed at a reference height of 10 m, U10. 22 

Wind speed is the primary driving force for the formation and variability of W (Monahan and 23 

Ó’Muircheartaigh, 1986; Salisbury et al., 2013, hereafter SAL13). Whitecap fractions 24 

predicted with conventional W(U10) parameterizations show a large spread between reported 25 

W values (Lewis and Schwartz, 2004; Anguelova and Webster, 2006). Part of these variations 26 

is due to differences in methods of extracting W from still and video images. Indeed, the 27 

spread of W values has decreased in recently published in situ data sets as image processing 28 

improved and data volume increased (de Leeuw et al., 2011). However, an order-of-29 

magnitude scatter of W values remains, suggesting that U10 alone cannot fully predict the W 30 

variability. Other factors such as atmospheric stability (often expressed in terms of air-sea 31 
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temperature difference), sea surface temperature (SST) T or friction velocity (combining wind 1 

speed and thermal stability (e.g., Wu, 1988; Stramska and Petelski, 2003)) have been 2 

indicated to affect W with implications for the SSA production. Thus, parameterizations of W 3 

that use different, or include additional (secondary), forcing parameters to better account for 4 

W variability have been sought (Monahan and Ó’Muircheartaigh, 1986; Zhao and Toba, 2001; 5 

Goddijn-Murphy et al., 2011; Norris et al., 2013b; Ovadnevaite et al., 2014; Savelyev et al., 6 

2014). 7 

An alternative approach to address the variability of W is to use whitecap fraction 8 

estimates from satellite-based observations of the sea state, because such observations provide 9 

long-term global data sets which encompass a wide range of meteorological and 10 

environmental conditions, as opposed to local measurement campaigns during which a limited 11 

variation of conditions is usually encountered. Brightness temperature TB of the ocean surface 12 

measured from satellite-based radiometers at microwave frequencies has been successfully 13 

used to retrieve geophysical variables, including wind speed (Wentz, 1997; Bettenhausen et 14 

al., 2006; Meissner and Wentz, 2012). The feasibility of estimating W from TB has also been 15 

demonstrated (Wentz, 1983; Pandey and Kakar, 1982; Anguelova and Webster, 2006). 16 

Anguelova et al. (2006; 2009) used WindSat data (Gaiser et al., 2004) to further develop the 17 

method of estimating W from TB, and compiled a database of satellite-based W accompanied 18 

with additional variables. Figure 1a shows an example of the global W distribution from 19 

WindSat for a randomly chosen day. 20 

Salisbury et al. (2013) showed that satellite-based W values carry a wealth of 21 

information on the variability of W. In particular, these authors showed that the global 22 

distribution of satellite-based W values differs from that obtained using a conventional W(U10) 23 

parameterization with important implications for modeling SSA production rate in global 24 

climate models (GCMs) and chemical transport models (CTMs) (Salisbury et al., 2014). 25 

Salisbury et al. (2013) proposed a new W(U10) parameterization in power law form using 26 

satellite-based W data over the entire globe for a full year. They derived wind speed 27 

exponents which are approximately quadratic for different data sets: 28 

26.2
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where W is expressed in % and the subscripts denote the TB frequencies used to obtain W. 1 

These exponents are significantly different from the cubic and higher wind speed 2 

dependences proposed by Callaghan et al. (2008, hereafter CAL08):  3 

 310

3 70.31018.3   UW ;  3.70 < U10 ≤ 11.25 m s
-1

     4 

3

10

4 )98.1(1082.4   UW ;  9.25 < U10 ≤ 23.09 m s
-1

         
(2)

 5 

and Monahan and O’Muircheartaigh (1980, hereafter MOM80):  6 

41.3

10
4

10 1084.3)( UUW           (3). 7 

The MOM80 parameterization was derived on the basis of the data sets of Monahan (1971) 8 

and Toba and Chaen (1973). Most of the wind speed values from these two data sets are up to 9 

12 m s
-1

 with only 10% of the data points for winds up to 19 m s
-1

. The range of SST is from 10 

17 to 31 C. Monahan and O’Muircheartaigh (1986) emphasized that this is a regionally 11 

specific function, but its widespread adoption in global models led to its application at wind 12 

speeds and SSTs well above its range of validity.  13 

In this study we explore the utility of the satellite-based W data from a standpoint of 14 

predicting SSA production rate. Whitecaps are used as a proxy for the amount of bubbles at 15 

the ocean surface. When these bubbles burst, they generate sea spray droplets which in turn 16 

transform to SSA when they equilibrate with the surroundings (Blanchard, 1983). Bursting 17 

bubbles produce film and jet droplets, whereas at high wind speeds, exceeding about 9 m s
-1

, 18 

additional sea spray is directly produced as droplets which are blown off the wave crests 19 

(Monahan et al., 1983). These spume droplets are larger than the bubble-mediated SSA 20 

droplets (Andreas, 1992). In this study we will focus on bubble-mediated production of sea 21 

spray.  22 

Sea spray aerosols are important for the climate system because, due to the vast extent 23 

of the ocean, SSA are amongst the largest aerosol sources globally (de Leeuw et al., 2011). 24 

SSA particles contribute to the scattering of short-wave electromagnetic radiation and thus the 25 

direct radiative effect on climate. Also, having high hygroscopicity, SSA particles are a 26 

source for the formation of cloud condensation nuclei (Ghan et al., 1998; O’Dowd et al., 27 

1999) and as such influence cloud microphysical properties and thus exert indirect radiative 28 

effects on the climate system. While residing in the atmosphere, SSA provide surface and 29 

volume for a range of multiphase and heterogeneous chemical processes (Andreae and 30 
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Crutzen, 1997). Through such chemical processes, the SSA contribute to the production of 1 

inorganic reactive halogens (Cicerone, 1981; Graedel and Keene, 1996; Keene et al., 1999; 2 

Saiz-Lopez and von Glasow, 2012), participate in the production or destruction of surface 3 

ozone (Keene et al., 1990; Barrie et al., 1988; Koop et al., 2000), and provide a sink in the 4 

sulfur atmospheric cycle (Chameides and Stelson, 1992; Luria and Sievering, 1991; Sievering 5 

et al., 1992; 1995).  6 

The modeling of all these processes in GCMs and CTMs starts with calculation of the 7 

production rate of SSA particles (termed also SSA production flux, SSA generation, or SSA 8 

emission). Sea spray source function (SSSF) is used to calculate SSA production flux—the 9 

number of SSA particles produced per unit of sea surface area per unit time. The most 10 

commonly used SSSF, proposed by Monahan et al. (1986, hereafter M86), estimates SSA 11 

emission by the indirect, bubble-mediated mechanism. Based on the discrete whitecap 12 

method, the SSSF of M86 is formulated in terms of W(U10), as defined by MOM80 (Eq. (3)), 13 

whitecap decay timescale , and the aerosol productivity per unit whitecap dE/dr: 14 

  2
19.105.1

80
3

80
41.3

10

80

10

80

10)057.01(373.1
BerrU

dr

dEUW

dr

dF  


,    (4) 15 

In Eq. (4), the timescale is a constant  = 3.53 s, r80 is the droplet radius at a relative humidity 16 

of 80%, and the exponent B is defined as 65.0/)lg38.0( 80rB  . The term dE/dr, associated 17 

with the sea spray size distribution, determines the shape of the SSSF (i.e., shape factor); the 18 

term W/ is a scaling (or magnitude) factor as it links predetermined SSA production per unit 19 

whitecap area with the amount of whitecapping in different regions at different seasons. Refer 20 

to Lewis and Schwartz (2004), de Leeuw et al. (2011), and Callaghan (2013) for clear 21 

distinction of the discrete whitecap method from the continuous whitecap method.  22 

Estimates of SSA production fluxes using the discrete whitecap method still vary 23 

widely (Lewis and Schwartz, 2004; de Leeuw et al., 2011) precluding reliable estimates of the 24 

direct and indirect effects by SSA in GCMs, as well as the outcome of heterogeneous 25 

chemical reactions taking place in and on SSA particles in CTMs. The wide spread of 26 

predicted SSA emissions is caused by a combination of uncertainties coming from both the 27 

magnitude and the shape factors of the used SSSFs. The uncertainties associated with the 28 

magnitude factor include difficulties of measuring W and  and their natural variability, which 29 

affects the W(U10) parameterizations. The assumptions of the discrete whitecap method 30 
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(detailed in Sect. 2.4) also contribute to the uncertainty. Added to these are the uncertainties 1 

associated with the shape factor, such as its natural variability and the model chosen to 2 

parameterize the SSA size distribution. A source of uncertainty is the difficulty of directly 3 

measuring SSA fluxes which are used to develop and/or constrain SSSFs. When 4 

measurements of SSA concentrations are used to develop an SSSF, uncertainty comes from 5 

the deposition velocity model used to convert the concentrations to fluxes (e.g., Smith et al., 6 

1993; Savelyev et al., 2014). 7 

Aside from addressing uncertainties due to measuring techniques, there are two 8 

possible ways to improve the performance of a whitecap-based SSSF as regards the physical 9 

processes involved.. One way is to address variations and uncertainties in the size-resolved 10 

productivity dE/dr80 (i.e., the shape factor in the SSSF), for instance by including the organic 11 

matter contribution to SSA at sub-micron sizes (O’Dowd et al., 2004; Albert et al., 2012) 12 

and/or by accounting for its variations with environmental factors instead of keeping it 13 

constant for all conditions (de Leeuw et al., 2011, Norris et al., 2013a; Savelyev et al., 2014). 14 

Another way is to address the variations and uncertainties in the whitecap fraction W (i.e., the 15 

magnitude factor in the SSSF) by steady improvements of the W measurements and by 16 

accounting for its natural variability. Both approaches are expected to reduce, or at least to 17 

better account for, the variations and uncertainties in parameterizing SSA flux.  18 

Here we report on a study investigating the second of these two routes, namely—how 19 

using W data, which carry information for secondary factors, would influence the SSA 20 

production flux. The objective is to assess how much of the uncertainty in the SSA flux can 21 

be explained with the natural variability of W. Our approach (Sect. 2) involves three steps. We 22 

first assess the satellite-based whitecap database to evaluate the wind speed dependence of W 23 

over as wide a range of U10 values as possible (sect. 3.1.1). In assessing the W database, we 24 

also evaluate the impact of an intrinsic correlation between W and U10, which could have been 25 

introduced in the process of estimating W from TB (SAL13) (Sect. 3.1.2). We next apply the 26 

established wind speed dependence to W on regional scales in order to gain insights into the 27 

influence of secondary factors in different locations during different seasons (Sect. 3.2). In 28 

this second step, we use the results of our regional analysis to derive a new W 29 

parameterization that incorporates the effect of sea surface temperature (SST) T on W. The 30 

new W(U10, T) parameterization is compared to those of MOM80, CAL08, and SAL13 (Sect. 31 
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3.3). The utility of the new W(U10, T) parameterization is evaluated by using it to estimate 1 

SSA emissions and comparing to previous predictions of SSA emissions (Sect. 3.4).  2 

2 Methods 3 

2.1 Approach to derive whitecap fraction parameterization 4 

Reasoning on a series of questions shaped our approach to parameterizing W and justified the 5 

choices we made for its implementation (Sect. 2.3). We first considered, Why do we need to 6 

parameterize W instead of using satellite-based W data directly? A major benefit of using 7 

satellite-based W data directly in an SSSF is that these data reflect the amount and persistence 8 

of whitecaps as they are formed by both primary and secondary forcing factors acting at a 9 

given location. This approach limits the uncertainty to that of estimating W from satellite 10 

measurements and does not add uncertainty from deriving an expression for W(U10) or W(U10, 11 

