
 

 

Interactive comment by Ian Brooks and Dominic Salisbury: 
 
We thank our colleagues Ian Brooks and Dominic Salisbury for the thorough review of the 
manuscript and the constructive comments, which contributed to the improvement of this 
manuscript.  
 
In response, the manuscript is substantially revised with the following: 
1) Updated analysis of global W data to develop W(U10) parameterization. 
2) Extended analysis of regional W data to develop W(U10,T) parameterization with SST explicitly 
included; this was done for both quadratic and cubic wind exponents. 
3) Analysis for statistical significance (with Student’s T-statistics and ANOVA) of new and previous W 
parameterizations. 
4) Extended ‘Methods’ section to justify and clarify approach, data, and implementations. 
5) Revised and extended ‘Results and Discussion’ section to clearly describe results and give 
substantive and quantitative interpretations and conclusions.  
The table of contents of the revised manuscript is added after the responses for reference.  
Manuscript revisions with track changes are provided in a separate pdf file.  
 
Several comments and questions are similar in all 3 reviews (e.g., uncertainty not reduced, quadratic 
wind speed exponent, embedded secondary forcing, intercept interpretation). To avoid repetitions, 
we attempted combining responses to these common points in one file. We found, however, that 
one-fits-all responses do not always address the reviewers’ comments and questions fully. Thus, 
risking some repetitions, we proceeded with a specific response to each comment. 
 
Responses are presented below. The original comments are in bold italic; we enumerated those (23 
comments) for easy reference.  
 
 
General comments: 
 
1. This paper aims to improve the accuracy of sea spray source function defined via the whitecap 
method – where the source flux is defined as the product of whitecap fraction, W, and the aerosol 
produced per unit area whitecap over the lifetime of the whitecap. It aims to improve the accuracy 
of this approach by reducing the uncertainty in the parameterization of W “by better accounting 
for its natural variability”. We feel it fails to demonstrate such a reduction in uncertainty. 
 
We acknowledge that as formulated, our objective was not met. We revised Sect. 1 to introduce 
magnitude and shape factors comprising the SSSF and how uncertainties from each factor contribute 
to the uncertainty of the SSSF. This allows us to clearly define our objective as “a study investigating 
the second of these two routes, namely—how using W values carrying information for secondary 
factors would influence the SSA production flux.” 

We use comparisons between our and Grythe et al. (2014) results for SSA fluxes to examine and 

quantify variations of SSA emissions attributed to magnitude and/or shape factors. The results are in 

new Sect. 3.4. These results are summarized in the Conclusions as follows: With or without the SST 

effect included in the SSSF, SSA emissions obtained with the new W(U10, T) parameterization vary by 

~50%. Different approaches to account for SST effect yield ~67% variations. Different models for the 

size distribution applied to different size ranges lead to 13%-42% variations in SSA emissions.  

We conclude Sect. 3.4 with the following: 



 

 

On the basis of these assessments, we can state that the inclusion of the SST effect in the magnitude 

factor and/or the choice of the shape factor (size range and model for the size distribution) in the 

SSSF can explain 13%-67% of the variations in the predictions of SSA emissions. The spread in SSA 

emission can thus be constrained by more than 100% when improvements of both the magnitude 

and the shape factor are pursued. Our results on the W parameterization (Fig. 13a) suggest that 

accounting for more secondary forcing in the magnitude factor would explain more fully the spread 

among SSA emissions. Because, after wind speed, the most important secondary factor that 

accounts for variability in W is the wave field (SAL13), efforts to include wave parameters in W 

parameterizations are well justified. 

 
2. While the paper focuses on the issue of parameterizing W, it is worth noting that this is not the 
only source of uncertainty in the parameterization of the sea spray source function by this method; 
there is also uncertainty in the aerosol produced per unit area whitecap – this is inherently 
assumed here to be a constant, but is almost certainly not. A study on which one of the co-authors 
here is also a coauthor (Norris et al. (2013)) has demonstrated that the aerosol flux per unit area 
whitecap varies with the wind/wave conditions.  
 
