
We would like to thank both reviewers for their constructive and thoughtful comments, which have 

provided valuable suggestions to improve this manuscript. Below we respond to all the concerns 

and/or suggestions of the two reviewers and highlight the changes made to improve the manuscript.  

 

Reviewer # 1 

 

The manuscript of Andela et al. proposes a new modelling approach of the daily cycle of FRP at a 

hourly time scale from 4 MODIS daily observations. This development is performed to improve FRE 

estimates within the Global Fire Assimilation System used in the Copernicus Atmosphere Monitoring 

Services. The manuscript addresses therefore an important issue, as the four or so MODIS FRP data 

available on a daily basis do not allow to properly sample the daily cycle of fire activity.  

 

Specific comments 

 

Comment #1:  

The manuscript objective, as stated in the abstract “Specifically, we assess how representing the fire 

diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses” and in 

the introduction “The purpose of the work presented here is to better understand the fire diurnal 

cycle and its spatiotemporal dynamics, in order to develop new ways to include this into a near real 

time fire emissions estimation framework” are not exactly coherent between themselves.  

 

Response #1:  

The aim of the manuscript is both to investigate the fire diurnal cycle and its drivers and based on 

this knowledge to develop a new way to include the fire diurnal cycle into a near real-time modelling 

framework based on MODIS data. A better understanding of the spatial drivers of the fire diurnal 

cycle is required to upscale the proposed model to regions where no geostationary FRP data are 

available to characterize the spatiotemporal variability of the fire diurnal cycle. We have made 

textual changes to the abstract and introduction in order to explain the manuscripts objectives more 

clearly and avoid further confusion: 

 

Abstract (lines 23-27): 

“In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from 

the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we 

sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two 

approaches to estimate hourly FRE based on MODIS active fire detections.” 

 

Introduction (lines 140-145): 

“The purpose of the work presented here is to better understand the fire diurnal cycle and its 

spatiotemporal dynamics, in order to develop a new way to include this into a near real time fire 

emissions estimation framework. First, the spatial distribution and dependencies of the fire diurnal 

cycle and their effect on active fire detections at MODIS overpasses were explored. Then, data 

assimilation was used to compare two different methods to derive hourly FRE estimates at 0.1° 

resolution based on low Earth-orbiting MODIS observations.” 

 

 



Comment #2 

In the same way, the manuscript title is also slightly misleading and should better reflect that actual 

content of the paper. A title such as “Development of a new fire diurnal cycle to improve fire 

radiative energy assessments derived from MODIS observations” might better reflect the work 

presented here.  

 

Response #2 

We have changed the title to better reflect the two objectives of the manuscript: (i) beter 

characterizing the fire diurnal cycle and its drivers and (ii) develop a new method to derive near real 

time FRE estimates based on this new knowledge about the fire diurnal cycle and MODIS FRP 

detections. New title:  

“New fire diurnal cycle characterizations to improve fire radiative energy assessments made from 

MODIS observations” 

 

Comment #3 

The manuscript dives into too many details and intermediate results with a style which is probably 

closer to a progress report than a well focused journal paper. I would recommend to focus on the 

description and evaluation of the best model. It is not sure that presenting the models that have not 

been selected brings much to the paper clarity. With that respect, Section 3.7 is particularly confused 

and would require some rewriting. 

 

Response #3 

In the revised manuscript we limit ourselves to presenting the ‘persistent’ and ‘climatological’ 

approaches. This comparison of the persistent and climatological approaches is crucial for readers to 

better understand the consequences of the combined effects of the MODIS sampling design and the 

fire diurnal cycle on hourly FRE estimates. In addition, the persistent approach can be seen as a direct 

hourly extension of the current GFAS methods, and highlights the need to include the fire diurnal 

cycle into such approaches. The original idea behind the dynamic approach (now excluded) was that 

it may become the best choice when a larger number of daily FRP detections are available (e.g., at 

higher latitudes; or in future when additional instruments become operational).  

 

All parts of the manuscript referring to the dynamic approach have been removed (most notably 

Sect. 3.6 of the methods and P9686L27 to P9687L5 of the Discussion). Moreover some sections of 

the manuscript have been updated to better explain why we have chosen to present these two 

modelling approaches and their specific qualities. Finally, we have rewritten and shortened Sect. 3.7 

of the methods, also in the light of comment #5. 

 

For example, lines P9666L24-26 of the introduction have been updated to better explain the new 

insights derived from the individual modelling approaches (lines 143 - 148): 

 “Then, data assimilation was used to compare two different methods to derive hourly FRE estimates 

at 0.1° resolution based on low Earth-orbiting MODIS observations. The first method ignored the fire 

diurnal cycle, and was used as a reference to better understand the combined effect of the fire 

diurnal cycle and the MODIS sampling design on hourly FRE estimates. The second method combined 

knowledge on the fire diurnal cycle with active fire detections at MODIS overpasses.” 

 



Updated Methods Sect. 3.6 (former Sect. 3.7; lines 390 - 408):  

“The estimated hourly FRE fields (or analysis;    ) resulting from the two modelling approaches 

(persistent and climatological) were evaluated via comparison to those derived from the hourly 

SEVIRI time-series (see Sect. 2.1). Two criteria were used to evaluate model performance: first, the 

spatial distribution of FRE estimates; and second, the temporal distribution of FRE. The spatial 

performance of the modelling approaches was assessed via their ability to reproduce the annual 

mean FRE per land cover type, and by comparing the spatial distribution of FRE as estimated by the 

modelling approaches and as derived from SEVIRI over the study region and period. The temporal 

performance was assessed via the ability of the model to allocate the emitted energy in the right grid 

cell at the right moment in time. Here we used Pearson’s r between the modelled and observed 

(SEVIRI) FRE time-series at four different spatiotemporal resolutions (0.1° and 1° spatial, and hourly 

and daily temporal resolution). Each spatiotemporal scale provides unique information on the model 

performance. Correlation coefficients at hourly resolution depend on the ability of the model to 

estimate the distribution of fire activity over the day, while daily aggregated estimates provide 

insights in the ability to get overall budgets right. In a similar way the two spatial resolutions provide 

information on the ability of the model to resolve high resolution distribution of fire activity and 

more regional model performance. When calculating Pearson’s r between the hourly model results 

and SEVIRI data we included cloud free days only, while the daily model results were compared to 

the full cloud cover corrected SEVIRI times series, using a simple cloud cover correction method 

explained below. ” 

 

Comment #4 

Finally, the manuscript lacks accounting for uncertainties when comparing model output with SEVIRI 

data. I would therefore recommend estimating the uncertainties of SEVIRI dataset and accounting for 

these uncertainties when comparing models with observations. 

 

Response #4 

The SEVIRI dataset provides details on uncertainty of each FRP detection based on three potential 

sources of introduced uncertainty (i.e., the fire pixel radiance measure, the fire pixel background 

signal estimate and the atmospheric transmission). On top of these uncertainties the SEVIRI FRP-

product will miss a large fraction of the smaller fires, that fall below the detection threshold. 

Technical aspects of the SEVIRI dataset are discussed extensively in Wooster et al., 2015, while 

Roberts et al. (2015) evaluates the product quality. Although we agree that these and other potential 

sources of uncertainties should be discussed it goes beyond the objective of this paper to fully 

address SEVIRI quality issues, we therefore refer to Wooster et al., 2015 and a range of other papers 

(we have now also added Roberts et al., 2015). However, we have made several textual adjustments 

to provide the reader with increased insights in the potential sources of uncertainty and their relative 

importance.  

 

Data section (lines 173 - 175): 

“The Meteosat SEVIRI FRP-PIXEL product contains per-pixel fire radiative power data along with FRP 

uncertainty metrics produced from the full spatial and temporal resolution SEVIRI observations 

(Wooster et al., 2015).” 

 

 



Discussion (lines 720 - 730): 

“Despite the improved results of the climatological approach as opposed to the persistent approach, 

estimating FRE in near real time based on MODIS observations remains challenging, especially at high 

spatiotemporal resolutions. Largest uncertainties originate from the high spatiotemporal variability 

of the fire diurnal cycle combined with the limited number of daily MODIS detection opportunities. 

Moreover, the fire diurnal cycle as analyzed here may to some extent be affected by the inability of 

SEVIRI to detect the smallest fires, along with other sources of uncertainty in the FRP observations 

(Wooster et al., 2015; Roberts et al., 2015). Finally, the characterization of the fire diurnal cycle and 

discussion of its spatiotemporal drivers presented here provide a first step to upscale the 

climatological model to a global scale, but a better understanding of the fire diurnal cycle and its 

drivers for other regions of the globe remains an important issue. ” 

 

Comment #5 

In the same way, the authors should question whether Pearson’s r correlation is the best statistic to 

be used for model evaluation of cyclic processes. It might be worthwhile to explore the potential of 

cross-spectral analysis in that case. 

 

Response #5 

We appreciate this comment and understand the reviewers concern about using Pearson’s r with 

cyclic processes. However, the fire diurnal cycle is often far from a perfect cyclic process and time 

lags may vary strongly from day to day. That said, we are convinced that our original methods are 

sufficiently robust, but may lack somewhat better explanation. We have therefore added and 

changed several phrases of the methods and other parts of the manuscript to more clearly explain 

our objectives and specifically the choice for Spearman’s r and how we interpret the results.  

 

Methods (lines 362 - 367): 

In the second approach we followed previous studies of Vermote et al. (2009) and Ellicot et al. (2009) 

and the recommendation in Kaiser et al. (2009) to use a Gaussian function to describe a “standard 

fire diurnal cycle”. Wooster et al. (2005) and Roberts et al. (2009) already demonstrated that SEVIRI 

observations sample the diurnal cycle of large fires well, and for some individual large fires show FRP 

time-series that depict diurnal characteristics appearing close to Gaussian in nature even at 15 min 

temporal resolution.  

 

Methods (lines 396 - 405): 

“The temporal performance was assessed via the ability of the model to allocate the emitted energy 

in the right grid cell at the right moment in time. Here we used Pearson’s r between the modelled 

and observed (SEVIRI) FRE time-series at four different spatiotemporal resolutions (0.1° and 1° 

spatial, and hourly and daily temporal resolution). Each spatiotemporal scale provides unique 

information on the model performance. Correlation coefficients at hourly resolution depend on the 

ability of the model to estimate the distribution of fire activity over the day, while daily aggregated 

estimates provide insights in the ability to get overall budgets right. In a similar way the two spatial 

resolutions provide information on the ability of the model to resolve high resolution distribution of 

fire activity and more regional model performance.” 

 

 



Discussion (lines 695 - 710): 

 “Correlation between the modelled and SEVIRI time-series improved considerably when moving 

from hourly to daily resolution, showing that the models were better able to estimate daily budgets 

than the distribution of fire activity over the day. These differences may be explained by the inability 

of the models to correctly estimate the hour of peak fire activity, a fire diurnal cycle that is not well 

represented by a Gaussian function, or in the case of small fires the fire diurnal cycle may not be fully 

detected by the SEVIRI instrument. Because of the large day-to-day variation in the fire diurnal cycle 

and the FRP measurements limited to the time of the MODIS overpasses, the individual FRP 

observations have a low precision (i.e., large random error) and omission (i.e., non detection) of fires 

is frequent (Figs. 1 and 4), resulting in low correlation at high spatiotemporal scales (Table 3). 

