Theoretical study of mixing in liquid clouds.

Part 1: classical concept |
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Abstract

considers final stages of in-cloud mixing in the framework of classical concept of homogeneou

and extreme inhomogeneous mixing. Aralytical-expressiens-Simple analytical relationships betwee

basic microphysical parameters were obtained for homogeneous and aumericalsimulation)

ofextreme inhomogeneous mixing based on the adiabatic consideration. It was demonstrated thg
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during homogeneous mixing the functional relationships between drepletconcentration,extinctiop
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coefficientliquid-water contentand-mean-volume-dropletthe moments of the droplets size fermedgt Formatted: Font: Times New Roman, 12 pt

thefinal- distribution hold only during primary stage of mixing-are-presented-—The-expressions-are!.

Subsequent random mixing between already mixed parcels and undiluted cloud parcels break|

B

these relationships. However, during extreme inhomogeneous mixing the functional relationship

]

between the microphysical parameters hold both for primary and subsequent mixing. The obtaine

relationships can be used to identify the type of mixing fesfrom in- situ observations-ebtained-. Th

effectiveness of the developed method was demonstrated using in-situ data collected jn convectiv
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clouds. Fheanalysissuggestslt was found that for the specific set of ebservations-investigated-here;in-
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situ measurements the interaction between cloudy and entrained environments iswas dominated b
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39 4 1 Introduction « Formatted: Indent: First line: 0.75 cm, No bullets or
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40 Turbulent mixing is an important non-adiabatic process in the atmosphere that to a large extent Don't adjust space between Asian text and numbers

41  determines spatial gradients of many thermodynamic (e.g. temperature, humidity) and clougl (Formatted: Fo: Tmes New Romn, 12 p )

42 microphysical parameters (e.g. hydrometeor concentrations, extinction coefficient, condensed

43 water content) and as such, needs to be properly described in numerical simulations of clouds angl ( Formatted: Font: Times New Roman, 12 pt )

44  weather predictions. Entrainment and mixing occurs during the entire lifetime of a cloud and is

45 active not only near cloud edges, but it is important throughout the whole cloud volume. Mixing

46 of cloudy and entrained air results in changes to the shape of the droplet size distribution through

47  partial droplet evaporation and can also lead to changes in droplet concentration through complete

48  evaporation of some fraction of droplets: and dilution. The shape of the droplet size distributiop ( Formatted: Font: Times New Roman, 12 pt )

49  plays key role in the initiation of precipitation and radiative properties of clouds.

50 The treatment of mixing in numerical simulations of clouds and precipitation formatiop

51 remains a challenging problem. Besides the issues related to the way to describe mixing in

52 numerical schemes, there is a fundamental problem of identifying a scenario or path, that mixing

53  events should follow. sineeThrough, the pioneering works of Latham and Reed (1977) and Bakefr ( Formatted: Font: Times New Roman, 12 pt ]

54  etal. (1980) two explicitly alternative scenarios of mixing were identified. In the first scenario the

55  turbulent mixing rapidly stirs the environment urifyinghomogenizing, the fields of temperature angl ( Formatted: Font: Times New Roman, 12 pt ]

56 humidity. AfterFollowing, that, all of the droplets undergo partial evaporation under the samg ( Formated: Font: Times New Roman, 12 pt )
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57  conditions. The result of this mixing is theg droplet population with reduced sizes, but theirg totgl ( Formatted: Font: Times New Roman, 12 pt )

58  amewntnumber that remains unchanged. This type of mixing is referred to as homogeneous. In the ( Formatted: Font: Times New Roman, 12 pt )
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59  second scenario; mixing occurs more slowly such that the population of droplets experiences ( Formatted: Font: Times New Roman, 12 pt )

60  different amount of sub-saturation. Some number of droplets completely evaporates, while others ( Formatted: Font: Times New Roman, 12 pt ]
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that, turbulence mixes the rest of the droplets with the saturated, but droplet-free environment.

During this type of mixing the size of droplets remains unchanged; however, thei

eeneentrationtotal number is reduced. This type of mixing is called extreme _jnhomogeneous. Th

intermediate case when some fraction of droplets evaperateevaporates partially, theanother, othe
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fraction evaporates completely, and theg third fraction remains witheut-ehangesunchanged is i

some works referred to as inhomogeneous (e.g. Baker and Latham, 1980).

The conditions for homogeneous and_extreme, inhomogeneous mixing and their effects o

Il

precipitation formation have been debated in cloud physics over forty years. There are a numbe
of numerical simulations and theoretical efforts on studying different aspects of mixing and it

effect on cloud microphysics (e.g. Baker and Latham, 1982; Jensen and Baker, 1989; Su et al-

{a

1989; Lasher-Trapp et al-., 2005;; Jeffrey, 2007; Andrejczuk et al-., 2009;; Kumar et al., 2013;

Jarecka et al, 2013 and many others). A comprehensive review of the works on the effect o
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turbulence and mixing on cloud drepletsdroplet formation can be found in Devenish et al. (2012).

A number of studies were dedicated to identifying type of mixing based on in-sit

observations. Most of the previous is-situ—0bservations prevideprovided, evidence supportin

i

inhomogeneous mixing (e.g. Hill and Choularton, 1985;; Paluch, 1986; Bower and Choulartor

1

1988; Blyth and Latham, 1991; Gerber et al-., 2008, Lu et al. 2011; Beals et al. 2016). However

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

works of Jensen and Baker (1989), Paluch and Baumgardner (1989), Burnet and Brenguier (2007
Lehmann et al. (2009)suggest), Lu et al. (2011) suggested, occurrence of homogeneous mixing. Sd

at the moment it appears that both types of mixing may occur in liquid clouds. However, th

environmental conditions resultingfrerrgoverning, one or the other type of mixing remain not we

understood. |

Early experimental work on identifying type of mixing from in-situ observations were base

on the analysis of spatial variability of the shapes of individual droplet size distributions (e.g.

Paluch and Knight, 1984; Paluch, 1986;;, Bower and Choularton, 1988). Hewever—theTh
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effectiveness of this method involving the analysis of everlyg large number of individual siz

spectra turned out to be quite low. Another technique utilized expected functional relationship

between droplet concentration (N-}(N), and droplet radius{-)-whichisdiameter (D), specific to eac

type of mixing. Thus, during extreme inhomogeneous mixing the droplet size is expected to remai

unchanged, whereas the concentration will vary. Hewever-duringDuring homogeneous mixing th

droplet size and concentration in cloud will be related to each other in a certain way, depending o
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Fhe-differencebetween-these-twoe-Based on mass and energy conservation considerations thg

final state of the bulk parameters (i.e. liquid water mixing fraction, humidity, temperature, etc.) is

the same for both types of mixing-is-asfelews:. However, in the case of extreme jnhomogeneous
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mixing the-gaturation is reached through complete evaporation of some fraction of droplet,

whereasand their sizes remain constant. {a\Whereas in case of homogeneous mixing the-saturatiop

is reached through a uniform evaporation of droplets, whereasand, the total number of droplets |

=

—

the-diluted-parcel-remains unchanged. It should be noted, that in both cases efmixing-the droplg

concentration decreases due to dilution by the entrainedmixed droplet free sub-saturated -parcel.

The following discussion will be specifically focused aton the microphysical properties

formed at the final stage of the homogeneous and extreme inhomogeneous mixing. The processes

occurring during mixing state (i.e. transition la—2a and 1b—2b in Fig._1) remain outside the
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frame of this work. Following the formalism of homogeneous and_extreme, inhomogeneoup

mixing, the process of mixing reaches the final stage when (1) the entrained and cloud environment

environmental (F5e4(T, S, e, etc.) parameters approach to zero; (2) the diffusional process

related to droplet evaporation comes into equilibrium. The second condition is completed when
(a) the environment reaches saturation state, or (b) the entire population of droplets is completely

evaporated, if the mixedentrained air is teesufficiently dry.
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idealized._Actual in-cloud mixing does not occur as a sequence of discrete events (Fig.1) that ( Formatted: Font: Times New Roman, 12 pt
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Breidenthal (1982) summarized the experimental evidence and proposed the following description
of mixing in turbulent shear layers. Mixing takes place in a series of events. Two shear layers
exchange mass by engulfing parcels from an opposite layer into localized zones. The initially
large-scale filaments of the two gases break down towards smaller scales due to the action of
turbulence. The turbulence stretches the interface between the gases and enhances the molecular
diffusion across the increasing surface. The actual mixing of the engulfed volume is a molecular
diffusion process that is most effective after the break down volumes reduce to the Kolmogoroy
viscosity scale. |t is anticipated that the reaction of the ensemble of droplets-frem-entrainment is B
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over the other depending on the characteristic spatial and time scales of the environment

determined by turbulence, cloud microphysics, state parameters and stage of mixing.,
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2.2, Methodology,

The foregoing discussion will be focused on mixing between saturated cloud parcels and out

of-cloud sub-saturated air. The cloud parcel contains droplets with menredisperseradius+;averag

113

diameter D, liquid mixing ratio 6;-q, and number concentration-Ng-_N;. The initial temperaturg

in the cloud parcel is FT;, relative humidity -S-=%RH; = 1, where S=e/E{F){Fhe-RH =+

e/es(T)_(the explanation of variablesvariable notations is provided in Appendix-ATable 1). The

second parcel is droplet free {N=#0+(N, = 0), sub-saturated with initial relative humidity -S;—<%

RH, <1 and temperature¥;-_T,. The mixing occurs isobarically, i.e. during-rmixingp=constp +

const, At the endfinal stage, of-the mixing the temperature and humidity formed in the resultin

parcel are F—T and -S——AppendixB}:-RH (appendix A). The process of mixing is completed whep

complete evaporation of droplets. In the latter case the final humidity is -S—<%-RH < 1. The effeqt

of the vertical velocity and vertical travel efthe-mixing-parcels-on-temperatureT——humidity S—0N
final T, RH, and eondensed-water-g-q is not considered here, i.e. vertical velocityt—=0-u, = (.