We fully agree with Brooks and Salisbury comment and are well aware of the limitation of the 
whitecap method, specifically its basic assumptions. We included new Sect. 2.4.1 to more fully 
discuss the uncertainties coming from the whitecap method. However, the whitecap method (in the 
form of Monahan et etl., 1986, or M86) has been widely used in many models for SSA flux (e.g., 
Table 3 in Textor et al., 2006). Therefore, to those who have worked with M86 until now, a 
meaningful way to demonstrate how the new satellite-based W data and new parameterizations 
W(U10) or W(U10,T) based on them would affect estimates of SSA flux is to held constant the shape 
factor and clearly show differences caused solely by the use of the new expressions.   
 
 
3. Much of the material in the paper is very similar to that presented in Salisbury et al. (2013, 2014 
–both widely cite throughout). The authors could use this to their advantage by removing repeated 
background material, most notably in section 2. 
 
We mentioned this fact in Line 25 on p. 21225 and consciously proceeded to “briefly” describe the 
W database (as said in Line 1 on p. 21226). The comment here suggests that we should shorten 
Sects. 2.1 and 2.2 even more. We agree: Sects. 2.1 and 2.2 (72 lines) have been combined and 
revised to a shorter new Sect. 2.2.1 (41 lines).  
 

4. The recent paper by Paget et al, (2015) needs to be considered too given that it uses the same 
data set and one of its main focuses is parameterisation of satellite W. In particular, Paget et al. 
address the use of equivalent neutral winds in the satellite W database. Here, the inherent 
difference between QuikSCAT winds and ECMWF winds is an important point, and warrants more 
than a passing comment (section 4.2.1). 
 
Paget et al. (2015) didn’t derive W(U10) parameterization from the satellite-based W data. Paget et 
al. investigated and quantified variations of W values when different wind speed sources are 
employed to derive W(U10) parameterizations. Paget et al. did that by coupling in situ W data with 
in situ (thus stability-dependent) and satellite (thus stability-corrected) wind speed values, then 
analyzing how the coefficients in W(U10) expressions change. The satellite-based W database was 



 

 

used to assess differences between W(U10) expressions obtained from in situ W and different wind 
sources.  

In contrast, we used both satellite-based W data and U10 from the W database to derive 
W(U10) expression. For the revised manuscript, we extended our regional analysis to derive also 
W(U10,T) parameterization. In the revised manuscript, we cite Paget et al. (2015) in Sect. 2.2.3 
regarding stability effects on U10 data sources.  
 
Use of independent wind speed: 
 
5. A novel aspect of the paper, and a key difference from the Salisbury et al. studies, is the aim to 
assess the impact of intrinsic correlation between W and the QuikSCAT-derived U10 values used in 
the Salisbury et al papers, because the same U10 data is used in part of the W retrieval. However, 
the approach adopted fails to properly address the issue. 
To avoid the potential self-correlation of W and UQuikSCAT the simple approach would be to fit W to 
the independent measure of U10. Here the ECMWF model values, UECMWF, are adopted; however, 
instead of this, the authors fit W to UQuikSCAT (eqn 7), then fit UECMWF to UQuikSCAT (eqn 8), rearrange 
(8) and substitute UECMWF for UQuickSCAT in (7) to give (9). There are multiple problems here, both 
conceptual, and in implementation. 
 
We plot UECMWF vs. UQuikSCAT to assess how the U10 values from the two sources differ. We find this 
necessary as we comment that it is not easy to find truly independent U10 data (Lines 27-28 on p. 
21229). The small difference of 5% between UECMWF and UQuikSCAT prove this point to some extent.  
The fit between the UECMWF and UQuikSCAT (made over approximately 700 000 data points) is useful 
because a reader might have either QSCAT or ECMWF data and this fit offers an easy and reliable 
conversion between the two wind speed sources.  
 
Implementation issues: 
 
6.   1) A potentially minor issue, but in fitting UECMWF to UQuikSCAT the authors adopt a fit forced 
through zero, rather than an unconstrained fit. No justification is given for doing so. 
We did not need to give a justification because we did both unconstrained and zero-forced fits of 
UQuikSCAT to UECMWF. Both were shown in (old) Fig. 8a with dashed and solid lines, respectively. It is 
seen in the figure that the two fits are very close (almost overlap) with corr. coef. almost identical. 
The comment suggests that the closeness of the two fits should be clearly pointed out in order to be 
noticed. We do that in the new Sect. 2.2.3 and in the figure caption (new Fig. 4).  
 