Because fires rarely occur on their own and generally form part of a regional pattern (Bella et al., 

2006), the correlation increased considerably when accumulating results to a 1° spatial scale. For the 

same reason model performance was found to be best in savannas and woody savannas, where the 

highest number of fires occur and the sample size is thus largest, or in areas of large fire size where 

omission was relatively low. Model performance was therefore best when optimal burning 

conditions were reached, often coinciding with the peak of the burning season.” 

 

  



Reviewer # 2 

 

The manuscript by Andela et al. (2015) investigates different methods for characterising the diurnal 

fire cycle using FRP measurements from the SEVIRI geostationary instrument but using the temporal 

sampling opportunities available to low Earth orbit satellite instruments such as MODIS. 

Characterising the diurnal fire cycle is necessary for deriving FRE estimates and for parameterising 

emissions in atmospheric transport models in near real time. Three different methods for 

characterising diurnal fire activity are assessed at high spatial and temporal resolution. The work 

builds on previous studies in this area and proposes a new approach for modelling the diurnal fire 

cycle using polar orbiter data which facilitates the development of emissions inventories using FRP 

datasets.  

 

This manuscript is suitable for publication in ACP. Detailed below are some minor comments. 

 

Comments (# line number) 

 

Comment #179 

It would be useful to include the range of the number of SEVIRI pixels that fall within a 0.1 degree 

grid cells over the study region as later sections discuss issues related to fire size\spread etc. within a 

grid cell. 

 

Response #179 

In equatorial West Africa, close to the sub-satellite point a 0.1° grid cell is around 120 km2 and the 

SEVIRI footprint is around 9 km2 (3 x 3), resulting in approximately 13 SEVIRI pixels per grid cell. 

Moving away from the sub satellite point this is eventually (e.g., Madagascar or north Portugal) 

reduced to around 6 SEVIRI pixels per 0.1° grid cell. There SEVIRI pixels have a footprint of around 15 

km2. 

 

We have added this information to the data section (lines 187 - 190): 

 “A single 0.1° grid cell comprises over 13 SEVIRI pixels close to the sub-satellite point (equatorial 

West Africa) and this reduces to around 6 SEVIRI pixels at greater of nadir angles (e.g., Portugal and 

Madagascar).” 

 

Comment #218  

The mean fire size is derived using MODIS burned area data between 2001-2013 whilst the SEVIRI 

FRP data cover a three year period (2010-2013). What was basis for using datasets covering different 

length time periods and does it impact the results shown in figure 3c (i.e. is the average fire size and 

its spatial distribution similar when 2010-2012 MODIS burned area data are used)? 

 

Response #218 

We had assumed that the fire size is relatively constant. However, we agree that there is likely some 

year to year variation in the fire size due to inter-annual variation in climate conditions. To be more 

consistent we have updated the figure and now show the 2010-2012 mean value.  

 

 



 

Comment #408:  

The overall (2010-2012) FRP correlations are discussed but a brief comment on how these vary 

spatially and temporally would be useful. For example, is the uncertainty greatest during periods or 

in regions of low fire activity and least during periods of peak fire activity? Figure 6 indicates the 

approach generally works well in estimating FRE during the peak fire season when emissions are 

greatest. 

 

Response #408 

Correlation is generally highest for the larger and more intense fires (high ρpeak, ρbase and σ). Higher 

FRP fires (e.g., large fire front or high fuel consumption rates) are in general best observed by the 

SEVIRI instrument, and the diurnal cycle is therefore more likely to have a proper Gaussian like shape 

(small fires likely contain gaps). Besides the quality of the SEVIRI data, these larger and more intense 

fires have typically long duration over the day and are therefore more often detected at MODIS 

overpasses. Therefore, the percentage of FRE emitted on days that no active fires were observed at 

MODIS overpasses (i.e., Fig. 4a) was typically low in regions of larger more intense fires with higher 

correlation as a consequence. For the same reason highest correlations will occur during optimal 

burning conditions (typically at the end of the dry season).  

 

We have updated the discussion to better address these issues (lines 695 - 710): 

 “Correlation between the modelled and SEVIRI time-series improved considerably when moving 

from hourly to daily resolution, showing that the models were better able to estimate daily budgets 

than the distribution of fire activity over the day. These differences may be explained by the inability 

of the models to correctly estimate the hour of peak fire activity, a fire diurnal cycle that is not well 

represented by a Gaussian function, or in the case of small fires the fire diurnal cycle may not be fully 

detected by the SEVIRI instrument. Because of the large day-to-day variation in the fire diurnal cycle 

and the FRP measurements limited to the time of the MODIS overpasses, the individual FRP 

observations have a low precision (i.e., large random error) and omission (i.e., non detection) of fires 

is frequent (Figs. 1 and 4), resulting in low correlation at high spatiotemporal scales (Table 3). 

Because fires rarely occur on their own and generally form part of a regional pattern (Bella et al., 

2006), the correlation increased considerably when accumulating results to a 1° spatial scale. For the 

same reason model performance was found to be best in savannas and woody savannas, where the 

highest number of fires occur and the sample size is thus largest, or in areas of large fire size where 

omission was relatively low. Model performance was therefore best when optimal burning 

conditions were reached, often coinciding with the peak of the burning season.”  

 

Comment #497-499  

The discussion of the fraction of FRE omitted at MODIS sampling intervals is interesting. How do 

regions of the greatest FRE percentage omissions relate to the total annual FRE (fig 3a) and how 

significant are these omissions with respect to the continental FRE estimate? 

 

Response #497-499 

The areas with highest annual FRE and relatively intense fires (high ρpeak, ρbase and σ) are 

characterized by having relatively low omission. Largest omission is typically found in areas of small 

fires and in regions of reduced detection opportunities during the burning season caused by limited 



number of overpasses and cloud cover. Therefore, the effect of omission on total FRE estimates on 

the continental scale will be limited, but regional FRE estimates may be strongly affected by the 

effect (see Figs. 5). 

 

We added two phrases to the results section, to address this issue (lines 513 - 517):  

“The most important biomass burning regions were typically characterized by relatively long fire 

duration over the day (Fig. 2c) and the effect of omission of active fires on continental scale FRE 

estimates was therefore relatively low (cf. Fig. 3a, 4a and 5). However, frequent omission of relatively 

small fires of short duration may strongly affect FRE estimates for some regions (Fig. 5).” 

 

Technical Comments (# : line number) 

 

#19: replace ‘like’ with ‘such as’  

#27 : ‘comprised of’  

#34 : replace ‘done’ with ‘implemented’  

#65 : delete ‘becoming’  

#83-85 : replace ‘earth’ with ‘Earth’  

#100 : replace ‘measurement’ with ‘estimation’  

#122 : replace ‘using’ with ‘used’  

#180, #198 : it is not clear what ‘(fsg3)’ etc. 

#191 : replace ‘Because’ with ‘As’  

#318 : include parenthesis ‘ (i.e. persistence)’  

#366 : ‘the ratio’  

#394 : include ‘FRE’ – e.g. ‘regional aggregated FRE time series’ ? 

#396 : replace ‘Because’ with ‘Since’  

#426 : delete ‘or all of these lower FRP’ ?  

#446 : replace ‘was’ with ‘is’  

 

Response to technical comments:  

We have made all the suggested changes. In #180 and #198 we have removed these internal product 

codes for clarity.  

 

Comment Figure 1d: x-axis - replace ‘sum’ with ‘local time (hours)’.  

Response: done 

 

Comment Figure 5: The colour scaling on this figure highlights the improvements made using the 

climatological approach but makes it more difficult to discern the grid cell values of the other two 

methods. Inclusion of histograms of the %FRE difference in the lower left corner of each map would 

help illustrate the distribution of grid cell values. 

 

Response: Done, we have also added an additional phrase to the Results section (lines 529 - 531):  

“Moreover, the more narrow distribution of modelled FRE as a fraction of SEVIRI FRE by the 

climatological approach as opposed to the persistent approach suggests that results are not only 

more accurate but also more precise (Fig. 5).” 

 



Comment Figure 6c : c) ‘Democratic Republic of Congo’  

Response: done 

 

Comment Table 1: It would be useful to include the standard deviation for each parameter and land 

cover type as some parameters appear comparatively stable per land cover type whilst others more 

variable (figure 2). 

   

Response: Done, we have also added the following sentence to the results (lines 489 - 491):  

“For σ, ρpeak and ρbase SD was typically about half of the average value, while SD of hpeak was largest for 

temperate forests, shrublands and grasslands.” 
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Abstract 17 

 18 

Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most 19 

approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be 20 

converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in 21 

these FRE estimations are often substantial. This is for a large part because the most often used low-22 

Earth orbit satellite-based instruments likesuch as the MODerate-resolution Imaging 23 

Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal 24 

cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. 25 

Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when 26 

using data collected at MODIS overpasses. Using data assimilation we explored three different 27 

methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire 28 

diurnal cycle. We sampled data from the from the geostationary Meteosat Spinning Enhanced Visible 29 

and Infrared Imager (SEVIRI)). In addition, we sampled data from the SEVIRI instrument at MODIS 30 

detection opportunities to drive the threedevelop two approaches to estimate hourly FRE based on 31 

MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent 32 

fire activity between two MODIS observations, while the second approach combined knowledge on 33 

the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full 34 

SEVIRI time-series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. 35 

Our study period comprised of three years (2010–2012), and we focussed on Africa and the 36 

Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-37 

nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and 38 

depends on both fuel and weather conditions. For example, more “intense” fires characterized by a 39 

fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire 40 

activity are most common in areas of large fire size (i.e., large burned area per fire event). These 41 

areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in 42 

some approaches caused structural errors, while generally overestimating resulted in an 43 

overestimation of FRE. Including, while including information on the climatology of the fire diurnal 44 

cycle provided the most promising avenue to improve improved FRE estimations. Thisestimates. The 45 

approach based on knowledge of the climatology of the fire diurnal cycle also improved the 46 

performance on relatively high spatiotemporal resolutionsdistribution of FRE over the day, although 47 

only when aggregating model results to coarser spatial and/or temporal scale good correlation was 48 

found with the full SEVIRI hourly reference dataset. In general model performance was best in areas 49 

of frequent fire and low errors of omission. We recommend the use of regionally varying fire diurnal 50 

cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus 51 

Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further 52 

reconciliation of biomass burning emission estimates from different inventories. 53 

  54 
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1 Introduction 55 

 56 

Landscape fires are a global phenomena, and the annually burned area is roughly equivalent to the 57 

area of India (Giglio et al., 2013). Most burned area occurs in the savannas of Africa, Australia, and 58 

South America, where they shape ecosystem dynamics and due to their scale are an important 59 

source of global emissions of (greenhouse) gases and aerosols (Seiler and Crutzen, 1980; Bowman et 60 

al., 2009). Fires affect air quality both locally and regionally (Langmann et al., 2009), with recent 61 

studies putting mortality rates over 300000 annually due to exposure to smoke (Johnston et al., 62 

2012).  63 

 64 

Traditionally, the amount of dry matter burned and quantity of trace gases and aerosols emitted 65 

have been calculated using biome-specific fire return intervals and estimates of the total amount of 66 

biomass as well as the fraction of biomass burned, the combustion completeness (Seiler and Crutzen, 67 