Without the loss of generality the masses of the cloudy and sub-saturated volumes prior to the

mixing are assumed to have a unit masses, i.e. fir==%tm; = 1 andf;=%_m, = 1, The mixing
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process will be considered as mixing of the-u fraction of the cloud velumeparcel with the{I—4)

(1 — p), fraction of the second (sub-saturated) welumeparcel. The mixing cloud fraction is
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ehangingmay vary within the range of 8-=x+=+0 < p < 1, Therefore, the mass of the resulting

mixed parcel is equal tomge——{E—zf;==%.m,u + (1 — u)m, = 1. This approach simplifies

\

the consideration of mixing and allows considering all possible proportions of the mixing of twp

volumes.,

2.3 Effect of mixing on liquid water and temperature
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The mixing ratio of liquid water g_formed at the final stage of mixing is determined by the

mass of the mixing cloud water pq, and amount of evaporated water required to saturate the newl

formed mixed volume &0, . The mass balance of liquid water for the mixing volume yields

q:ml_&]m ) (1)
where
es(TmO)Ra\L2
¢, RT? " pe RIT? S
&m: p Lz mo0 In p pa’ ‘v mOR L2 ~_ mo (2)
1+ Rng es(TmO)2 a2 AZ
pcpaRvaO

is the mixing ratio of liquid water required to saturate 1kg of volume with temperature T;,,,_ang

humidity RH,,,_(appendix A); Ty,0. RHpmoand S, . are the temperature, relative humidity formed

and supersaturation formed in the volume after instantaneous air mixing, but before droplets stait

evaporating (appendix A); eg(T,0)_iS Saturation vapor pressure at temperature Tyy,.

142

Eq. (1) is a non-linear function of p, since T, emo_and thus &9, depend on u. Eqg.(1) can b

simplified, if T, = T,. In this case Ty,o = Ty = Ty, and eg(Tyo) = es(T1) = es(T,). Given that,

the expression under logarithm in Eqg.(2) can be expanded in series resulting in (appendix B)

&, = (- p)& (3)
where
& (TR,
RT? * RT?
&]*:vazln pcpavz ;_i (4)
U, SRU A
2 pcpaszTZZ

is the mixing ratio of liquid water required to saturate 1 kg of the entrained dry air. Substituting
Eq.(3) in Eq.(1) gives

q= sy —(1- p) . (5)

The value of §q*_does not depend on y, and Eqg. (5) is a simple linear function of u. The

comparisons with numerical simulations showed, that Eq.(5) provides accuracy within few

percent, when the temperature difference |T; — T,| < 2°C..Although, in many cases |T; — T,|.may
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vary a wide range reaching 10°C or higher, clouds with |T; — T,| < 2°C_are quite common.

Therefore, for the sake of simplicity, Eq.(5) and the assumption T; = T, _will be used in th

following consideration of mixing.

It should be noted that, Egs (1) and (5) are valid for the cases, when p > u.,.. Here p,. i

critical mixing fraction, which separates partial and complete evaporation of cloud water in th

a7

mixing volume (section 2.4). Cases when p < p.,.correspond to complete evaporation of dropletd

1

andq = 0.

The temperature at the final stage of mixing can be estimated as (appendix C)

T=T., —w, when u > i, (6a)

Cra

g

Cpa

when u < pe, (6b)

Egs.- (1), (5), (6) were obtained based on mass and energy conservation, and they do ng

( Field Code Changed

( Field Code Changed
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)

depend on how mixing proceeds. Therefore, Egs. (1), (5), (6) are valid for both homogeneous an

inhomogeneous mixing.

2.4 Complete evaporation

As mentioned in section 2.2 the process of mixing is complete only after reaching equilibriun

h

by saturating the mixed volume or by evaporating of all cloud droplets depending on the mixin

)l

fraction u. The critical mixing fraction u.,-, corresponding to evaporation of all droplets, can b

D

found from Eq.(5) when g = 0, i.e.

_ &
G+

Critical mixing fraction separates y_in two subranges: (a) 1 > u > u., where q_is describe

*

(1

ll'lCI’

by Egs.(1) or (5) and RH,,, = 1; (b) 4, = u = 0. where g =0and RH,, < 1.

For the general case when T; # T, u., can be found by solving the non-linear equation
Hi Gy _éqm (/ucr) =0 (8)

Figure 2 shows comparisons of dependences of u, vs. g, _calculated from Eq. (7) and thos

D

deduced from a numerical model (Sect. 3). Critical mixing fraction u.,_is also shown by blac

stars in Fig. 4. The locations of the stars in Fig.4 coincide well with the locations, where th
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(13)

ﬂ=ﬁ3(u

~ (1—u)a‘q*J
)

For a general case when T; # T, the term (1 — u)dq* in Egs. (12) and (13) should be replace

by 6Gm (1) (EQ.(2)).
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=7

N

_u (14)

Z‘Z OZ‘Z

1

Assuming F=F; T; = T,, and substituting Eq.11-inte-Ee-S-yieldsdependence-gversusN—fg

homegeneousixing (5) in (14) yields;

N g+&°
N, qo+5q*

Eq—1—2—sugge5t_s—hﬂear—Fe+atk+eﬂsrh+p—laet—ween—N-ﬂanel--q-E = M

N, o+
(15)

As follows from Eq. (15) N and g are linearly related, for homogeneous mixing. However, n

D+
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between chargesefmean volume droplet size and concentration

r :1¢&1*(1 NO\ {12\
) = - =>7
e Gl NJ
SEmr
Vo410 | (16a)
Dj; NJ g

3 .
D;:q[%”q*] (16b)
D, o \g+&

In asimilar way the relationship between the extinction coefficientF=Q7zNF>concentratiof

B = QuNDZ /4, N and iquid-waterq can be ebtainedwritten as

b_N[, ar( N
B N, g NJJ e
£ _afqsar Y i

B G\G+ )
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In Egs.24a:b (17a) and (17b) it is assumed that F=~F*—D, = D, . «
Substituting in  EQ.43_ (16) the expression for the time of phase relaxation
7, = 1/bND [e.g. Squires 1953; Korolev and Mazin, 2003)
e {15)
* bNF
and assuming F=#-D ~ D, yields “
. %
T_Nn(4 Jous| (4 N\\ ’ (16)
— = |t it 97
5 N L 4o L NOJJ
N\
_N 14{1_&)@ (18)
. N NJ a
For the cases when the temperature difference HlT1 — T,| exceeds a few degrees, the«
effect of p on F—ard-S-T,,,_and S, should be taken into consideration in the calculations of

evaporated water. For such cases 6&-6q,, (Eq.5)_(2)) should be used instead of H{Ee8)%5q

N v . N

Using Eq.41-¢_(14) 6q,, can be presented as a function of N i.e. =
o ! 0

A A

Sqm(W) = 8qm (Nﬁl)iAReplacing Eq.9_(§)A by Eq—4(l) in the above consideration, the equation

5

EQs.12,43,44,16 (15)-(18) can be rewritten as,
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then g, = q > &q*.If the condition in Eq. (23) is valid, then the terms associated with §q* in Eqs.

(15)-(18) can be neglected. This results in correlation of all moments, i.e. N/N, = B/B1 =q/q

(compare with Eq.(11)). This corresponds to the degenerate case, when the difference between th

L

19

homogeneous and inhomogeneous mixing vanishes. Thus, the dimensionless parameter ¢ 5

1ndq can be used for characterization of proximity of the homogeneous mixing moments to thos|

q1

formed during extremely inhomogeneous mixing.

The range of y in & is limited by p., < u < 1,50 that 0 < 1_7” < ;Tl. This gives the range g

changes of ¢, i.e. 0 <& < 1_for the mixing without complete evaporation of droplets. Th

D

degenerate case corresponds to ¢ — 0, whereas ¢ — 1_corresponds to maximum difference of th

moments for homogeneous and extremely inhomogeneous mixing.
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As follows from Egs. (4) and (23) approaching to the degenerate case (¢ — 0) occurs, whe

h

one of the following conditions or their combination is satisfied: (a) RH, — 1; (b) E5(T) — 0.8

low temperatures; (c) g, » 8q*; (d) u — 1. The effect of RH, T, q,_and p_on mixing will b

T—+

demonstrated in Sect.3.