T, etc.). However, such an approach would limit global predictions of SSA emissions to 12 

monthly values because a satellite-based W data set does not provide daily global coverage; 13 

i.e., one would need data like that in Fig. 1a for at least two weeks (and more for good 14 

estimates of the uncertainties) in order to have full coverage of the globe.  15 

Alternatively, a parameterization of whitecap fraction derived from satellite-based W 16 

data can provide daily estimates of SSA emissions using readily available daily data of wind 17 

speed and other variables. Importantly, such a parameterization will be globally applicable 18 

because the whitecap fraction data cover the full range of meteorological conditions 19 

encountered over most of the world oceans. Because the availability of a large number of W 20 

data would ensure low error in the derivations of the W(U10) or W(U10, T, etc.) expressions, 21 

we proceed with deriving a parameterization for W using the data in the whitecap database 22 

(Sect. 2.2.1).  23 

The next question to consider was, How to account for the influence of secondary 24 

factors? Generally, to fully account for the variability of whitecap fraction, a parameterization 25 

of W would involve wind speed and many additional forcings explicitly to derive an 26 

expression W(U10, T, etc.) (MOM80; Monahan and Ó’Muircheartaigh, 1986; Anguelova and 27 

Webster, 2006). The SAL13 analysis showed substantial variations of W as a function of 28 

different variables, including SST. Because SST and wind speed are readily available 29 

variables, it would be useful to start with parameterization W(U10, T).  30 
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The question that arises next is, How to combine the different dependences of W? One 1 

possibility is to use a single-variable regression to extract the W dependence on each variable 2 

separately, e.g., W(U10) and W(T). Then, these can be combined to derive an expression for 3 

their effects in concert, e.g., W(U10, T) = W(U10)W(T). While variables like T, atmospheric 4 

stability, surfactants, etc. influence W, they do not cause whitecapping. So a parameterization 5 

formulated with dedicated W(T) and other expressions may put undue weight on such 6 

influences. This approach can be pursued when we have enough information to judge the 7 

relative importance of each influence (e.g., Anguelova et al., 2010, their Fig. 6) and include it 8 

in a combined expression with a respective weighting factor.  9 

Previous experience points to another possibility to combine causal variables like U10 10 

and influential variables like T and the likes. The Monahan and O’Muircheartaigh (1986) 11 

analysis of five data sets showed that the variability of W caused by SST (and the atmospheric 12 

stability) affect significantly the coefficients in the wind speed dependence W(U10), especially 13 

the wind speed exponent. The survey of W(U10) parameterizations by Anguelova and Webster 14 

(2006, their Tables 1 and 2) also clearly shows that each campaign conducted in different 15 

regions and conditions comes up with a specific wind speed exponent. This strongly suggests 16 

that the influence of secondary factors is expressed as a change of the wind speed exponent. 17 

On the basis of their principal component analysis, SAL13 also suggested that in describing 18 

the W variability, it is more effective to combine individual variables with wind speed. On 19 

this ground, we proceed to obtain W(U10, T) as a wind speed dependence W(U10) whose 20 

regression (or parametric) coefficients vary with SST. This goal can be realized by first 21 

identifying a general wind speed dependence to use as a reference, then quantifying the 22 

variations of its regression coefficients in different regions and seasons.  23 

The important question now is, What functional form should we use for the general 24 

(reference) W(U10) dependence? Equations (1)-(3) exemplify the functional forms usually 25 

employed to express W(U10): 26 

naUW 10            (5a) 27 

 310 bUaW            (5b). 28 
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A general W(U10) dependence derived using Eq. (5a) would provide an empirical wind 1 

speed exponent n determined from available data sets, as MOM80 did using the available data 2 

sets at the time (Sect. 1). The wider the range of conditions represented by the data sets is, the 3 

closer the resulting W(U10) dependence would be to average conditions globally and 4 

seasonally.  5 

A general W(U10) dependence derived using Eq. (5b) would provide a physically-6 

based wind speed exponent n = 3 consistent with dimensional (scaling) arguments. Namely, 7 

because W is related to the rate at which the wind supplies energy to the sea, W should be 8 

proportional to the cube of the friction velocity u* (Monahan and O’Muircheartaigh, 1986; 9 

Wu, 1988). On this basis, Monahan and Lu (1990) related W
1/3

 to U10 and derived the cubic 10 

power law in Eq. (5b). Subsequently, this relationship was used successfully in whitecap data 11 

analyses (e.g., Asher and Wanninkhof, 1998; CAL08). Coefficient b in Eq. (5b) is included 12 

because it is preferable for a W(U10) relationship to involve a finite y-intercept (Monahan and 13 

O’Muircheartaigh, 1986). A negative y-intercept determines b from an x-intercept and is 14 

usually interpreted as the threshold wind speed for whitecap inception.  15 

A modified version of Eq. (5) combines the merits of both formulations into the form:  16 

 nbUaW  10           (6) 17 

where the wind speed exponent is adjustable and a finite y-intercept is included. A general 18 

W(U10) dependence derived using Eq. (6) would provide a wind speed exponent as dictated by 19 

the whitecap database that is applicable to all satellite-based W data. Being representative of 20 

globally averaged conditions, this general W(U10) dependence can be applied with the same n 21 

to different regional scales and seasonal timeframes affording quantification of its variations 22 

with SST via coefficients a and b. Any of the three formulations (Eqs. (5 and 6)) can produce 23 

a viable general W(U10) dependence, the empirical one representative of the average 24 

conditions of the world oceans and the physical one supported by sound reasoning.  25 
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2.2 Data sets  1 

To implement the approach thus formulated, we use the whitecap database on a global scale 2 

for the general W(U10) dependence, and regional W subsets extracted from the whitecap 3 

database for the SST analysis. In describing the data sets used, we start with the whitecap 4 

database (Sect. 2.2.1). The considerations given to extract regional data sets from it are 5 

described in Sect. 2.2.2. We also introduce the data from the European Centre for Medium 6 

range Weather Forecasting (ECMWF) used in this study as an independent source to 7 

investigate possible intrinsic correlation among the entries of the whitecap database (Sect. 8 

2.2.3).  9 

2.2.1 Whitecap database 10 

Anguelova and Webster (2006) describe in detail the general concept of retrieving the 11 

whitecap fraction W from measurements of the brightness temperature TB of the ocean surface 12 

with satellite-borne microwave radiometers. Salisbury et al. (2013) describe the basic points 13 

of the retrieval algorithm estimating W (hereafter referred to as the W(TB) algorithm). Briefly, 14 

the algorithm obtains W by using measured TB data for the composite emissivity of the ocean 15 

surface and modelled TB data for the emissivity of the rough sea surface and areas that are 16 

covered with foam (Bettenhausen et al., 2006; Anguelova and Gaiser, 2013). Minimization of 17 

the differences between the measured and modelled TB data in the W(TB) algorithm ensures 18 

minimal dependence of the W estimates on model assumptions and input parameters. An 19 

atmospheric model is necessary to evaluate the contribution from the atmosphere to TB.  20 

Wind speed U10 is one of the required inputs to the atmospheric, roughness and foam 21 

models (Anguelova and Webster, 2006; Salisbury et al., 2013). Wind speed data come from 22 

the SeaWinds scatterometer on the QuikSCAT platform or from the Global Data Assimilation 23 

System (GDAS), whichever matches up better with the WindSat data in time and space within 24 

25 km and 60 min; hereafter we refer to both QuikSCAT or GDAS wind speed values as U10 25 

from QuikSCAT or U10QSCAT. The use of U10QSCAT in the estimates of satellite-based W is 26 

anticipated to lead to some intrinsic correlation when/if a relationship between W and 27 

U10QSCAT is sought.  28 

The W data used in this study are obtained from TB at 10 and 37 GHz, W10 and W37; 29 

data for 37 GHz are shown in Fig. 1a. The W10 and W37 data approximately represent different 30 

stages of the whitecaps because of different sensitivity of microwave frequencies to foam 31 

Deleted: Satellite-based estimates of 32 
whitecap fraction33 

Deleted: by34 

Deleted: The whitecap fraction estimates used in 35 
this study are obtained from the WindSat TB data. 36 

Deleted: The TB algorithm has been updated with 37 
physics based models for the roughness and foam 38 
emissivities (Bettenhausen et al., 2006; Anguelova 39 
and Gaiser, 2013) replacing the simple, empirical 40 
models used in the initial implementation of 41 
Anguelova and Webster (2006). 42 

Deleted: dditionally, a43 

Deleted: is used to provide the atmospheric 44 
correction45 

Deleted: for the retrieval of ocean surface TB 46 

Deleted: WindSat measurements at the top of the 47 

Deleted: WindSat measures TB at five microwave 48 
frequencies, ranging from 6 to 37 GHz. Because 49 
different microwave frequencies probe the ocean 50 
surface at different skin depths, they have different 51 
sensitivity to the thickness of the foam layer 52 
(Anguelova and Gaiser, 2011): with frequency 53 
increasing, the sensitivity to thinner foam layers 54 
increases. As a result, information on different stages 55 
of whitecap evolution can be obtained. 56 

Deleted: I57 

Deleted: only two frequencies 58 

Deleted: used59 

Deleted: ,60 

Deleted: . 61 



 

11 

 

thickness (Anguelova and Gaiser, 2011). Data W10 are a upper limit for predominantly active 1 

wave breaking (stage A whitecaps (Monahan and Woolf, 1989)) partially mixed with 2 

decaying (stage B) whitecaps, while W37 data quantify both active and decaying whitecaps. 3 

Because decaying foam covers a much larger area of the ocean surface than active whitecaps 4 

(Monahan and Woolf, 1989), W37 data are larger than W10 data. Comparisons to historic and 5 

contemporary in situ W data in Fig. 1b confirm the approximate representations of stage A 6 

whitecaps (cyan squares) and A + B whitecaps (blue diamonds) by W10 (green) and W37 7 

(magenta), respectively. Anguelova et al. (2009) have quantified the differences between 8 

satellite-based and in situ W data using both previously published measurements and time-9 

space match-ups of W and discussed possible reasons for the discrepancies.  10 

The satellite-based W data are gridded into a 0.5×0.5 grid cell together with the 11 

variables accompanying each W data point, namely U10QSCAT, T from GDAS, time (average of 12 

the times of all samples falling in each grid cell), and statistical data generated during the 13 

gridding including the root-mean-square (rms) error, standard deviation (SD), and count (the 14 

number of individual samples in a satellite footprint averaged to obtain the daily mean W for a 15 

grid cell). In this study, we used daily match-ups of W, U10, and T data for each grid cell for 16 

the year 2006. Due to large data gaps in both space and time, the daily W data cannot be 17 

interpolated to provide better coverage (Fig. 1a). Therefore, only the available data are used 18 

without filling the gaps for areas where data are lacking. This global data set was used to 19 

assess the globally averaged wind speed dependence of W. 20 

2.2.2 Regional data sets 21 

The annual global W distributions show regions with valid data points ranging from 100 to 22 

300 samples per grid cell per year when both ascending and descending satellite passes are 23 

considered. There are fewer samples for latitudes beyond 60S or N (see Fig. 1a) because 24 