1980). Thanks to new satellite input streams that better capture the spatial and temporal diffuse 68 

nature of fires, the estimated fire return intervals have been replaced by direct estimates of monthly, 69 

weekly or even daily area burned (Roy et al., 2005; Giglio et al., 2009). In addition, satellite 70 

information and biogeochemical modelling have been used to improve estimates of biomass and 71 

combustion completeness. However, uncertainties in these bottom-up fire emission estimates are 72 

still substantial (Reid et al., 2009; Zhang et al., 2012; Larkin et al., 2014), and they are generally 73 

inappropriate for use in near real-time systems partly because the burned area signature is only 74 

becoming detectable days to weeks after the actual fire occurrence. 75 

 76 

Hot spot observations from satellite have been used as a proxy for burned area and emissions fluxes 77 

in near real time (Freitas et al., 2005; Reid et al., 2009; Wiedinmyer et al., 2011). Another promising 78 

and relatively new bottom up approach uses estimates of fire radiative power (FRP) observed from 79 

satellite to calculate daily fire radiative energy (FRE). Wooster et al. (2005) found that these FRE 80 

estimates scale directly to dry matter burned, potentially circumventing the uncertainties associated 81 

with estimating area burned, fuel loads, and the combustion completeness. In addition, FRP 82 

observations can be observed and processed in near real time (Xu et al., 2010; Kaiser et al., 2012; 83 

Zhang et al., 2012) and can be measured for small fires that remain undetected in burned area 84 

products (Roberts et al., 2011; Randerson et al., 2012).  85 

 86 

Hot spot and FRP observations are currently the only available options when modelling exercises 87 

require near real time observations, for example in chemical weather forecasts used to predict air 88 

quality. The Global Fire Assimilation System (GFAS; Kaiser et al., 2012), for example, is used to 89 

estimate global near real time daily fire emissions within the EU-funded project Monitoring 90 

Atmospheric Composition and Climate III (MACC-III). GFAS is currently using fire observations from 91 

the polar orbiting MODerate-resolution Imaging Spectroradiometer (MODIS) instruments aboard the 92 

Terra and Aqua satellites (Giglio et al., 2006). Due to their relative proximity to the earthEarth, the 93 

Terra and Aqua MODIS instruments have a high sensitivity to even quite low FRP (smaller and/or 94 

lower intensity) fires. However, they only provide four daily observations under ideal conditions but 95 

less when optically thick clouds are present, which may not be enough to fully characterize how fire 96 

activity varies over the course of the day. Observations with a much higher temporal resolution are 97 

available from geostationary satellites. However, as a consequence of their geostationary position, 98 
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these satellites individually do not provide global data and are located at greater distance from the 99 

Earth resulting in typically coarser pixel sizes than polar orbiting instruments. Since the threshold of 100 

detectability of a fire is not only dependent on the instrument but also a function of the pixel area, 101 

geostationary sensors have a higher minimum FRP detection limit (typically > 40 MW) than MODIS (~ 102 

8 MW). They therefore do not observe the lowest FRP component of the fire regime (Roberts et al., 103 

2005; Freeborn et al., 2014). 104 

 105 

Previous studies found that fire activity shows a strong diurnal cycle, and one that is both temporally 106 

and spatially variable (Prins and Menzel, 1992; Giglio, 2007; Roberts et al., 2009). The ideal set-up to 107 

detect fires would be a high temporal resolution imaging system, sensitive to even the lowest FRP 108 

fires, and providing global coverage, but due to the limitations of the orbital characteristics outlined 109 

above there is no single platform available to provide this. Therefore the measurementestimation of 110 

FRE at a global scale is difficult, with polar orbiting satellites lacking observations to accurately 111 

represent the fire diurnal cycle and geostationary satellites being limited to certain regions of the 112 

globe and omitting the (rather common) low FRP fires. However, previous studies have developed 113 

approaches to estimate FRE based on the combination of data from different satellite systems 114 

(Boschetti and Roy, 2009; Ellicott et al., 2009; Freeborn et al., 2009, 2011; Vermote et al., 2009). 115 

 116 

Some of these mixed approaches used both burned area and active fire data (Boschetti and Roy, 117 

2009; Roberts et al., 2011), which may provide benefits in terms of more accurate FRE determination 118 

but cannot be used easily in near real time systems because of the latency in burned area 119 

observations. Alternatively, FRP observations of polar orbiting and geostationary satellites can be 120 

blended to combine the sensitivity of the MODIS instruments to lower FRP fires and the diurnal 121 

sampling characteristics of SEVIRI. Freeborn et al. (2009) developed a database for matching SEVIRI 122 

and MODIS FRP observations based on frequency-magnitude statistics, but the samples had to be 123 

accumulated over significant spatial areas (5°) to provide matchable statistics, which is incompatible 124 

with the need to develop a method operating at high spatial resolution. Freeborn et al. (2011) later 125 

presented an alternative approach, estimating FRE using MODIS data accumulated over 8 day 126 

periods over which MODIS samples a location at the fullest range of view zenith angles. The 127 

relationship between the “true” FRE and the limited number of FRP samples provided by MODIS was 128 

derived using SEVIRI FRP time-series sampled at the MODIS sampling interval. Vermote et al. (2009) 129 

and Ellicot et al. (2009) used a different approach to create FRE data from MODIS, showing that for 130 

several regions of the globe the fire diurnal cycle can be described by a Gaussian 131 

distributionfunction, and usingused monthly MODIS data to fit the parameters of the Gaussian. Us-132 

ingUsing this approach, a first global estimation of monthly FRE was made (Ellicott et al., 2009). 133 

Despite the success of these latter approaches with regard to estimating FRE from MODIS, they are 134 

not a solution to the problem posed herein because they require 8 days of consecutive MODIS data 135 

and therefore cannot be applied in a near real-time approach. 136 

 137 

Global fire emissions estimates at high spatial and temporal resolutions, ideally produced in near real 138 

time, are required to feed into atmospheric models which are under continuous development and 139 

run at improved resolutions thanks to increased computational power (Zhang et al., 2012). Higher 140 

temporal resolution may also help to reconcile bottom up and top down emission estimates (Mu et 141 

al., 2011). None of the approaches mentioned above are, however, suitable for providing this. Due to 142 

these limitations current state of the art global near real time emission inventories still ignore 143 
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possible effects of fire diurnal cycle on their emission estimates (e.g., Wiedinmyer et al., 2011; Kaiser 144 

et al., 2012) and may therefore be structurally biased due to the fire diurnal cycle and the MODIS 145 

sampling design (e.g., Ichoku et al., 2008; Ellicott et al., 2009; Freeborn et al., 2011). 146 

 147 

The purpose of the work presented here is to better understand the fire diurnal cycle and its 148 

spatiotemporal dynamics, in order to develop a new waysway to include this into a near real time fire 149 

emissions estimation framework. First, the spatial distribution and dependencies of the fire diurnal 150 

cycle and their effect on active fire detections at MODIS overpasses were explored. Then, data 151 

assimilation was used to develop threecompare two different methods to derive hourly FRE 152 

estimates at 0.1° resolution based on low Earth-orbiting MODIS observations, incorporating 153 

increasing knowledge about. The first method ignored the fire diurnal cycle, and was used as a 154 

reference to better understand the combined effect of the fire diurnal cycle and the MODIS sampling 155 

design on hourly FRE estimates. The second method combined knowledge on the fire diurnal cycle 156 

with active fire detections at MODIS overpasses. Following previous studies (Freeborn et al., 2009, 157 

2011), we used FRP observations derived from data collected by the geostationary SEVIRI instrument 158 

at MODIS detection opportunities, rather than actual MODIS observations, to drive the modelstwo 159 

model approaches and we evaluated the model results against the full SEVIRI time-series. We used 160 

three years of active fire data (2010–2012) across Africa and the Mediterranean basin to include a 161 

wide range of climates and land cover types, and avoid the use of SEVIRI observations obtained at 162 

very far off-nadir angles over South America and northern Europe (Freeborn et al., 2014). Results are 163 

intended for application in GFAS within EU’s Copernicus Atmosphere Monitoring Service (CAMS, 164 

http://atmosphere.copernicus.eu). 165 

 166 

2 Data 167 

 168 

To explore the spatiotemporal dynamics of the fire diurnal cycle, we used hourly temporal resolution 169 

FRP data derived from 15 min observations made by the SEVIRI instrument hosted onboard the 170 

geostationary Meteosat satellite (Sect. 2.1). However, to drive the models developed here we only 171 

used SEVIRI FRP observations made at the overpass times of the MODIS polar orbiting sensors (Sect. 172 

2.2), whilst the hourly temporal resolution SEVIRI time-series were used to evaluate the results. Land 173 

cover characteristics (Sect. 2.3), along with data on fire size (Sect. 2.4), were used to better 174 

understand the spatial distribution of fire diurnal cycle. These datasets are described in more detail 175 

below, followed by the methods used in Sect. 3. 176 

 177 

2.1 SEVIRI fire radiative power (FRP) 178 

 179 

The SEVIRI instrument aboard the geostationary Meteosat Second Generation (MSG) series of 180 

satellites provides coverage of the full Earth disk every 15 min in 12 spectral bands (Schmetz et al., 181 

2002). The Meteosat SEVIRI FRP-PIXEL product (Wooster et al., 2015) contains per-pixel fire radiative 182 

power data along with FRP uncertainty metrics produced from the full spatial and temporal 183 

resolution SEVIRI observations. (Wooster et al., 2015). The FRP-PIXEL product is produced using an 184 

operational version of the geostationary Fire Thermal Anomaly (FTA) algorithm described in Roberts 185 
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and Wooster (2008), and the product and its performance characteristics are described in Wooster et 186 

al. (2015). The FRP-PIXEL products are freely available from the Land Surface Analysis Satellite 187 

Applications Facility (LSASAF; http://landsaf.meteo.pt), from the EUMETSAT EO Portal 188 

(https://eoportal.eumetsat.int) or via the EUMETCAST dissemination service 189 

(http://www.eumetsat.int) in both real-time and archived form, as detailed in Wooster et al. (2015). 190 

The Meteosat satellites are located at 0° longitude and latitude, and at nadir the SEVIRI pixels cover 3 191 

km x 3 km on the ground, but this degrades with increasing view angle away from the West African 192 

sub-satellite point (Freeborn et al., 2011).; Roberts et al., 2015). The FRP-PIXEL product data used 193 

here were obtained from the LSA SAF and were rescaled to an hourly 0.1° resolution with the GFAS 194 

gridding algorithm explained in Kaiser et al. (2012). Missing FRP values in individual observations 195 

within the hour (e.g., due to smoke or short periods of cloud cover) were thus implicitly ignored.They 196 

were then archived (fsg3) A single 0.1° grid cell comprises over 13 SEVIRI pixels close to the sub-197 

satellite point (equatorial West Africa) and this reduces to around 6 SEVIRI pixels at greater of nadir 198 

angles (e.g., Portugal and Madagascar). Data were archived in the Meteorological Archival and 199 

Retrieval System (MARS) of the European Centre for Medium range Weather Forecasting (ECMWF) 200 

prior to their use herein.  Missing FRP values in individual observations within the hour (e.g., due to 201 

smoke or short periods of cloud cover) were thus implicitly ignored. 202 

 203 

2.2 MODIS detection opportunity 204 

 205 

The two MODIS sensors on board of the Terra and Aqua satellites provide 4 daily overpasses in most 206 

Earth locations, albeit sometimes at view angles in excess of 45° where the product performance is 207 

somewhat degraded (Freeborn et al., 2011). At nadir the MODIS thermal channel spatial resolution is 208 

1 km, but decreases away from the swath centre (Freeborn et al., 2011). We used the MODIS MOD03 209 