Figure 3 shows dependence of ¢ vs. u. The grey area in Fig.3 indicates the region wher

identification of type of mixing from in-situ measurements (Sect.5) may be hindered due t

D

proximity of the moments for homogeneous and inhomogeneous mixing. Thus for §q¢*/q, =0.0

identification of type of mixing is ambiguous for nearly the entire range of u.

For the general case, when Ty # T,, it should be & = W. An absolute value |§q,, (u
1

should be used in ¢ _since §q,,(1)_can be negative (Appendix A, Fig.Al) if mixing results i

supersaturation Sect. 3.4).

The coefficient & may be useful for identification type of mixing from in-situ observations.

t

is worth nothing, that the ratio i—q* = % is equal to the parameter R (Pinsky et al. 2015ab), whic
1 241

plays an important role in determining scenarios of droplet evaporation in turbulent environment.

3 Comparisons with numerical simulations
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assumed to be monodisperse. For the case of extreme inhomogeneous mixing the amount g
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evaporated water Ag_required to saturate the mixed volume was calculated first. If Aq < uq,

then the concentration of evaporated droplets was calculated as Nw=i—qpa wher
d
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droplets evaporate, and N = 0,
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3.1, Effect of mixing ratiefraction,

Figure 34 shows the results of the simulation of the-dependence—of-thedroplet—numbg

o N, ; s (-INF)._extinet tricient (B liqui o ot d

calculations were performed for djfferent saturation—ratiesrelative humidity of the entrained parcgl /
S5=0-2,RH, = 0.2,0.5,0.8 and 0.95. As seen from Fig.34 for the case of homogeneous mixing onlly /

N-and-g-N and g are linearly related withu; ., the rest of the variables have non-linear dependence

on 4. For the case of inhomogeneous mixing all -+¢#)-f (D) moments and droplet sizesizes linear!
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D
Y

g

dependences of (#)-q(u) are the same for both homogeneous and inhomogeneous mixin

!

(Fig.3a4a). The type of mixing has the most pronounced effect on the droplet concentratio

n
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(Fig.3b4b) and droplet sizes (Fig.3e)}—TFhe-obtainedresultsare-in-a-good-agreement with-the-analytic
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Figure 3g4g shows the dependences So{#)-ane-S—{)-RH,,o_and RH vs. u, Here S5}

RH,,, is the relative humidity at the initial stage of homogeneous mixing before droplets start

L)

evaporating (Fig._Ale). Figure 3h presents dependences-of T—{1)for differentS;—ttis-worth-notin]

Basically-the-(C4). The Aindependence of a—S=-q(). RH (), and Tt T () on type of

mixing_(Fig.4a,g.h), is the consequence of the mass and energy conservationaws, which are nqt

contingent on type of mixing. ,

3.2, Effect of humidity of entrained air,
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The diagrams in Fig.4 5a-c show the dependences of normalized-5-g-and-FrversusN-+Ng [,

qg_and D, _vs. N/N,, calculated from numerical simulations and analytical equations from

seetienSect. 2. The calculations were performed for different humidity of the entrained air-S;- RH.
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As seen from Fig.4 5a-c, the normalized dependences -g(N)—B{N)ard—F{N)}for homogeneou

mixing q(N), S(N).and D, (N),tend to approach the line of extreme jnhomogeneous mixing whep

relative humidity -SyRH, approaches t0 100%As-it-wasindicated-in-previousstudies{e-g—Burnetanyl

1. This is consistent with

the degenerate case, when there-

0_(Sect.2.7). In this case droplets behave as a passive admixture, and they do not interact with the

environment. This-effectisclearlyseenfrom the diagrams-inFigd,

3.3, Effect of liquid water cententmixing ratio,

5shews-5d-f demonstrate the sensitivity of g(N), S(N)_and D, (N)_to liguid water mixing ratio q,.

It is seen, that the increase of gyresuttsin-gN)—BN)andFHN)-fwhich-were-g; results in g(N),

B(N)_and D, (N) (calculated for homogeneous mixing) approaching towards €(N)B(N)-q(N).

19

Formatted:

Font:

Times New Roman, 12 pt, Font color:

Formatted:

Font:

Times New Roman, 12 pt, Font color:

Formatted:

Font:

Times New Roman, 12 pt, Font color:

(
|
(
(
(
n
[ Formatted:
(
(
(
(
(
(
(
(

Formatted:

Font:

Times New Roman, 12 pt, Font color:

o 0 U G JU U U U . L )

Black

Font:

Times New Roman, 12 pt, Font color:

LE?rmatted:
ack

{ Formatted:

color: Black

Font:

(Default) Times New Roman, 12 pt, Font

Formatted:

Font:

Times New Roman, 12 pt, Font color:

Font:

Times New Roman, 12 pt, Font color:

Black

Formatted:

(
[ Formatted:
(

Font:

Times New Roman, 12 pt, Font color:

Font:

Times New Roman, 12 pt, Font color:

) L ) U

LE?rmatted:
ack

[ Formatted:

Font

: Times New Roman, 12 pt, Font color:

Black

[ Formatted:

Font:

Times New Roman, 12 pt, Font color:




488

489

490
491
492

493
494
495
496
497

498

499

500
501

502
503
504

505

506

507
508
509
510
511
512
513
514
515
516

B(N) and &(N)-D,(N) for the inhomogeneous mixing. In other words, the sensitivity of th

1)

practical viewpoint it means, that from in-situ observations the difference between homogeneou

5

and inhomogeneous mixing js anticipated to be more pronounced for the cases with a relativel
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low Lwe-{g;<2-gliquid water mixing ratio (e.q. g;<1g/m3). Such behaviour is consistent with th
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3.4, Effect of temperature T, = T,

Figure 5g-j shows the effect of temperature on the normalized q(N), B(N)_and D, (N)_for

T, = T,. Figure

=

73( ) the-case 17— 27 e-refative-hu .E.E’ of-the-entrainedpareelwasasst ea-to-b
the-same-for-all-cases{55=0.5)Figure 6-suggeststhat the difference between-the —F{r)-50-] indicat

that the difference between the, moments becomes most pronounced at warm temperatureg

T

whereas at cold temperatures (e.g. F=-306-g(N)-—BN)and-EN)-T= -30°C), q(N), S (N)_an|

D, (N)_for homogeneous mixing, are approaching those for the extreme inhomogeneous mixin

limit.,
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Such behavior is explained by the fact that the-ameunt-efliquid water deficit 60 g, decrease|

5

(Appenw—aﬂ) At low temperatures {F<—36-¢(T=-30°C) the amount of evaporated water 4

T H

I_

Formatted:

Font:

Times New Roman, 12 pt, Font color:

Formatted:
color: Black

Font:

Times New Roman, 12 pt, Italic, Font

Font:

Times New Roman, 12 pt, Font color:

Formatted:

Font:

Times New Roman, 12 pt, Font color:

8qm, is so small, that homogeneous mixing with undersaturateddry, out-of-cloud air will hav

His—well-established—that-isebaricOverall, as follows from Fig.5 the results the analyticg

predictions (Sect. 2) turned out to be in a good agreement with numerical simulations.

3.5 Effect of temperature T, # T,
Isobaric mixing of two nearly saturated parcelshaving differenttemperatures—resultsvolume

(
(
(
|
) [ Formatted:
(
(
(
(
(
(

with T; # T,_may result in the-fermation-of-supersaturated airenvironment (e.g. Rogers, 197§;

Bohren and Albrecht, 1998).

resulting in supersaturation is different in principle from the mixing ef-saturated—cloudy—ant
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517  undersaturated-aimay-alsoresultinsupersaturated-air—Fheformationwith evaporating droplets. In
518 this case the meaning of homogeneous and inhomogeneous mixing becomes ambiguous.
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520 F-andN-ND,pB,q.Dand N as compared to those shown in Figs.‘S-éﬁ,xWhen F=TF>"nthecases E
(

F="T—resulted—ip

Formatted: Font: Times New Roman, 12 pt, Font color:

o U A U U

522 [ Formatted: Font: Times New Roman, 12 pt, Font color:
Lgtr)rmatted: Font: Times New Roman, 12 pt, Font color:

523 ack

524  consideredabeove:]] = T, [Formatted: Font: Times New Roman, 12 pt, Font color:

525 Figure 76 presents a set of diagrams similar to those in Fig.34, but calculated for the eleud-ang Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:
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Numerical simulations also showed, that the effect of temperature on-the-result-of mixing i
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more pronounced for the cases when the cloud temperature is warmer than that of the entraine

air, i.e-F>%F5. T > T,, as compared to the cases WithF<F-T; < Ty,

(

A

3.5-Multiple4. Progressive mixing-events,

4.1 Effect on microphysical parameters
In the previous sections the mixing between-cloud-and-sub-saturated-volumesWas considered a

A

5
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a single event, i.e. u fraction of the cloudy air mixed up with (1 — x) fraction of entrained dry ail,

Such mixing will be referred to as “primary” mixing. Primary mixing results in an ensemble o
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The second stage of mixing will result in an ensemble of elementary volumes characterize

by a set of parameters fm;NﬁL,—%‘ZL,—#;D,SZ)J_N @, RH®, T@ etc. Here the superscript 4

indicates the stage of mixing. After the second stage the mixed volumes undergo subsequent stage

of mixing.

