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Abstract 16 

 17 

Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most 18 

approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be 19 

converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in 20 

these FRE estimations are often substantial. This is for a large part because the most often used low-21 

Earth orbit satellite-based instruments such as the MODerate-resolution Imaging Spectroradiometer 22 

(MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we 23 

explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary 24 

Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from 25 

the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate 26 

hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, 27 

assuming persistent fire activity between two MODIS observations, while the second approach 28 

combined knowledge on the climatology of the fire diurnal cycle with active fire detections to 29 

estimate hourly FRE. The full SEVIRI time-series, providing full coverage of the fire diurnal cycle, were 30 

used to evaluate the results. Our study period comprised of three years (2010–2012), and we 31 

focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI 32 

data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies 33 

substantially over the study region, and depends on both fuel and weather conditions. For example, 34 

more “intense” fires characterized by a fire diurnal cycle with high peak fire activity, long duration 35 

over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large 36 

burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the 37 

fire diurnal cycle generally resulted in an overestimation of FRE, while including information on the 38 

climatology of the fire diurnal cycle improved FRE estimates. The approach based on knowledge of 39 

the climatology of the fire diurnal cycle also improved distribution of FRE over the day, although only 40 

when aggregating model results to coarser spatial and/or temporal scale good correlation was found 41 

with the full SEVIRI hourly reference dataset. We recommend the use of regionally varying fire 42 

diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus 43 

Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further 44 

reconciliation of biomass burning emission estimates from different inventories. 45 

  46 
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1 Introduction 47 

 48 

Landscape fires are a global phenomena, and the annually burned area is roughly equivalent to the 49 

area of India (Giglio et al., 2013). Most burned area occurs in the savannas of Africa, Australia, and 50 

South America, where they shape ecosystem dynamics and due to their scale are an important 51 

source of global emissions of (greenhouse) gases and aerosols (Seiler and Crutzen, 1980; Bowman et 52 

al., 2009). Fires affect air quality both locally and regionally (Langmann et al., 2009), with recent 53 

studies putting mortality rates over 300000 annually due to exposure to smoke (Johnston et al., 54 

2012).  55 

 56 

Traditionally, the amount of dry matter burned and quantity of trace gases and aerosols emitted 57 

have been calculated using biome-specific fire return intervals and estimates of the total amount of 58 

biomass as well as the fraction of biomass burned, the combustion completeness (Seiler and Crutzen, 59 

1980). Thanks to new satellite input streams that better capture the spatial and temporal diffuse 60 

nature of fires, the estimated fire return intervals have been replaced by direct estimates of monthly, 61 

weekly or even daily area burned (Roy et al., 2005; Giglio et al., 2009). In addition, satellite 62 

information and biogeochemical modelling have been used to improve estimates of biomass and 63 

combustion completeness. However, uncertainties in these bottom-up fire emission estimates are 64 

still substantial (Reid et al., 2009; Zhang et al., 2012; Larkin et al., 2014), and they are generally 65 

inappropriate for use in near real-time systems partly because the burned area signature is only 66 

detectable days to weeks after the actual fire occurrence. 67 

 68 

Hot spot observations from satellite have been used as a proxy for burned area and emissions fluxes 69 

in near real time (Freitas et al., 2005; Reid et al., 2009; Wiedinmyer et al., 2011). Another promising 70 

and relatively new bottom up approach uses estimates of fire radiative power (FRP) observed from 71 

satellite to calculate daily fire radiative energy (FRE). Wooster et al. (2005) found that these FRE 72 

estimates scale directly to dry matter burned, potentially circumventing the uncertainties associated 73 

with estimating area burned, fuel loads, and the combustion completeness. In addition, FRP 74 

observations can be observed and processed in near real time (Xu et al., 2010; Kaiser et al., 2012; 75 

Zhang et al., 2012) and can be measured for small fires that remain undetected in burned area 76 

products (Roberts et al., 2011; Randerson et al., 2012).  77 

 78 

Hot spot and FRP observations are currently the only available options when modelling exercises 79 

require near real time observations, for example in chemical weather forecasts used to predict air 80 

quality. The Global Fire Assimilation System (GFAS; Kaiser et al., 2012), for example, is used to 81 

estimate global near real time daily fire emissions within the EU-funded project Monitoring 82 

Atmospheric Composition and Climate III (MACC-III). GFAS is currently using fire observations from 83 

the polar orbiting MODerate-resolution Imaging Spectroradiometer (MODIS) instruments aboard the 84 

Terra and Aqua satellites (Giglio et al., 2006). Due to their relative proximity to the Earth, the Terra 85 

and Aqua MODIS instruments have a high sensitivity to even quite low FRP (smaller and/or lower 86 

intensity) fires. However, they only provide four daily observations under ideal conditions but less 87 

when optically thick clouds are present, which may not be enough to fully characterize how fire 88 

activity varies over the course of the day. Observations with a much higher temporal resolution are 89 

available from geostationary satellites. However, as a consequence of their geostationary position, 90 



4 
 

these satellites individually do not provide global data and are located at greater distance from the 91 

Earth resulting in typically coarser pixel sizes than polar orbiting instruments. Since the threshold of 92 

detectability of a fire is not only dependent on the instrument but also a function of the pixel area, 93 

geostationary sensors have a higher minimum FRP detection limit (typically > 40 MW) than MODIS (~ 94 

8 MW). They therefore do not observe the lowest FRP component of the fire regime (Roberts et al., 95 

2005; Freeborn et al., 2014). 96 

 97 

Previous studies found that fire activity shows a strong diurnal cycle, and one that is both temporally 98 

and spatially variable (Prins and Menzel, 1992; Giglio, 2007; Roberts et al., 2009). The ideal set-up to 99 

detect fires would be a high temporal resolution imaging system, sensitive to even the lowest FRP 100 

fires, and providing global coverage, but due to the limitations of the orbital characteristics outlined 101 

above there is no single platform available to provide this. Therefore the estimation of FRE at a global 102 

scale is difficult, with polar orbiting satellites lacking observations to accurately represent the fire 103 

diurnal cycle and geostationary satellites being limited to certain regions of the globe and omitting 104 

the (rather common) low FRP fires. However, previous studies have developed approaches to 105 

estimate FRE based on the combination of data from different satellite systems (Boschetti and Roy, 106 

2009; Ellicott et al., 2009; Freeborn et al., 2009, 2011; Vermote et al., 2009). 107 

 108 

Some of these mixed approaches used both burned area and active fire data (Boschetti and Roy, 109 