(Terra) and MYD03 (Aqua) geolocation products to determine where and when MODIS data were 210 

collected within the SEVIRI Earth disk. BecauseAs cloud cover may further limit the fire detection 211 

opportunity, we used the data quality and cloud cover information of the MOD14 and MYD14 active 212 

fire products to filter out grid cells with cloud cover (Giglio et al., 2006). Here we define the detection 213 

opportunity as the ability to make unobstructed observations, and the MODIS detection opportunity 214 

was derived by combining the MOD03, MYD03, MOD14 and MYD14 products, combining overpass 215 

times and cloud cover. We used MODIS data from Collection 5. Like the SEVIRI data, these data were 216 

rescaled to hourly 0.1° resolution with the GFAS gridding algorithm and archived in MARS (Kaiser et 217 

al., 2012). The data were archived for the Terra (fs9s) and Aqua (fs9t) satellites separately. The 218 

original MODIS swath data can be downloaded from NASA at http://reverb.echo.nasa.gov. 219 

 220 

2.3 MODIS Land cover 221 

 222 

The dominant land cover type was derived from the MODIS MCD12C1 land cover product, which 223 

provides 0.05° spatial resolution annual information on land cover (Friedl et al., 2002). We calculated 224 

the dominant land cover type for each grid cell as the land cover type that on average covered the 225 

largest fraction during the study period (2010–2012). The University of Maryland (UMD) classification 226 

scheme was used, and data was rescaled to 0.1° resolution. Because we only considered Africa and 227 

the Mediterranean basin in this study, and because in some land cover classes very few fires 228 
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occurred, we could merge some land cover classes that were of relatively little importance for our 229 

study. Specifically, all forest classes within the tropics were binned into the tropical forest class, while 230 

extratropical forests were all labelled temperate forest. Open and closed shrublands were merged 231 

into one shrubland class, and urban and built-up, barren or sparsely vegetated into grasslands. 232 

 233 

2.4 Fire size 234 

 235 

Here we define the fire size for a certain grid cell as the mean burned area per fire event, weighted 236 

by their total area burnt (when calculating the mean, a fire event burning 100 km2 is assigned one 237 

hundred times the weight of an event burning 1 km2 ). The MODIS MCD64A1 burned area product 238 

provides daily mapped estimates of global burned area (Giglio et al., 2009). We applied the methods 239 

described by Archibald and Roy (2009) to derive a global mean fire “size” (area) map using 2001–240 

2013 data.data over our study period (2010–2012). We made one modification to the approach 241 

described by Archibald and Roy (2009): we assumed that two neighbouring burned area grid cells 242 

only belonged to the same fire if the burn date was no longer than two days apart (instead of 8 days). 243 

We believe that overall this provides a better estimation of the fire size in our study region, as the 244 

vast majority of fires here are grass fires, occurring outside tropical forest zones and thus spreading 245 

relatively fast while being relatively less often obstructed by cloud cover. Consequently, the 246 

uncertainty in burn date is generally low in our study region (Giglio et al., 2013) and so the two day 247 

thresholds was deemed more appropriate.  248 

 249 

3 Methods 250 

 251 

Our overall goal within GFAS is to provide hourly estimates of FRE at 0.1° spatial resolution, based on 252 

the limited number of MODIS overpasses available each day at each grid cell location. This limited 253 

number of daily MODIS observations, in combination with the often pronounced fire diurnal cycle, 254 

are the major obstacles in providing the required output. We first studied the spatiotemporal 255 

variation of the fire diurnal cycle, in an attempt to understand its variability (Sect. 3.1). Then, we 256 

explored the way the fire diurnal cycle affects active fire detections made at the MODIS sampling 257 

times (Sect. 3.2). Using this knowledge we explored three independent methodsa new method to 258 

parameterize the fire diurnal cycle., and compared results to a modelling approach in which the fire 259 

diurnal cycle is ignored. Building on the work of Freeborn et al. (2009, 2011), to drive the three 260 

modelling approaches we used SEVIRI data sampled at the MODIS detection opportunities (according 261 

to the hourly data representation introduced above), rather than actual MODIS observations (Sect. 262 

3.2). This allowed us to focus on the issue of diurnal cycle sampling rather than simultaneously 263 

dealing with the issue of MODIS and SEVIRI’s differential sensitivity to active fires (Freeborn et al., 264 

2009).  265 

 266 

Using data assimilation we combined the discrete actual SEVIRI observations, made at the time of the 267 

MODIS detection opportunities, with hourly predictions of fire activity – using their combination to 268 

create continuous hourly best estimate FRE time-series (Sect. 3.3). We developed threetwo 269 

prediction methods, each based on increasingly de-tailed knowledge of the fire diurnal cycle.. The 270 
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first method was the most parsimonious and assumed persistent fire activity until the next satellite 271 

detection opportunity, and provides further insights into the combined effect of the fire diurnal cycle 272 

and the MODIS sampling design on hourly FRE estimates when the fire diurnal cycle is ignored (Sect. 273 

3.4). The second method followed previous studies and used a Gaussian function to predict fire 274 

development over the day (Vermote et al., 2009; Sect. 3.5). The third method combined a Gaussian 275 

function to describe the fire diurnal cycle with). By combining prior knowledge about the climatology 276 

of the fire diurnal cycle per land cover, to betterwith active fire observations at MODIS overpasses to 277 

estimate the parameters of the Gaussian function (Sect. 3.6)., this approach provides a possible 278 

pathway to implement the fire diurnal cycle into the near real time fire emission modelling 279 

framework (Sect. 3.5). Comparing the results of the threetwo approaches to those from the full 280 

hourly SEVIRI time-series allowed us to determine and discuss their strengths and limitations (Sect. 281 

3.76).  282 

 283 

3.1 Exploring the fire diurnal cycle 284 

 285 

We started exploring the fire diurnal cycle and its drivers. A Gaussian function was optimally fitted 286 

(least squares) to the hourly SEVIRI observations          for each grid cell and day of fire activity 287 

during the study period:  288 

 289 

 
                              

 
          

 

   . 
(1) 

 290 

Where       corresponds to the nighttime fire activity,       to the maximum FRP for a given day, σ 291 

is the SDstandard deviation (SD) of FRE distribution over the day (dependent on fire duration), ht is 292 

the local solar time at time step t and       is the local hour at which FRP reaches its daily maximum. 293 

This resulted in a database containing hourly time-series of          and the fitted Gaussian function, 294 

and daily time-series of optimal parameter values of the Gaussian function for each grid cell. At the 295 

same time we also kept track of hourly MODIS detection opportunities. This enabled us get a better 296 

understanding of structural errors caused by the MODIS sampling design in relation to the actual fire 297 

diurnal cycle. 298 

 299 

Although the fire diurnal cycle as observed by SEVIRI is comparable to that which would be observed 300 

by MODIS if it had the same temporal sampling ability, it is a little different due to SEVIRI’s inability to 301 

discriminate the lowest FRP fire pixels which typically dominate more towards the start and end of 302 

the daily fire cycle, but which are also present along with often higher FRP pixels towards the diurnal 303 

cycle maxima (Freeborn et al., 2009). To gauge the magnitude of the effect Freeborn et al. (2009) 304 

derived the “virtual MODIS” fire product that has the temporal sampling of SEVIRI and the sensitivity 305 

to fire of MODIS. They found that the full-width at half maximum height (i.e., the width of the diurnal 306 

cycle at half of the daily FRP maximum value) of the diurnal cycles derived from the SEVIRI and the 307 

“virtual MODIS” datasets are very similar, it is the amplitude and the full-width at base height of the 308 

two cycles, which are more different. In terms of total FRE emitted, the latter is of less importance, 309 

here we followed Freeborn et al. (2011) in assuming that the diurnal cycles from SEVIRI and MODIS 310 

are sufficiently similar. 311 
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 312 

In order to visualize the spatial distribution of the fire diurnal cycle, the climatological diurnal cycle 313 

was calculated for each grid cell depending on the mean parameter values of the Gaussian function 314 

weighted for daily FRE, including all days of fire activity during the study period without cloud 315 

obscurance. To get a better understanding of the drivers of the fire diurnal cycle these results were 316 

compared to land cover and aspects of the fire regime (fire size, total annual FRE, and the annual 317 

number of days with fire activity), see Sect. 2. 318 

 319 

3.2 Sampling SEVIRI data at MODIS detection opportunities 320 

 321 

During the data assimilation, SEVIRI observations at MODIS detection opportunities were used to 322 

drive the models. Here, SEVIRI observations for a given hour t are given by          and SEVIRI fraction 323 

of observed area by         ; in the same way, observations of the MODIS instruments are given by 324 

         and         . Therefore input for the models, i.e., the SEVIRI observations at MODIS 325 

detection opportunity times (    and     ) for a given hour t are given by: 326 

 327 

              (2) 

               (3) 

 328 

For clarity, we assumed that the observed FRP     is zero when there was no MODIS detection 329 

opportunity. Anyhow, during the data assimilation     was weighted for observed area    , which was 330 

zero when there was no observation. 331 

 332 

SEVIRI data sampled at MODIS detection opportunities were compared to the full SEVIRI hourly time-333 

series to explore the effect of the fire diurnal cycle on the daily sampling at MODIS overpasses. More 334 

specifically we calculated the percentage of FRE emitted on days without any active fire detection at 335 

MODIS detection opportunities, and the total daily number of MODIS overpasses during the fire 336 

season. The latter was calculated by weighing the mean number of monthly detection opportunities 337 

at MODIS overpasses by monthly total detected FRP, thus giving the largest weight to the month with 338 

most fire activity (ignoring cloud cover). 339 

 340 

3.3 Data assimilation 341 

 342 

We used a modified version the fire data assimilation methodology of GFAS to allow representation 343 

of the fire diurnal cycle. GFAS assumes that the availability of observations dominates the error 344 

budget of the global FRP fields. It approximates these errors by further assuming the FRP variance to 345 

be inversely proportional to the fraction of observed area    . Thus the variance increases with 346 

decreasing partial cloud cover and with the number of satellite observations. In the following data 347 

assimilation, GFAS fills observation gaps with a Kalman filter, in which current observations are 348 

combined with information from earlier ones. The Kalman filter has a time step of 1 day. It uses a 349 

trivial predictive model for the temporal evolution of FRP,  (i.e., persistence,), and assumes for the 350 

accuracy of the 1 day FRP prediction that the variance increases by a factor of 9 (Kaiser et al., 2012).  351 
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 352 

Our modifications affected the step size and the FRP prediction model. The former was set to 1h to 353 

be able to represent a diurnal cycle. For calculating the FRP prediction    , we investigated threetwo 354 

different approaches, cf.  (Sects. 3.4– and 3.6 below. They included increasing a priori knowledge 355 

about the diurnal cycle.5). In all threeboth cases, we assumed for the accuracy of the 1h FRP 356 

prediction that the variance increases by a factor of 4. Lowering the value compared to the daily 357 

GFAS is motivated by the shorter time step used in our study. However, lowering it too much would 358 

not give sufficient weight to new FRP observations. Thus the analysis FRP     and “fraction of 359 

observed area”     were calculated at each 1h time step by optimal interpolation as follows, cf. Eqs. 360 

(32)–(33) of Kaiser et al. (2012): 361 

 362 

 
     

 

   
 
     
 

            
(4) 

 363 

with     according to Sects. 3.4– and 3.65 and 364 

     
     

 
    . (5) 

 365 

3.4 Persistent approach 366 

 367 

Applying the daily persistence approach of Kaiser et al. (2012) to hourly time resolution, we first 368 

explored the most parsimonious approach that predicts FRP     as being equal to the FRP of the 369 

previous time step’s analysis: 370 

 371 

           . (6) 