7.   2) When substituting UECMWF for UQuickSCAT in (7), the authors completely neglect the scaling 
coefficient with the result that (9) is identically equal to (7) – the authors even note this 
themselves, and that it is a result of rounding the coefficients, and that the error introduced is up 
to 10%! There is no justification for doing this. In effect the authors are using the parameterization 
of W in terms of UQuikSCAT, and claiming it is in terms of an independent UECMWF. 
 
We acknowledge that this was not the best way to pursue the W(U10) parameterization. Updated 
and extended analysis of the data now provides W(U10) on a global scale and W(U10,T) derived 
from the regional analysis. New Sect. 2.3 describes the implementation of the parameterizations. 
New Sect. 3.1.1 present the updated W(U10) expression. New Sect. 3.2 shows the derivation of 
W(U10,T). Revised Sect. 3.3 compares both W(U10) and W(U10,T) to parameterized W values and to 
W data.  
 
8. As an aside, equation (8) essentially states “ax=y implies x = y/a” – this is so trivial that it really 
shouldn’t need stating. 



 

 

 
We agree. We revised Eq. (8) (new Eq. (7)).  
 
Conceptual issues: 
 
9. A serious problem here is that even if the substitution of UECMWF for UQuickSCAT was correctly done 
(no rounding of coefficients), this approach would not give an estimate of W unbiased by any 
inherent correlation with UQuickSCAT, it would simply scale the value of W0.5 by the coefficient 
relating UECMWF and UQuickSCAT. In order to achieve what the authors claim to do, W must be fitted to 
UECMWF directly. Note that the is considerable scatter between UECMWF and UQuickSCAT, thus any given 
estimate of W is likely to be paired with a different value of UECMWF than UQuickSCAT and the 
functional form of the fit may be different. 
This point essentially invalidates one of the stated aims/conclusions of the paper. 
 
The comment suggests that we did not convey clearly what we have done. So, to clarify:  
We made time-space matchups between the WindSat W data and wind speed from ECMWF. For 
each W—UQuickSCAT pair from the original W database, we have a corresponding W—UECMWF pair of 
data. These data are used to make the scatter plots in (old) Fig. 8.  

We did make direct fit between the W values and the ECMWF wind speed values (it was shown in 
Fig. 8b) and used it to obtain W(U10ECMWF). We thus have direct W(U10) parameterizations for the 
two wind speed sources.  
To address the comment, we revised the text to more clearly present the formation of 
“independent” data set (new Sect.2.2.3) and the results (new Sect. 3.1.2).  
 
Functional form of W(U10) parameterization 
 
10. When fitting W as a function of U10, the authors adopt an assumed quadratic relationship. No 
justification is given for this assumption, and it is largely unsupported by previous studies. As the 
authors themselves noted, Salisbury et al. (2013) found different power laws for W10 and W37 (U

2.26 

and U1.59) respectively for the same data set used here. 
 
We agree that we could have given a better justification of the approach that yielded quadratic wind 
speed exponent. See below.  
 
11. Cubic or quadratic forms have been forced in previous studies based on theoretical arguments. 
But these arguments are based on idealised conditions such as a wind input – wave dissipation 
energy balance. If anything, secondary factors could be expected to lead to a deviation from a 
strict quadratic or cubic dependence on U10 alone.  
 
We have the same understanding on this and fully agree with this statement.  

The presentation of our approach to parameterize secondary forcing is now extended and 
clarified in new Sect. 2.1. In it, we show that previous experience strongly suggests that the influence 
of secondary factors is expressed as a change of the wind speed exponent. This has guided our 
analysis. We didn’t choose the quadratic relationship upfront. It was suggested by: (1) the data (e.g., 
old Fig. 3), to which we tried to fit different functional forms (including cubic); and (2) our aim to 
apply the same approach to W data at both 10 and 37 GHz. So the quadratic wind speed exponent is, 
in fact, the adjustment which we expect from whatever idealized wind speed dependence there is 
(we usually assume cubic) to that dictated by the satellite-based W data. And, in accord with the 
previous experience mentioned above, this adjustment does represent some implicit account of 
secondary influences.  