TFheprogressiveThe idealised conceptual diagram of the progressive mixing is shown in Fig. §.

5

As mentioned in Sect. 2.1, the actual process of mixing is indeed much more complex than th

D

sequence of discrete events portrayed in Fig.8. However, as it will be shown below, this simplifie

(

consideration of allows establishing main features of evolution of relationships between th

£

microphysical moments affected by mixing. The obtained results facilitates identification of typ

1)

Font

: Times New Roman, 12 pt, Font color:

LE?rmatted:
ack

Lgtr)rmatted:
ack

Font:

Times New Roman, 12 pt, Font color:

of mixing from in-situ measurements.

Progressive, mixing was simulated with the help of a numerical model, where parcels wer

A

R

randomly mixed with each other and with the cloud environment. The mixing fraction 4 wa

also set to be random during each mixing event. Models of randemstochastic, mixing have bee
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used in a number of studies (e.g. Krueger et al-., 1997;; Su et al-., 1998;; Burnet and Brenguie

Formatted: Font: Times New Roman, 12 pt, Font color:
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to examine its effect on the entrained-envirormentwas-alowed-only-atrelationship between moment
of the pi . ) ) ) )

velumesdroplet size distribution,

from Fig.20 9 the functional relationship between the pairs of microphysical and state parameters exist

n

5

only for the primary stage. Hewever—forFor higher mixing stages these functional relationship

5
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breakdewnbreak down, Thus, cloud volumes with the same NP il be asseciated-with-an-ensembled

dropletswithN @ may have different T“Z":D,Ez);Figure 109 also shows that the regions of scattering g

GN—BMNYFq(N),_B(N) and HENYD,(N) for stages 2, 3 and 4 are limited from above by th

14

inhomogeneous mixing (red dashed lines) and from below by primary homogeneous mixing (red soli
lines).

Figure 10 presents a conceptual N — g_diagram explaining breaking the functiond

d

relationships during progressive homogeneous mixing. After the first stage of mixing the N —

points will be scattered along the line OB and point C. The line OB corresponds to the ensembl

D

of points with RH = 1. Therefore, result of mixing between two saturated volumes randoml

selected on AB, will remain on the same line. Point C corresponds to the ensemble of points wit

h

N =0, RH, < RH;(u®) < 1, where 0 < ™ < p,. Therefore, mixing between point 4

(Fig.10) and point C, when RH = 1 will result in scattering along the line AC (degenerate case).

Points resulted from mixing between A (RH = 1) and point C, when RH, < RH; < 1, will

scattered over the ensemble of dashed lines shown in Fig.10. These lines will fill the sector CAB.

Random mixing between points on the line OB and C, will eventually fill the entire sector COH.

The same consideration can be applied to progressive mixing between other moments.

During the progressive mixing N0 _¢® snd £ N ™ M o™ and D™ formed i

[y

n

the elementary parcels tend to approach those in the undiluted cloud, i.e. NgB5—65-ane-FzN

B1.q1.and D, This process can be considered as a surrogate to the diffusion process between th

e

cloud and sub-saturated out-of-cloud environment. The convergence of B0 glp() 40 A

23

Formatted: Font color: Black

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black

'| Formatted: Font color: Black

| Formatted: Font color: Black

(
(
(
(
(
(
(
(
(
[ Formatted: Font color: Black
(
(
(
(
(
(
(
(
(

o JC ) L WU U U U 0 U L

[ Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Indent: First line: 0.75 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers

Formatted: Font: (Default) Times New Roman, 12 pt, Font
color: Black

Formatted: Font: (Default) Times New Roman, 12 pt, Font

[ Formatted: Font: Times New Roman, 12 pt, Font color:
{color: Black

o J A U )




603

604

605
606
607
608
609
610
611
612
613
614
615

616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

and %ﬂlDﬁn)_during the progressive mixing can be seen in Fig.26 9, where the scattering o

f

normalized ¢XNYA2NYq ™ (N), B™ (N) and £2NyD™ (V) becomes denser towards th

1)

£

top-right corner (1,1) with the increase of the stage of mixing.,

Anotherinterestingfeature-of-It is worth noting that progressive mixing with the dry air dog|

B

not break the functional relationships between the moments. This case is equivalent to detrainmer

t

of cloudy environment into dry air. It can be shown that Eq.(14) remain valid at any stage g

progressive homogeneous mixing i

only, i.e. Nj/Ny = u® - pU=D 0 where 0 is the mixing seme-fraction at the j-th stage o

with dry air

_MIXing. Similarconclusion-wasderivel

from-a-morecomprehensive-analysisofEQS. (15)-(24) also remain valid for the progressive mixing i

Pinsky-etat+2015b)-with the dry air only.

As follows from Eq.2_(9), for the case of_extreme, inhomogeneous mixing the progressivi

mixing does not affect the functional relations between N®4M g0k g0 N ™ M) M gnf

Df,”)A and other microphysical parameters. These relations remain the same regardless of the actug

=

stage of mixing. This is one of the fundamental differences between homogeneous an
inhomogeneous mixing, which can be used for identification of type of mixing from in-sit
measurements.

3-6-Droplet4.2 Effect on droplet size distributiendistributions

)

Figure 11 shows modeled droplet size distributions averaged over an-ensemblethe ensembless, |/

of elementary Volumes corresponding to the first four stages of homogeneous mixing. As seen fron

n

Fig. 11a;6:¢,-d for the case with F=";T; = T, the droplet size distributions are breaderbroadene

e
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homogeneous mixing is well known and it was demonstrated in a number of studies (e.g. Bake
and Latham, 1982; Jensen and Baker, 1989; Jeffery, 2007; Kumar et al.., 2013). However, if th
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3Lt is important to note that that during homogeneous mixing prior reaching equilibrium,

functional relationships between the microphysical moments do not exist either. After the instant

mixing of cloud fraction p with entrained air (Fig. 1b(2)), gm0 = 1qo.and Ny,o = 1Ny. This stat

113%

corresponds to point D _in Fig.10. After that droplets start evaporating until liquid mixing ratip

reaches point A (Fig.10), which corresponds to the equilibrium state (RH = 1). Therefore, during

evaporation time g — N_points will be scattered along the line AD. Since, point D_can be located

anywhere on OC, the ensemble of g — N_points corresponding to non-equilibrium state will fill
the COB area.

Thus, the absence of the functional relationships between the moments during homogeneoup

mixing may occur both during progressive mixing and during primary mixing prior reaching thge

equilibrium state. The evaporation time required to reach equilibrium during homogeneous mixing

is discussed in details in Pinsky et al. (2016b), and it is usually limited by few tens of secondq.

However, progressive mixing is not limited in time. Therefore, it is very likely that no functiongl

relationship between microphysical parameters will be observed during in-situ measurements.
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Fig.12 demonstrated a fundamental difference in scattering of g — N_for homogeneous an
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extreme inhomogeneous mixing, which will be used to facilitate identification of type of mixin

1]

in the following section.

5.2 Results of observations

The measurements were obtained on the University of Wyoming King Air aircraft during th
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of changes of these parameters reaches nearly one hundred percent with respect to their maximun.

Contrary to that, the spatial variations of B—ane~B;D_and D, are quite conservative and thei

values remain nearly constant. With the exception of two cloud holes between 13:50:42 an

13:50:44, the amplitude of fluctuations of -B;D,, does not exceed 8% with standard deviation 9

2.2%.
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consecutive traverses through an ensemble of deep convective cells. The sampling altitude varie
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What is interesting that the scattering of the measurements EWCN)BNFLWC (N). B(N),

and -EWEA)-LW C(B) (Fig. 15a, b; and d) is limited by the sector, which originates from the zer

D

point- as in Fig.12a. Analysis of the measurementsAshowed that seatterdiagramsEWCEINY)-—BN

cloud traverse are very-similarto-those-inFigd4ttappeared-thatthewell aligned along the lines wit!
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different slopes ef-EWENY—AN)Y—EWC(B)varyfromcloud tocloud-Seafter(e.q. Fig.14). Afte

averaging over the ensemble of clouds, the area of the scattered points wiiturned out tg be locate

—_—— e

inside a sector limited by the lines with smallest and largest slopes.

Comparisons of the scatterdiagrams LW C(N), B(N)_and LWC(f)_in Figs.14 and 15 with th

conceptual diagrams in Fig.12 unambiguously suggest that interaction between cloud an

environment in the studied clouds was dominated by inhomogeneous mixing. It should b

D

£

emphasized that analysis of a stand alone mixing diagram N — D,, would not allow unambiguousl

draw such conclusion.
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6. Discussion
One of the assumptions in most past studies is that for a sequence of the cloud samples

collected along the flight path, the adiabatic values of Ny, g4, 81, D1 and environmental parameterg

e, and T, remain the same. In fact these parameters may vary both within the same cloud ofr

sequence of samples clouds, and the amplitude of their variations depends on microphysical an

thermodynamical properties inside and outside the cloud environment. This variation will result ip

an ensemble of relationships M,, = F,,;,(M},), and enhance scattering of the data points. In such

cases identification of the type of mixing based on the N — D,,_diagram may result in confusion

between homogeneous and inhomogeneous mixing. As demonstrated in Sect. 5, consideration of

N — g.and N — B _diagrams may provide a better identification type of mixing.