2009; Roberts et al., 2011), which may provide benefits in terms of more accurate FRE determination 110 

but cannot be used easily in near real time systems because of the latency in burned area 111 

observations. Alternatively, FRP observations of polar orbiting and geostationary satellites can be 112 

blended to combine the sensitivity of the MODIS instruments to lower FRP fires and the diurnal 113 

sampling characteristics of SEVIRI. Freeborn et al. (2009) developed a database for matching SEVIRI 114 

and MODIS FRP observations based on frequency-magnitude statistics, but the samples had to be 115 

accumulated over significant spatial areas (5°) to provide matchable statistics, which is incompatible 116 

with the need to develop a method operating at high spatial resolution. Freeborn et al. (2011) later 117 

presented an alternative approach, estimating FRE using MODIS data accumulated over 8 day 118 

periods over which MODIS samples a location at the fullest range of view zenith angles. The 119 

relationship between the “true” FRE and the limited number of FRP samples provided by MODIS was 120 

derived using SEVIRI FRP time-series sampled at the MODIS sampling interval. Vermote et al. (2009) 121 

and Ellicot et al. (2009) used a different approach to create FRE data from MODIS, showing that for 122 

several regions of the globe the fire diurnal cycle can be described by a Gaussian function, and used 123 

monthly MODIS data to fit the parameters of the Gaussian. Using this approach, a first global 124 

estimation of monthly FRE was made (Ellicott et al., 2009). Despite the success of these latter 125 

approaches with regard to estimating FRE from MODIS, they are not a solution to the problem posed 126 

herein because they require 8 days of consecutive MODIS data and therefore cannot be applied in a 127 

near real-time approach. 128 

 129 

Global fire emissions estimates at high spatial and temporal resolutions, ideally produced in near real 130 

time, are required to feed into atmospheric models which are under continuous development and 131 

run at improved resolutions thanks to increased computational power (Zhang et al., 2012). Higher 132 

temporal resolution may also help to reconcile bottom up and top down emission estimates (Mu et 133 

al., 2011). None of the approaches mentioned above are, however, suitable for providing this. Due to 134 

these limitations current state of the art global near real time emission inventories still ignore 135 
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possible effects of fire diurnal cycle on their emission estimates (e.g., Wiedinmyer et al., 2011; Kaiser 136 

et al., 2012) and may therefore be structurally biased due to the fire diurnal cycle and the MODIS 137 

sampling design (e.g., Ichoku et al., 2008; Ellicott et al., 2009; Freeborn et al., 2011). 138 

 139 

The purpose of the work presented here is to better understand the fire diurnal cycle and its 140 

spatiotemporal dynamics, in order to develop a new way to include this into a near real time fire 141 

emissions estimation framework. First, the spatial distribution and dependencies of the fire diurnal 142 

cycle and their effect on active fire detections at MODIS overpasses were explored. Then, data 143 

assimilation was used to compare two different methods to derive hourly FRE estimates at 0.1° 144 

resolution based on low Earth-orbiting MODIS observations. The first method ignored the fire diurnal 145 

cycle, and was used as a reference to better understand the combined effect of the fire diurnal cycle 146 

and the MODIS sampling design on hourly FRE estimates. The second method combined knowledge 147 

on the fire diurnal cycle with active fire detections at MODIS overpasses. Following previous studies 148 

(Freeborn et al., 2009, 2011), we used FRP observations derived from data collected by the 149 

geostationary SEVIRI instrument at MODIS detection opportunities, rather than actual MODIS 150 

observations, to drive the two model approaches and we evaluated the model results against the full 151 

SEVIRI time-series. We used three years of active fire data (2010–2012) across Africa and the 152 

Mediterranean basin to include a wide range of climates and land cover types, and avoid the use of 153 

SEVIRI observations obtained at very far off-nadir angles over South America and northern Europe 154 

(Freeborn et al., 2014). Results are intended for application in GFAS within EU’s Copernicus 155 

Atmosphere Monitoring Service (CAMS, http://atmosphere.copernicus.eu). 156 

 157 

2 Data 158 

 159 

To explore the spatiotemporal dynamics of the fire diurnal cycle, we used hourly temporal resolution 160 

FRP data derived from 15 min observations made by the SEVIRI instrument hosted onboard the 161 

geostationary Meteosat satellite (Sect. 2.1). However, to drive the models developed here we only 162 

used SEVIRI FRP observations made at the overpass times of the MODIS polar orbiting sensors (Sect. 163 

2.2), whilst the hourly temporal resolution SEVIRI time-series were used to evaluate the results. Land 164 

cover characteristics (Sect. 2.3), along with data on fire size (Sect. 2.4), were used to better 165 

understand the spatial distribution of fire diurnal cycle. These datasets are described in more detail 166 

below, followed by the methods used in Sect. 3. 167 

 168 

2.1 SEVIRI fire radiative power (FRP) 169 

 170 

The SEVIRI instrument aboard the geostationary Meteosat Second Generation (MSG) series of 171 

satellites provides coverage of the full Earth disk every 15 min in 12 spectral bands (Schmetz et al., 172 

2002). The Meteosat SEVIRI FRP-PIXEL product contains per-pixel fire radiative power data along with 173 

FRP uncertainty metrics produced from the full spatial and temporal resolution SEVIRI observations 174 

(Wooster et al., 2015). The FRP-PIXEL product is produced using an operational version of the 175 

geostationary Fire Thermal Anomaly (FTA) algorithm described in Roberts and Wooster (2008), and 176 

the product and its performance characteristics are described in Wooster et al. (2015). The FRP-PIXEL 177 
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products are freely available from the Land Surface Analysis Satellite Applications Facility (LSASAF; 178 

http://landsaf.meteo.pt), from the EUMETSAT EO Portal (https://eoportal.eumetsat.int) or via the 179 

EUMETCAST dissemination service (http://www.eumetsat.int) in both real-time and archived form, 180 

as detailed in Wooster et al. (2015). The Meteosat satellites are located at 0° longitude and latitude, 181 

and at nadir the SEVIRI pixels cover 3 km x 3 km on the ground, but this degrades with increasing 182 

view angle away from the West African sub-satellite point (Freeborn et al., 2011; Roberts et al., 183 

2015). The FRP-PIXEL product data used here were obtained from the LSA SAF and were rescaled to 184 

an hourly 0.1° resolution with the GFAS gridding algorithm explained in Kaiser et al. (2012). Missing 185 

FRP values in individual observations within the hour (e.g., due to smoke or short periods of cloud 186 

cover) were thus implicitly ignored. A single 0.1° grid cell comprises over 13 SEVIRI pixels close to the 187 

sub-satellite point (equatorial West Africa) and this reduces to around 6 SEVIRI pixels at greater of 188 

nadir angles (e.g., Portugal and Madagascar). Data were archived in the Meteorological Archival and 189 