 372 

This approach provided insights in the spatiotemporal consequences for FRE estimation when 373 

information on the fire diurnal cycle is not incorporated. 374 

 375 

3.5 DynamicClimatological approach 376 

 377 

In the second approach we assumed no prior knowledge about the fire diurnal cycle, but followed 378 

previous studies of Vermote et al. (2009) and Ellicot et al. (2009) and the recommendation in Kaiser 379 

et al. (2009) to use a Gaussian function to describe a “standard fire diurnal cycle”. Wooster et al. 380 

(2005) and Roberts et al. (2009) already demonstrated that SEVIRI observations sample the diurnal 381 

cycle of large fires well, and for some individual large fires show FRP time-series that depict diurnal 382 

characteristics appearing close to Gaussian in nature even at 15 min temporal resolution. The 383 

prediction was calculated by optimally fitting a Gaussian function through the last 24h of analysis: 384 

 385 

 
                         

 
          

 

    
(7) 

 386 
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with       ,      ,However, only       and σ derived from fitting     to 387 

 388 

                      . (8) 

 389 

In contrast to the climatological approach described below, all parameters of the Gaussian function 390 

(ρbase, ρpeak, σ and hpeak) were derivedwas optimally fitted, by minimizing the sum of least squares 391 

between the Gaussian function and the previous 24h of the analysis. Finally, if during the last 24h no 392 

active fires were detected at the MODIS overpass times, the prediction was assumed to be zero.: 393 

 394 

3.6 Climatological approach 395 

 396 

The third approach followed the dynamic approach by optimally fitting a Gaussian function through 397 

the last 24h of the analysis (Eqs. 7 and 8). However, now only       was optimally fitted.  398 

                      . (8) 

 399 

Following previous studies that found that fire diurnal cycle is land cover dependent (Giglio, 2007; 400 

Roberts et al., 2009; Vermote et al., 2009; Freeborn et al., 2011), we used land cover (LC) average 401 

values σLC for σ (weighted by FRE). Values of ρbase and ρpeak on the other hand could be directly 402 

related to daily MODIS observations. We followed Vermote et al. (2009) to use the mean of the 403 

nighttime (defined here as 6p.m.–6a.m. the next day) observations at MODIS detection opportunities 404 

to determine ρbase. To relate SEVIRI observations at MODIS detection opportunities to ρpeak the ratio 405 

of mean daytime (6a.m.–6p.m.) FRP observations at MODIS detection opportunities to mean ρpeak 406 

was calculated per land cover type. We used per land cover average values for scaling the daytime 407 

observations at MODIS detection opportunities to ρpeak rather than the values found per grid cell to 408 

keep the model generic and globally applicable. Finally, if there were no active fires observed during 409 

the previous 24h, we forced the prediction to be zero, to prevent fires from continuing during long 410 

periods of no observations. 411 

 412 

3.73.6 Model evaluation 413 

 414 

Finally, the bestThe estimated hourly FRE fields (or analysis;    ) resulting from the three differenttwo 415 

modelling approaches (persistent, dynamic and climatological) were evaluated via comparison to 416 

those derived from the hourly SEVIRI time-series (see Sect. 2.2). We used two1). Two criteria were 417 

used to evaluate the model performance: first, the spatial distribution of FRE estimates; and second, 418 

the temporal distribution of FRE. The spatial performance of the three modelling approaches was 419 

assessed via their ability to reproduce the annual mean FRE per land cover type, and by comparing 420 

the spatial distribution of FRE as estimated by the modelling approaches and as derived from SEVIRI 421 

over the study region and period. The temporal performance was assessed via the ability of the 422 

model to allocate the emitted energy in the right grid cell at the right moment in time, for which. 423 

Here we used Pearson’s r between the three modelling approachesmodelled and the observed 424 

(SEVIRI data) FRE time-series at four dierentdifferent spatiotemporal resolutions (0.1° and 1° spatial, 425 

and hourly and daily temporal resolution). Each spatiotemporal scale provides unique information on 426 
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the model performance. Correlation coefficients at hourly resolution depend on the ability of the 427 

model to estimate the distribution of fire activity over the day, while daily aggregated estimates 428 

provide insights in the ability to get overall budgets right. In a similar way the two spatial resolutions 429 

provide information on the ability of the model to resolve high resolution distribution of fire activity 430 

and more regional model performance. When calculating Pearson’s r between the hourly model 431 

results and SEVIRI data we included cloud free days only, while the daily model results were 432 

compared to the full cloud cover corrected SEVIRI times series, using a simple cloud cover correction 433 

method explained below. We appreciate that for specific instances, e.g., a study with a focus on 434 

individual fires, or large fires only, different criteria could be used, which we will further elaborate in 435 

the discussion.  Wooster et al. (2005) and Roberts et al. (2009) already demonstrated that SEVIRI 436 

observations sample the diurnal cycle of large fires well, and for some individual large fires show FRP 437 

time-series that depict diurnal characteristics appearing close to Gaussian in nature even at 15 min 438 

temporal resolution. 439 

 440 

Finally, we compared daily regional aggregated FRE time-series for several study regions of the 441 

threetwo modelling approaches and SEVIRI. In order to compare daily regional time-series to the 442 

model, a cloud cover correction needed to be carried out. BecauseSince persistent cloud cover is 443 

relatively rare during the burning season in most parts of Africa, we chose a simple gap filling 444 

approach where the value of the last cloud-free observation is assumed to be valid until the next 445 

cloud-free observation, which is consistent with the observation gap filling in the daily GFAS. 446 

 447 

4 Results 448 

 449 

4.1 The diurnal cycle and MODIS sampling 450 

 451 

First, we present the results related to the spatial distribution of the fire diurnal cycle, and assess the 452 

impact of the fire diurnal cycle on active fire observations made at the times of the MODIS overpass. 453 

The spatial distribution of the fire diurnal cycle was explored by optimally fitting a Gaussian function 454 

to the hourly, 0.1° SEVIRI FRP time-series. Reasonable overall correlations between SEVIRI and the 455 

optimally fitted Gaussian functions were found (Pearson’s r = 0.55; weighted mean for all grid cells), 456 

while a Gaussian was better able to describe hourly fire activity in regions where fires could spread 457 

over large areas and were characterized by high       (e.g., for fire size < 10 km2 r = 0.51, for 10–50 458 

km2 r = 0.56, and > 50 km2 r = 0.63). This is likely to be in part related to the fact that characterisation 459 

of the diurnal cycle of “smaller” fires will be more affected by instances of SEVIRI failing to detect one 460 

or more of their fire pixels than would larger fires, hence introducing more variability into the 461 

apparent diurnal cycle. Whilst the SEVIRI FRP-PIXEL product shows apparently the best performance 462 

metrics of any current geostationary fire product derived from SEVIRI data (Baldassarre et al., 2015), 463 

such failures in active fire pixel detection clearly occur, for example simply due to fire pixels being 464 

too low in their FRP to detect by SEVIRI, along with a variety of potential other factors (Wooster et 465 

al., 2015). 466 

 467 
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Figure 1 shows an example of two 0.1° grid cells in which the hourly average FRP maxima reached 468 

relatively high levels, well in excess of 1 GW, and fire persisted for several days. As with the individual 469 

fires, shown by SEVIRI in Wooster et al. (2005) and Roberts et al. (2009), the FRP from these fires 470 

appears to drop to zero, or near zero, every night. This is a consequence both of the actual FRP from 471 

the fire significantly diminishing at this time due to, for example, fuel moisture, wind and other 472 

ambient atmospheric conditions being far less conducive to intense fire activity by night than by day 473 

(Hély et al., 2003; Gambiza et al., 2005), but also because some or all of these lower FRP fire pixels 474 

will have FRPs below the SEVIRI active fire pixel detection limit of around 40 MW (Roberts and 475 

Wooster, 2008). At the start of the following day, fuel moisture and ambient atmospheric conditions 476 

generally become more conducive to fire, and fire intensities and rates of spread typically increase 477 

once more such that more of the fire-affected pixels breach the SEVIRI FRP detection limit (Roberts 478 

et al., 2009). 479 

 480 

The results shown in Fig. 1 indicate that high FRP, relatively long-lived fire activity is rather well 481 

described by a Gaussian function, even at this 0.1°, hourly resolution which is significantly higher 482 

than that used in previous studies fitting Gaussian descriptors to remotely sensed measures of active 483 

fire activity. At the same time, it also became apparent that observations from a MODIS-type 484 

sampling interval are not always representative of the daily fire activity. The inability of the MODIS 485 

sampling times to provide representative observations is well illustrated in Fig. 1a, where on the first 486 

day of the fire the morning and afternoon time of MODIS sampling slot almost completely missed the 487 

fire activity. 488 

 489 

The shape of the Gaussian function, and consequently the parameters: SD (σ) peak fire activity (ρpeak) 490 

and corresponding hour (hpeak), varied considerably over the individual days (Fig. 1). For example, in 491 

the African savanna grid cell (Fig. 1c), fire activity on day 3 continued longer in the afternoon 492 

compared to day 4, when conditions some-how became less favourable for maintaining the fire 493 

earlier in the afternoon. Therefore, the shape of the fire diurnal cycle wasis dependent on 494 

spatiotemporal scale. When diurnal fire activity was aggregated over several days, which can be 495 

compared to using a coarser temporal or spatial resolution, increased as compared to fire activity for 496 

individual days (compare Fig. 1a with b, and Fig. 1c with d). The relatively narrow diurnal cycle of the 497 

individual days have varying peak hours of fire activity, so that the sum of it is wider than any of the 498 

individual cycles and the peak fire activity less pronounced. 499 

 500 

In addition to an observed variability in the fire diurnal cycle seen on different days, we found 501 

distinct spatial patterns in the optimal fitted Gaussian parameters (Fig. 2). Some of these patterns 502 

were similar for the different parameters. In particular, there were zones of generally more intense 503 

fires (e.g., South Sudan, northern Central African Republic, Botswana, Namibia and parts of Angola 504 

and the Democratic Republic of the Congo (DRC)), showing relatively high values of ρpeak, ρbase and σ 505 

compared to other zones where values for all three parameters were relatively low (e.g., Zambia, 506 

Mozambique, Tanzania, Nigeria and Cameroon). On top of this general pattern, a clear gradient is 507 

visible as you move from drier to more humid regions, seen most clearly when moving from Namibia 508 

via Angola to DRC. In more humid savannas, when fuel conditions were optimal, high ρpeak values 509 

could be reached but fire duration over the day was generally short and night time FRP values were 510 

more likely to fall below the SEVIRI FRP detection threshold (Fig. 2). hpeak varied considerably over the 511 
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study region, with areas showing most fire activity late in the afternoon generally in more humid or 512 

forested regions but also in some more arid regions (Fig. 2d).  513 

 514 

Table 1 shows the land cover-averaged values and SD of the results presented in Fig. 2. In addition 515 

we calculated the ratio of the mean SEVIRI FRP at MODIS daytime detection opportunities to the 516 

maximum daytime FRP ρpeak. These results were used in the thirdclimatological modelling approach 517 

that combined the fire diurnal cycle climatology with observations made at the MODIS sampling 518 

times to derive the daily fire diurnal cycle predictions (see Sect. 3.65). More intense fires with long 519 

duration and high peak values were associated with fires in shrublands, savannas and grasslands, 520 

while a more pronounced fire diurnal cycle was present in more humid woody savannas or tropical 521 

forests. For σ, ρpeak and ρbase SD was typically about half of the average value, while SD of hpeak was 522 

largest for temperate forests, shrublands and grasslands. The ratio of mean daytime FRP made at the 523 