WindSat and QuikSCAT have fewer matching points there (Sect. 2.2.1). Thus, different 25 

regions were selected using two criteria, namely (i) consider regions with a high number of 26 

valid data points, and (ii) obtain a selection representative of different conditions in the 27 

northern and southern hemispheres (NH and SH).  28 

With these criteria, 12 regions of interest were selected (Fig. 2) and W, U10, and T data 29 

for each region were extracted from the whitecap database. The coordinates of the selected 30 

regions are listed in Table 1, together with the corresponding number of samples and 31 
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minimum, maximum, mean, and median values for wind speed and SST for January and July. 1 

For 90% of the regional and monthly data used in the study, the percent difference (PD, 2 

defined as the difference between two values divided by the average of the two values) 3 

between mean and median values of U10 and T is less than 4% and 9.5%, respectively. With 4 

medians and means approximately the same, the U10 and T data have normal distributions; 5 

i.e., outliers, though existing, do not affect the mean values significantly. All analyses 6 

presented here use the mean U10 and T values. Figure 3 shows the seasonal cycles of the mean 7 

U10 and T values for four of the selected 12 regions visualizing the full range of U10 and T 8 

data (Table 1).  9 

Regions 2-11 are all in the open ocean, region 1 was selected for its landlocked 10 

position. Region 6 in the Pacific Doldrums is used as a reference for the lower limit of U10 11 

(Fig. 3a), while region 12 is included to represent the lowest T values (Fig. 3b). Four regions 12 

(2, 3, 7, and 8) are at latitudes between 0 and 30S and N (Tropics and Subtropics) 13 

representing the Trade winds zone with persistent (Easterly) winds blowing over 14 

approximately the same fetches (except region 8) in oceans with different salinity (Tang et al., 15 

2014) and primary production (Falkowski et al., 1998) (a proxy for surfactant concentrations). 16 

Region 4 is in the NH temperate zone representing long-fetched Westerly winds. Region 5 17 

covers the latitudes between 40S and 50S known as “The Roaring Forties” for the strong 18 

Westerly winds there, but is characterized with shorter fetch. Differences in the seasonal 19 

cycles of U10 and T in regions 4 and 5 (Fig. 3) suggest more uniform conditions and longer 20 

fetches in the SH temperate zone. We have chosen regions 8 and 9 to represent different zonal 21 

conditions and to gauge the effect of narrower range of SST variations (as compared to the 22 

SST range in region 5). Chosen at the same latitude, regions 9-11 have approximately the 23 

same SST, salinity, and surfactants but represent different wind fetches, shortest for region 9 24 

and longest for region 11. Overall, the chosen regions cover the full range of global oceanic 25 

conditions and are representative of diverse regional conditions.  26 

2.2.3 Independent data source 27 

Ideally, when deriving a W(U10) parameterization, the data for W and U10 should come from 28 

independent sources. The intrinsic correlation between W and U10 that might have arisen from 29 

the use of U10 from QuikSCAT in the estimates of W from TB (Sect. 2.2.1), might affect the 30 

relationship between W and U10 developed here. To evaluate the magnitude of such intrinsic 31 
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correlation, we used U10 from the ECMWF (U10ECMWF), which is considered to be a more 1 

independent source; note though that even the ECMWF data are generated by assimilating 2 

observational data sets (e.g., from buoys) in a coupled atmosphere-wave model (Goddijn-3 

Murphy et al., 2011).  4 

To compile this “independent” data set, we made time-space matchups between the 5 

W10 and W37 data and U10ECMWF. In this way, for each W–U10QSCAT pair from the original W 6 

database, we have a corresponding W–U10ECMWF pair of data. To speed up calculations, and 7 

because this already provides a statistically significant amount of data, we used only 8 

ascending satellite overpasses. Wind speeds above 35 m s
-1

 were discarded. Besides ECMWF 9 

wind data, for consistency we also extracted ECMWF SST values.  10 

Figure 4a shows all ECMWF wind speed data that have been matched in time and 11 

space with the available U10QSCAT data for March 2006. The majority of the data is clustered 12 

in the range of 5-10 m s
-1

. To characterize the difference between the two wind speed sources, 13 

the correlation between U10 from ECMWF and U10 from QuikSCAT was determined as the 14 

best linear fit forced through zero: 15 

QSCATECMWF
UU 1010 952.0          (7) 16 

with R
2
 = 0.844. For comparison, the unconstrained fit between U10QSCAT and U10ECMWF is also 17 

shown in Fig. 4a (dashed line); both fits are very close (they almost overlap) with almost 18 

identical correlation coefficients (R
2
 = 0.845 for the unconstrained fit). Similarly, Fig. 4b 19 

compares T from ECMWF and GDAS showing almost 1:1 correlation. That is, the two data 20 

sources provide almost the same values for T.    21 

On average, U10 from ECMWF is about 5% lower than U10 from QuikSCAT. This U10 22 

difference can be explained to some extent with the effect of atmospheric stability because 23 

QuikSCAT provides equivalent neutral wind which accounts for the stability effects on the 24 

wind profile (Kara et al., 2008; Paget et al., 2015), while the ECMWF model gives stability 25 

dependent wind speeds (Chelton and Freilich, 2005).  26 

Having the correlations between U10 and T from the whitecap database and ECMWF 27 

quantified, one can evaluate differences caused by the use of different data sources. Equation 28 

(7) could also be useful when one decides to use ECMWF data because of their availability at 29 

6 or 3 h intervals as compared to the availability of W, U10, and T match-ups twice a day 30 

(Sect. 2.2.1).  31 
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2.3 Implementation 1 

We aim to develop an expression capable of modeling both the trend of W with U10 and the 2 

spread of the satellite-based W data (see green and magenta symbols in Fig. 1b). We analyze 3 

the global data set of satellite-based W10 and W37 data and derive a general W(U10) expression 4 

that represents average wind conditions in different geographical environments (i.e., the trend 5 

of W with U10). Following Monahan and Lu (1990), we derive an expression in the form of 6 

Eq. (6) by plotting nW 1  as a function of U10QSCAT. Applying linear regression, we find an 7 

expression:  8 

cmUW n  10
1           (8) 9 

which is then rearranged and raised to the power n providing coefficients a = m
n
 and b = c/m 10 

in Eq. (6) (results in Sect. 3.1.1). All linear fits are done on the W data points associated with 11 

U10 from 3 to 20 m s
-1

. The lower limit of 3 m s
-1

 is chosen as a threshold for observing 12 

whitecaps. This restriction is reasonable in light of the SAL13 analysis in which W data with a 13 

relative standard deviation 2)/( WW  were removed. The discarded W data were about 14 

10% of all W data, mostly in regions with low wind speeds of around 3 m s
-1

. We exclude the 15 

high wind speed regime in order to avoid uncertainty due to (i) fewer data points in this 16 

regime; and (ii) anticipated larger uncertainty in the W data from the W(TB) algorithm. With 17 

the wind speed threshold imposed in this way, we propose a broader interpretation of 18 

regression coefficient b (sect. 3.1.1). 19 

For the intrinsic correlation analysis, the W–U10ECMWF data pairs are used in a similar 20 

fashion to make W
1/n

(U10ECMWF) linear fits and derive from them a relationship between the 21 

satellite-based W data and the ECMWF wind speeds. The two global W(U10) 22 

parameterizations for the two wind speed sources are then compared to evaluate the 23 

magnitude of the intrinsic correlation (results in Sect. 3.1.2).  24 

Because Eq. (7) gives the possibility to evaluate discrepancies due to the use of 25 

different sources for U10 and T, we use U10 and T from the whitecap database in all 26 

subsequent analyses and results. In this way, with the intrinsic correlation characterized, we 27 

restrict the uncertainty in our analyses by using the close matching-up of W, U10, and T data in 28 

the whitecap database. This decision is reasonable considering that both data sets can be used 29 

in practice for different applications. The collocated data in the whitecap database (involving 30 

QuikSCAT) are most handy for analysis (as done in this study). Meanwhile, W data from the 31 
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whitecap database combined with forcing data from a global model (such as ECMWF or 1 

other) are useful for forecasts and climate simulations.   2 

With n for the general wind speed dependence determined, we then apply Eq. (6) with 3 

the same n to the regional monthly sub-sets of W10 and W37 data. All available data per month 4 

were used, ranging from 22 to 31 days of data. Once again, scatter plots of W
1/n

(U10) were 5 

generated and the best linear fits were determined providing coefficients m and c for each 6 

region for each month for W10 and W37. The regional and seasonal variations of coefficients m 7 

and c, as well as a and b, are analyzed to judge to what extent these variations warrant 8 

parameterization in term of SST a(T) and b(T) (results in Sect. 3.2).  9 

To quantify how a(T) and b(T) are influenced by the functional form of the general 10 

wind speed dependence—our empirically determined wind speed exponent n (Eq. (6)) and the 11 

physically reasoned cubic wind speed dependence (Eq. (5b))—we also analyzed scatter plots 12 

of W
1/3

(U10) and derived a respective set of coefficients a(T) and b(T).  13 

We analyzed the variations of coefficients m and c with the Student's T-statistics and 14 

Analysis of variance (ANOVA) tests. The Student test verifies whether two data sets (or 15 

sample populations) have significantly different means by confirming or rejecting the null 16 

hypothesis (the default statement that there is no difference among data sets). A small 17 

significance value (e. g., p < 0.05) for any pair of regional m and c data sets would indicate 18 

that the regional means of coefficients m and c are significantly different. The ANOVA test 19 

essentially does the same but for a group of three or more data sets simultaneously. ANOVA 20 

rejects the null hypothesis if two or more populations differ with statistical significance. In 21 

this sense, an ANOVA test is less specific than a Student test. Because the ANOVA 22 

assumptions (that the data sets are normally distributed and they have approximately equal 23 

variances) may not always be true for our data, the ANOVA results were verified with the 24 

more general Kruskal-Wallis H test (referred to as H test) which does not have any of these 25 

assumptions.  26 

We quantify differences between new and previously published parameterizations 27 

with two metrics (results in Sect. 3.3): (i) the PD between W values obtained with different 28 

parameterizations; and (ii) significance tests (Student, ANOVA, and H) of the differences 29 

between W values obtained with new and previous W parameterizations. 30 
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2.4 Estimation of sea spray aerosol emissions 1 

The newly formulated W(U10, T) parameterization is applied to estimate the global annual 2 

SSA emission using SSSF of M86 (Eq. (4)). Dividing Eq. (4) by Eq. (3), we modify the M86 3 

SSSF to clearly separate the magnitude and shape factors (re-written here as Eq. (4)): 4 
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with B as defined in Sect. 1 and the timescale  absorbed in the shape factor (the expression in 6 

the brackets). The size range for M86 validity is r80 = 0.88 μm. We calculate the SSA flux 7 

for radii r80 ranging from 1 to 10 μm.  8 

2.4.1 Use of discrete whitecap method  9 

The basic assumptions of M86 for the SSSF based on the discrete whitecap method—constant 10 

values for  and dE/dr (Sect. 1)—are usually questioned (Lewis and Schwartz, 2004; de 11 

Leeuw et al., 2011; Savelyev et al., 2014). It is not expected for both of these assumptions to 12 

hold for wave breaking at various scales and under different conditions in different locations. 13 

The SSSF proposed by Smith et al. (1993) on the basis of measured size‐dependent aerosol 14 

concentrations is one of the first formulations to demonstrate that the shape factor cannot be 15 

constant. Norris et al. (2013a) also demonstrated that the aerosol flux per unit area whitecap 16 

varies with the wind and wave conditions. 17 

Recently, Callaghan (2013) showed that the whitecap timescale is another source of 18 

often overlooked variability in SSSF parameterizations based on M86. Because W typically 19 

includes foam from all stages of whitecap evolution, Callaghan (2013) suggested that the 20 

adequate timescale for the aerosol productivity from a discrete whitecap is not just its decay 21 

time (as in Eqs. (4) and (4)), but the sum of the whitecap formation and decay timescales . 22 