Retrieval System (MARS) of the European Centre for Medium range Weather Forecasting (ECMWF) 190 

prior to their use herein.  191 

 192 

2.2 MODIS detection opportunity 193 

 194 

The two MODIS sensors on board of the Terra and Aqua satellites provide 4 daily overpasses in most 195 

Earth locations, albeit sometimes at view angles in excess of 45° where the product performance is 196 

somewhat degraded (Freeborn et al., 2011). At nadir the MODIS thermal channel spatial resolution is 197 

1 km, but decreases away from the swath centre (Freeborn et al., 2011). We used the MODIS MOD03 198 

(Terra) and MYD03 (Aqua) geolocation products to determine where and when MODIS data were 199 

collected within the SEVIRI Earth disk. As cloud cover may further limit the fire detection opportunity, 200 

we used the data quality and cloud cover information of the MOD14 and MYD14 active fire products 201 

to filter out grid cells with cloud cover (Giglio et al., 2006). Here we define the detection opportunity 202 

as the ability to make unobstructed observations, and the MODIS detection opportunity was derived 203 

by combining the MOD03, MYD03, MOD14 and MYD14 products, combining overpass times and 204 

cloud cover. We used MODIS data from Collection 5. Like the SEVIRI data, these data were rescaled 205 

to hourly 0.1° resolution with the GFAS gridding algorithm and archived in MARS (Kaiser et al., 2012). 206 

The data were archived for the Terra and Aqua satellites separately. The original MODIS swath data 207 

can be downloaded from NASA at http://reverb.echo.nasa.gov. 208 

 209 

2.3 MODIS Land cover 210 

 211 

The dominant land cover type was derived from the MODIS MCD12C1 land cover product, which 212 

provides 0.05° spatial resolution annual information on land cover (Friedl et al., 2002). We calculated 213 

the dominant land cover type for each grid cell as the land cover type that on average covered the 214 

largest fraction during the study period (2010–2012). The University of Maryland (UMD) classification 215 

scheme was used, and data was rescaled to 0.1° resolution. Because we only considered Africa and 216 

the Mediterranean basin in this study, and because in some land cover classes very few fires 217 

occurred, we could merge some land cover classes that were of relatively little importance for our 218 

study. Specifically, all forest classes within the tropics were binned into the tropical forest class, while 219 
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extratropical forests were all labelled temperate forest. Open and closed shrublands were merged 220 

into one shrubland class, and urban and built-up, barren or sparsely vegetated into grasslands. 221 

 222 

2.4 Fire size 223 

 224 

Here we define the fire size for a certain grid cell as the mean burned area per fire event, weighted 225 

by their total area burnt (when calculating the mean, a fire event burning 100 km2 is assigned one 226 

hundred times the weight of an event burning 1 km2 ). The MODIS MCD64A1 burned area product 227 

provides daily mapped estimates of global burned area (Giglio et al., 2009). We applied the methods 228 

described by Archibald and Roy (2009) to derive a global mean fire “size” (area) map using data over 229 

our study period (2010–2012). We made one modification to the approach described by Archibald 230 

and Roy (2009): we assumed that two neighbouring burned area grid cells only belonged to the same 231 

fire if the burn date was no longer than two days apart (instead of 8 days). We believe that overall 232 

this provides a better estimation of the fire size in our study region, as the vast majority of fires here 233 

are grass fires, occurring outside tropical forest zones and thus spreading relatively fast while being 234 

relatively less often obstructed by cloud cover. Consequently, the uncertainty in burn date is 235 

generally low in our study region (Giglio et al., 2013) and so the two day thresholds was deemed 236 

more appropriate.  237 

 238 

3 Methods 239 

 240 

Our overall goal within GFAS is to provide hourly estimates of FRE at 0.1° spatial resolution, based on 241 

the limited number of MODIS overpasses available each day at each grid cell location. This limited 242 

number of daily MODIS observations, in combination with the often pronounced fire diurnal cycle, 243 

are the major obstacles in providing the required output. We first studied the spatiotemporal 244 

variation of the fire diurnal cycle, in an attempt to understand its variability (Sect. 3.1). Then, we 245 

explored the way the fire diurnal cycle affects active fire detections made at the MODIS sampling 246 

times (Sect. 3.2). Using this knowledge we explored a new method to parameterize the fire diurnal 247 

cycle, and compared results to a modelling approach in which the fire diurnal cycle is ignored. 248 

Building on the work of Freeborn et al. (2009, 2011), to drive the modelling approaches we used 249 

SEVIRI data sampled at the MODIS detection opportunities (according to the hourly data 250 

representation introduced above), rather than actual MODIS observations (Sect. 3.2). This allowed us 251 

to focus on the issue of diurnal cycle sampling rather than simultaneously dealing with the issue of 252 

MODIS and SEVIRI’s differential sensitivity to active fires (Freeborn et al., 2009).  253 

 254 

Using data assimilation we combined the discrete actual SEVIRI observations, made at the time of the 255 

MODIS detection opportunities, with hourly predictions of fire activity – using their combination to 256 

create continuous hourly best estimate FRE time-series (Sect. 3.3). We developed two prediction 257 

methods. The first method assumed persistent fire activity until the next satellite detection 258 

opportunity, and provides further insights into the combined effect of the fire diurnal cycle and the 259 

MODIS sampling design on hourly FRE estimates when the fire diurnal cycle is ignored (Sect. 3.4). The 260 

second method followed previous studies and used a Gaussian function to predict fire development 261 
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over the day (Vermote et al., 2009). By combining prior knowledge about the climatology of the fire 262 

diurnal cycle with active fire observations at MODIS overpasses to estimate the parameters of the 263 

Gaussian function, this approach provides a possible pathway to implement the fire diurnal cycle into 264 

the near real time fire emission modelling framework (Sect. 3.5). Comparing the results of the two 265 

approaches to those from the full hourly SEVIRI time-series allowed us to determine and discuss their 266 

strengths and limitations (Sect. 3.6).  267 

 268 

3.1 Exploring the fire diurnal cycle 269 

 270 

We started exploring the fire diurnal cycle and its drivers. A Gaussian function was optimally fitted 271 

(least squares) to the hourly SEVIRI observations          for each grid cell and day of fire activity 272 

during the study period:  273 

 274 

 
                              

 
          

 

   . 
(1) 

 275 

Where       corresponds to the nighttime fire activity,       to the maximum FRP for a given day, σ 276 

is the standard deviation (SD) of FRE distribution over the day (dependent on fire duration), ht is the 277 

local solar time at time step t and       is the local hour at which FRP reaches its daily maximum. 278 