 

 

The finding of weaker (quadratic) wind speed dependence here is not a precedent. The first 
reported W(U10) relationship of Blanchard (1963) was quadratic. With careful statistical 
considerations, Bondur and Sharkov (1982) derived a quadratic W(U10) relationship for residual W 
(strip-like structures, in their terminology). Parameterizations of W in waters with different SST have 
also resulted in wind speed exponents around 2 (see Table 1 in Anguelova and Webster, 2006). 
Quadratic wind speed dependence is also consistent with the wind speed exponents of Salisbury et 
al. (2013).  

To address this comment, we included justification for using wind speed exponent adjusted by 
the data in new Sects. 2.1 and 2.3. We also extended the data analysis to include parameterization 
using cubic wind speed dependence and compare it to the empirical quadratic expression. We 
report the results in new sects. 3.1.1 and 3.2.2. 
 
12. In general making an a priori assumption about the exponent in such relationships is likely to 
lead to biases over at least part of the wind speed range. Here it is evident from figure 4 and figure 
5(a,b) that the adopted function does not fit the data at either very low or very high wind speeds. 
There is no reason why the exponent should be an integer value, and it seems likely that many of 
the results and conclusions in this paper (e.g. Section 3.1.2) are a direct result of this unjustified 
choice. 
 
Quadratic W(U10) fits well W data for wind speeds from 3 m/s (whitecap inception) to 20 m/s 
(chosen to minimize uncertainty of satellite-based W data at higher winds). In the updated analysis 
all fits are done for this range (new Fig. 8).  

The quadratic wind exponent represents well the weaker wind speed dependence of the 
satellite-based W data. We show this in new Fig. 13a described in new Sect. 3.3.2. This confirms that 
the quadratic wind exponent is the deviation we expect due to secondary factors. We have checked 
with Student’s T-statistics and ANOVA tests that indeed quadric W(U10) parameterization is not 
statistically different from the SAL13 W(U10) parameterizations with more specific wind exponents.  
 
13. The authors state (p21232, line 5) that “The √W(U10) values at 10GHz for wind speeds below 3 
m s−1 were discarded in the analysis because, as shown in Fig. 4, the linear relationship breaks up 
at about this wind speed” – the fact that a portion of the data doesn’t fit a functional form that 
has been chosen without justification is not a good reason for discarding it. This is tantamount to 
cherry picking data that fits a pre-conceived idea. The fact that the data doesn’t follow the chosen 
function is evidence that the function is not appropriate. 
 
Yes, we state this in Line 5 p. 21232. And we continue in the next sentence to state that either 
discarding or taking into account these data points, does not significantly influence the position of 
the linear fit.  

Discarding W data for wind speeds below 3 m s-1 is something we all usually do because we all 
recognize that this is the wind speed threshold for whitecap formation in most conditions (of course, 
the threshold wind speed vary). Moreover, in Line 10 on p. 21243, we give justice to SAL13 that they 
more carefully evaluated the W data to be used in their study by discarding those with large std. 
deviations. Coincidently, most of these discarded W data were for wind speed below 3 m s-1.  

More generally, it is well known that W data, whether in situ or satellite-based, have the largest 
uncertainty at both low and high winds. Following faithfully their trends at these wind speed regimes 
is not always productive. We thus introduce the range of wind speed from 3 to 20 m/s used for all 
fits (new Sect. 2.3). So there is no cherry picking of the data here to fit pre-conceived idea, rather we 
follow a reasonable and well established practice of quality control of W data.  
 
Regional W distributions 
 



 

 

14. The analysis of W(U10) functions by geographical region is a potentially interesting and useful 
approach. Both this study and Salisbury et al. (2013, 2014) note the significant difference between 
global maps of W parameterized from this data set and by Monahan and O’Muircheartaigh 
(1980). The prime reason for that difference is that the Monahan and O’Muircheartaigh (1980) 
study used tropical data only, and thus represented a specific wind/wave/water-temperature 
regime, and further with a maximum wind speed of order 17 m s-1, much lower than common high 
wind speeds at high latitudes. Monahan has emphasised that this is a regionally specific function, 
but its widespread adoption in models means it commonly gets applied globally, and at wind 
speeds well above its range of validity. 
 
