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Abstract. Inverse models use observations of a system (observation vector) to quantify the variables

driving that system (state vector) by statistical optimization. When the observation vector is large,

such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state

vector that is too large cannot be effectively constrained by the observations, leading to smooth-

ing error. However, reducing the dimension of the state vector leads to aggregation error as prior5

relationships between state vector elements are imposed rather than optimized. Here we present a

method for quantifying aggregation and smoothing errors as a function of state vector dimension,

so that a suitable dimension can be selected by minimizing the combined error. Reducing the state

vector within the aggregation error constraints can have the added advantage of enabling analytical

solution to the inverse problem with full error characterization. We compare three methods for reduc-10

ing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid

coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian

mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution

state vector elements are projected using radial basis functions (RBFs). The GMM method leads to

somewhat lower aggregation error than the other methods, but more importantly it retains resolution15

of major local features in the state vector while smoothing weak and broad features.

1 Introduction

Inverse models quantify the state variables driving the evolution of a physical system by using obser-

vations of that system. This requires a physical model F, known as the forward model, that relates
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a set of input variables x (state vector) to a set of output variables y (observation vector),20

y = F(x) + ε (1)

The observational error ε includes contributions from both the forward model and the measurements.

Solution to the inverse problem involves statistical optimization to achieve a best error-weighted

estimate of x given y.

A critical step in solving the inverse problem is determining the amount of information contained25

in the observations and choosing the state vector accordingly. This is a non-trivial problem when

using large observational datasets with large errors. An example that will guide our discussion is the

inversion of methane emissions on the basis of satellite observations of atmospheric methane con-

centrations (Turner et al., 2015). Methane concentrations can be predicted on the basis of emissions

by using a chemical transport model (CTM) that solves the 3-D continuity equation for methane30

concentrations. Here the CTM is the forward model F, the satellite provides a large observation

vector y, and we need to choose the resolution at which to optimize the methane emission vector x.

The simplest approach would be to use the native resolution of the CTM in order to extract the

maximum information from the observations. However, the observations may not be sufficiently

dense or precise to optimize emissions at that level of detail, resulting in an underdetermined prob-35

lem. Bocquet et al. (2011) refer to this as the “resolution problem”. The inverse solution must then

rely on some prior estimate for the state vector and may not be able to depart sufficiently from that

knowledge. This
:::
The

::::::::
associated

:::::
error is known as the smoothing error (Rodgers, 2000) and increases

::::::::::::::::::::::::::::::::::
(Rodgers, 2000; von Clarmann, 2014) and

:::::::
increase with size of the state vector (Bousquet et al., 2000; Kaminski and Heimann, 2001; Kaminski et al., 2001; Bocquet et al., 2011; von Clarmann, 2014)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bousquet et al., 2000; Kaminski and Heimann, 2001; Kaminski et al., 2001; von Clarmann, 2014) .

Wecht et al. (2014) illustrate the severity of this problem in their inversion of methane emissions us-40

ing satellite data.

An additional drawback of using a large state vector is the computational cost of the inversion.

Analytical
:::
that

:::::::::
analytical solution to the inverse problem

::::
may

:::
not

:::
be

:::::::::::::
computationally

:::::::::
tractable.

::::::::
Analytical

:::::::
solution

:
requires calculation of the Jacobian matrix, ∇xF, and inversion and multipli-

cation of the error covariance matrices (Rodgers, 2000). It has the
:::::
major

:
advantage of providing45

complete error statistics on
::
as

::::
part

::
of the solution but it becomes impractical as the state vector be-

comes too large. Numerical solutions using variational methods circumvent this problem but do not

inherently provide error characterization as part of the solution.
::::::::::
Approximate

:::::
error

:::::::
statistics

:::
can

:::
be

:::::::
obtained

::::::::::::::::::::::::::
(e.g., Bousserez et al., 2015) but

::
at

:::
the

::::
cost

::
of

:::::::::
additional

:::::::::::
computation.

Reducing the dimensionality of the state vector in the inverse problem thus has two advantages.50

It improves the observational constraints on individual state vector elements and it facilitates ana-

lytical solution. Reduction can be achieved by aggregating state vector elements. For a state vector

of gridded time-dependent emissions, the state vector can be reduced by aggregating grid cells and

time periods. However, this introduces error in the inversion as the underlying spatial and temporal

patterns of the aggregated emissions are now imposed from prior knowledge and not allowed to be55

2



optimized as part of the inversion. The resulting error is called the aggregation error (Kaminski and

Heimann, 2001; Kaminski et al., 2001; Schuh et al., 2009).

:::::::
Previous

::::
work

:::
by

::::::::::::::
Bocquet (2009) ,

::::::::::::::::::
Bocquet et al. (2011) ,

:::::::::::::::::::::
Bocquet and Wu (2011) ,

::::::::::::::
Wu et al. (2011) ,

:::
and

:::::::::::::::::::::::::::
Koohkan et al. (2012) developed

:::::::
optimal

:::::
grids

::::
that

:::::
allow

:::
the

:::::::
transfer

:::
of

::::::::::
information

::::::
across

:::::::
multiple

:::::
scales.

::::::
These

:::::::::::::
computationally

:::::::
efficient

:::::::
methods

:::::::::::::::::::::::::::::
(Bocquet and Wu, 2011) generally

::::::
require60

::
the

::::
use

::
of

::::
the

::::::::::::::
native-resolution

::::
grid

::
to

::::::
derive

:::
the

:::::::
optimal

::::::::::::
representation.