This resulted in a database containing hourly time-series of          and the fitted Gaussian function, 279 

and daily time-series of optimal parameter values of the Gaussian function for each grid cell. At the 280 

same time we also kept track of hourly MODIS detection opportunities. This enabled us get a better 281 

understanding of structural errors caused by the MODIS sampling design in relation to the actual fire 282 

diurnal cycle. 283 

 284 

Although the fire diurnal cycle as observed by SEVIRI is comparable to that which would be observed 285 

by MODIS if it had the same temporal sampling ability, it is a little different due to SEVIRI’s inability to 286 

discriminate the lowest FRP fire pixels which typically dominate more towards the start and end of 287 

the daily fire cycle, but which are also present along with often higher FRP pixels towards the diurnal 288 

cycle maxima (Freeborn et al., 2009). To gauge the magnitude of the effect Freeborn et al. (2009) 289 

derived the “virtual MODIS” fire product that has the temporal sampling of SEVIRI and the sensitivity 290 

to fire of MODIS. They found that the full-width at half maximum height (i.e., the width of the diurnal 291 

cycle at half of the daily FRP maximum value) of the diurnal cycles derived from the SEVIRI and the 292 

“virtual MODIS” datasets are very similar, it is the amplitude and the full-width at base height of the 293 

two cycles, which are more different. In terms of total FRE emitted, the latter is of less importance, 294 

here we followed Freeborn et al. (2011) in assuming that the diurnal cycles from SEVIRI and MODIS 295 

are sufficiently similar. 296 

 297 

In order to visualize the spatial distribution of the fire diurnal cycle, the climatological diurnal cycle 298 

was calculated for each grid cell depending on the mean parameter values of the Gaussian function 299 

weighted for daily FRE, including all days of fire activity during the study period without cloud 300 

obscurance. To get a better understanding of the drivers of the fire diurnal cycle these results were 301 
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compared to land cover and aspects of the fire regime (fire size, total annual FRE, and the annual 302 

number of days with fire activity), see Sect. 2. 303 

 304 

3.2 Sampling SEVIRI data at MODIS detection opportunities 305 

 306 

During the data assimilation, SEVIRI observations at MODIS detection opportunities were used to 307 

drive the models. Here, SEVIRI observations for a given hour t are given by          and SEVIRI fraction 308 

of observed area by         ; in the same way, observations of the MODIS instruments are given by 309 

         and         . Therefore input for the models, i.e., the SEVIRI observations at MODIS 310 

detection opportunity times (    and     ) for a given hour t are given by: 311 

 312 

              (2) 

               (3) 

 313 

For clarity, we assumed that the observed FRP     is zero when there was no MODIS detection 314 

opportunity. Anyhow, during the data assimilation     was weighted for observed area    , which was 315 

zero when there was no observation. 316 

 317 

SEVIRI data sampled at MODIS detection opportunities were compared to the full SEVIRI hourly time-318 

series to explore the effect of the fire diurnal cycle on the daily sampling at MODIS overpasses. More 319 

specifically we calculated the percentage of FRE emitted on days without any active fire detection at 320 

MODIS detection opportunities, and the total daily number of MODIS overpasses during the fire 321 

season. The latter was calculated by weighing the mean number of monthly detection opportunities 322 

at MODIS overpasses by monthly total detected FRP, thus giving the largest weight to the month with 323 

most fire activity (ignoring cloud cover). 324 

 325 

3.3 Data assimilation 326 

 327 

We used a modified version the fire data assimilation methodology of GFAS to allow representation 328 

of the fire diurnal cycle. GFAS assumes that the availability of observations dominates the error 329 

budget of the global FRP fields. It approximates these errors by further assuming the FRP variance to 330 

be inversely proportional to the fraction of observed area    . Thus the variance increases with 331 

decreasing partial cloud cover and with the number of satellite observations. In the following data 332 

assimilation, GFAS fills observation gaps with a Kalman filter, in which current observations are 333 

combined with information from earlier ones. The Kalman filter has a time step of 1 day. It uses a 334 

trivial predictive model for the temporal evolution of FRP (i.e., persistence), and assumes for the 335 

accuracy of the 1 day FRP prediction that the variance increases by a factor of 9 (Kaiser et al., 2012).  336 

 337 

Our modifications affected the step size and the FRP prediction model. The former was set to 1h to 338 

be able to represent a diurnal cycle. For calculating the FRP prediction    , we investigated two 339 

different approaches (Sects. 3.4 and 3.5). In both cases, we assumed for the accuracy of the 1h FRP 340 

prediction that the variance increases by a factor of 4. Lowering the value compared to the daily 341 
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GFAS is motivated by the shorter time step used in our study. However, lowering it too much would 342 

not give sufficient weight to new FRP observations. Thus the analysis FRP     and “fraction of 343 

observed area”     were calculated at each 1h time step by optimal interpolation as follows, cf. Eqs. 344 

(32)–(33) of Kaiser et al. (2012): 345 

 346 

 
     

 

   
 
     
 

            
(4) 

 347 

with     according to Sects. 3.4 and 3.5 and 348 

     
     

 
    . (5) 

 349 

3.4 Persistent approach 350 

 351 

Applying the daily persistence approach of Kaiser et al. (2012) to hourly time resolution, we first 352 

explored the most parsimonious approach that predicts FRP     as being equal to the FRP of the 353 

previous time step’s analysis: 354 

 355 

           . (6) 

 356 

This approach provided insights in the spatiotemporal consequences for FRE estimation when 357 

information on the fire diurnal cycle is not incorporated. 358 

 359 

3.5 Climatological approach 360 

 361 

In the second approach we followed previous studies of Vermote et al. (2009) and Ellicot et al. (2009) 362 

and the recommendation in Kaiser et al. (2009) to use a Gaussian function to describe a “standard 363 

fire diurnal cycle”. Wooster et al. (2005) and Roberts et al. (2009) already demonstrated that SEVIRI 364 

observations sample the diurnal cycle of large fires well, and for some individual large fires show FRP 365 

time-series that depict diurnal characteristics appearing close to Gaussian in nature even at 15 min 366 

temporal resolution. The prediction was calculated by optimally fitting a Gaussian function through 367 

the last 24h of analysis: 368 

 369 

 
                         

 
          

 

    
(7) 

 370 

However, only       was optimally fitted, by minimizing the sum of least squares between the 371 

Gaussian function and the previous 24h of the analysis: 372 

 373 

                      . (8) 

 374 
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Following previous studies that found that fire diurnal cycle is land cover dependent (Giglio, 2007; 375 

