Atmos. Chem. Phys. Discuss., 15, C11554–C11555, 2016 www.atmos-chem-phys-discuss.net/15/C11554/2016/

© Author(s) 2016. This work is distributed under the Creative Commons Attribute 3.0 License.

ACPD

15, C11554–C11555, 2016

Interactive Comment

Interactive comment on "A new source of methyl glyoxal in the aqueous phase" by M. Rodigast et al.

Anonymous Referee #1

Received and published: 14 January 2016

The authors present a detailed study of the aqueous-phase oxidation of methyl ethyl ketone (MEK). Their most significant finding is that this species may be a precursor for methylglyoxal in the aqueous phase. The experiments were carefully performed and a detailed modeling analysis was used to determine the reaction mechanism and rate constants. The paper is suitable for publication in ACP after a few minor points are addressed.

My main concern about this paper is that I would like to see a discussion of the relative importance of this source of methylglyoxal as compared to uptake from the gas phase. The Henry's Law constant of MEK is very low, 2-3 orders of magnitude lower than that of methylglyoxal itself. Considering mass transfer limitations, how significant of a source of methylglyoxal, and by extension, aqueous SOA, is this pathway?

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Minor comments:

- Methylglyoxal is conventionally one word in English, please change throughout.
- Was there any gas phase in the reactor? Was it in equilibrium with the aqueous phase?
- p. 31898 line 7-8: please elaborate on how the relative photolysis rate constants 'confirm the experimental results'

Interactive comment on Atmos. Chem. Phys. Discuss., 15, 31891, 2015.

ACPD

15, C11554–C11555, 2016

> Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