The value of  varies from breaking wave to breaking wave, but an area-weighted mean 23 

whitecap lifetime can be calculated for any given observational period to account for this 24 

natural variability. Analyzing the lifetimes of 552 oceanic whitecaps from a field experiment, 25 

Callaghan (2013) found that the area-weighted mean  varies by a factor of 2.7 (from 2.2 to 26 

5.9 s). We refer the reader to Callaghan (2013) for an SSSF that accounts for SSA flux 27 

variability by explicitly incorporating whitecap timescale .  28 
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Despite these questionable assumptions, the SSSF based on the discrete whitecap 1 

method in the form of M86 has been widely used in many models (Textor et al., 2006). 2 

Therefore, to those who have worked with M86 until now, a meaningful way to demonstrate 3 

how the new satellite-based W data, and W parameterizations based on them, would affect 4 

estimates of SSA flux is to hold everything else constant (e.g., the whitecap timescale and 5 

productivity in the shape factor) and clearly show differences caused solely by the use of new 6 

W expression(s) as a magnitude factor. On these grounds, the choice of the SSSF based on the 7 

M86 whitecap method is a suitable baseline for comparisons.  8 

2.4.2 Choice of size distribution 9 

Though the chosen size range of 1–10 m for SSA particles is limited, it is well justified for 10 

the purposes of this study with the following arguments.  11 

Generally, the division of the SSA particles into sizes of small, medium, and large 12 

modes (de Leeuw et al., 2011, their §8) is well warranted when one considers the climatic 13 

effect to be studied (Sect. 1). For example, sub-micron particles are important for scattering 14 

by SSA (direct effect) and the formation of cloud condensation nuclei (indirect effect), while 15 

super-micron particles are important for heat exchange (via sensible and latent heat fluxes) 16 

and heterogeneous chemical reactions (which need surface and volume to proceed 17 

effectively). However, in this study we do not focus on how the choice of the size distribution 18 

will affect the SSA estimates. Nor do we aim to present estimates of specific forcing of the 19 

climate system. Rather, with a fixed size distribution, we explore how parameterizing W data, 20 

which carry information for the influences of many factors, would affect estimates of SSA 21 

emission (Sect. 1). In this sense, we can choose to use any published size distribution as a 22 

shape factor.   23 

The chosen size range is the range of medium (super-micron) mode of SSA particles. 24 

This is the range for which the size distribution of M86 is valid (Sect. 2.4). The M86 size 25 

distribution, in its original or modified form, is widely used in GCMs and CTMs (Textor et 26 

al., 2006, their Table 3). This size range is a recurrent part of the various size ranges used in 27 

all (or at least most) SSSFs (see Table 2 in Grythe et al. (2014, hereafter G14)). 28 

The chemical composition of the SSA particles is another argument favoring the 29 

chosen size range. The super-micron particles consist, to a good approximation, solely of sea 30 

salt, whereas, in biologically active regions, the sub-micron size range additionally includes 31 
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organic material, with an increasing contribution as particle size decreases (O’Dowd et al., 1 

2004, Facchini et al., 2008; Partanen et al., 2014). Since the organic mass fraction in sub-2 

micron SSA particles is still highly uncertain (Albert et al., 2012), we focus on the medium 3 

mode SSA emissions.  4 

We evaluate the discrepancy expected due to neglecting particles below 1 μm using 5 

the G14 report of SSA production rate for dry particle diameters Dp = r80 obtained with M86 6 

over two different size ranges: 4.51×10
12

 kg yr
-1

 for the size range of 0.8 μm < r80 < 8 μm and 7 

5.20×10
12

 kg yr
-1

 for size range of 0.1 μm < r80 < 10 μm. The different size ranges bring a 8 

difference between the two G14 estimates of about 14%. Neglecting particles with r80 < 0.1 9 

μm would not change significantly the results presented here because they contribute on the 10 

order of 1% to the overall mass (Facchini et al., 2008).  11 

Because total whitecap fraction, rather than only the active breaking crests, provides 12 

bubble-mediated production of SSA, we use W37 data to estimate the emission of medium 13 

mode SSA. The calculations use a modeling tool (Albert et al., 2010) in which the W(U10) 14 

parameterization of MOM80, as integrated in Eq. (4), was replaced with the newly derived 15 

W(U10, T) parameterization (Eq. (4)). The resulting size-segregated droplet number emission 16 

rate was converted to mass emission rate using the approximation r80 = 2rd  Dp, where rd and 17 

Dp are the particle dry radius and diameter, respectively (e.g., Lewis and Schwartz, 2004; de 18 

Leeuw et al., 2011), and a density of dry sea salt of 2.165 kg m
-3

.  19 

3 Results and Discussion 20 

The graphs showing our results visualize the W data points available for wind speeds from 0 21 

to 35 m s
-1

, but all fits are valid for 3  U10  20 m s
-1

 (Sect. 2.3).  22 

3.1 Parameterization from global data set 23 

Figure 5 shows global W data estimated from WindSat measurements for March 2006 as 24 

function of U10QSCAT, at 10 GHz (Fig. 5a) and 37 GHz (Fig. 5b). For comparison, the MOM80 25 

relationship (Eq. (3)) is also plotted in each panel. There are three noteworthy observations in 26 

Fig. 5. First, we note the different variability of W10 and W37 data. The 10 GHz data show far 27 

less variability than those at 37 GHz. The W37 data at a certain wind speed vary over a much 28 

wider range, with the strongest variability for wind speeds of 10-20 m s
-1

. This supports the 29 
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suggestion that other variables, in addition to U10, influence the whitecap fraction, such as 1 

SST or wave field; SAL13 quantify this variability.  2 

Another observation in Fig. 5 is noted at low wind speeds. The 10 GHz scatter plot 3 

does not show W data for wind speeds lower than about 2 m s
-1

 because at these low wind 4 

speeds no active breaking occurs (Sect. 1). In contrast, non-zero W37 data are retrieved at wind 5 

speeds U10 < 2 m s
-1

. Salisbury et al. (2013) suggested that the presence of foam on the ocean 6 

surface at these low wind speeds could be due to residual long-lived foam. This residual foam 7 

might be stabilized by surfactants, which increases its lifetime (Garrett, 1967; Callaghan et 8 

al., 2013). Another explanation could be production of bubbles and foam from biological 9 

activity (Medwin, 1977). However, there is not enough information currently to prove any of 10 

these conjectures.  11 

The comparison of the MOM80 relationship (Eq. (3)) to W10 and W37 data clearly 12 

reveals the most important feature in Fig. 5—the wind speed dependence of satellite-based W 13 

data deviates from cubic and cubic-like relationship.  14 

3.1.1 Wind speed dependence  15 

Following the arguments of our approach (Sect. 2.1) and trying different expressions, we 16 

found that a quadratic wind speed exponent (n = 2) fits both W10 and W37 data sets best. For 17 

the same data shown in Fig. 5, Fig.6 shows the linear regression of the square root of W 18 

versus U10:  19 

011.001.0 10  UW    10 GHz         (9a) 20 

019.001.0 10  UW   37 GHz        (9b) 21 

with coefficients of correlation R
2
 of 0.996 and 0.956, respectively. From Eq. (9), we obtain 22 

the following global average wind speed dependence of W using U10 from QuikSCAT: 23 

 210
4

10 1.1101   UW          (10) 24 

 210
4

37 9.1101   UW          (11) 25 

where W is a fraction (not %).   26 

The finding of weaker (quadratic) wind speed dependence here is not a precedent. The 27 

first reported W(U10) relationship of Blanchard (1963) was quadratic. With careful statistical 28 
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considerations, Bondur and Sharkov (1982) derived a quadratic W(U10) relationship for 1 

residual W (strip-like structures, in their terminology). Parameterizations of W in waters with 2 

different SST have also resulted in wind speed exponents around 2 (see Table 1 in Anguelova 3 

and Webster, 2006). Quadratic wind speed dependence is also consistent with the wind speed 4 

exponents of SAL13 in Eq. (1).  5 

The y-intercept for W10 (Eq. (10)) is negative and, following the usual interpretation, 6 

yields a threshold wind speed of 1.1 m s
-1

 for whitecap inception. This is in the range of 7 

previously published values from 0.6 (Reising et al., 2002) to 6.33 (Stramska and Petelski, 8 

2003). Meanwhile, the positive y-intercept b for W37 (Eq. (11)) is meaningless at first glance 9 

and intriguing upon some pondering. While foam from biological sources is possible (Sect. 10 

3.1), it is not known whether such mechanism is capable of providing a measurable amount of 11 

foam patches which produce bubble-mediate sea spray efficiently.  12 

We propose broader interpretation of b in Eqs. (10-11), be it negative or positive. 13 

Generally, it is expected that the atmospheric stability (Kara et al., 2008) and fetch (through 14 

the wave growth and development) cause inception of the whitecaps at lower or higher wind 15 

speed. One can consider the range of values for b mentioned above (0.6 to 6.33) as an 16 

expression of such influences. We suggest that b can also incorporate the effect of the 17 

seawater properties on the extent of W. The net result of all secondary factors may be either 18 

negative or positive b.  19 

Specifically, we promote the hypothesis that a positive y-intercept b can be interpreted 20 

as a measure of the capacity of seawater with specific characteristics, such as viscosity and 21 

surface tension—which are governed by SST, salinity, and surfactant concentration—to affect 22 

W. Undoubtedly, none of these secondary factors creates whitecaps per se. Rather, they 23 

prolong or shorten the lifetime of the whitecaps via processes governed by the seawater 24 

properties. For instance, surfactants and salinity influence the persistence of submerged and 25 

surface bubbles. This yields variations of bubble rise velocity that replenishes the foam on the 26 

surface at different rates. Long-lived decaying foam added to foamy areas created by 27 

subsequent breaking events would augment W; conversely, conditions that shorten bubble 28 

lifetimes would reduce W (or at least not add to W).  29 

A positive y-intercept can be thought of as a mathematical expression of this static 30 

forcing (as opposed to dynamic forcing from the wind) that given seawater properties can 31 
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sustain. That is, at any given location, this static forcing acts as though higher wind speed of 1 

magnitude (U10 + b) is producing more whitecaps than U10 alone. By parameterizing 2 

coefficients a and b in terms of different variables, one can evaluate how much the static 3 

forcing affects W in different geographic regions. By developing parameterizations a(T) and 4 

b(T) (Sect. 2.1), here we quantify only one static influence.   5 

For completeness, we have also investigated the effect of either rising or waning winds 6 

on the W(U10) relationship; increasing-decreasing winds are considered as a proxy for 7 

undeveloped-developed seas (Stramska and Petelski, 2003; CAL08). The rise-wane wind 8 

effect, as detected in this study, is not pronounced compared to findings in previous studies 9 

that use in situ wind speed data. Goddijn-Murphy et al. (2011) studied wind history and wave 10 

development dependencies on in situ W data using wave model (ECMWF), satellite 11 

(QuikSCAT), and in situ data for U10. These authors detected significant effects only with in 12 

situ U10. The absence of a significant wind history effect in our study might therefore be 13 

traced back to the method through which U10 was determined: wind speeds from satellites are 14 

spatial averages of scatterometric or radiometric observations that take a snapshot of the 15 

surface as it is affected by both history and local conditions, whereas in situ data for wind 16 

speed are single point values averaged over a short time and hence representative for a 17 

relatively small area. The effect of the spatial averaging of the satellite data over a much 18 

larger area (i.e., the satellite footprint) might be that information on wind history is lost in the 19 

process. The effect of the wind history, therefore, is not further sought in this study.  20 