Roberts et al., 2009; Vermote et al., 2009; Freeborn et al., 2011), we used land cover (LC) average 376 

values σLC for σ (weighted by FRE). Values of ρbase and ρpeak on the other hand could be directly 377 

related to daily MODIS observations. We followed Vermote et al. (2009) to use the mean of the 378 

nighttime (defined here as 6p.m.–6a.m. the next day) observations at MODIS detection opportunities 379 

to determine ρbase. To relate SEVIRI observations at MODIS detection opportunities to ρpeak the ratio 380 

of mean daytime (6a.m.–6p.m.) FRP observations at MODIS detection opportunities to mean ρpeak 381 

was calculated per land cover type. We used per land cover average values for scaling the daytime 382 

observations at MODIS detection opportunities to ρpeak rather than the values found per grid cell to 383 

keep the model generic and globally applicable. Finally, if there were no active fires observed during 384 

the previous 24h, we forced the prediction to be zero, to prevent fires from continuing during long 385 

periods of no observations. 386 

 387 

3.6 Model evaluation 388 

 389 

The estimated hourly FRE fields (or analysis;    ) resulting from the two modelling approaches 390 

(persistent and climatological) were evaluated via comparison to those derived from the hourly 391 

SEVIRI time-series (see Sect. 2.1). Two criteria were used to evaluate model performance: first, the 392 

spatial distribution of FRE estimates; and second, the temporal distribution of FRE. The spatial 393 

performance of the modelling approaches was assessed via their ability to reproduce the annual 394 

mean FRE per land cover type, and by comparing the spatial distribution of FRE as estimated by the 395 

modelling approaches and as derived from SEVIRI over the study region and period. The temporal 396 

performance was assessed via the ability of the model to allocate the emitted energy in the right grid 397 

cell at the right moment in time. Here we used Pearson’s r between the modelled and observed 398 

(SEVIRI) FRE time-series at four different spatiotemporal resolutions (0.1° and 1° spatial, and hourly 399 

and daily temporal resolution). Each spatiotemporal scale provides unique information on the model 400 

performance. Correlation coefficients at hourly resolution depend on the ability of the model to 401 

estimate the distribution of fire activity over the day, while daily aggregated estimates provide 402 

insights in the ability to get overall budgets right. In a similar way the two spatial resolutions provide 403 

information on the ability of the model to resolve high resolution distribution of fire activity and 404 

more regional model performance. When calculating Pearson’s r between the hourly model results 405 

and SEVIRI data we included cloud free days only, while the daily model results were compared to 406 

the full cloud cover corrected SEVIRI times series, using a simple cloud cover correction method 407 

explained below.  408 

 409 

Finally, we compared daily regional aggregated FRE time-series for several study regions of the two 410 

modelling approaches and SEVIRI. In order to compare daily regional time-series to the model, a 411 

cloud cover correction needed to be carried out. Since persistent cloud cover is relatively rare during 412 

the burning season in most parts of Africa, we chose a simple gap filling approach where the value of 413 

the last cloud-free observation is assumed to be valid until the next cloud-free observation, which is 414 

consistent with the observation gap filling in the daily GFAS. 415 

 416 
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4 Results 417 

 418 

4.1 The diurnal cycle and MODIS sampling 419 

 420 

First, we present the results related to the spatial distribution of the fire diurnal cycle, and assess the 421 

impact of the fire diurnal cycle on active fire observations made at the times of the MODIS overpass. 422 

The spatial distribution of the fire diurnal cycle was explored by optimally fitting a Gaussian function 423 

to the hourly, 0.1° SEVIRI FRP time-series. Reasonable overall correlations between SEVIRI and the 424 

optimally fitted Gaussian functions were found (Pearson’s r = 0.55; weighted mean for all grid cells), 425 

while a Gaussian was better able to describe hourly fire activity in regions where fires could spread 426 

over large areas and were characterized by high       (e.g., for fire size < 10 km2 r = 0.51, for 10–50 427 

km2 r = 0.56, and > 50 km2 r = 0.63). This is likely to be in part related to the fact that characterisation 428 

of the diurnal cycle of “smaller” fires will be more affected by instances of SEVIRI failing to detect one 429 

or more of their fire pixels than would larger fires, hence introducing more variability into the 430 

apparent diurnal cycle. Whilst the SEVIRI FRP-PIXEL product shows apparently the best performance 431 

metrics of any current geostationary fire product derived from SEVIRI data (Baldassarre et al., 2015), 432 

such failures in active fire pixel detection clearly occur, for example simply due to fire pixels being 433 

too low in their FRP to detect by SEVIRI, along with a variety of potential other factors (Wooster et 434 

al., 2015). 435 

 436 

Figure 1 shows an example of two 0.1° grid cells in which the hourly average FRP maxima reached 437 

relatively high levels, well in excess of 1 GW, and fire persisted for several days. As with the individual 438 

fires, shown by SEVIRI in Wooster et al. (2005) and Roberts et al. (2009), the FRP from these fires 439 

appears to drop to zero, or near zero, every night. This is a consequence both of the actual FRP from 440 

the fire significantly diminishing at this time due to, for example, fuel moisture, wind and other 441 

ambient atmospheric conditions being far less conducive to intense fire activity by night than by day 442 

(Hély et al., 2003; Gambiza et al., 2005), but also because some fire pixels will have FRPs below the 443 

SEVIRI active fire pixel detection limit of around 40 MW (Roberts and Wooster, 2008). At the start of 444 

the following day, fuel moisture and ambient atmospheric conditions generally become more 445 

conducive to fire, and fire intensities and rates of spread typically increase once more such that more 446 

of the fire-affected pixels breach the SEVIRI FRP detection limit (Roberts et al., 2009). 447 

 448 

The results shown in Fig. 1 indicate that high FRP, relatively long-lived fire activity is rather well 449 

described by a Gaussian function, even at this 0.1°, hourly resolution which is significantly higher 450 

than that used in previous studies fitting Gaussian descriptors to remotely sensed measures of active 451 

fire activity. At the same time, it also became apparent that observations from a MODIS-type 452 

sampling interval are not always representative of the daily fire activity. The inability of the MODIS 453 

sampling times to provide representative observations is well illustrated in Fig. 1a, where on the first 454 

day of the fire the morning and afternoon time of MODIS sampling slot almost completely missed the 455 

fire activity. 456 

 457 

The shape of the Gaussian function, and consequently the parameters: SD (σ) peak fire activity (ρpeak) 458 

and corresponding hour (hpeak), varied considerably over the individual days (Fig. 1). For example, in 459 
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the African savanna grid cell (Fig. 1c), fire activity on day 3 continued longer in the afternoon 460 

compared to day 4, when conditions some-how became less favourable for maintaining the fire 461 