We fully agree with this statement. We state similar understanding in Lines 9-12 on p. 21242.  
The revised manuscript has this information too—in Sect. 1 and the end of Sect. 3.3.2.  
 
15. The different functions obtained here for different regions should similarly represent different 
wind/wave regimes, and the influence of other environmental factors such as sea surface 
temperature (SST), surfactant concentrations, etc. This point is touched on, but then the various 
functions are simply averaged to give a single ‘globally applicable’ function. In fact, as is 
demonstrated by the differing regional functions, this single function is not truly globally 
applicable at all – although the bias in any given region may be modest, it will be a mean bias, not 
random variability, and hence potentially significant in terms of global budgets. 
 
We agree. With the extended significance analysis, we found that the slopes and intercepts of the 
regional √W to U10 fits are statistically significant; the seasonal variations are not. New Sect. 3.2.1 
presents these results; we illustrate the results with Fig. 8 (old Fig. 5) and two additional new figures.  
 
16. The analysis and discussion of the regional/seasonal relationships seems superficial, and 
perhaps misleading. The authors suggest that the smaller variability in fits with month of year in 
region 5 vs that between all the different regions for the month of march implies “extreme yet 
sporadic seasonal values of the major forcing factor such as U10 at a given location contribute less 
to the W variations than varying environmental conditions from different locations” – but the 
comparison is of dissimilar effects. The regional differences result from differences in mean 
conditions (wind/wave regime, SST, surfactant concentrations,...), whereas ‘extreme yet sporadic’ 
events will by their nature affect only a small fraction of the data points. Further, region 5 is not 
necessarily representative of other areas; figure 6 indicates that region 4 (North Atlantic) has a 
much larger seasonal cycle than other regions, while region 6 (tropical) has very little seasonal 
cycle. The statements cited above thus draw rather general conclusions from a small, and not 
necessarily representative, subset of the data. 
 
The “extreme yet sporadic” text is now removed. Analysis is now extended for 12 regions in order to 
cover the full range of global oceanic conditions and represent diverse regional conditions. New 
Sect. 2.2.2, updated Fig. 2, and additional Fig. 3 describe the regional W data sets.  
 
 
17. The analysis of regional/seasonal variations presented in figures 6 and 7 seems a curious 
approach. 
Only the intercepts of the linear fits of √W37 to U10 are examined – these are effectively the mean 
offsets in √W37 between regions & month of year, the value of √W37 at U10 = 0. As noted above, the 
fits do not represent the data well at low wind speeds, the intercepts thus greatly overestimate W 
at U10 = 0 – theoretically W should be zero here. 
The justification given for examining the intercept only is that the intercepts show more variability 
than the gradients (according to the values given the standard deviation of the gradients is ~3% 



 

 

and that of the intercepts about 20%). We would question the validity of this. Note that when the 
linear fits of √W are expanded to give W, the gradient scales U2 while the intercept affects the 
mean offset and U. As an example we reproduce figure 5f below, with the two fits with extreme 
gradients highlighted in black and green. For reference the black line is copied as a dotted line with 
its intercept adjusted to match that of the green line, allowing the relative influence of intercept 
and gradient to be assessed – clearly they have a similar overall impact. 
 

 
 
We agree that the initial regional analysis was incomplete. The new analysis is on both slopes and 
intercepts, for both 10 and 37 GHz, applied to all 12 regions for all months with both the adjusted 
quadratic and the physical cubic relationships. New Sect. 2.3 describes the implementation of the 
analysis. New Sect. 3.2.2 gives results for quantifying the SST effect. Parameterization W(U10,T) is 
developed as a quadratic (or cubic) wind speed dependence W(U10) whose coefficients vary with 
SST; this is justified in new Sect. 2.1.  
 