:::::
They

::::
also

:::::::
assume

::::
that

::
the

:::::::::::::::
native-resolution

::::
prior

:::::
error

:::::::::
covariance

::::::::
matrices

::::
can

::
be

:::::::::
accurately

:::::::::::
constructed.

::::::::
However,

:::
in

::::::
practice

:::
we

:::
are

::::::::
generally

::::::
unable

::
to

::::::
specify

:::::::
realistic

::::
prior

::::
error

::::::::::
correlations

::::
and

::::
must

:::::
resort

::
to

::::::
simple

::::::::::
assumptions.

:

Here we present a method for optimizing the selection of the state vector in the solution of the65

inverse problem for a given ensemble of observations .
::::::
without

::::::::
requiring

:::
an

:::::::
accurate

:::::::::::
specification

::
of

:::
the

:::::::::::::
native-resolution

:::::
prior

::::
error

:::::::::
covariance

::::::
matrix.

:::::::
Instead,

:::
we

:::
use

:::
the

:::::::
expected

:::::
error

::::::::::
correlations

:::::::
between

::::::::::::::
native-resolution

::::
state

::::::
vector

::::::::
elements

::
as

::::::
criteria

:::
in

:::
the

::::::::::
aggregation

:::::::
process.

:::::::
Relative

:::
to

::::::::::::::::::
Bocquet et al. (2011) ,

:::
our

:::::::
method

::
is
::::::::::

suboptimal
:::
but

::
is
:::::

more
::::::::

practical
::
to
::::::::::

implement.
:

As the di-

mension of the state vector decreases, the smoothing error decreases while the aggregation error70

increases. We show how to derive an optimum
:::::
There

:
is
::::::::
therefore

:::
an

:::::::
optimum

:::::::::
dimension

:
where the

overall error is minimized. We derive an analytical expression for the aggregation error covariance

matrix and show how this can guide selection of a reduced-dimension state vector where the aggre-

gation error remains below an acceptable threshold. We also show how intelligent selection of the

state vector can extract more information from the observations for a given state vector dimension.75

2 Formulating the inverse problem

Inverse problems are commonly solved using Bayes’ theorem,

P (x|y)∝ P (y|x)P (x) (2)

where P (x|y) is the posterior probability density function (pdf) of the state vector x (n× 1) given

a vector of observations y (m× 1), P (x) is the prior pdf of x, and P (y|x) is the conditional pdf80

of y given the true value of x. Assuming Gaussian distributions for P (y|x) and P (x) allows us to

write the posterior pdf as

P (x|y)∝ exp

{
−1

2
(y−F(x))

T
S−1O (y−F(x))− 1

2
(xa−x)

T
S−1a (xa−x)

}
(3)

where xa is the n× 1 prior state vector, SO is the m×m observational error covariance matrix,

and Sa is the n×n prior error covariance matrix.
::::
Here

:::
and

:::::::::
elsewhere,

:::
our

:::::::
notation

:::
and

:::::::::::
terminology85

:::::
follow

::::
that

::
of

::::::::::::::
Rodgers (2000) .

:
The most probable solution x̂ (called the maximum a posteriori or

MAP) is defined by the maximum of P (x|y), i.e., the minimum of the cost function J (x):

J (x) =
1

2
(y−F(x))

T
S−1O (y−F(x)) +

1

2
(xa−x)

T
S−1a (xa−x) (4)
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This involves solving

∇xJ =∇xF(x)TS−1O (F(x)−y) + S−1a (xa−x) = 0 (5)90

Solution to Eq. (5) can be done analytically if F is linear, i.e., F(x) = Kx+ c where K≡∇xF =

∂y/∂x is the Jacobian of F and c is a constant that can be set to zero in the general case by sub-

tracting c from the observations. This yields

x̂= xa + G(y−Kxa) (6)

where G = ŜKTS−1O is the gain matrix and Ŝ is the posterior
::::
error covariance matrix,95

Ŝ =
(
KTS−1O K + S−1a

)−1
(7)

The MAP solution can also be expressed in terms of the true value x as

x̂= xa + A(x−xa) + Gε (8)

where A is the averaging kernel matrix that measures the error reduction resulting from the obser-

vations:100

A = GK = I− ŜS−1a (9)

and Gε is the observation error in state space with error covariance matrix GSOGT .
::
We

:::::
have

:::::::
assumed

::::
here

:::
that

::::::
errors

:::
are

::::::::
unbiased,

::
as

::
is

:::::::
standard

:::::::
practice

::
in

:::
the

::::::
inverse

::::::::
modeling

:::::::::
literature.

:::
An

:::::::::::
observational

::::
error

::::
bias

:::
bO :::::

would
:::::::::
propagate

::
as

:
a
::::
bias

:::::
GbO ::

in
:::
the

::::::
solution

::̂
x
::
in

::::
Eq.

::
8.

The analytical solution to the inverse problem thus provides full error characterization as part of105

the solution. It does require that the forward model be linear. The Jacobian matrix must be generally

:::::::
generally

:::
be

:
constructed numerically, requiring n sensitivity simulations with the forward model,

and subsequent .
::::::::::
Subsequent matrix operations are also of dimension n. This limits the practical size

of the state vector. The matrix operations also depend on the dimension m of the observation vector

but this can be easily addressed by splitting that vector into uncorrelated packets, a method known110

as sequential updating (Rodgers, 2000).