earlier in the afternoon. Therefore, the shape of the fire diurnal cycle is dependent on 462 

spatiotemporal scale. When diurnal fire activity was aggregated over several days, which can be 463 

compared to using a coarser temporal or spatial resolution, increased as compared to fire activity for 464 

individual days (compare Fig. 1a with b, and Fig. 1c with d). The relatively narrow diurnal cycle of the 465 

individual days have varying peak hours of fire activity, so that the sum of it is wider than any of the 466 

individual cycles and the peak fire activity less pronounced. 467 

 468 

In addition to an observed variability in the fire diurnal cycle seen on different days, we found 469 

distinct spatial patterns in the optimal fitted Gaussian parameters (Fig. 2). Some of these patterns 470 

were similar for the different parameters. In particular, there were zones of generally more intense 471 

fires (e.g., South Sudan, northern Central African Republic, Botswana, Namibia and parts of Angola 472 

and the Democratic Republic of Congo (DRC)), showing relatively high values of ρpeak, ρbase and σ 473 

compared to other zones where values for all three parameters were relatively low (e.g., Zambia, 474 

Mozambique, Tanzania, Nigeria and Cameroon). On top of this general pattern, a clear gradient is 475 

visible as you move from drier to more humid regions, seen most clearly when moving from Namibia 476 

via Angola to DRC. In more humid savannas, when fuel conditions were optimal, high ρpeak values 477 

could be reached but fire duration over the day was generally short and night time FRP values were 478 

more likely to fall below the SEVIRI FRP detection threshold (Fig. 2). hpeak varied considerably over the 479 

study region, with areas showing most fire activity late in the afternoon generally in more humid or 480 

forested regions but also in some more arid regions (Fig. 2d).  481 

 482 

Table 1 shows the land cover-averaged values and SD of the results presented in Fig. 2. In addition 483 

we calculated the ratio of the mean SEVIRI FRP at MODIS daytime detection opportunities to the 484 

maximum daytime FRP ρpeak. These results were used in the climatological modelling approach that 485 

combined the fire diurnal cycle climatology with observations made at the MODIS sampling times to 486 

derive the daily fire diurnal cycle predictions (Sect. 3.5). More intense fires with long duration and 487 

high peak values were associated with fires in shrublands, savannas and grasslands, while a more 488 

pronounced fire diurnal cycle was present in more humid woody savannas or tropical forests. For σ, 489 

ρpeak and ρbase SD was typically about half of the average value, while SD of hpeak was largest for 490 

temperate forests, shrublands and grasslands. The ratio of mean daytime FRP made at the MODIS 491 

sampling times and ρpeak was relatively constant for various land cover types with ρpeak generally 492 

about three times as large as the mean FRP at the daytime MODIS detection opportunities (Table 1). 493 

 494 

In order to better understand the spatial distribution of the fire diurnal cycle features, we studied 495 

characteristics of the fire regime that were expected to be related to fuel properties and the diurnal 496 

cycle (Fig. 3a, c and d). To guide the interpretation we have included a land cover map, partly 497 

governing fuel loads, in Fig. 3b. Annual emitted FRE varied widely over the study region, and highest 498 

values were found in the savannas and woody savannas (compare Fig. 3a with b) and coincided with 499 

regions of large fire size and/or a high number of annual fire days (compare Fig. 3a with c and d). 500 

Similarities with characteristics of the fire diurnal cycle were also found, the earlier mentioned zones 501 

of generally more intense fires (high values of ρpeak, ρbase and σ) often coincided with regions of large 502 

fire size (Figs. 2a–c and 3c). In the more humid tropical areas, high ρpeak values occurred in areas of 503 

relatively large fire size and/or a high number of annual fire days (Figs. 2a and 3c, d). 504 
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 505 

The relative fraction of FRE emitted on days that SEVIRI data sampled at MODIS observation times 506 

did not observe active fires is an important factor affecting model performance, and showed similar 507 

spatial patterns as σ, indicating that duration of fires over the day plays an important role (Figs. 2c 508 

and 4a). In addition, the geographical location and cloud cover during the burning season played a 509 

role by affecting the effective number of daily MODIS observations (Fig. 4b). The peak hour of fire 510 

activity also played a role, and especially in more humid areas with frequent cloud cover and late 511 

afternoon fire activity sometimes over 50% of FRE was emitted on days without any SEVIRI active fire 512 

detections at MODIS detection opportunities (compare Figs. 2d and 4a). The most important biomass 513 

burning regions were typically characterized by relatively long fire duration over the day (Fig. 2c) and 514 

the effect of omission of active fires on continental scale FRE estimates was therefore relatively low 515 

(cf. Fig. 3a, 4a and 5). However, frequent omission of relatively small fires of short duration may 516 

strongly affect FRE estimates for some regions (Fig. 5). These results clearly demonstrate the value of 517 

the data provided by the very high temporal resolution geostationary systems, even though they are 518 

unable to resolve and detect fire pixels as low in FRP as those from polar orbiters (Roberts and 519 

Wooster, 2008).  520 

 521 

4.2 Model evaluation 522 

 523 

To evaluate the two modelling approaches that estimated FRE from SEVIRI data only at the MODIS 524 

sampling times we started with comparing the spatial distribution of mean estimated FRE for each 525 

method with the cloud corrected SEVIRI FRE calculated using the entire hourly, 0.1° SEVIRI FRP 526 

dataset (Fig. 5). The persistent approach resulted in a general overestimation of FRE, while the 527 

climatological approach showed overall good performance in terms of total estimated FRE when 528 

compared to the full SEVIRI dataset. Moreover, the more narrow distribution of modelled FRE as a 529 

fraction of SEVIRI FRE by the climatological approach as opposed to the persistent approach suggests 530 

that results are not only more accurate but also more precise (Fig. 5). While this reflects the general 531 

pattern, the performance bias was not homogeneous over the region. The persistent approach 532 

showed best results for regions with long daytime fire durations (i.e., large σ) and with a late peak in 533 

fire activity; and although performing generally better, the climatological approach showed a general 534 

underestimation for areas of relatively late peak fire activity (compare Figs. 2 and 5). To a certain 535 

extent these regional differences correspond to the distribution of the different land cover types 536 

(Table 2). For example, for temperate forests and shrublands the persistent modelling approach 537 

showed notably better comparison to the FRE derived via the entire SEVIRI dataset, while the 538 

climatological modelling approach overestimated FRE. 539 

 540 

Equally important as the absolute FRE estimates shown in Fig. 5 and Table 2 are their temporal 541 

dynamics. Figure 6 shows regional daily budgets for several study regions with different geographical 542 

positions and land cover. Similar to the results in Fig. 5, we found a general overestimation by the 543 

persistent approach, and better overall estimation by the climatological approach. Overestimation of 544 

the persistent approach was occurring mostly in the tropics (e.g., Nigeria and DRC), where also 545 

stronger day to day variability was observed as compared to that derived with the complete SEVIRI 546 

data or the other modelling approaches (Fig. 5). The climatological approach showed a small delay in 547 