Strictly speaking the identification of type of mixing from particle probe measurements as it

was performed in Sect. 5 is incomplete. It allows establishing correlation between microphysicdl

moments and makes a formal conclusion about the mixing type, however it does not allow

judgement about stage of mixing (i.e. whether mixing is complete by reaching equilibrium). In

most_previous studies, including this one, identification of type of mixing was based on thg

assumption that the sampled cloud volume is in equilibrium state (RH = 1), and that it reache

the final stage of mixing (Fig.1 a2, a3, b3). It is possible that at the moment of measurement the

process of mixing is not complete and the droplet free filaments remained undersaturated (Fig.[L

al, bl, b?2). In this case the relationship between different moments may be well described as M,, 5

My and the mixing be confused with inhomogeneous mixing.

In order to identify stage of mixing, high frequency collocated measurements of temperaturg

and humidity are required. Unfortunately current technology does not allow such measurements

vet.

Jdentification of type of mixing from in-situ observations is based on examination df
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Thus, collision-coalescence, riming or Wegener-Bergeron-Findeisen processes may changg

the droplet number concentration and liquid water content, and therefore-wil, affect the relationship
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It is anticipated that most suitable candidates ferthatmatterto study mixing-entrainmerft«———

process are non-precipitating convective clouds and stratocumulus clouds—Hewever-asit-wasseep
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free entrained air relative humidity ehangesincreases approximately 10% for Az=Az = 200m at

=0c-T = 0 °C, After reaching saturation the mixing turns into a degenerate case, which will appear

as extreme inhomogeneous mixing. Joint effects of evaporating droplets and an increase in S5
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6. Conclusions

This study analysesanalyzes dependences of different moments of -Hr)f (D) in the frame of

A

formalism of homogeneous and extremely inhomogeneous mixing. The analysis was performe

Analyticatl. Simple analytical relationships M—=F—(M-—J)-between the mormentsM—and-M-i-

main microphysical moments were feundobtained for the ease-effinal state homogenous and extrem

inhomogeneous mixing.
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4
for the final stage of mixing based on the mass balance-ofvaporandliguid-waterand-assumptiongf
adiabatic-process—of-mixing—and energy conservation consideration. The following results wer
obtained in the frame of this study:
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2} 2. It was demenstratedshown that the functional relationships between -M—aae—M—th|

moments exist only for the first stage of homogeneous mixing—Thefellewing-, when equilibrium i

reached. Subsequent progressive homogeneous mixing breaks the functional relationship between

the moments.

3. It was demonstrated that consideration of scattering N — LW C, N — 8_diagrams facilitatefs

identification of type of mixing from in-situ measurements. For extreme inhomogeneous mixing

the scattering of the data points N — LWC, N — B_will be limited by a sector originating at zerp

point (Fig.12a). However, for homogeneous mixing the scattering data points will be limited by a

sector originating at (N;, LW ;) and (N, 8,)_(Fig.12b). Utilizing a stand-alone conventional N +

D,,_mixing diagram may not provide unambiguous answer about type of mixing.

[y

3) 4. The developed approach was applied to a set of in-situ measurements collected ip

P
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AppendB

2 Liquid water deficit,

The objective of this section is to find the amount of liquid water, which is required to evaperateb

evaporated, in order to saturate the parcel formed after mixing-efa-cloud-volume with-sub-saturatef

. Assume that &6, 7v1. 9y are the mixing vapor ratios in the cloudy and entrained parcels

A

respectively, and F-F;Ty, T are their respective initial temperatures. First, we find the saturatio

h

ratio -S—5,,0 formed after instant mixing of the cloud and entrained before the cloud droplets star

it

evaporating.

The vapor mixing ratio g, formed in the mixed volume will be

o —n 11 Y. (B1)
Yvm — AHvi T HT M2 o=
O = 40,, + (1_tu)qv2 (A1)

The vapor pressure ¢, in the mixed volume can be derived from Eq. 82(Al) by substitutin

[y

!

e R e R,

= —=2 e
p-e¢ Rv

+ ez(p_e1)
D p(el_ez)
m (p_el)
a (el_ez)

ez(p_e1)
" p(e1_e2)
+ (p_el)
(ei_ez)

en=p (A2)

u

The temperature of the mixed volume T,,,_can be found from the energy conservation law,

c YT T Y=0
Zpa/\T m0/ T\

o o+
X

Mg . +¢c MT
vITpv T FIXHv2Zpy T Fpall

T (B3)
"m0 27 o7

:u(qvlcpv + Cpa)(Tl _Tmo) = (1_ ;u)(qucpv + Cpa)(TmO _TZ) (A3)

Ahere C5rCgarCpvs Cpas 8T€ the specific heat capacitance of water vapor and dry air at constan

pv7 pa’

t

pressure, respectively, F—F;Ty, T, are the initial temperatures in the first and second parcel

before mixing;F—z-. Substituting -65—6->9,1. qy» Yields the temperature in the mixed volume

[Formatted: Font: Times New Roman, 12 pt, Font color:

[Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Indent: First line: 0.75 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers

. [Formatted: Font color: Black

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Indent: First line: 0.75 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

Black

(
(
(
[Formatted: Font: Times New Roman, 12 pt, Font color:
(
(
(

Field Code Ch d

o WU A JC A JC 0 A U

Formatted: Font: Times New Roman, 12 pt, Font color:

[Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

U

Formatted: Indent: First line: 0.75 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers

( Field Code Changed

(N )

L;tr)rmatted: Font: Times New Roman, 12 pt, Font color:
ack

( Field Code Changed

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt,
English (United States)

Field Code Changed

Formatted: Font: Times New Roman, 12 pt

Formatted: Don't adjust space between Latin and Asian text,

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

42

(
E
(
(
{ Don't adjust space between Asian text and numbers
(
(
(
(
[Formatted: Font: Times New Roman, 12 pt

o A U . U




1036

1037

1038

1039

1040

1041
1042

1043

1044

1045

1046

1047
1048
1049

1050

1051

1052

_ HT + a(l- /‘)Tz
u+a(l-p)

_ 1T+ a(l— )T,
u+al-p)

T
m

mo0

here

1+ cpvRaez
_ CpaRv(p_ez) {85)

" cpvRael
CpaRv(p _el)

a
123

l+ vaRaez
CouR.(P—8,)
_ pa’ ‘v 2
“= c,R.E (A5)

pv' ‘a

4wmas
CpaRv(p _ei)

With a good accuracy -a=*%.a = 1. The resulting saturatienratiorelative humidity after mixin

[y
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_— O {86)
ES (TmO)
e
RH,,=—m0 _ (AB)
" eS (rmo)
where -EF—)es(Th,) is the saturated vapor pressure at temperature F—=T},,. <
Mhe%ﬁ%ﬁmﬁen—%%ﬁtheﬂ—ﬂm—de&d—dmﬂe@%eﬂp%The process of«
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vaporization. This process is described by the Eq._(C2),in Korolev and Mazin (2003). Assumin
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Eq. (C2), (Korolev and Mazin, 2003) yields ,

ds :(1 PR, ) L’ \A" (B7)
S |SER, cRT?) o
ds [ 1 pR . L’ dq a7

—S+1 |S+1eR

A
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Integrating Eq.B (A7) from initial hurmidity-S—-4Ee-6}S,,,, t0 saturation state, when 5=15 5

A

0, and taking into account that RH = S + 1, gives an-expression,

[ Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Indent: First line: 0.75 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers

1+ E (T, )R, L2 ( Formatted: Font: Times New Roman, 12 pt, Font color:
L2 pc R2T?2 [ Formatted: Font: Times New Roman, 12 pt, Font color:
Sop= In p_v mo (88) ( 4 Font: Ti o
Cp Rszz 1is Es (TmO)Ra Lz Formatted: Font: Times New Roman, 12 pt, Font color:
+ Omo pc RZT 2 {Formatted: Font: (Default) Times New Roman, 12 pt, Font
p™v 'mo color: Black
[ Formatted: Font: Times New Roman, 12 pt, Font color:
. 1+aRH,, - " ~
ftshould benoted thatinEq-B8 &, =—bIn [F'eld Code C
1+a [ Formatted: Font: Times New Roman, 12 pt
(A8) ( Field Code Changed
Formatted: Indent: First line: 0 cm, Don't adjust space
rgesmixing ratio of liquid watelr between Latin and Asian text, Don't adjust space between
Asian text and numbers
required to evaporate in order to saturate 1kg of the cloud volume were-neglected-formed after mixing {Formatted: Font: (Default) Times New Roman, 12 pt, Font
. . . ) BRI  CoRTR color: Black
with the entrained air, but before droplet start evaporating. Here a = pc,,R,%T,%l’—b =0 [Formatted: Font: Times New Roman, 12 pt, Font color:
Since A(RHpmo—1) 21 (Ag) can be simplified a [Formatted: Font: Times New Roman, 12 pt, Font color:
=lnce. 144 L EQ. SimpliTi S [Formatted: Font: Times New Roman, 12 pt, Font color:
[ Formatted: Font: Times New Roman, 12 pt, Font color:
1-RH,, Sio
&Z]m = abli =—— (Ag) [Formatted: Font color: Black
+ta AQ [ Formatted: Font: Times New Roman, 12 pt, Font color:
ab B i R Formatted: Font: Times New Roman, 12 pt, Italic, Font
where 4, = T The analysis of the-behavierof £4-B8E(S. (A8)-(9) shows that for wide range of« {color: Black
. . R Formatted: Font: Times New Roman, 12 pt, Font color:
temperatures -39°c<T-—<30°C-thecases-when-30 °C< T < 30 °C, both equations hold with high [
[ Formatted: Font color: Black
accuracy as long as the temperatures of the sub-saturated and cloud parcels HHTl T, ( Formatted: Font: Times New Roman, 12 pt, Font color:
' Wik
| Formatted: Font color: Black
°Cthen Eq.82 is hold with-high-accuracy /
AlO G . N / [Formatted: Font color: Black
Figure 82A1 shows comparisons of modeled -6¢-5¢,,, and that calculated from E£e-B8Eas. (Ag) | ( Formatted: Font: Times New Roman, 12 pt, Font color:
[ Formatted: Font color: Black
and (A9) forAthree dAlfferent temperatures. The model eensisted-in-sehvingsolved a system of differentidl [Formatted: Font: Times New Roman, 12 pt, Font color:

equation with deerementalincremental evaporation of liquid water until saturation is reached.