The limitation on the state vector size can be lifted by finding the solution to ∇xJ = 0 numer-

ically, rather than analytically, for example by using the adjoint of the forward model to calculate

∇xJ iteratively at successive approaches to the solution (e.g., Henze et al., 2007). This variational

method allows for optimization of state vectors of any size because the Jacobian is not explicitly115

constructed. But it only yields the MAP solution, x̂, with no error statistics. Several approaches have

been presented to obtain approximate error characterization (e.g., Desroziers et al., 2005; Chevallier et al., 2007) but

they are
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Courtier et al., 1994; Desroziers et al., 2005; Chevallier et al., 2007; Bousserez et al., 2015) but

:::
they

::::
can

::
be

:
computationally expensive. An excessively large state vector relative to the strength of

the observational constraints also incurs smoothing error, as discussed above.120
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3 Quantifying aggregation and smoothing errors

The resolution of the forward model (e.g., grid resolution of the CTM) places an upper limit on the

dimension for the state vector, which we call the native dimension. As we reduce the dimension of

the state vector from this native resolution, the smoothing error decreases while the aggregation error

increases. Here we present analytical expressions for the aggregation and smoothing error covariance125

matrices and show how they can be used to select an optimal state vector dimension.

3.1 Aggregation error

As in Bocquet et al. (2011), we define a restriction (aggregation) operator that maps the native-

resolution state vector x of dimension n to a reduced-resolution vector xω of dimension p. We

assume a linear restriction operator Γω as a p×n matrix relating xω to x:130

xω = Γωx (10)

Bocquet et al. (2011) provide a detailed analysis of aggregation error for reduced-resolution state

vectors. Their analysis relies heavily on the probabilistic construction of a prolongation operator

(Γ?) mapping xω back to x: x= Γ?xω . However, construction of this prolongation operator is not

a well-posed problem because the operator is not unique. We present here a simpler and more robust135

:::::::
practical method.

Aggregation error is the error introduced by aggregating state vector elements in the inversion. The

relationship between the aggregated elements is not optimized as part of the inversion anymore and

instead becomes an unoptimized parameter in the forward model, effectively increasing the forward

model error and inhibiting the ability of the model to fit the observations. The aggregation error is140

thus a component of the observational error.

The aggregation error can be quantified by comparing the observational error incurred by using

the native-resolution state vector,

ε= y−Kx (11)

to that using the aggregated state vector,145

εω = y−Kωxω (12)

Here y is the observation vector (common in both cases), and x and xω are the true values of

the native-resolution and aggregated state vectors,
::::
and

::
K

::::
and

:::
Kω:::

are
:::
the

::::::
native

::::::::
resolution

::::
and

:::
the

:::::::::::::::
reduced-dimension

:::::::::
Jacobians. The only difference between ε and εω is the aggregation of state

vector elements. As such,150

εω = ε+ εA (13)
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where εA is the aggregation error. Rearranging,

εA = (K−KωΓω)x (14)

Obtaining the error statistics for εA requires knowledge of the pdf of x for the ensemble of pos-

sible true states
::::::::::::::::::::::::::::::::::
(cf. Rodgers, 2000; von Clarmann, 2014) . Let x represent the mean value of this155

ensemble and Se the corresponding covariance matrix. The aggregation error covariance matrix is:

SA = E
[
(εA−E [εA]) (εA−E [εA])

T
]

(15)

where E [ ] is the expected value operator. E [εA] = (K−KωΓω)x is the bias introduced by the

aggregation. Replacing into Eq. (15):

SA = (K−KωΓω)E
[
(x−x)(x−x)

T
]

(K−KωΓω)
T160

= (K−KωΓω)Se (K−KωΓω)
T (16)

In designing our inversion system we use xa as our best estimate of x and Sa as our best estimate of

Se. If
::::::
Indeed,

::
if xa = x there is

:::::
would

::
be

:
no aggregation error since the prior relationship assumed

between state vector elements is
:::::
would

::
be

:
correct, thus K = KωΓω and the aggregation bias is zero.

Furthermore, assuming
:::::
would

:::
be

:::::
zero.

:::::::::
Assuming Sa = Se allows us to calculate the aggregation165

error covariance matrix as

SA = (K−KωΓω)Sa (K−KωΓω)
T (17)

and we will use this expression in the analysis that follows.
::::::::::
Application

::
of

:::
Eq.

::
17

:::::::
requires

:::::::::::
computation

::
of

:::
the

::::::::::::::
native-resolution

:::::::
Jacobian

:::
K

:::
but

:::
this

:::
can

:::
be

::::
done

:::
for

:
a
:::::::
limited

:::
test

::::::
period

::::
only.

:::
We

::::
will

::::
give

::
an

:::::::
example

::::::
below.170

3.2 Smoothing error

Following Rodgers (2000), we can express the smoothing error on x̂ by rearranging Eqs. (6) and (1):

x̂−x= (I−A)(xa−x) + Gε (18)

where εS = (I−A)(xa−x) is the smoothing error. As pointed out by Rodgers (2000), the smooth-

ing error statistics must be derived from the pdf of possible true states, in the same way as for the175

aggregation error and characterized by the error covariance matrix Se. For purposes of designing the

inverse system we assume that Se = Sa. Thus we have

SS = (I−A)Sa (I−A)
T (19)

We can also express the smoothing error in observation space, ε∗S, (i.e., as a difference between y

and Kx̂) by multiplying both sides of Eq. (18) by the Jacobian matrix:180

K(x̂−x) = K(I−A)(xa−x) + KGε (20)
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so that