FRE estimations compared to the complete SEVIRI dataset. 548 
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 549 

To further test the ability of the two modelling approaches to allocate FRE to the individual grid cells 550 

at the right moment in time, correlation coefficients were calculated. Table 3 shows Pearson’s r 551 

between SEVIRI and the two modelling approaches at four spatiotemporal resolutions (0.1° and 1° 552 

spatial and hourly and daily temporal resolution). A striking increase in correlation was observed 553 

when aggregating model results both temporally or spatially. Freeborn et al. (2009, 2011) previously 554 

demonstrated the value of such spatial aggregation when deriving relationships between SEVIRI and 555 

MODIS datasets, and this technique is currently used within the near real-time SEVIRI FRP-GRID 556 

products produced by the LSA SAF from the SEVIRI FRP-PIXEL data (Wooster et al., 2015). At 0.1° 557 

resolution the best correlations were found for shrublands and savannas while for aggregated data 558 

best performance was found for woody savannas and savannas. At hourly resolution, the 559 

climatological approach generally performed better than the persistent approach. However, at 0.1° 560 

daily the persistent approach performed best while at 1° spatial resolution the persistent and 561 

climatological approaches did equally well.   562 

 563 

5 Discussion 564 

 565 

Unlike biomass burning emission inventories based on burned area, inventories using active fire 566 

observations from Earth Observation satellites can be produced in near real time (Freitas et al., 2005; 567 

Reid et al., 2009; Sofiev et al., 2009; Wiedinmyer et al., 2011; Kaiser et al., 2012; Darmenov and da 568 

Silva, 2013). The near real time emissions inventories are, at present, generally based on active fire 569 

data from the MODIS instruments operating onboard the Terra and Aqua polar orbiting satellites. 570 

The FRP observations of MODIS are almost without saturation, operating day and night, with a 571 

reasonable spatial resolution and with new observations available for any location at least a few 572 

times every day – cloud cover permitting. However, it is well known that fire activity in most regions 573 

follows a clear daily cycle (e.g., Roberts et al., 2009; Vermote et al., 2009). Consequently, the FRP 574 

measures derived from intermittent polar orbiting MODIS observations are often not fully and 575 

directly representative of the actually daily fire activity (Fig. 1; Giglio, 2007; Vermote et al., 2009; 576 

Freeborn et al., 2011). Although several approaches have been developed to obtain more accurate 577 

estimations of FRE from the limited temporal sampling of FRP provided by MODIS (e.g., Ellicott et al., 578 

2009; Freeborn et al., 2009, 2011; Vermote et al., 2009), they are all best suited to be used with 579 

previously collected and/or aggregated FRP data, and none can be readily implemented at high 580 

spatiotemporal resolution in near real time. For this reason, most current global emission inventories 581 

produced in near real time actually ignore fire diurnal dynamics completely (e.g., Kaiser et al., 2012), 582 

and this results in large biases in the FRE budgets (Ellicott et al., 2009; Zhang et al., 2012). 583 

 584 

Here we start discussing the spatial distribution of the fire diurnal cycle, and its drivers (Sect. 5.1). 585 

Building on previous work, we explored two new methods to estimate hourly FRE in near real time 586 

from observations made by SEVIRI at MODIS detection opportunities. The results illustrate how 587 

MODIS observations might be used to calculate hourly FRE, and where errors can be expected due to 588 

the diurnal cycle and the limited temporal sampling provided by MODIS (Sect. 5.2). 589 

 590 
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5.1 Exploring the fire diurnal cycle using a Gaussian function 591 

 592 

The fire diurnal cycle characteristics were explored by fitting of a Gaussian function to the hourly 593 

SEVIRI time-series. Vermote et al. (2009) and Ellicott et al. (2009) found that at a 0.5° monthly 594 

resolution the fire diurnal cycle can be described by a Gaussian function, using MODIS observations 595 

to resolve the unknown parameters. They choose the spatiotemporal size of the study regions such 596 

that a statistical representative number of fires and MODIS FRP detections were included, and the 597 

observations covered the full range of MODIS view angles – since the sensitivity of MODIS to fire 598 

depends upon this (Vermote et al., 2009). Although later work showed that in fact fire activity may 599 

be somewhat skewed in the afternoon, here we found that even at a high spatiotemporal resolution 600 

(0.1°; hourly) a Gaussian function provides a fairly robust description of the fire diurnal cycle. 601 

However, at 0.1° hourly resolution, SEVIRI data sampled at the MODIS detection opportunities does 602 

not always provide enough information to adequately depict fire activity for an individual grid cell 603 

and day (Fig. 1). Moreover, the spatiotemporal scale at which we observe the fire diurnal cycle has a 604 

significant impact on its shape. When moving to a coarser spatiotemporal resolution, the shape of 605 

the diurnal cycle likely becomes wider, with less pronounced peaks. This is mostly a consequence of 606 

the spatiotemporal variation in hour of peak fire activity of the individual fires or fire days (Fig. 1). 607 

Therefore, typical values of the parameters of the Gaussian found in this study (Fig. 2) do not 608 

necessarily correspond to typical values found by earlier studies (e.g., Roberts et al., 2009; Vermote 609 

et al., 2009), who used much larger sample sizes (i.e., spatiotemporal resolutions). Likewise the 610 

results presented here are not necessarily representative for individual fires. 611 