3.1.2 Intrinsic correlation 21 

To quantify the possible intrinsic correlation in the derived W(U10) parameterization (Eqs. 22 

(10-11)), we derived W(U10) using ECMWF wind speeds instead of the QuikSCAT wind 23 

speeds (Sect. 2.3). Figure 7 shows a scatter plot of 21W  versus U10ECMWF (only data for 37 24 

GHz are shown); dashed and solid lines show unconstrained and zero-forced fits, respectively. 25 

The linear regression (given in the figure legend) is used to obtain the global average wind 26 

speed dependence using U10 from ECMWF as follows:  27 

 210
5

37 33.3101.8   UW          (12).  28 

The positive intercept here is interpreted as in Sect. 3.1.1.  29 
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To evaluate the significance of the intrinsic correlation, we look at the change of the 1 

correlation coefficient of the W(U10) relationship when QuikSCAT winds are substituted with 2 

the ECMWF winds. Physically, we expect a strong correlation between 21W  and U10, and we 3 

see this clearly in Fig. 6b which shows a correlation coefficient R
2
 = 0.956 for 21W  and 4 

U10QSCAT. However, the correlation coefficient might not be as high as in Fig. 6 if U10 were 5 

from a more independent source. We see this when comparing Figs. 6b and 7. The 21W –U10 6 

correlation is still strong in Fig. 7, but the plot shows more scatter and slightly lower 7 

correlation with R
2
 = 0.826. This is a sign that probably some intrinsic correlation contributes 8 

to the W(U10QSCAT) relationship which, therefore, is stronger than W(U10ECMWF).  9 

The slopes in Figs. 6b and 7 differ by about 11%. We evaluate how this translates into 10 

differences in W37 values using Eqs. (11) and (12). We found the PD between W37 (U10QSCAT) 11 

and W37(U10ECMWF) to be less than  9% for wind speeds of 7–23 m s
-1

. Specifically, the W37 12 

values obtained with U10QSCAT and U10ECMWF are equal for wind speed of 11 m s
-1

. Below 11 13 

m s
-1

, W37(U10ECMWF) is higher than W37(U10QSCAT) by up to 8.8%. Above 11 m s
-1

, 14 

W37(U10ECMWF) is smaller than W37(U10QSCAT) by up to 8.4%. The difference goes up to 30% 15 

for wind speeds of 3 m s
-1

.  16 

While R
2
 values for the regressions in Figs. 6b and 7 suggest that the intrinsic 17 

correlation may contribute to these differences, this is not the only possible reason for the 18 

discrepancies. The difference of about 5% between the U10 values from the two different 19 

sources (Fig. 4a) also contributes to the W discrepancies from Eqs. (11) and (12). Of course, 20 

we have to consider these differences in the light of other uncertainties in Eqs. (11) and (12) 21 

such as the uncertainties in determining U10QSCAT and U10ECMWF and the satellite-based W data 22 

itself. We, therefore, conclude that the effect of the intrinsic correlation alone on W is most 23 

likely less than about 4%..  24 

3.2 Regional and seasonal analyses 25 

3.2.1 Magnitude of regional and seasonal variations 26 

Figure 8 shows examples of the 21W  versus U10QSCAT for different regions and seasons. 27 

Figures 8a and 8b show scatter plots for the Gulf of Mexico (region 1) at both frequencies for 28 

January 2006. Statistics are presented at the top of the figures and the fit lines are shown in 29 

red. Figures 8c and 8d show the fit lines 21W (U10) for 10 and 37 GHz in region 5 for all 30 
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months, while Figs. 8e and 8f demonstrate variations of the fit lines 21W (U10) for both 1 

frequencies over all regions for March 2006. Figure 8 shows that the variations of the 21W2 

(U10) relationships at 10 GHz are smaller than those for 37 GHz, confirming the same 3 

observation reported by SAL13 but obtained with a different analysis. Focusing on the results 4 

for 37 GHz, we note that geographic differences from region to region for a fixed time period 5 

(Fig. 8f) yield more variability in the 21W (U10) relationship than seasonal variations at a fixed 6 

location (Fig. 8d).   7 

Figure 9 shows the seasonal cycles of m and c of the 21W (U10) relationships at 37 GHz 8 

in regions 4, 5, 6, and 12. The annual variations of each curve and the variations between the 9 

curves confirm the observation from Fig. 8—the variations of m and c over the year are 10 

smaller than their variations from region to region. Figure 9 also shows that the seasonal 11 

cycles of m and c do not mimic the seasonal cycles of either U10 or T (Fig. 3). This implies 12 

that m and c are not merely scaling and offsetting the 21W (U10) relationships, as Eq. (8) 13 

suggests, but rather carry more information for the regional and seasonal influences.  14 

As anticipated from Figs. 8a, 8c, and 8e, seasonal cycles for the 10 GHz data reveal 15 

much less regional and seasonal influences (not shown). Because the 37 GHz data provide 16 

more information for secondary forcing than the 10 GHz data, the remainder of the data 17 

analysis in this study is illustrated with results for W37 data. Note, however, that all the 18 

procedures and analyses described for W37 data have been also carried out for the W10 data 19 

and some final results are reported (e.g., sect. 3.3.1).  20 

Figures 8 and 9 show that variations of 21W caused by U10 from 3 to 20 m s
-1

 are much 21 

larger than the regional and seasonal variations of 21W . While this is expected (because U10 is 22 

a primary forcing factor), this also points that we need to evaluate whether these regional and 23 

seasonal variations are statistically significant. For this, we grouped the data for m and c, as 24 

well as for a and b, in two ways: (1) by month with the full range of geographical variability 25 

(over all 12 regions) for each month; and (2) by region with the full range of seasonal 26 

variability (over all 12 months) for each region. ANOVA and H tests applied to both groups 27 

showed that the seasonal variations are not statistically significant, while the regional 28 

variations are.  29 

We illustrate this in Fig. 10 with values for b; similar graphs for m, c, and a show the 30 

same results. Figure 10a shows the seasonal cycle for the regionally averaged b values with 31 
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error bars ( one SD) representing the regional variability. It is clear that the seasonal 1 

variations of the regionally averaged b values lay within the regional variability. This suggests 2 

that variations of b from month to month are statistically undistinguishable. Figure 10b 3 

illustrates why variations of b from region to region are significantly different. The graph 4 

shows the annually averaged b values for each region with error bars representing the 5 

seasonal variability. It is clear that overall the geographical variations are not lost in the 6 

seasonal variability.  7 

Note in Fig. 10b that some regional variations might not be distinguished within their 8 

seasonal variability. For example, the annual means for regions 1, 4, 7, 8, and 9 all lay within 9 

their seasonal variability; likewise, for the annual means for regions 5, 9, and 10. To pinpoint 10 

regions with significant differences of b (as well as a, m, and c), we applied the Student test to 11 

all possible pairs of regions; e.g., region 1 paired with each region from 2 to 12, region 2 12 

paired with each region from 3 to 12, and so on to a total of 66 pairings of different regions. 13 

The Student tests showed statistically different values of b from region to region in 78% of all 14 

cases and 58% for a.  15 

3.2.2 Quantifying SST variations 16 

The results of the significance tests give a rationale for developing the SST dependences a(T) 17 

and b(T). Following the data representation in Fig. 10b, we derived a(T) and b(T) for data at 18 

37 GHz by relating annually averaged a and b values to the annually averaged T for each 19 

region (Fig. 11). Figure 11c shows the monthly means of the coefficients b for each region 20 

and thus demonstrates how the data points in Fig. 11b have been formed; a similar procedure 21 

is used for the data points in Fig. 11a. As in Fig. 10b, the error bars ( one SD) represent the 22 

seasonal variability for SST (horizontal bars) and the coefficients a and b (vertical bars). A 23 

second order polynomial is fitted to the data points in Fig. 11a; a linear fit is applied to the 24 

data in Fig. 11b. The correlation coefficients for the derived SST dependences are R² = 0.57 25 

for a(T) and R² = 0.87 for b(T). Such R² values are consistent with the expectation that SST, 26 

being a static secondary factor, affects W more via the offset b than via the slope a.  27 

To evaluate the effect of using quadratic versus cubic wind speed dependence in Eq. 28 

(8), we also derived the SST dependences a(T) and b(T) for n = 3 following the same 29 

procedure as for the case of n = 2. We applied Eq. (8) with n = 3 (Eq. (5b)) to W37 data for all 30 

months in regions 4, 5, 6, and 12; we verified that differences due to the use of four instead of 31 
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twelve regions are not significant. The absolute values of m and c increase compared to their 1 

values obtained with n = 2. Specifically, the slopes m in each of the four regions change by 2 

30% to 50%, while their regional variability (i.e., SD) increased by a factor of 3. The y-3 

intercepts c in the four regions become larger than the c values obtained with n = 2 by a factor 4 

of 4.6, with regional variability increasing by a factor of 2. However, put together, the fit lines 5 

31W (U10) in region 5 for all months and in all four regions for March 2006 (not shown) 6 

behave like those in Figs. 8d and 8f; namely, seasonal variations are smaller than variations 7 

from region to region. Coefficients a and b are calculated from the m and c values and graphs 8 

similar to those in Fig. 11 are produced. Linear fits for both a and b were applied to these 9 

graphs. The correlation coefficients for these fits are R² = 0.87 for a(T) and R² = 0.91 for b(T). 10 

The reason for the different values of m and c (thus a and b) for different n is that each 11 

set of coefficients (n, m, c) accounts for primary (i.e., U10) and secondary factors differently. 12 

When the expected cubic law is applied to regional data sets which exhibit quadratic wind 13 

speed dependences (following from Figs. 5-6), the large differences are reconciled solely by 14 

m and c; their values are therefore high. Conversely, smaller values for m and c are required to 15 

quantify regional variations when the wind speed exponent is already adjusted to follow the 16 

quadratic trend of the data. This confirms the reasoning in Sect. 2.1 that the change from 17 

cubic to quadratic wind speed exponent is a major change that the additional parameters 18 

impart on the W(U10) relationship. The question then is which set of parameters—(n = 2, m, c) 19 

or (n = 3, m, c)—better reproduce measured W data. In other words, if the wind speed 20 

exponent n is not adjusted but follows the physically determined cubic dependence, can the 21 

parametric coefficients m and c alone account for all observed variations of W? We quantify 22 

and discuss this point in Sect. 3.3. . 23 

3.3 New parameterization of whitecap fraction  24 

A new parameterization for the whitecap fraction W(U10, T) was obtained by replacing the 25 

fixed coefficients A = 110
-4

 and B = 1.9 in Eq. (11) with SST-dependent coefficients:   26 

    210 TbUTaW            (13) 27 

where  28 

a(T) = a0 + a1T + a2T
2
         (14a) 29 

b(T) = b0 + b1T          (14b) 30 

Field Code Changed

Deleted: Though noticeable, overall Fig. 5 shows 31 
small variations: the slopes of the resulting √W(U10) 32 
parameterizations for 12 months for all regions are 33 
found to be similar for all determined fits, about 0.01 34 
with a standard deviation of 3×10-4. In contrast to the 35 
slope result, the intercept (i.e., the value for W at 36 
zero wind speed, hereafter referred to as residual W) 37 
obtained with the 37 GHz W data shows strong 38 
variability (Fig. 6), with a mean value of 0.019, and 39 
a standard deviation of 0.004. These intercept 40 
variations at 37 GHz quantify the variations in 41 
absolute values of W by region and season seen in 42 
Fig.(s) 5d and 5f. The intercepts that were obtained 43 
with the 10 GHz data show much less variability 44 
with a mean value of -0.011 and a standard deviation 45 
of 9×10-4. Sampling differences between the regions 46 
(e.g., fewer samples in region 7 than in any other 47 
region) do not seem to cause significant differences 48 
between the resulting √W(U10) fits. Also, the results 49 
from region 1 do not noticeably differ from the 50 
results from the other regions, or at least are within 51 
the spread of the different results. These outcomes 52 
do not provide sufficient information to draw 53 
conclusions on effects of short fetches. These small 54 
variations in the derived wind speed dependencies 55 
across retrieval frequency, season, or location is in 56 
contrast to our expectation to reveal influences of 57 
environmental factors other than wind speed on W, 58 
in particular SST which influences viscosity. 59 
However, the high correlation coefficients suggest 60 
that U10 explains the variation in W to a very large 61 
extent. One possible explanation is that the 62 
additional influences have already been accounted 63 
for, at least partially, by using a quadratic power law. 64 

Deleted: T65 

Deleted: is, 66 

Deleted: law 67 

Deleted: the 68 

Deleted: Another suggestion might be that 69 
space and time variations of the secondary 70 
factors exist, but because they affect W in 71 
opposite ways (e.g., Monahan and 72 
O’Muircheartaigh, 1986), these influences 73 
cancel each other. Hence no further 74 
improvement can be expected by looking at 75 
effects of other factors on the variation in W 76 
explicitly, especially when the W(U10) 77 
dependence is derived from a database 78 
covering a wide range of conditions. ¶79 ...