ε∗S = K(I−A)(xa−x) (21)

The corresponding smoothing error covariance matrix in observation space is

S∗S = K(I−A)Sa (I−A)
T

KT (22)185

This expression can be generalized to compute the smoothing error covariance matrix in observation

space for any reduced-dimension state vector xω with Jacobian Kω , prior error covariance matrix

Sa,ω , and averaging kernel matrix Aω:

S∗S = Kω (I−Aω)Sa,ω (I−Aω)
T

KT
ω (23)

3.3 Total error budget190

From Eq. (18) we can see that the total error on x̂ without aggregation is εT = εS + Gε in the state

space, or ε∗T = ε∗S + KGε in the observation space. The KG term in the observation space appears

because we are interested in the error on x̂. If x̂= x then KG = I and A = I, thus εS = 0 and our

total error reverts to ε,

ε∗T|x̂=x = K(I−A)(xa−x) + KGε= ε (24)195

Additional consideration of aggregation error for a reduced-dimension state vector xω yields a to-

tal error in the state space

εT = εS + Gωε+ GωεA (25)

where Gω

Gω =
(
KT

ωS−1O Kω + S−1a,ω

)−1
KT

ωS−1O
:::::::::::::::::::::::::::::::

(26)200

is the gain matrix for the reduced-dimension state vector. In the observation space we get

ε∗T = ε∗S + KωGωε+ KωGωεA (27)

From these relationships we derive the total error covariance matrix as

ST,ω = (I−Aω)Sa,ω (I−Aω)
T︸ ︷︷ ︸

Smoothing Error

+ Gω (K−KωΓω)Sa (K−KωΓω)
T

GT
ω︸ ︷︷ ︸

Aggregation Error

205

+ GωSOGT
ω︸ ︷︷ ︸

Observation Error

(28)
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in the state space and

S∗T,ω = Kω (I−Aω)Sa,ω (I−Aω)
T

KT
ω︸ ︷︷ ︸

Smoothing Error

+ KωGω (K−KωΓω)Sa (K−KωΓω)
T

GT
ωKT

ω︸ ︷︷ ︸
Aggregation Error

+ KωGωSOGT
ωKT

ω︸ ︷︷ ︸
Observation Error

(29)210

in the observation space.
::
A

:::
bias

:::::
term

::::::
should

::::::
exhibit

::::::
similar

:::::::::::::::
scale-dependence

:::
to

:::
the

::::::::::
observation

::::
error

::::
term

:::
and

:::::
could

:::
be

:::::::
included

:::
by

::::::::
following

:::
the

::::::::
derivation

:::::
from

::::::::::::::
Rodgers (2000) .

Each of these
::
the

:
three error terms depends

::::
above

:::::::
depend

:
on state vector dimension. Because

the smoothing error increases with state vector dimension while the aggregation error decreases, we

expect to find an
::::::
analysis

::
of

:::
the

::::
error

::::::
budget

:::
can

:::::
point

::
to

:::
the optimal dimension where the total error215

is minimum. To enable an analytical inversion we may wish to decrease the
:
It

:::
can

::::
also

:::::
point

::
to

:::
the

::::::::
minimum state vector dimension further within a tolerance on aggregation error, such as requiring

that
:::::
needed

:::
for

:
the aggregation error remain

:
to

:::
be

:::::
below

::
a

::::::
certain

::::::::
tolerance,

::::
e.g.,

:
smaller than the

observation error. We give an example in Sect. 5.

A caveat in the above expressions for the aggregation and smoothing error covariance matrices is220

that they are valid only if the prior xa is the mean value x for the pdf of true states and if the error co-

variance matrix Sa is the covariance matrix for that pdf . These conditions define the assumption for

the prior, so the expressions
::::::::
(Se = Sa).

::::::::::::::::::::::
Rodgers (2000, p. 49) and

::::::::::::::::::::::::
von Clarmann (2014) provide

::
a

::::::
detailed

:::::::::
discussion

::
of

:::
the

:::::
errors

:::::::
induced

::
by

::::::
failing

::
to

::::
meet

::::
this

::::::::::
assumption.

:::::
Since

::::
these

:::::::::::
assumptions

:::::
define

:::
our

:::::
prior,

::::
they can be taken as valid for the purpose of selecting an appropriate state vector di-225

mension in an inverse problem. However, they should not be used to diagnose errors on the inversion

results.

4 Aggregation methods

Aggregation of state vector elements to reduce the state vector dimension introduces aggregation

errors
::::
error, as described in Sect. 3.1. The aggregation error can be reduced by grouping elements230

with correlated errors. Analyzing the off-diagonal structure of a precisely constructed prior error

correlation matrix would provide the best objective way to carry out the aggregation,
::
as

::::::::
described

:::
by

::::::::::::::
Bocquet (2009) ,

::::::::::::::::::
Bocquet et al. (2011) ,

::::
and

::::::::::::::
Wu et al. (2011) . We generally lack such information

but do have some qualitative knowledge of prior error correlation that can be used to optimize the

aggregation. Bocquet et al. (2011)
::
By

::::::::::
aggregating

::::::
regions

::::
that

::::
have

::::::::
correlated

::::::
errors

::
we

::::
can

::::::
exploit235

::::::::
additional

::::::::::
information

::::
that

:::::
would

::::::::
otherwise

:::
be

::::::::
neglected

::
in

::
a

::::::::::::::
native-resolution

::::::::
inversion

::::::::
assuming

:::
(by

::::::
default)

:::::::::::
uncorrelated

::::::
errors.