18. It is easier to see the true impact if we plot W instead of √W.  
 



 

 

 
 
The black and green curves are as in figure 5f above, the difference in gradient more than 
compensates for the difference in intercepts. More dramatic is the comparison with the red line- 
the ‘global’ function given as eqn 7: √W = 0.01U10 + 0.02. It is clear here that this ‘global’ function is 
far from representative of some of the individual regions for specific seasons. 
 
These equations are now updated (new Eqs. (11-12)). The two new parameterizations, W(U10) from 
the global data set and the W(U10,T) from the regional analysis, are much closer, almost 
overlapping. Student’s T-statistics and ANOVA tests show them to be statistically not different. Note 
that this is so for the trend of W with U10 shown in figures like the one above. The new W(U10) and 
W(U10,T) parameterizations give statistically different results when used with real U10 and T data 
because W(U10,T) is capable to model the spread of the W data while W(U10) only the trend.  
 
 
19. In their discussion of the variations in gradients the authors give a rather vague description of 
why they believe the gradients vary little between regions, suggesting first that the use of a 
quadratic fit somehow accounts for the influence of secondary environmental forcing factors, 
which is clearly not possible, then suggesting that maybe multiple environmental factors cancel 
each other out, which is plausible but pure speculation without any evidence provided. In the 
discussion of the intercepts of the fits the authors then contradict the earlier claims by suggesting 
that the gradient accounts for the wind-speed dependence and the other environmental factors 
are accounted for by the intercept. Again, it is plausible that environmental factors such as SST or 
surfactant concentration would affect the mean offset in W37 but no evidence is presented to 
support the claim here. 
 
Though the action of secondary factors in opposite directions, and thus cancelling out effects, is 
viable (Monahan and O’Muircheartaigh, 1986; Scott, 1986, The effect of organic films on water 
surface motions, in Oceanic Whitecaps, edited by E. Monahan and G. Niocaill, pp. 159–166), we do 
not use this idea anymore because we cannot show this with our data.   

As said above (comments 11 and 12), the quadratic wind exponent is the adjusted 
(empirical) wind exponent dictated by the satellite-based W data, so it represents a deviation from 
physical cubic due to secondary factors. We now prove that quadratic W(U10,T) replicates the 
satellite-based data well, while cubic W(U10,T) cannot. We present extensive discussion on this with 
two new figs. 12 and 13 in new sects. 3.3.1 and 3.3.2.  



 

 

As for the intercept, we revised the manuscript to introduce the currently accepted 
interpretation of negative y-intercept (Sect. 2.1). Then in Sect. 3.1.1, we propose broader 
interpretation of the y-intercept in W(U10) expressions, be it negative or positive. Briefly, we 
promote the hypothesis that positive y-intercept could be interpreted as a measure of the capacity 
of seawater with specific characteristics, such as SST (thus viscosity), salinity, and surfactant 
concentration, to affect the extent of W. These secondary factors do not create whitecaps per se. 
Rather, they prolong the lifetime of the whitecaps thus contribute to W by altering the 
characteristics of submerged and surface bubbles such as stabilization and persistence by 
surfactants or rise velocity variations that replenishing the foam on the surface at different rates. 
These processes ultimately augment or decrease W and the y-intercept can be thought of as a 
mathematical expression of this static forcing (as opposed to dynamic forcing from the wind). In this 
light, our data showing negative y-intercept for W values at 10 GHz is consistent with our and SAL13 
analysis that active whitecaps are less affected by secondary factors. However, secondary factors do 
affect strongly residual whitecaps and the positive y-intercept for our W values at 37 GHz can be 
interpreted and used to quantify this static influences. This is a hypothesis which is worth promoting 
for consideration, debate, and further verification by the community. 
 
20. A relationship with SST is claimed from figure 7, where time series of the intercepts of monthly 
mean fits of √W37 to U10 are plotted by region, along with similar time series of monthly mean 
SSTs. The authors claim an inverse relationship between the intercept and SST. This is (we 
presume) inferred by the progression of increasing SST from regions 5 → 4 → 6 and the 
corresponding decrease in intercept between the same regions (in a mean sense, there are 
individual points that do not follow the trend). However, this assumes all the differences between 
regions are a result of SST, and does not allow for the co-variation of, for example, SST and 
biology, and hence surfactant concentration, or of SST with latitude and hence wind/wave regime. 
Also, it is hard to determine anything but the most general relationship from a plot of overlaid 
time series. If you want to determine the relationship between the intercepts and SST, plot a 
scatterplot of intercept (y axis) against SST (x axis) and look for a functional relationship. 
 