Deleted: Therefore, whereas 10 GHz data mainly 135 
provide the wind speed dependence of W, the 37 136 
GHz data set provides information useful to quantify 137 
the influence of secondary factors on W, such as 138 
SST, the presence and amount of surfactants, or the 139 
local relaxation time of foam, depending on 140 
conditions like viscosity (Salisbury et al., 2013). ¶141 
These conditions are not only determined by the 142 
actual circumstances but also by the processes 143 
through which they developed, i.e. the history of 144 ...

Deleted: P123 

Deleted: A parameterization of W in terms of U10 131 

was obtained by averaging the W -U10 132 
relationships for each region and for all months of 133 
2006. The thus obtained relationship is similar to that 134 ...

Deleted: 7130 



 

26 

 

and the coefficients are: 1 

a0 = 8.46210
-5

  2 

a1 = 1.62510
-6

  3 

a2 = -3.34810
-8

           (14c) 4 

b0 = 3.354     5 

b1 = -6.20610
-2

   6 

The whitecap fraction is calculated with Eqs. (10-12 and 13-14) and compared to both 7 

parameterized W values and to W data. The W values from SAL13 (37 GHz) and MOM80 are 8 

used as references for PD calculations and significance tests (Sect. 2.3). 9 

3.3.1 Comparisons to W parameterizations 10 

All parameterizations shown here are run for wind speeds from 3 to 20 m s
-1

. The global 11 

quadratic W(U10) (Eq. (11)) is compared to the published parameterizations of SAL13 (at 10 12 

and 37 GHz), CAL08, and MOM80 (Eqs. (1-3)) in Fig. 12a. The PD between the global 13 

quadratic W(U10) and SAL13 at 37 GHz ranges from 0.5% to 10% over the wind speed range. 14 

ANOVA and Student tests show that such differences are not statistically significant. That is, 15 

the global quadratic W(U10) parameterization replicates the trend of the satellite-based W data 16 

as well as the SAL13 parameterization, which has a more specific wind speed exponent. Note 17 

that we do not expect our W(U10) parameterization to be distinctly different from that of 18 

SAL13 because both studies use the same W database.   19 

The PD between the trends of the global quadratic W(U10) and MOM80 W(U10) is 20 

from 5% up to 175% with the largest PDs for wind speeds below 7 m s
-1

. Though Fig. 12a 21 

shows visibly different trends from both parameterizations, they seem to fall within each other 22 

uncertainties because both ANOVA and Student tests show no significant difference between 23 

them. However, if applied for winds up to 25 m s
-1

 (Table 1), significant differences occur. 24 

That is, the use of the new global quadratic W(U10) expression brings important changes to the 25 

trend of W compared to that from MOM80 W(U10) at high winds.  26 

Figure 12b shows W values from the new W(U10, T) parameterization at three fixed 27 

SST values (T = 28, 12, and 1 C); the parameterizations of SAL13 for 37 GHz and MOM80 28 

are shown for reference. Physically (from the SST dependence of the seawater viscosity), at 29 
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the same wind speed, W is expected to be higher in warm waters and lower in cold waters 1 

(Monahan and Ó’Muircheartaigh, 1986). Figure 12b shows a more complicated behavior of 2 

W. The highest W values (green line) are for moderate SST of 12 to 20 C. At extreme SSTs 3 

(2 and 28 C, blue and red lines, respectively), the SST influence on W changes depending on 4 

the wind speed: W is the lowest in cold waters and high winds, but is higher than W in warm 5 

waters at low winds. The trends of coefficients a and b in Fig. 11 suggests that we can expect 6 

such reversal.  7 

According to Fig. 12b, changes of SST from 1 to 28 C bring relatively small 8 

variations in the wind speed trend of W, PD no more than 15%. Applying Student tests, we 9 

find that the W values at any T remain statistically the same. In addition, W values at any T are 10 

not significantly different from the W predictions of the global quadratic W(U10) 11 

parameterization. These results support the anticipated notion (Sect. 3.2.2) that by using 12 

quadratic wind speed exponent either in W(U10) or W(U10, T), we can indeed account 13 

implicitly (i.e., only via adjustment of the U10 exponent) for most of the SST (and other) 14 

influences.  15 

Figure 12c compares W values obtained with the quadratic and cubic W(U10, T) 16 

parameterizations at T = 20 C; MOM80 and SAL13 at 37 GHz are shown for reference. With 17 

p > 0.05 for any fixed T, the W values from the cubic W(U10, T) parameterization are not 18 

statistically different from those obtained with either the quadratic W(U10, T) or MOM80. 19 

Still, the different trends of the W values seen in Fig. 12c suggest that accounting explicitly 20 

for SST via a(T) and b(T) in the physically expected cubic wind speed dependence is not 21 

sufficient to replicate the satellite-based W values. That is, when using n = 3, one needs to 22 

include more secondary forcing in order to reproduce the weaker wind speed dependence 23 

from the W database.  24 

3.3.2 Comparisons to W data 25 

Comparisons to the published in situ W data demonstrate order-of-magnitude consistency of 26 

the W values from the new parameterizations. Because there are no other remotely-sensed W 27 

data except those from WindSat, the most we can do at the moment is to evaluate how well 28 

the new parameterizations can replicate the trend and the spread of the satellite-based W. 29 

Recently, W values from a global wave model were compared to W from MOM80 and 30 

WindSat by Leckler et al. (2013), so one can evaluate where modeled W values stand in the 31 
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comparison of data and parameterizations of W. All parameterized W values shown here are 1 

calculated using U10 and T from the whitecap database, i.e., U10 from QuikSCAT and T from 2 

GDAS (Sect. 2.2.1).  3 

Figure 13a compares W values predicted with both new parameterizations, W(U10) and 4 

W(U10, T), to the same in situ and satellite-based W data for 10 and 37 GHz plotted in Fig. 1b; 5 

comparisons to satellite-based W data on any other day of 2006 are the same. Once again, it is 6 

confirmed that the new global quadratic W(U10) parameterizations (black symbols in the 7 

figure) follow closely the wind speed trends of the satellite-based W data. This lends 8 

confidence in the use of the proposed quadratic W(U10) parameterization to model a W trend 9 

with secondary influences implicitly included.  10 

The W values predicted with the new W(U10, T) parameterization (red and cyan 11 

symbols in Fig. 13a) represent the spread of the satellite-based W data fairly well; tests show 12 

that they do not differ significantly. The cluster of W values are, however, statistically 13 

different from both the new quadratic and the MOM80 W(U10) parameterizations. This is the 14 

most important result of this study: when we model only the trend of W with U10, new and old 15 

parameterizations differ significantly only for extreme conditions (e.g., winds above 20 m s
-1

 16 

in cold waters, Sect. 3.3.1). In contrast, when we model both the trend and the spread of the W 17 

values, the result is a significant difference with any, new or old, W(U10) parameterization at 18 

any conditions.  19 

In Fig. 13a, one can notice that the new W(U10, T) parameterization does not predict 20 

the spread of the satellite-based W data entirely. This suggests that accounting explicitly for 21 

SST in a W parameterization is not enough to replicate all the natural variability of W. This is 22 

consistent with our general understanding of the need to explicitly include many secondary 23 

factors in W parameterizations, not just SST (Sect. 2.1). 24 

Though SST entails small variations in the trend of W with U10 (Fig. 12b), the most 25 

important consequence of the newly derived quadratic W(U10, T) parameterization is that it 26 

shapes significantly different spatial distribution compared to cubic and higher wind speed 27 

dependences like that of the MOM80. The complex behavior seen in Fig. 12b attests to this 28 

because different combinations of SST and U10 could be encountered over the globe. 29 

Meanwhile, the recreation of the spread of the satellite-based W data in Fig. 13a confirms that 30 

a W(U10, T) expression can model such situations.  31 
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Figure 13b shows a difference map between the global annual average W distributions 1 

for 2006. The MOM80 relationship yields a wider W range with higher values in regions with 2 

the highest wind speeds. In particular, this occurs between about 40 and 70 in the Southern 3 

ocean and in the North Atlantic. The latitudinal variations from the Equator to the poles are 4 

more pronounced when using the MOM80 relationship as compared to Eqs. (13-14). The new 5 

W(U10, T) parameterization provides a global spatial distribution with similar patterns, but the 6 

absolute values are lower at high latitudes and higher at low latitudes.  7 

Note that in most studies, as in this study, W(U10) of MOM80 is extrapolated beyond 8 

the range of the data from which it was derived (Sect. 1). Therefore, at higher wind speeds 9 

(and especially in cold waters), the W values that are obtained using the MOM80 10 

parameterization are somewhat questionable. At the same time, the QuikSCAT instrument, 11 

which provided the U10 satellite data used in this study, has a decreased sensitivity for wind 12 

speeds over 20 m s
-1

 (Quilfen et al., 2007). All results regarding higher wind speeds should, 13 

therefore, be handled with caution. Only continuous comparison of directly measured W data 14 

to parameterized W values can help to better constrain predictions of whitecap fraction.  15 

3.4 Sea spray aerosol production 16 

The newly derived quadratic W(U10, T) parameterization (Eqs. (13-14)) was used to estimate 17 

the global annual average emission of super-micron SSA using M86 SSSF (Eq. (4)). The 18 

total (i.e., size integrated) annual SSA mass emission for 2006 is 4359.69 Tg yr
-1

 (4.410
12

 kg 19 

yr
-1

). This is about 50% larger than that calculated with the M86 SSSF using MOM80 (Eq. 20 

(4)), 2915 Tg yr
-1

 (2.910
12

 kg yr
-1

). Because we have shown that the new quadratic W(U10, 21 

T) and MOM80 W(U10) are significantly different (Sect. 3.3.2), we infer that the SSA 22 

emissions based on SSSFs using these two parameterizations also differ significantly. The 23 

two estimates of SSA emissions are calculated using the same modelling tool (Sect. 2.4) and 24 

the same input data (Sect. 2.2.1). Without any change in the shape factor, this guarantees that 25 

the 50% difference is due solely to the explicit accounting for the SST effect on W.  26 