8



:::::::
Previous

:::::
work

::
by

:::::::::::::::::::
Bocquet et al. (2011) ,

::::::::::::::
Wu et al. (2011) ,

::::
and

::::::::::::::::::
Koohkan et al. (2012) used tiling

and tree-based aggregation methods, while Wecht et al. (2014) used a hierarchal clustering method

based on prior error patterns.
:::::::::::::::::::::::
Bocquet and Wu (2011) also

::::
used

::::::::
principal

:::::::::
component

:::::::
analysis

::::::
(PCA)240

::::::
coupled

::
to

:::
the

:::::::::
hierarchal

:::
grid

::
to
::::::::
compute

::
an

:::::::
optimal

::::
grid. Here we compare three aggregation meth-

ods: (1) simple grid coarsening, (2) principal component analysis (PCA )
::::
PCA

:
clustering, and (3)

a Gaussian mixture model (GMM) with radial basis functions (RBFs) to project native-resolution

state vector elements to Gaussian pdfs. A qualitative illustration of these methods is shown in Fig. 1

for the aggregation of a native-resolution state vector of methane emissions with 1
2
◦× 2

3
◦ native grid245

resolution over North America (Turner et al., 2015). We focus here on spatial aggregation and as-

sume that the state vector has no temporal dimension. However, the same methods can be used for

temporal aggregation.

The simplest method for reducing the dimension of the state vector is to merge adjacent ele-

ments, i.e., neighboring grid cells. This method considers only spatial proximity as source of error250

correlation. It may induce large aggregation errors if proximal but otherwise dissimilar regions are

aggregated together. In the case of methane emissions, aggregating neighboring wetlands and farm-

land would induce large errors because different processes drive methane emissions from these two

source types.

The other two methods enable consideration of additional similarity factors besides spatial prox-255

imity when aggregating state vector elements. These similarity factors are expressed by vectors of

dimension n describing correlative properties of the original native-resolution state vector elements.

In the case of a methane source inversion, for example, we can choose as similarity vectors lati-

tude and longitude to account for spatial proximity, but also wetland fraction to account for error

correlations in the bottom-up wetland emission estimate used as prior.260

4.1 Similarity matrix for aggregation

Table 1 lists the similarity vectors chosen for our example problem of estimating methane emis-

sions (Turner et al., 2015). The first two vectors account for spatial proximity, the third represents

the scaling factors from the first iteration of an adjoint-based inversion at native resolution (Wecht

et al., 2014), and the others are the source type patterns from the bottom-up inventories used as265

prior. All similarity vectors are normalized and then weighted by judgment of their importance.

:::
We

::::::
choose

::::
here

::
to

::::::
include

::::::
initial

::::::
scaling

::::::
factors

::::
from

:::
the

::::::::::::
adjoint-based

::::::::
inversion

::::::
because

:::
we

:::::
have

::::
them

::::::::
available

:::
and

:::::
they

:::
can

:::::
serve

::
to

:::::::
correct

:::
any

:::::
prior

:::::::
patterns

:::
that

::::
are

::::::
grossly

::::::::::
inconsistent

:::::
with

::
the

::::::::::::
observations,

::
or

::
to

:::::::
identify

::::
local

::::::::
emission

:::::::
hotspots

:::::::
missing

::::
from

:::
the

:::::
prior.

::::
One

:::::::
iteration

:::
of

:::
the

:::::::::::
adjoint-based

::::::::
inversion

:
is
::::::::::::::
computationally

::::::::::
inexpensive

:::
and

::
is
::::::::
sufficient

::
to

::::
pick

:::
up

:::::
major

:::::::::
departures270

::::
from

:::
the

:::::
prior.

Let {c1, . . . ,cK} represent the K similarity vectors chosen for the problem (K = 14 in our exam-

ple of Table 1). We assemble them into a n×K similarity matrix C. We will also make use of the

9



ensemble of similarity vector values for individual state vector elements, which we assemble into

vectors {c′1, . . . ,c′n} representing the rows of C. Thus:275

C =




...

c1
...




...

c2
...

 · · ·


...

cK
...


=



(
· · · c′1 · · ·

)(
· · · c′2 · · ·

)
...(

· · · c′n · · ·
)

 (30)

In this work all of the aggregation methods except for grid coarsening will use the same similarity

matrix to construct the restriction operator.

This approach of using a similarity matrix C to account for prior error covariances bears some

resemblance to the geostatistical approach for inverse modeling (e.g., Michalak et al., 2004, 2005;280

Gourdji et al., 2008; Miller et al., 2012). The geostatistical approach specifies the prior estimate as

xa = Cβ where β is a vector of unknown drift coefficients to be optimized as part of the inversion.

Here we use the similarity matrix to reduce the dimension of the state vector, rather than just as

a choice of prior constraints.

4.2 Clustering with principal component analysis285

In this method we cluster state vector elements following the principal components of the simi-

larity matrix. It is generally not practical to derive the principal components in state vector space

because the n-dimension is large. Instead we derive them in in similarity space (dimension K) as

the eigenvectors of CTC sorted in order of importance by their eigenvalues. The leading j prin-

cipal components are kept for clustering. The reduced state vector is then constructed by grouping290

state vector elements that have the same sign patterns for all j principal components. Each unique

j-dimensional sign pattern constitutes a cluster. The number of clusters defined in that way ranges

between j and 2j . Figure 1b shows an example of applying this method to methane emissions in

North America with reduction of the state vector to n= 8. The separation into four quadrants re-

flects the importance of latitude and longitude as error correlation factors. The additional separation295

within each quadrant isolates large from weak sources as defined by the prior.