MODIS sampling times and ρpeak was relatively constant for various land cover types with ρpeak 524 

generally about three times as large as the mean FRP at the daytime MODIS detection opportunities 525 

(Table 1). 526 

 527 

In order to better understand the spatial distribution of the fire diurnal cycle features, we studied 528 

characteristics of the fire regime that were expected to be related to fuel properties and the diurnal 529 

cycle (Fig. 3a, c and d). To guide the interpretation we have included a land cover map, partly 530 

governing fuel loads, in Fig. 3b. Annual emitted FRE varied widely over the study region, and highest 531 

values were found in the savannas and woody savannas (compare Fig. 3a with b) and coincided with 532 

regions of large fire size and/or a high number of annual fire days (compare Fig. 3a with c and d). 533 

Similarities with characteristics of the fire diurnal cycle were also found, the earlier mentioned zones 534 

of generally more intense fires (high values of ρpeak, ρbase and σ) often coincided with regions of large 535 

fire size (Figs. 2a–c and 3c). In the more humid tropical areas, high ρpeak values occurred in areas of 536 

relatively large fire size and/or a high number of annual fire days (Figs. 2a and 3c, d). 537 

 538 

The relative fraction of FRE emitted on days that SEVIRI data sampled at MODIS observation times 539 

did not observe active fires is an important factor affecting model performance, and showed similar 540 

spatial patterns as σ, indicating that duration of fires over the day plays an important role (Figs. 2c 541 

and 4a). In addition, the geographical location and cloud cover during the burning season played a 542 

role by affecting the effective number of daily MODIS observations (Fig. 4b). The peak hour of fire 543 

activity also played a role, and especially in more humid areas with frequent cloud cover and late 544 

afternoon fire activity sometimes over 50% of FRE was emitted on days without any SEVIRI active fire 545 

detections at MODIS detection opportunities (compare Figs. 2d and 4a). This clearly 546 

demonstratesThe most important biomass burning regions were typically characterized by relatively 547 

long fire duration over the day (Fig. 2c) and the effect of omission of active fires on continental scale 548 

FRE estimates was therefore relatively low (cf. Fig. 3a, 4a and 5). However, frequent omission of 549 

relatively small fires of short duration may strongly affect FRE estimates for some regions (Fig. 5). 550 

These results clearly demonstrate the value of the data provided by the very high temporal 551 

resolution geostationary systems, even though they are unable to resolve and detect fire pixels as 552 

low in FRP as those from polar orbiters (Roberts and Wooster, 2008).  553 

 554 
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4.2 Model evaluation 555 

 556 

To evaluate the threetwo modelling approaches that estimated FRE from SEVIRI data only at the 557 

MODIS sampling times we started with comparing the spatial distribution of mean estimated FRE for 558 

each method with the cloud corrected SEVIRI FRE calculated using the entire hourly, 0.1° SEVIRI FRP 559 

dataset (see Sect. 3.7; Fig. 5). The three methods yielded very different results, withpersistent 560 

approach resulted in a general overestimation by the persistent approach, underestimation by the 561 

dynamic approach, and overall good performance of FRE, while the climatological approach showed 562 

overall good performance in terms of total estimated FRE when compared to the FRE calculated 563 

using the full SEVIRI dataset. However, whilstMoreover, the more narrow distribution of modelled 564 

FRE as a fraction of SEVIRI FRE by the climatological approach as opposed to the persistent approach 565 

suggests that results are not only more accurate but also more precise (Fig. 5). While this reflects the 566 

general pattern, the performance bias was not homogeneous over the region. The persistent 567 

approach showed best results for regions with long daytime fire durations (i.e., large σ) and with a 568 

late peak in fire activity; the dynamic approach also did comparatively well in areas that were 569 

characterized by such long fire durations; and although performing generally better than the other 570 

methods, the climatological approach showed a general underestimation for areas of relatively late 571 

peak fire activity (compare Figs. 2 and 5). To a certain extent these regional differences correspond 572 

to the distribution of the different land cover types (Table 2). For example, for temperate forests and 573 

shrublands the persistent modelling approach showed notably better comparison to the FRE derived 574 

via the entire SEVIRI dataset, while the climatological modelling approach overestimated FRE. 575 

 576 

Equally important as the absolute FRE intercomparisonsestimates shown in Fig. 5 and Table 2 are 577 

their temporal dynamics. Figure 6 shows regional daily budgets for several study regions with 578 

different geographical positions and land cover. Similar to the results in Fig. 5, we found a general 579 

overestimation by the persistent approach, underestimation by the dynamic approach, and 580 

bestbetter overall estimation by the climatological approach. Overestimation of the persistent 581 

approach was occurring mostly in the tropics (e.g., Nigeria and DRC), where also stronger day to day 582 

variability was observed as com-paredcompared to that derived with the complete SEVIRI data or the 583 

other modelling approaches (Fig. 5b and c). Both the dynamical and 5). The climatological 584 

approachesapproach showed a small delay in their FRE estimations compared to the complete SEVIRI 585 

dataset. 586 

 587 

To further test the ability of the threetwo modelling approaches to allocate FRE to the individual grid 588 

cells at the right moment in time, correlation coefficients were calculated. Table 3 shows Pearson’s r 589 

between SEVIRI and the threetwo modelling approaches at four spatiotemporal resolutions (0.1° and 590 

1° spatial and hourly and daily temporal resolution including all days without cloud cover during the 591 

three year study period.). A striking increase in correlation was observed when aggregating model 592 

results further to a 1° resolutionboth temporally or spatially. Freeborn et al. (2009, 2011) previously 593 

demonstrated the value of such spatial aggregation when deriving relationships between SEVIRI and 594 

MODIS datasets, and this technique is currently used within the near real-time SEVIRI FRP-GRID 595 

products produced by the LSA SAF from the SEVIRI FRP-PIXEL data (Wooster et al., 2015). At 0.1° 596 

resolution the best correlations were found for shrublands and savannas while for aggregated data 597 

best performance was found for woody savannas and savannas. At 0.1°At hourly resolution, the 598 

climatological approach generally performed better than the persistent approach. However, at 0.1° 599 
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daily the persistent approach performed best while at 1° spatial resolution the persistent and 600 

climatological approaches did equally well.   601 

 602 

When moving to hourly resolution, the model performed less well but a similar increase in the 603 

correlation coefficient was observed when increasing the spatial scale to 1° (Table 4). In contrast to 604 

the daily results, the dynamic and climatological approaches generally performed better than the 605 

persistent approach at hourly resolution. 606 

 607 

5 Discussion 608 

 609 

Unlike biomass burning emission inventories based on burned area, inventories using active fire 610 

observations from Earth Observation satellites can be produced in near real time (Freitas et al., 2005; 611 

Reid et al., 2009; Sofiev et al., 2009; Wiedinmyer et al., 2011; Kaiser et al., 2012; Darmenov and da 612 

Silva, 2013). The near real time emissions inventories are, at present, generally based on active fire 613 

data from the MODIS instruments operating onboard the Terra and Aqua polar orbiting satellites. 614 

The FRP observations of MODIS are almost without saturation, operating day and night, with a 615 

reasonable spatial resolution and with new observations available for any location at least a few 616 

times every day – cloud cover permitting. However, it is well known that fire activity in most regions 617 

follows a clear daily cycle (e.g., Roberts et al., 2009; Vermote et al., 2009). Consequently, the FRP 618 

measures derived from intermittent polar orbiting MODIS observations are often not fully and 619 

directly representative of the actually daily fire activity (Fig. 1; Giglio, 2007; Vermote et al., 2009; 620 

Freeborn et al., 2011). Although several approaches have been developed to obtain more accurate 621 

estimations of FRE from the limited temporal sampling of FRP provided by MODIS (e.g., Ellicott et al., 622 

2009; Freeborn et al., 2009, 2011; Vermote et al., 2009), they are all best suited to be used with 623 

previously collected and/or aggregated FRP data, and none can be readily implemented at high 624 

spatiotemporal resolution in near real time. For this reason, most current global emission inventories 625 

produced in near real time actually ignore fire diurnal dynamics completely (e.g., Kaiser et al., 2012), 626 

and this results in large biases in the FRE budgets (Ellicott et al., 2009; Zhang et al., 2012). 627 

 628 

Here we start discussing the spatial distribution of the fire diurnal cycle, and its drivers (Sect. 5.1). 629 

Building on previous work, we developed and compared severalexplored two new methods to 630 

estimate hourly FRE in near real time from observations made by SEVIRI at MODIS detection 631 

opportunities. The new methodsresults illustrate how MODIS observations might be used to 632 

calculate hourly FRE, and where errors can be expected due to the diurnal cycle and the limited 633 

temporal sampling provided by MODIS (Sect. 5.2). 634 

 635 

5.1 Exploring the fire diurnal cycle using a Gaussian function 636 

 637 

The fire diurnal cycle characteristics were explored by fitting of a Gaussian function to the hourly 638 

SEVIRI time-series. Vermote et al. (2009) and Ellicott et al. (2009) found that at a 0.5° monthly 639 

resolution the fire diurnal cycle can be described by a Gaussian function, using MODIS observations 640 

to resolve the unknown parameters. They choose the spatiotemporal size of the study regions such 641 
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that a statistical representative number of fires and MODIS FRP detections were included, and the 642 

observations covered the full range of MODIS view angles – since the sensitivity of MODIS to fire 643 

depends upon this (Vermote et al., 2009). Although later work showed that in fact fire activity may 644 

be somewhat skewed in the afternoon, here we found that even at a high spatiotemporal resolution 645 

(0.1°; hourly) a Gaussian function provides a fairly robust description of the fire diurnal cycle. 646 

However, at 0.1° hourly resolution, SEVIRI data sampled at the MODIS detection opportunities does 647 

not always provide enough information to adequately depict fire activity for an individual grid cell 648 

and day (Fig. 1). Moreover, the spatiotemporal scale at which we observe the fire diurnal cycle has a 649 

significant impact on its shape. When moving to a coarser spatiotemporal resolution, the shape of 650 

the diurnal cycle likely becomes wider, with less pronounced peaks. This is mostly a consequence of 651 

the spatiotemporal variation in hour of peak fire activity of the individual fires or fire days (Fig. 1). 652 

Therefore, typical values of the parameters of the Gaussian found in this study (Fig. 2) do not 653 

necessarily correspond to typical values found by earlier studies (e.g., Roberts et al., 2009; Vermote 654 

et al., 2009), who used much larger sample sizes (i.e., spatiotemporal resolutions). Likewise the 655 

results presented here are not necessarily representative for individual fires. 656 