We now plot the slopes and intercepts of the W(U10) relationships in all regions and for all months 
as a function of SST (new Fig. 11). From these plots we derive expressions for the SST variations of 
the coefficients in the W(U10) dependence. The figure shows the inverse relationship between the 
intercept and SST. 

Agree, we cannot account for the interplay between the secondary factors in different 
regions with the data we use in this study. However, with new Fig. 13a (in new Sect. 3.3.2) we show 
that including SST in the W parameterization explains only part of the spread/variability of the 
satellite-based W data. This suggests that besides SST, other secondary factors have to be included 
explicitly to fully replicate the variability of the satellite-based W data.  
 
 
Aerosol Flux 
21. The whitecap method for parameterization of the sea spray source flux is built upon the 
premise that W can be used as a scaling factor. That is, for a given shape function (the size-
resolved interfacial flux from a unit area whitecap), any change in the production flux is linearly 
related to the change in W. Though it has been noted that this premise is likely to be incorrect 
(Norris et al. 2013), given the need for relatively simple parameterisations of SSA production rates 
in global climate and aerosol models, the community is not yet at the stage where the whitecap 
method can be developed to reflect this fact.  
 
Therefore in presenting new globally-averaged estimates (or global maps) of SSA emission rates 
calculated via the whitecap method (in its current form), little new information is gained.  



 

 

 
We respectfully disagree with this comment because we consider as an important result the fact 
that our SSA estimates have quite a different spatial distribution thanks to the satellite-based W 
data. To demonstrate these differences, the widely used whitecap-based SSSF in this form is a useful 
baseline for comparison; we justify this in new Sect. 2.4.1 (see also comment 2). Also, with our and 
previous results, we were able to examine and quantify the variations of SSA emissions attributed to 
magnitude and/or shape factors in the whitecap-based SSSF (see comment 1).  
 
 
22. One could argue that it is worthwhile comparing the resulting new estimates of globally-
averaged SSA production rates with those of previous studies, but often these estimates simply lie 
somewhere within the large spread of previous estimates, and no further illuminating conclusions 
can be deduced.  
 
That SSA emission inferred by our new parameterization is within the range of previous estimates of 
SSA emissions shows that our modified SSSF gives consistent estimates. Certainly, we do not want to 
be an outlier among SSA emission estimates, especially knowing their large spread. Again, what is 
more important is that the spatial distribution of this total SSA emission is significantly different from 
those of previous SSSF predictions. And, again, our estimates of the total SSA emission proved useful 
to evaluate variations due to magnitude and/or shape factors in the SSSF (see earlier comments 1, 2, 
and 21).  
 
23. All the new and novel information is contained within the new W estimates and their spatial 
variation (Figure 9). Figure 10, therefore, adds little to the paper, especially when followed by the 
difference map [Figure 11]). We suggest that maps of the difference (bias) between W from the 
new parameterisation and those obtained from a previous parameterisation are more easily 
interpretable. 
 
Salisbury et al. (2014) show global maps of the new satellite-based W data. Old Figs. 9 and 10 
showed global maps from W parameterizations, not W data. In our view, it is informative for the 
readers to see global maps of W and SSA with the absolute values obtained with the new W(U10) 
parameterization.  

Still, we agree that difference maps for W and SSA with reference values from MOM80 and 
M86, respectively, is a more informative and focused way to demonstrate differences. So Fig. 9 (new 
Fig. 13b) is revised to show difference between W from MOM80 and W from our quadratic 
W(U10,T). Old Figs. 10 and 11 are combined in a new Figure 14 with top panel showing SSA from the 
M86 SSSF using our quadratic W(U10,T), and lower panel showing difference map with M86 SSSF 
using MOM80 W(U10).  
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