4.3 Gaussian mixture model (GMM)

Here we use a Gaussian mixture model (GMM; Bishop, 2007) to project the native-resolution state

vector onto p Gaussian pdfs using radial basis functions (RBFs). Mixture models are probabilistic

models for representing a population comprised of p subpopulations. Each subpopulation is assumed300

to follow a pdf, in this case Gaussian. The Gaussians are K-dimensional where K is the number of

similarity criteria. Each native-resolution state vector element is fit to this ensemble of Gaussians

using RBFs as weighting factors.

10



The first step in constructing the GMM is to define a p×nweighting matrix W = [w1,w2, . . . ,wp]T .

Each element wi,j of this weighting matrix is the relative probability for native-resolution state vec-305

tor element j to be described by Gaussian subpopulation i, i.e., “how much does element j look like

Gaussian i?”. It is given by

wi,j =
πiN (c′j |µi,Λi)∑p

k=1πjN (c′j |µk,Λk)
(31)

Here c′j is the jth row of the similarity matrix C, µi is a 1×K row vector of means for the ith

Gaussian, Λi is aK×K covariance matrix for the ith Gaussian, and π = [π1, . . . ,πp]
T is the relative310

weight of the p Gaussians in the mixture.N
(
c′j |µi,Λi

)
denotes the probability density of vector c′j

on the normal distribution of Gaussian i. We define a p×K matrix M with rowsµi and aK×K×p
third-order tensor L = [Λ1, . . . ,Λp] as the set of covariance matrices.

Projection of the native-resolution state vector onto the GMM involves four unknowns: W,π, M,

and L. This is solved by constructing a cost function to estimate the parameters of the Gaussians in315

the mixture model using maximum likelihood:

JGMM(C|π,M,L) =

n∑
j=1

ln

{
p∑

i=1

πiN (c′j |µi,Λi)

}
(32)

Starting from an initial guess for π, M, and L we compute the weight matrix W using Eq. (31).

We then differentiate the cost function with respect to π, M, and L, and set the derivative to zero

to obtain (see Bishop, 2007):320

µi = Ψi

n∑
j=1

wi,jc
′
j (33)

Λi = Ψi

n∑
j=1

wi,j

(
c′j −µi

)T (
c′j −µi

)
(34)

πi =
1

nΨi
(35)

where:

Ψi =

n∑
j=1

1

wi,j
(36)325

The weights are re-calculated from the updated guesses of W, π, M, and L from Eqs. (33)–(36),

and so on until convergence. The final weights define the restriction operator as Γω = W.
:::
The

:::::::::::
computational

::::::::::
complexity

:::
for

::
the

::::::::::::::::::::::
expectation-maximization

::::::::
algorithm

:
is
::::::::::::
O(nK + pn2)

:::::::::::::::::
(Chen et al., 2007) ,

:::::::
however

:::
the

:::::
actual

:::::::
runtime

::::
will

:::
be

::::::
largely

:::::::
dictated

:::
by

:::
the

:::::::::::
convergence

:::::::
criteria.

:::::
Here

:::
we

:::
use

:::
an

11



:::::::
absolute

:::::::
tolerance

:::
of

:::::::::
τ < 10−10

:::::
where

:
330

τ
:
=
∑
i

∑
j

∣∣Mi,j −M?
i,j

∣∣
::::::::::::::::::::

(37)

+
∑
i

∑
j

∑
k

∣∣Li,j,k −L?
i,j,k

∣∣
:::::::::::::::::::::::

(38)

+
∑
i

|πi−π?
i |

::::::::::::

(39)

:::
and

:::
the

:::::::::
superscript

:::
star

::::::::
indicates

:::
the

:::::
value

::::
from

:::
the

::::::::
previous

:::::::
iteration.

:

The GMM allows each native-resolution state vector element to be represented by a unique linear335

combination of the Gaussians through the RBFs. For a state vector of a given dimension, defined by

the number of Gaussian pdfs, we can achieve high resolution for large localized sources by sacrific-

ing resolution for weak or uniform source regions where resolution is not needed. This is illustrated

in Fig. 2 with the resolution of southern
:::::::
Southern California in an inversion of methane sources for

North America. The figure shows the three dominant Gaussians describing emissions in Southern340

California and the corresponding RBF weights for each native-resolution grid square. Gaussian 1 is

centered over Los Angeles and is highly localized, Gaussian 2 covers the Los Angeles Basin, and

Gaussian 3 is a Southern California background. The sum of these three Gaussians accounts for most

of the emissions in southern
::::::::
Southern California and Nevada (which is mostly background). Addi-

tional Gaussians (not shown) resolve the southern San Joaquin Valley (large livestock and oil/gas345

emissions) and Las Vegas (large emissions from waste).

5 Application

We apply the aggregation methods described above to our example problem of estimating methane

emissions from satellite observations of methane concentrations, focusing on selecting a reduced-

dimension state vector that minimizes aggregation and smoothing errors. The inversion is described350

in detail in Turner et al. (2015) and uses GOSAT satellite observations for 2009–2011 over North

America. The forward model for the inversion is the GEOS-Chem CTM with 1
2
◦× 2

3
◦ grid resolu-

tion. The native-resolution state vector of methane emissions as defined on that grid includes 7366

elements.