 657 

Although the shape of the “average” fire diurnal cycle is scale dependent, regional patterns in the 658 

diurnal cycle characteristics (Fig. 2) remain similar over different scales, and therefore we found 659 

similar land cover dependent characteristics as previous studies. For example, shrublands and 660 

grasslands generally faced drier conditions when burning than did woody savannas or tropical forest, 661 

and therefore fire activity typically continued longer over the day and the hour of peak fire activity 662 

was generally located later in the afternoon (Fig. 2; Table 1; Giglio, 2007; Roberts et al., 2009). For 663 

the same reason, temperate and boreal forests have been reported to show a more pronounced 664 

diurnal cycle than grasslands (Fig. 2; Sofiev et al., 2013; Konovalov et al., 2014). Building on the land 665 

cover based analysis of Roberts et al. (2009), we provide a first analysis of the spatial distribution of 666 

the fire diurnal cycle. 667 

 668 

The three parameters determining the shape of the Gaussian can be used to visualize the spatial 669 

distribution of the fire diurnal cycle. The daily FRP-maximum is given by ρpeak, fire duration over the 670 

day by σ, and the baseline FRP by ρbase. Similar spatial patterns were found for all three parameters 671 

mentioned above (Fig. 2a, b and c). This indicates that there are zones of generally more “intense” 672 

fires with high ρpeak, large σ and higher ρbase, while other zones are characterised by lower intensity 673 

fires. In land cover classes where most of the fires were grass fuelled (grasslands, savannas and 674 

woody savannas), a considerable part of the spatial variation in fire diurnal cycle could be explained 675 

by fire size (see Sect. 2.4; Figs. 2 and 3). Large fires were often found in frequently burnt and/or more 676 

arid areas (Fig. 3a) where high fuel connectivity, low fuel density and low fuel moisture allow 677 

relatively fast moving fires with large fire fronts to form (Hély et al., 2003; Sow et al., 2013). Besides 678 

fire size and land cover, part of the variability in the fire diurnal cycle could be explained by a 679 

gradient in diurnal weather conditions. Grass fuelled large fires were also common in the more 680 

humid savannas of southern Africa, but here nighttime weather conditions appear to become rather 681 

unfavourable for fire (Figs. 2b and 3c). In humid savannas ρpeak values were not solely associated with 682 

large fire size, but also with areas showing a high number of annual days with fire activity and may be 683 

explained by several relatively small fires burning at the time. The high number of fire days may 684 

indicate a larger number of fire ignitions and/or that fires are spreading at a slower rate due to the 685 

more pronounced fire diurnal cycle, higher humidity, or higher fuel density (Hély et al., 2003; Sow et 686 
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al., 2013). Finally, in the Mediterranean basin the relatively low fire return period, and consequently 687 

higher fuel density, may also cause relative intense fires with long duration over the day (Fig. 2; 688 

Archibald et al., 2013). 689 

 690 

The peak hour of fire activity found here corresponds to the moment of day at which 50% of the total 691 

FRE has been emitted (assuming             ), and it did not always correspond to the peak hour 692 

of fire activity found by previous studies (Fig. 2d; e.g., Giglio, 2007; Roberts et al., 2009; Vermote et 693 

al., 2009). In general most FRE was emitted during the afternoon, and clear spatial patterns were 694 

present in the typical peak hour of the Gaussian. High values of hpeak were found in regions of higher 695 

fuel density or in more arid areas where fires could spread over large areas (Figs. 2d and 3). In arid 696 

regions with large typical fire sizes, fire spread was often fast and a 0.1° grid cell only corresponded 697 

to a part of the actual fire resulting in large variation in hpeak between neighbouring grid cells (Fig. 2d 698 

and Table 1). 699 

 700 

5.2 Model performance and the MODIS sampling design 701 

 702 

Data assimilation and three differenttwo modelling approaches, depending on increasing knowledge 703 

of the fire diurnal cycle, were used to estimate hourly FRE from SEVIRI FRP data sampled at the times 704 

of MODIS detection opportunities. Here we start discussing the performance of the different 705 

methods with respect to their total FRE estimates and daily and regional FRE estimations. Then we 706 

discuss the more uncertain model performance for individual grid cells at an hourly resolutionat 707 

higher spatiotemporal resolutions. 708 

 709 

The persistent approach is comparable to a direct hourly extension of the current GFAS methods 710 

(Kaiser et al., 2012), where the fire diurnal cycle is ignored and the predicted FRP for each hour is 711 

equal to that of the last FRP observation. This led to a general overestimation of daily FRE because 712 

the 13:30 LT temporal sampling time of MODIS is relatively close to the peak hour of daily fire 713 

activity, and therefore not very representative of the full period until the next observation at 22:30 714 

LT (Figs. 2d and 5; Table 2). Moving away from the equator, the number of daily MODIS observations 715 

increases due to orbital convergence at higher latitudes, and consequently the model performance 716 

improved (Figs. 4b, 5 and 6; Giglio et al., 2006; Reid et al., 2009). Additional inclusion of daytime 717 

observations due to orbital convergence will typically be somewhat earlier or later in the afternoon 718 

and may therefore lower the FRE estimation. In the persistent approach, missing nighttime 719 

observations may cause an overestimation and missing daytime observation an underestimation of 720 

daily FRE, resulting in erroneous regional day-to-day variations in FRE estimates in the tropics (Fig. 6). 721 

Following previous research, we found that due to the spatiotemporal variation of the fire diurnal 722 

cycle FRE was overestimated more for some land cover types than for others (Table 2; Freeborn et 723 

al., 2011). Land cover classes that typically showed longer fire durations (Fig. 2c) with peak fire 724 

activity later in the afternoon (Fig. 2d) were not as much overestimated as land cover classes with 725 

more pronounced fire diurnal cycles (Figs. 5 and 6; Table 2). However, part of this effect likely stems 726 

from these land covers mostly being located in the more frequently observed higher latitudes of our 727 

study region. Although the persistent method is not directly comparable to the methods of widely 728 

used emission inventories like GFAS or QFED (Kaiser et al., 2012; Darmenov and da Silva, 2013), they 729 

likely introduce similar errors by ignoring the fire diurnal cycle. 730 
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 731 

When using the dynamic approach (based on a Gaussian function optimally fitted to the FRP 732 

observations at MODIS detection opportunities; Sect. 3.5), a general underestimation of FRE was 733 

seen when compared to that derived from the full SEVIRI time-series, mostly due to underestimation 734 

of small fires (compare Figs. 3c and 5b). When optimally fitting a Gaussian function to a single FRP 735 

detection, the function will only reproduce the peak within the hour, while ignoring that a single fire 736 

detection at MODIS detection opportunity often represents a fire event lasting for several hours. The 737 

climatological approach, based on the climatology of the fire diurnal cycle, had by far the best 738 

performance in terms of absolute FRE estimation. In contrast to the persistent approach, in the 739 

dynamic and climatological approachesThe climatological approach showed better performance in 740 

terms of absolute FRE estimations, while also better able to reproduce its spatial variability (Fig. 5). In 741 

contrast to the persistent approach, the hourly predictions were based on the last 24h of fire activity, 742 

enabling more realistic gap filling during periods without observations. This resulted in an advantage 743 

during periods of cloud cover or missing observations due to the satellite orbits, but because of the 744 

low number of actual daily observations these modelling approachesthe climatological approach had 745 

the tendency to continue predicting fire activity after fires had ceased, seen as a small delay in the 746 

signals in Fig. 6. 747 

 748 

An additional criterion to evaluate the model performance was the correlation between the three 749 

modelling approaches and the SEVIRI data at different spatiotemporal scales. At 0.1° spatial 750 

Correlation between the modelled and SEVIRI time-series improved considerably when moving from 751 

hourly to daily temporal resolution the persistent approach performed best, likely because it only 752 

predicts , showing that the models were better able to estimate daily budgets than the distribution 753 

of fire activity on days of actual fires while the other two methodsover the day. These differences 754 

may predictbe explained by the inability of the models to correctly estimate the hour of peak fire 755 

activity with some delay., a fire diurnal cycle that is not well represented by a Gaussian function, or in 756 

the case of small fires the fire diurnal cycle may not be fully detected by the SEVIRI instrument. 757 

Because of the large day-to-day variation in the fire diurnal cycle and the FRP measurements 758 

atlimited to the time of the MODIS overpasses, the individual FRP observations have a low precision 759 

(i.e., large random error) and omission (i.e., non detection) of fires is frequent (Figs. 1 and 4), 760 

resulting in low correlation at high spatiotemporal scales (Tables 3 and 4). SinceTable 3). Because 761 

fires rarely occur on their own and generally form part of a regional pattern (Bella et al., 2006), the 762 

correlation increased considerably when accumulating results to a 1° spatial scale, and at this scale 763 

the persistent and climatological approaches performed equally well (Table 3).. For the same reason 764 

model performance was found to be best in savannas and woody savannas, where the highest 765 

number of fires occur and the sample size is thus largest, or in areas of large fire size where omission 766 

was relatively low. 767 

 768 

Correlation at an hourly resolution was lower than at daily resolution, but a similar increase in model 769 

performance was found when aggregating to coarser spatial scales. Model performance was 770 

therefore best when optimal burning conditions were reached, often coinciding with the peak of the 771 

burning season. Because often only a reasonably large sample of observations made at the MODIS 772 

detection opportunities is actually representative of fire activity in a certain region, the added value 773 

of the 0.1° spatial resolution (e.g., GFASv1.1/1.2) is somewhat limited compared to a coarser 0.5° 774 

spatial resolution (e.g., GFASv1.0). As could be expected, the dynamic and climatological approaches 775 
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performed better at the hourly resolution, compared to the persistent approach that ignored fire 776 

diurnal cycle. Overall, using the climatological approach led to the best model performance, although 777 

in specific cases using the persistent or dynamic approach showed better results. The climatological 778 

approach used mean values for the fire duration and may therefore overestimate FRE from smaller 779 

fires while underestimating the larger fires.  780 

 781 

Overall, using the climatological approach resulted in the best model performance, although in 782 

specific cases using the persistent approach showed better results. For example, at 0.1° spatial and 783 

daily temporal resolution the persistent approach performed best, likely because it only predicts fire 784 

activity on days of actual fires while the climatological approach may predict fire activity with some 785 

delay. Also the climatological approach used mean values for the fire duration and may therefore 786 

overestimate FRE from smaller fires while underestimating the larger fires. Despite the improved 787 

results of the climatological approach as opposed to the persistent approach, estimating FRE in near 788 

real time based on MODIS observations remains challenging, especially at high spatiotemporal 789 

resolutions. Largest uncertainties originate from the high spatiotemporal variability of the fire diurnal 790 

cycle combined with the limited number of daily MODIS detection opportunities. Moreover, the fire 791 

diurnal cycle as analyzed here may to some extent be affected by the inability of SEVIRI to detect the 792 

smallest fires, along with other sources of uncertainty in the FRP observations (Wooster et al., 2015; 793 

Roberts et al., 2015). Finally, the characterization of the fire diurnal cycle and discussion of its 794 

spatiotemporal drivers presented here provide a first step to upscale the climatological model to a 795 

global scale, but a better understanding of the fire diurnal cycle and its drivers for other regions of 796 

the globe remains an important issue.  797 

 798 

Within GFAS, to handle the uncertainties introduced into the MODIS-derived FRE estimates by 799 

neglecting the diurnal cycle influence, the estimated FRE is converted into estimates of dry matter 800 

burned (DM) using land cover-specific conversion factors. These were derived via comparison of 801 

long-term monthly FRE estimates to the DM estimates calculated over the same period by the Global 802 

Fire Emissions Database (GFED 3.1; van der Werf et al., 2010; Kaiser et al., 2012). It is currently 803 

assumed that by allowing the conversion factors to vary with land cover type the impact of any land 804 

cover-varying diurnal cycle is also incorporated, reducing the influence of the diurnal cycle. The 805 

issues discussed above, along with the accuracy of the GFED DM calculations, which are for example 806 

affected by the quality of the burned area product and the biochemical models used, all influence 807 

values of the land cover-specific FRE-to-DM conversions factors presented by Kaiser et al. (2012). 808 

 809 

Wooster et al. (2005) and Freeborn et al. (2008) previously explored the conversion factors between 810 