The spatial distribution of the mass emission rates obtained with SSSFs using the new 27 

W(U10, T) is shown in Fig. 14a. The SSA emissions obtained with the new and the MOM80 28 

W(U10) parameterizations mimic the patterns of the W distributions. The differences are 29 

mapped in Fig. 14b.   30 
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Previously modeled total dry SSA mass emissions vary by two orders of magnitude 1 

because of a variety of uncertainty sources (Sect. 1): (2.2–22)×10
12

 kg yr
-1

 (Textor et al., 2 

2006, their Fig. 1a; de Leeuw et al., 2011, their Table 1); and (2–74)×10
12

 kg yr
-1

 for long-3 

term averages (over 25 years) (G14, their Table 2, excluding 3 outliers), The impact of the 4 

modeling method used has to be acknowledged too. Grythe et al. (2014) suggest that the 5 

spread in published estimates of global emission based on the same M86 SSSF (Eq. (4)), from 6 

3.3×10
12

 to 11.7×10
12

 kg yr
-1

 (Lewis and Schwartz, 2004), can be attributed to differences in 7 

model input data and resolution differences. An example of the same SSSF yielding different 8 

results when applied in different models is also seen in the work of de Leeuw et al. (2011, 9 

their Table 1).  10 

For a meaningful comparison of our results to SSA emissions obtained with other 11 

SSSFs, we attempt to remove (or at least minimize) the impact of the modeling method. As in 12 

this study, G14 used the same model (i.e., input data and configuration) to evaluate 21 SSSFs, 13 

including that of M86, against measurements. We thus can infer a “modelling” factor using 14 

our and G14 results obtained with M86 SSSF. We find that the G14 estimate of SSA emission 15 

from M86 (4.51×10
12

 kg yr
-1

) is 1.55 times larger than our estimate of 2.910
12

 kg yr
-1

 from 16 

M86 and MOM80. We apply this factor of 1.55 to our SSA emission estimated with the new 17 

W(U10, T) parameterization and obtain a “model scaled” value of 6.7510
12

 kg yr
-1

. Our 18 

“model scaled” estimate of the SSA emission is close to the median 5.9110
12

 kg yr
-1

 of the 19 

SSA emission reported by G14. This shows that an SSSF with a magnitude factor derived 20 

from satellite-based W data provides reasonable and realistic predictions of the SSA emission.  21 

To narrow down this broad assessment, we now look at the SSSFs evaluated by G14 22 

which account for the SST effect on SSA emissions. There are four such SSSFs in the G14 23 

study (see their Table 2): S11T of Sofiev et al. (2011), G03T of Gong (2003), J11T of Jaeglé 24 

et al. (2011), and G13T of G14. To minimize differences caused by using different size 25 

ranges, we focus on S11T and G13T, both applied to dry SSA diameters Dp = r80 (Sect. 2.4) 26 

from 0.01 to 10 m. The upper limit is the same as in our study, while the lower limit is 27 

extended to sub-micron sizes, which, as we have seen (Sect. 2.4.2), introduces a discrepancy 28 

of about 14%.   29 

The original Sofiev et al. (2011) SSSF is based on the M86 SSSF (Eq. (4)) combined 30 

with data from laboratory experiments by Mårtensson et al. (2003) to account for SST and 31 
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salinity effects and a field experiment by Clarke et al. (2006) to increase the size range. In the 1 

G14 study, the salinity weight proposed by Sofiev et al. (2011) is not applied. At a reference 2 

salinity of 33 ‰, S11T estimates an SSA emission of 2.5910
12 

kg yr
-1

. Without the SST 3 

effect (the SST factor set to unity), the SSA emission estimated with S11 is 5.8710
12 

kg yr
-1

. 4 

With everything else the same except for the SST factor in source functions S11 and S11T, 5 

we evaluate that accounting for the SST effect results in changes by 56%. Correcting for 14% 6 

discrepancy due to extended lower size limit, we infer a 42% change when the SST effect is 7 

included in the SSSF. This is comparable to the 50% change due to SST in our case. We 8 

surmise that parameterizing additional influences on W is a viable way to account and explain 9 

for some of the uncertainty of SSA emissions.  10 

Grythe et al. (2014) used a large data set of ship observations to develop G13T by 11 

changing both the magnitude and the shape factors. The authors modified the SSSF of Smith 12 

and Harrison (1998) (a sum of two log-normal distributions) to add an extra log-normal mode 13 

to cover the accumulation mode. They also added the empirically based SST factor (a third 14 

order polynomial) proposed by Jaeglé et al. (2011). With G13T, G14 estimate an SSA 15 

emission of 8.9110
12 

kg yr
-1

. The functional forms of the magnitude (involving the SST 16 

effect) and shape (modelling the size distribution) factors of G13T and S11T are very 17 

different. This makes it difficult to evaluate the relative contribution of the magnitude and 18 

shape factors for variations in SSA emissions. Our results can help.  19 

The shape factors of S11T and our SSSF using W(U10, T) have a similar (not identical) 20 

functional form (that of M86, original and modified), but the functional forms accounting for 21 

SST are different. Our SSA emission estimate is about 62% higher than that of S11T. 22 

Allowing for 14% discrepancy due to the lower size limit, we find that different approaches to 23 

account for SST lead to about 67% variation in SSA emissions. Compared to G13T, our SSSF 24 

using W(U10, T) has a different shape factor (that of M86 versus log-normal), and a similar 25 

(but not identical) functional form for the SST effect (polynomial). Our SSA emission 26 

estimate is about 32% lower than that of G13T. Allowing for 14% size discrepancy, we find 27 

that different shape factors lead to about 13% variation in SSA emissions.  28 

On the basis of these assessments, we can state that the inclusion of the SST effect in 29 

the magnitude factor and/or the choice of the shape factor (size range and model for the size 30 

distribution) in the SSSF can explain 13%-67% of the variations in the predictions of SSA 31 

emissions. The spread in SSA emission can thus be constrained by more than 100% when 32 
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improvements of both the magnitude and the shape factor are pursued. Our results on the W 1 

parameterization (Fig. 13a) suggest that accounting for more secondary forcing in the 2 

magnitude factor would explain more fully the spread among SSA emissions. Because, after 3 

wind speed, the most important secondary factor that accounts for variability in W is the wave 4 

field (SAL13), efforts to include wave parameters in W parameterizations are well justified.      5 

4 Conclusions  6 

The objective of the study presented here is to evaluate how accounting for natural variability 7 

of whitecaps in the parameterization of the whitecap fraction W would affect mass flux 8 

predictions when using a sea spray source function based on the discrete whitecap method. 9 

The study uses satellite-based W data estimated from measurements of the ocean surface 10 

brightness temperature TB by satellite-borne microwave radiometers at frequencies of 10 and 11 

37 GHz, W10 and W37. Global and regional data sets comprising W10 and W37 data, wind speed 12 

U10, and sea surface temperature T for 2006 were used to derive parameterizations W(U10) and 13 

W(U10, T). The SSSF of Monahan et al. (1986) combined with the new W(U10, T) was used to 14 

estimate sea spray aerosol emission. The conclusions of the study are the following.   15 

Assessment of the global W data set revealed a quadratic correlation between W and 16 

U10 (Eqs. (10-11)). The unconventional positive y-intercept for W37(U10) could be interpreted 17 

as a mathematical expression of the static forcing that given seawater properties (e.g., effects 18 

of SST, salinity, and surfactant concentrations) impart on whitecaps. Parameterization W(U10) 19 

derived with an independent data set (U10 from ECMWF instead of QuikSCAT) helps to 20 

determine that the intrinsic correlation between W and U10 is most likely less than about 4%. 21 

The derived W(U10) for both W10 and W37 replicate the trend of the satellite-based data well 22 

(Fig. 13a). That is, the adjusted quadratic wind speed exponent in W(U10) accounts implicitly 23 

for most of the SST variations, The new quadratic W(U10) predicts whitecap fraction 24 

significantly different from that obtained with the widely used W(U10) of MOM80 only at 25 

extreme conditions (high winds and cold waters).  26 

Applying the global quadratic W(U10) parameterization on regional scale shows that 27 

the seasonal variations of its regression coefficients a and b are not statistically significant, 28 

while the regional variations are. On this basis, by relating annually averaged a and b values 29 

to the annually averaged T for each region (Fig. 11), the SST dependences a(T) and b(T) for 30 

data at 37 GHz were derived. The new quadratic W(U10, T) parameterization (Eqs. (13-14)) 31 

Deleted: The Grythe et al. (2014) S11 estimate is, 244 
as expected, close to the M86E estimate. Including 245 
temperature dependence, a lower estimate was found 246 
(S11T). In contrast, our estimate is assumed to 247 
implicitly account for temperature and salinity 248 
dependence through the W(U10) parameterization, 249 
and results in a higher estimate compared to M86E. 250 
This cannot be caused by inclusion of salinity 251 
dependence because the fixed reference salinity is 252 
that of the oceans, and including varying salinities 253 
almost exclusively includes lower salinity values, 254 
resulting in lower emission estimates. This thus 255 ...

Deleted: ¶50 

Moved up [25]: The Grythe et al. (2014) SSSF 242 ...

Deleted: .63 

Deleted:   ¶241 ...

Moved down [16]: Savelyev et al. (2014) 240 ...

Moved (insertion) [16]

Moved up [18]:  Norris et al. (2013) and 243 ...

Deleted: ¶151 

Deleted: here aimed at improving the accuracy 152 

Deleted: a 153 

Deleted: -method based sea spray source function 239 ...

Deleted: the uncertainties 156 

Deleted: approach was based on a 157 

Deleted: data set containing 158 

Deleted: two 159 

Deleted: (160 

Deleted: )161 

Deleted: together with matching environmental 238 ...

Deleted: .164 

Formatted: Indent: First line:  0.49"

Deleted:  global a165 

Deleted: to evaluate the wind speed dependence of 237 ...

Deleted: The relatively large spread in the 37 GHz 236 ...

Deleted: was 192 

Deleted: as a function of193 

Deleted:  194 

Deleted: only, as it is simple enough for global 235 ...

Deleted: TB, was evaluated by using a more 234 ...

Deleted: . The U10ECMWF values were found to be 233 ...

Deleted: on 208 

Deleted: is presumed to lie within the error 232 ...

Deleted: )211 

Deleted: parameterization. Also, the effect of wind 231 ...

Deleted: relationship was examined and was found 230 ...

Deleted: parameterization for global application 229 ...

Deleted: the 224 

Deleted: parameterization derived in this study 228 ...