For purpose of selecting an aggregated state vector for the inversion we consider a subset of355

observations for May 2010 (m= 6070) so that we can afford to construct the corresponding Jaco-

bian matrix K at the native resolution; this is necessary to derive the aggregation error covariance

matrix following Eq. (17). The prior error covariance matrix is specified as diagonal with 100 %

uncertainty at the native resolution, decreasing with aggregation following the central limit theo-

rem (Turner et al., 2015). The observational error covariance matrix is also diagonal and specified as360

the scene-specific retrieval error from Parker et al. (2011), which dominates the total observational

12



error as shown by Turner et al. (2015). We compare the three methods presented in Sect. 4 for aggre-

gating the state vector in terms of the implications for aggregation and smoothing errors for different

state vector dimensions. In addition to the GMM with RBFs, we also consider a “GMM clustering”

method where each native resolution state vector element is assigned exclusively to its dominant365

Gaussian pdf. This yields sharp boundaries between clusters (Fig. 1) as in the grid coarsening and

PCA methods.

Figure 3 shows the mean error SD
::::::
standard

:::::::::
deviation in the aggregation and smoothing error

covariance matrices, computed as the square root of the
::::
mean

:::
of

:::
the diagonal terms, as a function

of state vector dimension. The aggregation error is zero by definition at the native resolution (7366370

state vector elements), and increases as the number n of state vector elements decreases, following

a roughly n−0.7 dependence. Conversely, the smoothing error increases as the number of state vec-

tor elements increases, following roughly a log(n) dependence. The different aggregation methods

of Sect. 4 yield very similar smoothing errorsbut the aggregation ,
:::::::::
suggesting

::::
that

:::
any

::::::::::
reasonable

:::::::::
aggregation

:::::::
scheme

:::::
(such

:::
as

:
k
::::::
-means

:::::::::
clustering

::::::::::::::::
(cf. Bishop, 2007) )

::::::
would

:::::::
perform

:::::::::::
comparably.375

:::
The

::::::::::
aggregation

:
error is somewhat improved using the GMM method. RBF weighting performs

slightly better than GMM clustering (sharp boundaries). As discussed above, a major advantage of

the GMM method is its ability to retain resolution of large localized sources after aggregation.

Figure 4 shows the sum of contributions from aggregation, smoothing, and observational error SD

:::::::
standard

:::::::::
deviations as a function of state vector aggregation using the GMM with RBF weighting.380

In this application, aggregation error dominates for small state vectors (n < 100), but drops below

the observation error for n > 100 and below the smoothing error for n > 1000. The smoothing error

remains smaller than the observational error even at the native resolution (n= 7366). The obser-

vational error is not independent of aggregation, as shown in Eq. (29), but we find here that the

dependence is small.385

From Fig. 4 we can identify a state vector dimension for which the total error is minimum (n=

2208; circle in Fig. 4). However, error growth is small until n≈ 200, below which the aggregation

error grows rapidly. A state vector of 369 elements, as adopted by Turner et al. (2015), does not

incur significant errors associated with aggregation or smoothing, and enables computation of an

analytical solution to the inverse problem with full error characterization.390

:::::::
Previous

::::
work

:::
by

::::::::::::::
Bocquet (2009) ,

::::::::::::::::::
Bocquet et al. (2011) ,

:::::::::::::::::::::
Bocquet and Wu (2011) ,

::::::::::::::
Wu et al. (2011) ,

:::
and

::::::::::::::::::::::::::
Koohkan et al. (2012) analyzed

:::
the

:::::::::::::::
scale-dependence

::
of

::::::::
different

:::::
grids

:::::
using

:::
the

:::::::
degrees

:::
of

:::::::
freedom

::
for

::::::
signal:

::::::::::::::::::::
DFS = Tr(I−S−1a,ωŜω).

:::::
These

::::
past

:::::
works

:::::
found

::::
this

::::
error

:::::
metric

::
to

:::
be

::::::::::::
monotonically

:::::::::
increasing.

::::
This

::::::
implies

::::
that

:::
the

:::::
native

:::::::::
resolution

::::
grid

:::
will

::::
have

:::
the

:::::
least

::::
total

::::
error

::::
and

::::
there

::
is

:::
no

::::::
optimal

:::::::::
resolution,

::::::
except

:::::
from

:
a
:::::::::
numerical

::::::::
efficiency

::::::::::
standpoint.

::::
Here

:::
we

::::
find

::
a

::::
local

:::::::::
minimum395

:::
that

::
is,

::::::::::
seemingly,

::
at

::::
odds

::::
with

:::
this

::::::::
previous

:::::
work.

::::::::
However,

:::
the

:::::::::
reasoning

::
for

::::
this

::::
local

:::::::::
minimum

:
is
::::
that

:::
we

::::
have

:::::::
allowed

::
the

::::::::::
aggregation

::
to

:::::::
account

:::
for

:::::
spatial

:::::
error

::::::::::
correlations

:::
that

:::
we

:::
are

::::::
unable

::
to

::::::
specify

::
at

:::
the

:::::
native

:::::::::
resolution.

:::
As

::::
such,

:::
we

:::
are

:::::
taking

:::::
more

::::::::::
information

::::
into

::::::
account

::::
and

::::::::
obtaining

13



:
a
::::::::
minimum

::::
total

:::::
error

::
at

::
a

::::
state

::::::
vector

:::
size

::::
that

::
is

::::::
smaller

:::::
than

:::
the

:::::
native

:::::::::
resolution.