As seen from Fig. 82A1 the agreement between modeled -5¢-6¢,, and that calculated fron

| x

Eq.88_(A8)-(A9) is quite good and does not exceed few percent at -Sy=RH,,, =_0.5. Thi

discrepancy results from disregarding theeffectof changing T-onEduringevaporatione—in-Eq—B]
Eand-T-assumption that eg_and T are assumed-te-be-COnstant—The-changes-of-the-airtemperatur]

44

Ne’

5

N O O O O

Formatted: Indent: First line: 0.75 cm, Don't adjust space
between Latin and Asian text, Don't adjust space between
Asian text and numbers

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted:
color: Black

Font: Times New Roman, 12 pt, Italic, Font

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted:
color: Black

Font: Times New Roman, 12 pt, Italic, Font

Formatted: Font: Times New Roman, 12 pt, Font color:

Formatted: Font: Times New Roman, 12 pt, Font color:

o o JC A A G JU U U A JC U . U JC JC . JC 0 JU U . U )

Black



1075
1076
1077
1078
1079

1080

1081
1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093
1094
1095
1096

1097

1098

1099

of thepresent-work— in E0s.(A8)-(A9).

[ Formatted: Font: Times New Roman, 12 pt, Font color:

Appendix B: Liquid water deficitwhen T, =T,

Eq.(A2) by assuming that p > e; and p > e, can be simplified as

€no = 48 + (1= e, (B2)

As follows from Eq.(A4) for the case T; = T, with high accuracy T, = T; = T,. Thereforg
es(Tmo) = es(Ty) = es(T,). Dividing Eq.(B1) by es yields

RH,, =4RH, +(1- x)RH, (B3)

In most liquid clouds RH, = 1_(Korolev and Mazin 2003). Therefore, Eq.B2 turns into

RH,,=x+@-x)RH, (B4)

Substituting Eq.(B4) in Eq.(B1) yields

&, =—b In(l+ w) (85)
l+a

The expression under logarithm can be presented as the first two terms of the series expansio

£

h

1\ (-
Q(l + %) . . Substituting this expression into Eq.(B5), gives
&y = (L) (B6)
where
&' =-b |n[71iRasz (B7)

is the mixing ratio of liquid water required to saturate 1 kg of the entrained dry volume.

Appendix C: Temperature in the mixing volume

The energy conservation for evaporating droplets can be written as
(T =To) A+ 0 )y + (L— 1)L =0 (1)

here c,,,_is the specific heat capacity of the moist air

C,+ c
¢, = % )
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Since g,m < 1_and, c,q = cpm_EQ.(C1) may be simplified, so that the final temperature after
mixing
SRR 1) (c3)

mo

Cra

For the case when T; # T, Eq. (C3) should be replaced by

T=T,,-Zht (ca)

mo
Cpa

Eqgs. (C3) and (C4) are valid for the mixing fraction u > p,.. For u < u., all entrained liquig

water 11q,_evaporates, and the final temperature will be
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f(D)

RH,
RH,
RH o

q1
)

CRT?

LZ

specific heat capacity of dry air at constant pressure

specific heat capacity of water vapor at constant pressure

mean droplet diameter

mean square droplet diameter

mean volume droplet diameter

water vapor pressure

initial water vapor pressure in the cloud parcel

initial water vapor pressure in the entrained sub-saturated parcel

saturation vapor pressure above flat surface of water

size distribution of cloud droplets normalized on unity

latent heat for liquid water

0

jf(r)r"dr

0
®©

jf(r)dr

0

n-th moment of the droplet size distribution

concentration of droplets

concentration of droplets before mixing

pressure of moist air

specific gas constant of moist air

specific gas constant of water vapor

e/Es, relative humidity over water (saturation ratio)

initial relative humidity in the cloud volume (RH;=1)

relative humidity in the entrained sub-saturated parcel

relative humidity after instant mixing of cloudy and entrained air but before

droplets evaporation

cloud liquid water mixing ratio (mass of liquid water per 1kg of dry air)

cloud liquid water mixing ratio before mixing

water vapor mixing ratio (mass of water vapor per 1kg of dry air)
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T,
TmO

B
8qm

Pa
Pw

e/es — 1, supersaturation
supersaturation of the dry out-of-cloud air

supersaturation after instant mixing of cloudy and entrained air, but before

droplets start evaporating

temperature
temperature of the cloud parcel before mixing

temperature of the entrained sub-saturated parcel before mixing

temperature of the parcel after vapor mixing, but before droplet evaporation

extinction coefficient

extinction coefficient before mixing

mixing ratio of liquid water required to saturate 1kg of the cloud volume after

instant mixing, but before droplet evaporation.

mixing ratio of liquid water required to saturate 1kg of the dry out-of-cloud air

cloud fraction of mixing air, 0< <1

critical cloud fraction, such that for u <y, all droplets evaporate

density of the dry air

density of liquid water

coefficient 0 < & < 1_characterizing proximity of homogeneous mixing to

inhomogeneous (when é — 0).
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Figure Captions
Figure 1. Classical conceptual diagram of (a) inhomogeneous and (b) homogeneous mixing.

]_4

initial state; 2 mixing state; 3 final state.

55

[Formatted: Font: Times New Roman, 12 pt

[Formatted: Indent: Left: 0 cm, Hanging: 1.5 cm




complete
evaporation

0 05 1 15 2 25 3 35 4
g, (9/kg)

Formatted: Font: Times New Roman, 12 pt

Figure 2. Dependence of initiat-ratic-of-mixing-go-versus-Critical ratio-ef-mixing fraction picr versugs-

Formatted: Font: Times New Roman, 12 pt

mixing geratio go calculated from Eq-23-.(7). Circles indicate modeled points. The

Formatted: Indent: Left: 0 cm, Hanging: 1.5 cm

calculations were performed for #7=0C and #H=3000m. Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

(
(
(
(
[ Formatted: Font: Times New Roman, 12 pt
(
(
(

Formatted: Font: Times New Roman, 12 pt

U

56



o v A W N P

Formatted: Font: Times New Roman, 12 pt

25 500
inhomohenous ~— inhomohenous
— homohenous & 400f | — homohenous l
£9 |
% 15 x=0.2 & 300
i Py
% 1 § 200
0.5 100 b
0 - 0 Y
0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 0.8 1
& 5000 _ 350
£ k= inhomohenous "L 300} | = inhomohenous
- — homohenous E 50| | — homohenous
= &= 1S,=02
El B o Jo e
B 2000 § "l [ siz09s
‘_3 ‘c":) 100
§1000 C :;_, 50 d
00 0.2 0.4 0.6 08 1 00 0.2 04 06 0.8 1
£ g
3 T 20
515 S
° 815
£ 3
g 10 °
a 4 é 10
5 8 s
Q
0 0
0 0.2 0.4 0.6 08 1 0 0.2 04 06 0.8 1
05
100
za: 0
[6)
~. & g 205
3 2
g g
§ 60 g
E-15
40 ~——mixing S_, = 1
——final S, 2 h
20 =25
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Mixing Fraction Mixing Fraction
Figure 3, Dependence of & versus u. Numbers are the dimensionless ratios §q* /q, . Critical mixing ( Formatted: Font: Times New Roman, 12 pt
. .- T Fi tted: Font: Ti New R , 12 pt, Not Bold
ratios ., are indicated by stars. Grey area indicates area where the moments of ( Formated: Font: Times New Roman, 12 pt, Not 8o
homogeneous and extreme inhomogeneous mixing may not be segregated from in-sit ( Formatted: Font: Times New Roman, 12 pt
measurements. Dashed line was calculated for the cloud in Figs.13-14. { Formatted: Font: Times New Roman, 12 pt
. . . - .. . . Formatted: Indent: Left: 0 cm, Hanging: 1.5 cm
Figure 4. Simulation of (a) liquid water mixing ratio, (b) droplet number concentration-and-{&}« [ -

[ Formatted: Font: Times New Roman, 12 pt
liquid-watermixingratio{, (C) integral droplet radiusdiameter, (d) extinction coefficient, (e ( Formatted: Font: Times New Roman, 12 pt
mean eubevolume, diameter, (f) time of phase relaxation, (g) relative humidity in thg ( Formatted: Font: Times New Roman, 12 pt

. . . ) [ Formatted: Font: Times New Roman, 12 pt
mixed volume before droplet evaporation Sz RHyno and final-Sat the equilibrium state — [“eormatted: Font: Times New Roman, 12 pt
RH,y,, (h) final temperature F-T,,,, versus ratio of mixing p formed after homogeneous - ( Formatted: Font: Times New Roman, 12 pt

B A s S [Formatted: Font: 12 pt

o 0 U U )

57



11

12

13

14

15
16

and extreme inhomogeneous mixing between dry and cloudy parcel with monodispers

Formatted: Font: Times New Roman, 12 pt

droplets. Black stars ea—{a}and—{b)-indicate critical ratie—ef-mixing sfraction g,

calculated from Eg-23-.(7). The calculations were performed for RH»;=20%,-56%,-80%

RH, =0.2, 0.5, 0.8, 0.95%:+=10; D,;=20um, Ng=N,=500cm™®; Fp=T5=T, = T, =00;

HH=1000m.