 

33 

 

predicts small variations in the trend of W for different SST values (Fig. 12b). However, it 1 

replicates the variability (spread) of the satellite-based W data well (Fig. 13a). The capability 2 

of the new W(U10, T) parameterization to model both the trend and the spread of the W data 3 

sets it apart from all other W(U10) parameterizations. Results show that besides SST, one 4 

needs to include explicitly other secondary factors in order to model the full spread of the 5 

satellite-based W. Including the SST effect via a(T) and b(T) in the physically expected cubic 6 

wind speed dependence is not sufficient to replicate the trend of the satellite-based W values. 7 

Application of the new quadratic W(U10, T) parameterization in the Monahan et al. 8 

(1986) SSSF resulted in a total (integrated only over super-micron sizes) SSA mass emission 9 

estimate of 4359.69 Tg yr
-1

 (4.410
12

 kg yr
-1

) for 2006. Scaled for modeling differences (Sect. 10 

3.4), this estimate is 6.7510
12

 kg yr
-1

, which is comparable to previously reported estimates. 11 

Comparing our and previous total SSA emissions, we have been able to assess to what degree 12 

accounting for the SST influence on whitecaps can explain the spread of SSA emissions. With 13 

or without the SST effect included in the SSSF, SSA emissions obtained with the new W(U10, 14 

T) parameterization vary by ~50%. Different approaches to account for SST effect yield 15 

~67% variations. Different models for the size distribution applied to different size ranges 16 

lead to 13%-42% variations in SSA emissions. Understanding and constraining the various 17 

sources of uncertainty in the SSSF would eventually improve the accuracy of SSSF 18 

predictions. Including the natural variability of whitecaps in the SSSF magnitude factor is a 19 

viable way toward such accuracy improvement..  20 

Data availability 21 

The data analysis and the results reported in this study are available from the corresponding 22 
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Table 1. Coordinates, number of data points, range and mean value for wind speed, and 1 

range and mean value of SST of selected regions (a) for January 2006, (b) for July 2006.  2 

a  3 

 

Region 

 

  

 

Lon. 

 

Lat. 

Number 

of 

samples* 

Wind 

speed* 

[m s-1] 

    

    Range 

 

 

 

 

 

Mean 
Median 

SST* [˚C] 

Range 

 

 

 

 

 

Mean Median  

1.  86°W − 95°W 23°N–28°N 18896 1.3−15.7 7.5  7.6 19.4−26.0 23.8 24.1 

2.  1°W −  15°W 1°S – 30°S 169128 0.2−12.9 6.4  6.4 21.4−27.8 24.2 24.1 

3.  75° E − 89° E 1°S −30°S 169056 0.0−13.4 7.0  7.2 23.0−29.4 26.8 27.3 

4.  

5.  

6.  

7.  

8.  

9.  

10. 

11. 

12.  

11°W − 20°W  

86°W −100°W   

171°W −180°W 

31°W − 50°W 

140°W − 160°W 

140°W − 160°W 

0°W − 30°W 

50° E − 70° E 

180° E − 180°W 

30°N – 44°N 

31°S – 60°S 

15°S−14°N 

10°N – 29°N 

20°S − 30°S 

40°S − 50°S 

40°S − 50°S 

40°S − 50°S 

60°S − 90°S 

49760 

200360 

123328 

90640 

50040 

41840 

133080 

50784 

576576 

0.2−19.6 

0.5−23.0 

0.6−15.6 

0.3−20.0 

0.5−16.3 

0.1−20.6 

0.5−26.4 

0.5−21.6 

0.2−20.9 

 

8.0 

8.7 

8.2 

8.8 

6.8 

6.9 

9.4 

9.6 

7.0 

 7.6 

8.7 

8.2 

9.0 

6.7 

6.5 

9.3 

9.6 

6.7 

 

13.3−20.4 

4.8−24.1 

26.2−30.4 

20.1−27.9 

22.2−29.1 

9.3−18.2 

3.2−16.7 

3.2−17.4 

-1.9−8.0 

16.4 

12.7 

28.4 

24.9 

26.3 

13.2 

9.6 

9.6 

1.8 

16.3 

11.7 

28.2 

25.3 

26.6 

13.1 

9.3 

9.5 

1.4 

* For January 2006.  4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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 1 

b 2 

 

Region 

 

  

 

Lon. 

 

Lat. 

Number of 

samples** 

Wind 

speed** 

[m s-1] 

    

    Range 

 

 

 

 

 

Mean 
Median 

SST**[˚C] 

Range 

 

 

 

 

 

Mean      Median  

1.  86°W − 95°W 23°N–28°N 13848 0.4−10.0 4.5  4.4 28.7−30.5 29.5 29.4 

2.  1°W −  15°W 1°S – 30°S 189600 0.2−14.0 6.6  6.6 17.7−27.1 23.2 23.7 

3.  75° E − 89° E 1°S −30°S 195424 0.6−15.4 8.0  8.1 18.8−30.0 25.4 25.9 

4.  

5.  

6.  

7.  

8.  

9.  

10. 

11. 

12.  

11°W − 20°W  

86°W −100°W   

171°W −180°W 

31°W − 50°W 

140°W − 160°W 

140°W − 160°W 

0°W − 30°W 

50° E − 70° E 

180° E − 180°W 

30°N – 44°N 

31°S – 60°S 

15°S−14°N 

10°N – 29°N 

20°S − 30°S 

40°S − 50°S 

40°S − 50°S 

40°S − 50°S 

60°S − 90°S 

43040 

257496 

133096 

88304 

47504 

52736 

160192 

49344 

177240 

0.7−14.0 

0.7−22.7 

0.1−14.8 

0.4−13.6 

0.7−24.7 

0.5−21.0 

0.9−28.9 

1.1−28.2 

0.8−29.1 

6.7 

9.8 

6.0 

7.4 

6.9 

10.1 

10.8 

12.9 

11.7 

 6.6 

9.6 

6.0 

7.4 

6.2 

10.3 

10.8 

12.7 

11.9 

16.9−23.3 

2.5−19.1 

26.9−29.7 

23.6−28.0 

18.8−27.0 

8.2−14.1 

1.8−14.6 

2.1−16.1 

-1.3−4.3 

20.4 

9.3 

28.8 

26.0 

23.2 

10.9 

8.3 

8.3 

1.7 

20.5 

8.3 

29.0 

26.1 

23.4 

10.8 

8.3 

7.8 

1.7 

** For July 2006 3 

4 
5 

  6 
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Figure captions 1 

Figure 1. Satellite retrieved 37 GHz W data for 11 March 2006. a) Map (0.50.5) of 2 

ascending and descending passes for W at 37 GHz; b) W at 10 and 37 GHz (green and 3 

magenta symbols, respectively) compared to historical photographic data including total W 4 

(diamonds) and active whitecap fraction WA (squares). Parameterization W(U10) of Monahan 5 

and O’Muircheartaigh (1980, MOM80) (purple line) is shown for reference.   6 

Figure 2. Selected regions to determine regional variations of W(U10). 7 

Figure 3. Seasonal cycle for 2006 in different regions as defined in Fig. 2 and Table 1: a) 8 

wind speed U10; b) Sea surface temperature (SST) T. The regions represent: 4Temperate 9 

zone in Northern hemisphere; 5Temperate zone in Southern hemisphere; 6Doldrums along 10 

the Equator; 12Lowest SST. 11 

Figure 4. Scatter plot for March 2006 of (a) global U10ECMWF versus U10QSCAT and (b) global T 12 

from ECMWF versus T from GDAS. In both figures the colors indicate the amount of data 13 

points per hexabin. The black lines are linear fits: the dashed line represents unrestricted fit 14 

and the solid line a fit forced through zero. The linear regressions and respective R
2
 are listed 15 

in each panel. 16 

Figure 5. Global W as function of U10 from QuikSCAT for March 2006 where W is obtained 17 

with 10 GHz (a) and 37 GHz (b) measurement frequency. The red line indicates the Monahan 18 

and O’Muircheartaigh (1980 MOM80) relationship (Eq. (3)). The colors indicate the amount 19 

of data points per hexabin. 20 

Figure 6. Global √W as function of U10 from QuikSCAT for March 2006, where √W is 21 

obtained with 10 GHz (a) and 37 GHz (b)  measurement frequency. The black line (in both 22 

panels) indicates the best linear fit through the data. The red line in Fig. 6b equals the black 23 

line in Fig. 6a. The colors indicate the amount of data points per hexabin.  24 

Figure 7. Scatter plot of W  versus U10ECMWF for March 2006.  25 

Figure 8. Linear fits of √W versus U10 for: region 1 for January 2006 at 10 GHz (a) and 37 26 

GHz (b); region 5 for all months at 10 GHz (c) and 37 GHz (d); regions 1-12 for March 2006 27 

at 10 GHz (e) and 37 GHz (f).   28 
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Figure 9. Seasonal cycle for 2006 of regression coefficients in the √W(U10) linear fits for 1 

different regions as defined in Fig. 2 and Table 1: a) slope m; b) y-intercept c.. The regions 2 

represent: 4Temperate zone in Northern hemisphere; 5Temperate zone in Southern 3 

hemisphere; 6Doldrums along the Equator; 12Lowest SST.  4 

Figure 10. Regional and seasonal variations: a) Regionally averaged b values for each month 5 

with error bars ( one standard deviation) representing the regional variability; b) Annually 6 

averaged b values for each region with error bars representing the seasonal variability.  7 

Figure 11. Sea surface temperature dependences of a) coefficient a (slope) and b) coefficient b 8 

(intercept) in the W(U10) dependence. Each point is annual mean for different region. The 9 

error bars indicate  1 standard deviation for SST (horizontal bars) and coefficients (vertical 10 

bars). Panel c) shows the monthly means of coefficients b for each region that form one data 11 

point in panel b). Regions in Northern hemisphere (NH) are show with squares; regions in 12 

Southern hemisphere (SH) are shown with circles. The diamonds are for region 6 at the 13 

Equator.  14 

Figure 12. a) Comparison of the new global W(U10) parameterization (based on the global W 15 

data set) to parameterizations from different studies: SAL13 (10 GHz) and SAL13 (37 GHz) 16 

are parameterizations from Salisbury et al. (2013) (Eq. (1)), CAL08 are parameterizations 17 

derived by Callaghan et al. (2008) (Eq. (2)); and MOM80 is the parameterization of Monahan 18 

and O’Muircheartaigh (1980) (Eq. (3)). 19 

b) Comparison of the new quadratic parameterization W(U10, T) (Eqs. 13-14) at three 20 

fixed SST values (T = 20 C, red line; T = 12 C, green line; T = 2 C, blue line) to the global 21 

quadratic parameterization W(U10) (Eq. 11, black solid line) and the parameterizations of 22 

Salisbury et al. (2013) (Eq. (1)) for 10 GHz (dash-dotted line) and 37 GHz (dashed line).   23 

c) Comparison of the new W(U10, T) parameterizations with quadratic (Eqs. 13-14, 24 

purple line) and cubic (red line) wind speed exponents at T = 20 C to the parameterizations 25 

of Salisbury et al. (2013, SAL13) (Eq. (1)) for 37 GHz (dashed line) and Monahan and 26 

O’Muircheartaigh (1980, MOM80) (blue solid line). 27 

Figure 13. a) As Fig. 1b with W values added from W(U10) for 10 and 37 GHz (black lines, 28 

Eqs. (10-11)) and W(U10, T) for 10 (red) and 37 GHz (cyan, Eqs. (13-14)). Wind speed and 29 

sea surface temperature from the whitecap database are used for the calculations.  30 
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b) Difference map of annual average W distribution for 2006 calculated from the 1 

Monahan and O’Muircheartaigh (1980, MOM80) W(U10) parameterization (Eq. (3)) minus 2 

W(U10, T) from Eqs. (13-14) The calculations use wind speed U10 is from QuikSCAT in the 3 

whitecap database. 4 

Figure 14. a) Annual average super-micron mass emission rate for 2006 in μg m
-2

 s
-1

 5 

calculated from from Eq. (4)). b) Difference map between the annual average super-micron 6 

SSA mass emission rate calculated from the Monahan et al. (1986) SSSF and the annual 7 

average super-micron SSA mass emission rate calculated from the Monahan et al. (1986) 8 

SSSF where W is replaced with Eqs. (13-14). The calculations use wind speed U10 is e from 9 

QuikSCAT in the whitecap database.  10 
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