::
If
:::
the

::::::
native

::::::::
resolution

::::
error

:::::::::
covariance

::::::::
matrices

::::
were

::::::
correct

:::::
then,

::
as

:::::::
previous

:::::
work

:::::::
showed,

:::
the

::::
only

::::::
reason

::
to400

::::::
perform

::::::::::
aggregation

::::::
would

::
be

::
to

::::::
reduce

:::
the

::::::::::::
computational

:::::::
expense

:::
and

:::
the

::::
grid

::::
used

::::
here

:::::
would

:::
be

:::::::::
suboptimal

:::::::
because

:
it
::::
does

::::
not

::::::
depend

::
on

:::
the

::::::::::::::
native-resolution

::::
grid.

:

6 Conclusions

We presented a method for optimizing the selection of the state vector in the solution of the in-

verse problem for a given ensemble of observations. The optimization involves minimizing the total405

error in the inversion by balancing the aggregation error (which increases as the state vector dimen-

sion decreases), the smoothing error (which increases as the state vector dimension increases), and

the observational error. We further showed how one can reduce the state vector dimension within

the constraints from the aggregation error in order to facilitate an analytical solution to the inverse

problem with full error characterization.410

We explored different methods for aggregating state vector elements as a means of reducing the

dimension of the state vector. Aggregation error can be minimized by grouping state vector elements

with the strongest correlated prior errors. We showed that a Gaussian mixture model (GMM), where

the state vector elements are multi-dimensional Gaussian pdfs constructed from prior error correla-

tion patterns, is a powerful aggregation tool. Reduction of the state vector dimension using the GMM415

retains fine-scale resolution of important features in the native-resolution state vector while merging

weak or uniform features.
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Table 1. Similarity vectors for inverting methane emissions in North Americaa.

Similarity Weighting

Vector factorb

1. Latitudec 1.00

2. Longituded 1.00

3. Initial scaling factorse 0.15

4. Wetland f 0.31

5. Livestock f 0.22

6. Oil/gas f 0.16

7. Waste f 0.15

8. Coal f 0.06

9. Soil absorption f 0.05

10. Termites f 0.02

11. Biomass burning f 0.02

12. Biofuel f 0.01

13. Rice f 0.01

14. Other f 0.01

a The K = 14 similarity vectors describe prior error correlation criteria for the native-resolution state vector,

representing here the methane emission in North America at the 1
2
◦× 2

3
◦ resolution of the GEOS-Chem chemical

transport model. The criteria are normalized and then weighted (weighting factor). Criteria 4-14 are prior emission

patterns used in the GEOS-Chem model (Wecht et al., 2014; Turner et al., 2015) .
b The weighting factors (dimensionless) measure the estimated relative importance of the different similarity criteria in

determining prior error correlations in the state vector. For the prior emission patterns these weighting factors are the

fractional contributions to total prior emissions in North America.
c Distance in kilometers from the equator.
d Distance in kilometers from the prime meridian.
e Initial scaling factors from one iteration of an adjoint inversion at the native resolution.
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Figure 1. Illustration of different approaches for aggregating a state vector. Here the native resolution state

vector is a field of gridded methane emissions at 1
2
◦× 2

3
◦ resolution over North America. Extreme reduction to

8 state vector elements is shown with individual elements distinguished by color.
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Figure 2. Gaussian Mixture Model (GMM) representation of methane emissions in southern
::::::
Southern

:
Cali-

fornia with Gaussian pdfs as state vector elements. The Gaussians are constructed from a similarity matrix for

methane emissions on the 1
2
◦ × 2

3
◦ horizontal resolution of the GEOS-Chem CTM used as forward model for

the inversion. The figure shows the dominant three Gaussians for southern
::::::
Southern

:
California with contours

delineating the 0.5, 1.0, 1.5, and 2.0 σ spreads for the latitude–longitude dimensions. The RBF weights w1,

w2, and w3 of the three Gaussians for each 1
2
◦ × 2

3
◦ grid square are also shown along with their sum.
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Figure 3. Aggregation and smoothing error dependences on the aggregation of state vector elements in an in-

verse model. The application here is to an inversion of methane emissions over North America using satellite

methane data with 7366 native-resolution state vector elements (Sect. 5 and Turner et al., 2015). Results are

shown as the square roots of the means of the diagonal terms (mean error SD
::::::
standard

:::::::
deviation) in the aggre-

gation and smoothing error covariance matrices. Different methods for aggregating the state vector (Sect. 4) are

shown as separate lines. Note the log-scale on the x axis.
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Figure 4. Total error budget from the aggregation of state vector elements in an inverse model. The applica-

tion here is to an inversion of methane emissions over North America using satellite methane data with 7366

native-resolution state vector elements (Sect. 5 and Turner et al., 2015). Results are shown as the square roots

of the means of the diagonal terms (mean error SD
::::::
standard

:::::::
deviation) in the aggregation, smoothing, and ob-

servational error covariance matrices, and for the sum of these matrices. Aggregation uses the GMM with RBF

weighting (Sect. 4). There is an optimum state vector size for which the total error is minimum and this is

shown as the circle. Gray shading indicates the 90 % confidence intervals
::::
range for the total error

::
on

::::::::
individual

::::::
elements

:
as diagnosed from the 5th and 95th quantiles of diagonal elements in the total error covariance matrix.

Note the log-scale on the x axis.
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