58

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

Field Code Changed

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

Font:

Times New Roman, 12 pt

Font:

Times New Roman, 12 pt

Formatted:

Font:

12 pt

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

(
(
(
(
(
(
[ Formatted:
(
(
(
(
(

Font:

Times New Roman, 12 pt

U 0 A 0 U U L




N

0 inhomogenous (modeling)
* homogenous (modeling)
theory

3 S4

0.2 0.4 0.6

0 inhomogenous (modeling)
* homogenous (modeling)
— theory

6
4
3
1/
0.2 0.4 0.6

0.8

0.6

D/D

inhomogeneous

Figure 45. Dependence of normalized liquid water mixing ratio -6+65,q/q;_(2.d.q), extinctio

02 04 06
N/No

0.8

n

coefficient -8455/p;_(b,e,h) and mean volume diameter /D, /D,;_(cfi) versus normalize

number concentration -N-Ng=N /N; for various humidity of the entrained air (a,b,c), for various liqui

d

d

water mixing ratios (d,e,f) and for various temperatures (g,h,i). The calculations were performed £g

59

[ Formatted: Font: Times New Roman, 12 pt

[ Formatted: Font: Times New Roman, 12 pt

[ Formatted: Font: Times New Roman, 12 pt

I




7  Fhe-the initial conditions-used-for-the-caleulations-were:Ho: H=1000m, F1{0)=F2{0)=0C;~+,=20D;=20u; [Formatted: Font: Times New Roman, 12 pt
8  No=; for (a-c; g-j) N;=500cm3:

[ Formatted: Font: Times New Roman, 12 pt

9 |

60



1
o inhomogenous (modeling),
* homogenous (modeling)
0.8 — theory
Jos A
O
~~
T o4
0.2
0
0 0.2 0.4 0.6 0.8
1
o inhomogenous (modeling)
« homogenous (modeling)
0.8 — theory
0.6
=" b
~
=04
0.2 15
3 4 5
0
0 0.2 0.4 0.6 0.8
1 inhomogeneous
1 q=4.0 g/m
2 g=2.0g/m
0.8 3 q=0.8 g/m
4 g=0.4 g/m
5 gq=0.2 g/m
0.6 q g

61




a v B~ W N

1
o inhomogenous (modeling)
0.8 + homogenous (modeling)
.06
O
~~
T 04
0.2
0 n
0 0.2 0.4 0.6 0.8
1
o inhomogenous (modeling)
+ homogenous (modeling)
0.8 — theory
o 0.6 S
[coR A
~ o
=04
0.2
7 A 4 /576 b
% 02 04 06 08
1 inhomogeneous
0.8
(=]
Q 0.6
1 T=-30C
0 o4 2 T= 200
3 T=-10C
4 T=- 0C
0.2 5 T= 10C
C 6 T= 20C
0 i " " "
0 0.2 0.4 0.6 0.8

62

(
S
1
[

{

(

( Formatted: Right: -0.24 cm

Formatted:

Font: Times New Roman

Formatted:

Font: Times New Roman, Bold

Formatted:

Font: Times New Roman

Formatted:

Font: Times New Roman, 12 pt

Formatted:
cm

Indent: Left: 0 cm, Hanging: 1.5 cm, Right: 0

Formatted:

Font: Times New Roman, 12 pt

o U U U




63




N

5025 omohenous
02 06
(&)
0.15
S
0.1
0.05
0
0 0.2 0.4 0.6 08 1
—~ 3000
™ i =
1 inhomohenous M
§ 2500 — homohenous E
£ =
2000 :
2 % 60
.2 1500 3]
? § 40 3
= 1000 2
I 3 £ 5
Iy =1
@ 500 =
= c| v
0 0
0 0.2 0.4 0.6 0.8 1 0
t5 =36
K2
(o)
_ 22
510 520
3 15
@ Ko
[}
Es 24
o 3 17}
2 1 &5
e a
0 0
0 0.2 0.4 0.6 0.8 1 0
105
0
g 3 Q 1
100 o2
S 2
2 Ty= -5
95 £ -6 3 T,=-10C
—— mixing S, = 5 2
final S, B
920 h

02 04 06 08 .04 _ 06 0.8
Mixing Fraction Mixing Fraction

Figure 26, Simulation of (a) droplet number concentration and (b) liquid water mixing ratio, (g

Iy

Formatted:

Font: Times New Roman, 12 pt

integral droplet radiusdiameter, (d) extinction coefficient, (e) mean esbevolume diamete

(f) time of phase relaxation, (g) relative humidity in the mixed volume before droplg

evaporation -S-zRH,,, and final-Sat the equilibrium state RH,,, (h) final temperatur,

F--T,, versus ratio of mixing p formed after homogeneous and extreme inhomogeneou

—a A A

mixing between dry and cloudy parcel with monodisperse droplets. Blackstars-on{al-ant
%b)—mdwa%e—eFmeaJ—Faﬂe—ef—mmmg—ﬁ;—eam%ated—#G#HEq—}l— The calculations wer

£

64

(
(
(
(
(
u
[ Formatted:
(
(
(
(
(
(

Formatted:

Indent: Left: 0 cm, Hanging: 1.5 cm

Formatted:

Font: Times New Roman, 12 pt

Formatted:

Font: Times New Roman, 12 pt

'| Formatted:

Font: Times New Roman, 12 pt

Formatted:

Font: Times New Roman, 12 pt

Font: Times New Roman, 12 pt

Field Code Changed

Formatted:

Font: Times New Roman, 12 pt

| Formatted:

Font: 12 pt

Formatted:

Font: Times New Roman, 12 pt

Formatted:

Font: Times New Roman, 12 pt

Formatted:

Font: Times New Roman, 12 pt

o 0 U U U




10

performed for RH=06%;-F=SRH,=0.9; D,;=10um, N0—=N15§000m'3; Fo=T1 =0C; T

-T, = -10C, -5C, 0C; #H=1000m.

65

Formatted:

Font

112 pt

Formatted:

Font

: Times New Roman, 12 pt

| Formatted:

Font

: Times New Roman, 12 pt

Font

: Times New Roman, 12 pt

'| Formatted:

Font

: Times New Roman, 12 pt

Formatted:

(
(
(
[ Formatted:
(
(

Font

: Times New Roman, 12 pt

I U )




o u b~ W N

Formatted:

Font: Times New Roman, 12 pt

Formatted:

o inhomogenous (modeling), A
1 + homogenous (modeling) Pl
— theory
0.8/ a7="100 "
o 2 AT=-5C 18
o 0.6{|3 AT= 0C
~ K
O S F I"_
0.4 £
B &5 2 ;
r"’( -"., s
0.2 7 s 7
& 4 s /3 a
ok 2y i s K X
0 0.2 0.4 0.6 0.8 1
1 o inhomogenous (modeling) A
* homogenous (modeling)
theory
0.8
1 AT=-10C
& 2 AT=-5C
. 0.6f |3 AT= 0C
~
=
0.4
0.2
o
0
1.2
1
0.8
o
Q o6
(@)
0.4
; 1 AT=-10C
0.2 o 2 AT=-5C
C \ 3 AT= 0C
0
0 0.2 0.4 0.6 0.8 1
N/No
Figure 7. Figere-8-Fffect of temperature difference between cloud and entrained air on mixing.. ( Formatted: Font: Times New Roman, 12 pt
Same-asin-Fig-4-The calculations were performed for differentinitial temperatures AT, ( Formatted: Fon: Times New Roman, 12 p, Boid
\. [Formatted: Font: Times New Roman, 12 pt
(1) -10C; (2) -5C; (3) -0<0C. Grey circles indicate extremely inhomogeneous Mixing pn . ( Formatted: Indent: Left: 0 cm, Hanging: 1.5 cm
line 1 at the AB interval. The rest cases on extremely inhomogeneous mixing are indicated % Formatted: Font: Times New Roman, 12 pt

66

Font: Times New Roman, 12 pt

o U U )




10

by open circles, The initial conditions used for the calculations were: H,H=1000

Formatted:

Font:

Times New Roman, 12 pt

RH{Q)=RH,=90%; #=5D; =10pum, No=N; =500cm3-T5=, T;=0C.