FRE and DM using small scale experiments, and found that they appeared relatively independent of 811 

vegetation type. However, when moving to the satellite-scale there are additional factors influencing 812 

this FRE-to-DM relationship, for example the fire regime of an area and the degree to which MODIS 813 

misses the lowest FRP fires, and the canopy density of trees that might obscure some of the thermal 814 

radiation being emitted by fires burning in the ground fuels (Freeborn et al., 2014). The thermal 815 

radiation recorded in satellite products is additionally reduced by cloud cover and erroneous flagging 816 

of smoke as clouds during data processing. Konovalov et al. (2014) nevertheless found FRE-to-DM 817 

relationships relatively similar to those of the earlier small-scale experiments when using 818 

atmospheric observations and biomass burning trace gas and aerosol emissions factors to estimate 819 

fuel consumption. Exploring methods to incorporate the fire diurnal cycle in the GFAS global FRP-820 
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based near real time emission inventory is a first step in taking into account some of these issues in 821 

order to improve global FRE estimates made at relatively high spatiotemporal resolutions, and 822 

hopefully also in reconciling some of the differences in current emission inventories. 823 

 824 

6 Conclusions 825 

 826 

Emission inventories based on FRP observations have great potential to improve biomass burning 827 

emission estimates, by eliminating the need for modelling of fuel loads and fuel consumption, and 828 

can be produced in near real time. However, to date uncertainties in FRE estimation remain high 829 

when using polar orbiting FRP datasets, largely due to difficulties in combining the limited temporal 830 

resolution observations and knowledge about the fire diurnal cycle. Geostationary data can alleviate 831 

this issue, but brings its own problems related to the non-detection of the lower FRP fires due to the 832 

coarse spatial resolution of the geostationary observations. Geostationary dataset are also not global 833 

in extent. Here we explored the spatial dependencies of the fire diurnal cycle and its impact on active 834 

fire detections made at the time of MODIS overpasses. Three methodsTwo modelling approaches 835 

were developed to derive hourly FRE estimates based on data-assimilation and SEVIRI FRP 836 

observations subsampled at MODIS detection opportunities, and we evaluated these. The first 837 

approach ignored the fire diurnal cycle assuming persistent fire activity between two MODIS 838 

detection opportunities, while the second approach combined prior knowledge of the fire diurnal 839 

cycle with active fire observations at MODIS detection opportunities to simulate the fire diurnal 840 

cycle. Both approaches were evaluated against the actual hourly FRP observations made by SEVIRI. 841 

Our main conclusions are: 842 

1. We considered various drivers of the spatial distribution of fire diurnal cycle: dominant land 843 

cover, fire size, annual number of fire days, and diurnal climate conditions and found that all 844 

played a role. The strong relation between fire size and fire diurnal cycle for grass fuelled 845 

fires, and the climatic gradient in diurnal cycle, indicate that using fuel characteristics rather 846 

than land cover alone to characterize the fire diurnal cycle provides a potential pathway to 847 

improve these estimates. Here we showed that this information can partly be obtained by 848 

studying the fire characteristics, such as fire size, which are contained within the remote 849 

sensing data themselves. 850 

2. Ignoring the fire diurnal cycle may cause structural errors in FRE estimates, and likely results 851 

in a general overestimation of FRE due to the timing of the MODIS overpasses. The errors 852 

vary regionally, mostly due to variations in the fire diurnal cycle, while results get more 853 

accurate at higher latitudes due to the increasing number of daily MODIS detection 854 

opportunities caused by orbital convergence. 855 

3. Due to the large day-to-day variations in the fire diurnal cycle at the grid cell level, and the 856 

scarce number of MODIS observations of any one location per day, daily FRP fields calculated 857 

from observations made at MODIS detection opportunities are characterized by low 858 

precision (i.e., observations are not representative for daily fire activity) and high omission 859 

(i.e., non observation of fires). Therefore a sufficiently large sample size of MODIS 860 

observations is required to accurately estimate FRE, as shown earlier by Freeborn et al. 861 

(2011). In zones of frequent fires, where fires are generally part of a regional biomass 862 

burning pattern, model performance greatly improved when moving to a coarser scale, 863 

increasing the sample size. Model performance was also considerably better for zones of 864 
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relatively large fires that were characterized by low omission. Production of emission 865 

inventories at very high spatiotemporal resolution using data from a limited number of low-866 

Earth orbit satellite observations may therefore provide somewhat restricted added value 867 

compared to those derived at coarser spatiotemporal scales. 868 

4. Relative overrepresentation of day- or nighttime FRP observations may cause large day to 869 

day variations in estimated FRE when the diurnal cycle is ignored. 870 

5. The way we observe the fire diurnal cycle is scale dependent, mostly because of the large 871 

variation in fire diurnal cycle, even within the same grid cell between different days.  872 

 873 

We recommend implementing the climatological model within GFAS in Copernicus Atmosphere 874 

Services in order to improve global and regional FRE estimates and further reconcile emission 875 

estimates from the various different inventories currently available. 876 
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 1087 

Table 1. Mean values of the parameters of the Gaussian function per land cover type (excluding days 1088 

of cloud cover and weighted by FRE).), SD are shown in parenthesis. Values of σ and the ratio of ρpeak 1089 

and mean day-time FRP at MODIS detection opportunities (MODISmean) were used within the 1090 

climatological approach to model hourly FRP (see Sect. 3.65). 1091 

Land cover   σ  ρpeak  ρbase hpeak ρpeak/MODISmean 

 (hour) (MW)  (MW)  (hour) (–) 

Temperate forest  1.14 (0.55) 846 (392) 24.2 (12.7) 13.31 (4.50) 3.17 

Tropical forest 0.85 (0.45) 1364 (863) 27.3 (19.6) 13.34 (2.57) 3.03 

Woody savanna  0.94 (0.50) 1501 (934) 21.1 (16.8)  13.21 (2.08) 3.07 

Savanna  1.09 (0.53) 1711 (899) 39.0 (25.5) 13.08 (2.58) 2.88 

Shrubland  1.35 (0.63) 3079 (1552) 108.9 (56.9) 13.16 (4.46) 2.87 

Grassland  1.06 (0.53) 1642 (863) 37.3 (21.1) 12.95 (4.44) 3.08 

Cropland  0.95 (0.48) 1259 (705) 23.9 (16.0) 13.33 (3.22) 2.94 

 1092 

Table 2. Estimated annual FRE during 2010–2012 by the threetwo model approaches as percentage 1093 

of SEVIRI FRE (cloud corrected).  1094 

Land cover  SEVIRI  
(PJ yr-1) 

Persistent 
(%)  

Climatological 
(%) 

Temperate forest  2.9  98  118 

Tropical forest  61.3  179  98 

Woody savanna  1513.2  174  93 

Savanna 990.7  155  99 

Shrubland  91.7  120  115 

Grassland  106.5  125  108 

Cropland  74.5  147  90 

Total  2841.9  163  97 

 1095 

Table 3. Pearson’s r between hourly and daily FRE as observed by SEVIRI (cloud cover corrected) and 1096 

and estimated by the threetwo modelling approaches. Correlation is calculated for two spatial scales, 1097 

 the original 0.1° resolution and a 1° aggregated resolution (in parentheses) to test regional model 1098 

performance. 1099 

Land cover  Persistent  
hourly 

Climatological 
hourly 

Persistent 
daily 

Climatological  
daily 

Temperate forest  0.24 (0.33) 0.20 (0.32) 0.44 (0.50) 0.21 (0.39) 

Tropical forest  0.13 (0.25) 0.15 (0.27) 0.32 (0.41) 0.16 (0.41) 

Woody savanna  0.19 (0.44)  0.20 (0.52) 0.48 (0.80)  0.25 (0.79) 

Savanna  0.25 (0.45) 0.25 (0.51) 0.54 (0.78)  0.30 (0.76) 

Shrubland  0.35 (0.47)  0.32 (0.47) 0.61 (0.63)  0.37 (0.60) 

Grassland  0.22 (0.32)  0.20 (0.35) 0.46 (0.55)  0.22 (0.52) 

Cropland  0.19 (0.32) 0.17 (0.36) 0.42 (0.61)  0.18 (0.60) 

Total  0.22 (0.43) 0.22 (0.50) 0.50 (0.76)  0.27 (0.75) 

  1100 
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 1101 
Figure 1. Hourly-mean FRP time-series derived from SEVIRI data, the same data but only sampled at 1102 

MODIS detection opportunities, and an optimally fitted Gaussian function fitted to the full SEVIRI FRP 1103 

time-series. These two examples are for a 0.1° shrubland grid cell in Portugal (a, b) and a 0.1° 1104 

savanna grid cell in Africa (c, d). (a, c) represent the hourly time-series and (b, d) the aggregated fire 1105 

diurnal cycle over the 5 study days. Time is indicated as local time. 1106 

 1107 
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 1108 
Figure 2. Weighted mean values of parameters of the optimally fitted Gaussian model for each 0.1° 1109 

grid cell, including all cloud free days during the study period. (a) Peak daytime FRP ρpeak, (b) night 1110 

time FRP ρbase, (c) SD of the FRE distribution over the day σ (related to the fire duration over the day, 1111 

or width of the diurnal cycle), and (d) hour of peak fire activity hpeak (local time). Grid cells with 1112 

emitted energy below 5 MJ over the study period (approximately the FRE emitted during one small 1113 

fire event) were excluded from the figure to facilitate interpretation. 1114 

 1115 



30 
 

 1116 
Figure 3. Characteristics of the fire regime and fuel types. based on 2010 – 2012 data. (a) Mean 1117 

annual FRE per 0.1° grid cell over the study period (2010–2012),, (b) dominant land cover type, (c) 1118 

fire size (2001–2013; 1119 

i.e., weighted mean burned area per fire event) and (d) mean annual number of days with fire 1120 

activity per grid cell over the study period. Abbreviations of land cover classes: water (Wa), 1121 

temperate forest (TeF), tropical forest (TrF), woody savanna (WSa), savanna (Sav), shrubland (Shr), 1122 

grassland (Gra) and agriculture (Agr). 1123 

 1124 
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 1125 
Figure 4. Detection of fire activity at MODIS detection opportunities. (a) Percentage of FRE emitted 1126 

on days that the SEVIRI instrument did not observe active fires at MODIS overpasses. (b) Number of 1127 

MODIS detection opportunities per day during the burning season (mean over the study period, 1128 

weighted for monthly FRP). 1129 

 1130 

 1131 

Figure 5. Total fire radiative energy (FRE) estimated via the threetwo modelling approaches using 1132 

SEVIRI observations taken at only the MODIS detection opportunities, expressed as fraction of the 1133 

total FRE calculated using the entire set of hourly mean, 0.1° SEVIRI FRP observations (cloud cover 1134 

corrected). (a) Persistent approach, and (b) dynamic approach and (c) climatological approach. 1135 

Distribution of the grid cell values is shown in the lower left corners.  1136 
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 1138 

Figure 6. Daily FRE for threefour study regions (areas of 85000 to 567000 km2) derived from the 1139 

complete SEVIRI dataset (cloud cover corrected) and estimated by the threetwo modelling 1140 

approaches developed here. (a) Daily FRE for Portugal, mostly including shrublands and temperate 1141 

forests, (b) fires in Nigeria burning in croplands, (c) woody savannas in DRC, and (d) shrublands and 1142 

savannas in Botswana. Study regions are shown in Fig. 7, and land cover was determined using the 1143 

dominant land cover classes (Sect. 2.3; Fig. 3b). 1144 
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 1145 
Figure 7. Study regions used in Fig. 6. Abbreviations refer to: Botswana (BWA), the Democratic 1146 

Republic of the Congo (DRC), Nigeria (NGA) and Portugal (PRT). 1147 

 1148 

 1149 
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