67

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

Font:

12 pt

Font:

Times New Roman, 12 pt

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

Font:

Times New Roman, 12 pt

Formatted:

(
(
(
(
[ Formatted:
(
(
(

Font:

12 pt

I L




0 N o B~ W N

10
11
12
13
14
15
16
17

Figure 9. Simulation of stochastic mixing corresponding to stages 1-4 as indicated in Fig.8. Soli¢l
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Figure 8. Conceptual diagram of cascade mixing of the out-of-cloud entrained parcel with thg |

cloudy environment

Figure 10. Conceptual diagram explaining breaking the functional relationships between thg

red lines indicate the normalized dependences g, 8, D, vs. N_for the primary stage of

homogeneous mixing. Dashed red lines indicate the same dependences for

inhomogeneous mixing. The initial conditions used for the simulations were: H=1000mn],

T, = T, =0C; RH,=0.5; D; =10um, N; =500cm,

Figure 11. Droplet size distributions formed during the progressive homogeneous mixing

microphysical moment during progressive missing (see text).

corresponding to the (a.e) primary stage; (b.f) 2" stage; (c.q) 3" stage; (d.h) 4" stage. Left

column (a,b,c,d) corresponds to the case, when the cloud temperature is equal to the dr

air temperature T, = T, = 0°C,; right column (e.f,g,h) corresponds to the case when T; 3

0°C, T, = —10°C. For both cases the simulation was performed for D, =10um; N=500cn|
3. RH,=0.9.

68

[Formatted: Font: Times New Roman, 12 pt, Bold

{ Formatted: Font: Times New Roman, 12 pt




18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 12. Conceptual diagrams of scattering of measurements of g versus N for (a) extrem

inhomogeneous and (b) homogeneous mixing.

Figure 13. Spatial changes of particle concentration (a), extinction coefficeint (b), liquid wate

r

content (c) and average and mean mass diameter (d) during transit through one of th

1

convective clouds measured by CDP. The measurements were conducted during th

D

COPE-MED project on 18 July, 2015. The sampling rate 10Hz (~10m spatial resolution].

H=5500m, T=-12C, RH=0.2.
Figure 14. Relatonships between (a) LW C(N); (b) B(N); (c) D,,(N);(d) LWC () _calculated fron

the CDP measurements obtained during sampling several convective clouds. Th

T=

meadurements were conducted during the COPE-MED project on 18 July, 2015

H=5500m, T=-12C, RH=0.2. The measurements were sampled at 10Hz (~10m spatig

resolution). Dashed lines are linear regressions. Red lines indicate primar

inhomogeneous mixing dependencies calculated for the same environmental conditions.

Figure 15. Relatonships between (a) LW C(N); (b) B(N); (c) D,,(N); (d) LWC () _calculated fron

the CDP measurements sampled during traverse through 45 convective clouds. Th

=

[Formatted: Font: Times New Roman, 12 pt

meadurements were conducted during the COPE-MED project on 02 August, 2015.

Dashed lines indicate (a), (b) and (d) indicate the sectors, where the majority of the points ar
scattered. Figure-9-The altitude of sampling varied in the range 3000m <H< 4500m

o

temperature -11C<T<0C, relative humidity in the vicinity of clouds 15%<RH<65%. Th

D

measurements were sampled at 10Hz (~10m spatial resolution).

Figure Al. Amount of evaporated liquid water §q,, required for saturation of a cloud volume wit

initial humidity RHm. Comparisons of the modeled §¢,,_and that calculated from Eqs.

(A8) and (A9) for three temperatures T,,, =-20C, 0C and 20C. Calculations wer

performed for P=880mb.
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Figure 1. Classical conceptual diagram of (a) inhomogeneous and (b) homogeneous mixing. 1 initial statd;

2 mixing state; 3 final state.
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Figure 2. Dependence of critical mixing fraction i versus mixing ratio qo calculated from Eq.(7). Circle!

5

indicate modeled points. The calculations were performed for 7=0C and H=3000m.
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Figure 3. Dependence of & versus u. Numbers are the dimensionless ratios §q*/q,. Critical mixing ratio

ucr_are indicated by stars. Grey area indicates area where the moments of homogeneous and extrem

inhomogeneous mixing may not be segregated from in-situ measurements. Dashed line was calculated fg

r

the cloud in Figs.13-14.
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Figure 4. Simulation of (a) liquid water mixing ratio, (b) droplet number concentration, (c) integral dropldt

diameter, (d) extinction coefficient, (€) mean volume diameter, (f) time of phase relaxation, (g) relativ|

humidity in the mixed volume before droplet evaporation RH,,,_and at the equilibrium state RH,,, (h) fingl

temperature T,,,_versus ratio of mixing u formed after homogeneous and extreme inhomogeneous mixin

ol

between dry and cloudy parcel with monodisperse droplets. Black stars indicate critical mixing fractiol

h

M calculated from Eq.(7). The calculations were performed for RH, =0.2, 0.5, 0.8, 0.95; D;=20unj

( Field Code ch

N,=500cm™. T, = T, =0C; H=1000m.
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Figure 5. Dependence of normalized liquid water mixing ratio q/q,_(a.d.q). extinction coefficient 8/

(b.e.,h) and mean volume diameter D,/D,,_(c.f,j) versus normalized number concentration N/N,_fg

various humidity of the entrained air (a,b,c), for various liquid water mixing ratios (d,e,f) and for varioy|

L

=

5

temperatures (g,h,j). The calculations were performed the initial conditions: H=1000m, D,=20um; for (4

¢ g-j) N;=500cm; for (a-f) T, = T, =0C.
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7 mixing between dry and cloudy parcel with monodisperse droplets. The calculations were performed fdr
8  RH,=0.9; D;=10um, N;=500cm™*; T, =0C; T, = -10C, -5C, 0C; H=1000m.
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Figure 7. Effect of temperature difference between cloud and entrained air on mixing. The calculations w

performed for initial temperatures T,: (1) -10C; (2) -5C; (3) 0C. Grey circles indicate extremg

inhomogeneous mixing on line 1 at the AB interval. The rest cases on extremely inhomogeneous mixing

indicated by open circles. The initial conditions used for the calculations were: H=1000m, RH,=90ps;

D; =10um, N; =500cm3, T,=0C.
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Figure 8, Conceptual diagram of cascade mixing of the out-of-cloud entrained parcel with the cloud

y

environment
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JFigure 209, Simulation of stochastic mixing corresponding to stages 1-4 as indicated in Fig.78. Solid re
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homogeneous mixing. Dashed red lines indicate the same dependences for inhomogeneous mixing. Th

initial conditions used for the simulations were: HgH=1000m, Fu{8)=T2{0)=T; = T, =0C; RH:{0)=50%

#=RH,=0.5; D; =10pm, Mo=N; =500cm,
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Figure 10. Conceptual diagram explaining breaking the functional relationships between the microphysicd

moment during progressive missing (see text).
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Figure 12. Conceptual diagrams of scattering of measurements of g versus N, for (a) extrem

inhomogeneous and (b) homogeneous mixing.
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Figure 13. Spatial changes of particle concentration (a), extinction coefficeint (b), liquid water content (g

and average and mean mass diameter (d) during transit through one of the convective clouds measured by
CDP. The measurements were conducted during the COPE-MED project on 18 July, 2015. The sampling
rate 10Hz (~10m spatial resolution). #H=5500m, ¥T'=-12C, RH=20%-RH=0.2. |
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Figure 14. Relatonships between (a) -EWCNFLWC(N); (b) BNYL(N); (c) -BytN¥=D,(N); (d)«
EWELBY}LW C(B) calculated from the CDP measurements obtained during sampling several convective -
clouds. The meadurements were conducted during the COPE-MED project on 18 July, 2015, HH=5500m),
FT=-12C, RH=20%-RH=0.2. The measurements were sampled at 10Hz (~10m spatial resolution). -Dashefl
lines are linear regressions. Red lines indicate primary inhomogeneous mixing dependencies calculated for
the same environmental conditions. ,
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Figure 15. Relatonships between (a) EWEN}LWC(N); (b) AEN)L(N); (0) ﬁgéNé—;Dv(N);A (o)«

seattered=The meadurements were conducted during the COPE-MED project on 02 August, 2015. Dashe{l

lines indicate (a), (b) and (d) indicate the sectors, where the majority of the points are scattered. The altitude

of sampling varied in the range 3000m <+<H< 4500m, temperature -11C<¥T<0C, relative humidity in the

vicinity of clouds 15%</~RH<65%. The measurements were sampled at 10Hz (~10m spatial resolution)
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Figure-BIAL Amount of evaporated liquid water 60, required for saturation of a cloud volume wit

n

initial humidity RHsRHm. Comparisons of the modeled 6 §q,, and that calculated from Eg-B8Egs. (Ad)

and (A9) for three different-temperatures -T,o =-

20C, 0C and 20C. Calculations were performed for H-
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