 612 

Although the shape of the “average” fire diurnal cycle is scale dependent, regional patterns in the 613 

diurnal cycle characteristics (Fig. 2) remain similar over different scales, and therefore we found 614 

similar land cover dependent characteristics as previous studies. For example, shrublands and 615 

grasslands generally faced drier conditions when burning than did woody savannas or tropical forest, 616 

and therefore fire activity typically continued longer over the day and the hour of peak fire activity 617 

was generally located later in the afternoon (Fig. 2; Table 1; Giglio, 2007; Roberts et al., 2009). For 618 

the same reason, temperate and boreal forests have been reported to show a more pronounced 619 

diurnal cycle than grasslands (Fig. 2; Sofiev et al., 2013; Konovalov et al., 2014). Building on the land 620 

cover based analysis of Roberts et al. (2009), we provide a first analysis of the spatial distribution of 621 

the fire diurnal cycle. 622 

 623 

The three parameters determining the shape of the Gaussian can be used to visualize the spatial 624 

distribution of the fire diurnal cycle. The daily FRP-maximum is given by ρpeak, fire duration over the 625 

day by σ, and the baseline FRP by ρbase. Similar spatial patterns were found for all three parameters 626 

mentioned above (Fig. 2a, b and c). This indicates that there are zones of generally more “intense” 627 

fires with high ρpeak, large σ and higher ρbase, while other zones are characterised by lower intensity 628 

fires. In land cover classes where most of the fires were grass fuelled (grasslands, savannas and 629 

woody savannas), a considerable part of the spatial variation in fire diurnal cycle could be explained 630 

by fire size (see Sect. 2.4; Figs. 2 and 3). Large fires were often found in frequently burnt and/or more 631 

arid areas (Fig. 3a) where high fuel connectivity, low fuel density and low fuel moisture allow 632 

relatively fast moving fires with large fire fronts to form (Hély et al., 2003; Sow et al., 2013). Besides 633 

fire size and land cover, part of the variability in the fire diurnal cycle could be explained by a 634 

gradient in diurnal weather conditions. Grass fuelled large fires were also common in the more 635 
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humid savannas of southern Africa, but here nighttime weather conditions appear to become rather 636 

unfavourable for fire (Figs. 2b and 3c). In humid savannas ρpeak values were not solely associated with 637 

large fire size, but also with areas showing a high number of annual days with fire activity and may be 638 

explained by several relatively small fires burning at the time. The high number of fire days may 639 

indicate a larger number of fire ignitions and/or that fires are spreading at a slower rate due to the 640 

more pronounced fire diurnal cycle, higher humidity, or higher fuel density (Hély et al., 2003; Sow et 641 

al., 2013). Finally, in the Mediterranean basin the relatively low fire return period, and consequently 642 

higher fuel density, may also cause relative intense fires with long duration over the day (Fig. 2; 643 

Archibald et al., 2013). 644 

 645 

The peak hour of fire activity found here corresponds to the moment of day at which 50% of the total 646 

FRE has been emitted (assuming             ), and it did not always correspond to the peak hour 647 

of fire activity found by previous studies (Fig. 2d; e.g., Giglio, 2007; Roberts et al., 2009; Vermote et 648 

al., 2009). In general most FRE was emitted during the afternoon, and clear spatial patterns were 649 

present in the typical peak hour of the Gaussian. High values of hpeak were found in regions of higher 650 

fuel density or in more arid areas where fires could spread over large areas (Figs. 2d and 3). In arid 651 

regions with large typical fire sizes, fire spread was often fast and a 0.1° grid cell only corresponded 652 

to a part of the actual fire resulting in large variation in hpeak between neighbouring grid cells (Fig. 2d 653 

and Table 1). 654 

 655 

5.2 Model performance and the MODIS sampling design 656 

 657 

Data assimilation and two modelling approaches, were used to estimate hourly FRE from SEVIRI FRP 658 

data sampled at the times of MODIS detection opportunities. Here we start discussing the 659 

performance of the different methods with respect to their total FRE estimates and daily regional 660 

FRE estimations. Then we discuss the more uncertain model performance at higher spatiotemporal 661 

resolutions. 662 

 663 

The persistent approach is comparable to a direct hourly extension of the current GFAS methods 664 

(Kaiser et al., 2012), where the fire diurnal cycle is ignored and the predicted FRP for each hour is 665 

equal to that of the last FRP observation. This led to a general overestimation of daily FRE because 666 

the 13:30 LT temporal sampling time of MODIS is relatively close to the peak hour of daily fire 667 

activity, and therefore not very representative of the full period until the next observation at 22:30 668 

LT (Figs. 2d and 5; Table 2). Moving away from the equator, the number of daily MODIS observations 669 

increases due to orbital convergence at higher latitudes, and consequently the model performance 670 

improved (Figs. 4b, 5 and 6; Giglio et al., 2006; Reid et al., 2009). Additional inclusion of daytime 671 

observations due to orbital convergence will typically be somewhat earlier or later in the afternoon 672 

and may therefore lower the FRE estimation. In the persistent approach, missing nighttime 673 

observations may cause an overestimation and missing daytime observation an underestimation of 674 

daily FRE, resulting in erroneous regional day-to-day variations in FRE estimates in the tropics (Fig. 6). 675 

Following previous research, we found that due to the spatiotemporal variation of the fire diurnal 676 

cycle FRE was overestimated more for some land cover types than for others (Table 2; Freeborn et 677 

al., 2011). Land cover classes that typically showed longer fire durations (Fig. 2c) with peak fire 678 

activity later in the afternoon (Fig. 2d) were not as much overestimated as land cover classes with 679 
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more pronounced fire diurnal cycles (Figs. 5 and 6; Table 2). However, part of this effect likely stems 680 

from these land covers mostly being located in the more frequently observed higher latitudes of our 681 

study region. Although the persistent method is not directly comparable to the methods of widely 682 

used emission inventories like GFAS or QFED (Kaiser et al., 2012; Darmenov and da Silva, 2013), they 683 

likely introduce similar errors by ignoring the fire diurnal cycle. 684 

 685 

The climatological approach showed better performance in terms of absolute FRE estimations, while 686 

also better able to reproduce its spatial variability (Fig. 5). In contrast to the persistent approach, the 687 

hourly predictions were based on the last 24h of fire activity, enabling more realistic gap filling during 688 

periods without observations. This resulted in an advantage during periods of cloud cover or missing 689 

observations due to the satellite orbits, but because of the low number of actual daily observations 690 

the climatological approach had the tendency to continue predicting fire activity after fires had 691 

ceased, seen as a small delay in the signals in Fig. 6. 692 

 693 

An additional criterion to evaluate the model performance was the correlation between the 694 

modelling approaches and the SEVIRI data at different spatiotemporal scales. Correlation between 695 

the modelled and SEVIRI time-series improved considerably when moving from hourly to daily 696 

resolution, showing that the models were better able to estimate daily budgets than the distribution 697 

of fire activity over the day. These differences may be explained by the inability of the models to 698 

correctly estimate the hour of peak fire activity, a fire diurnal cycle that is not well represented by a 699 

Gaussian function, or in the case of small fires the fire diurnal cycle may not be fully detected by the 700 

SEVIRI instrument. Because of the large day-to-day variation in the fire diurnal cycle and the FRP 701 

measurements limited to the time of the MODIS overpasses, the individual FRP observations have a 702 

low precision (i.e., large random error) and omission (i.e., non detection) of fires is frequent (Figs. 1 703 

and 4), resulting in low correlation at high spatiotemporal scales (Table 3). Because fires rarely occur 704 

on their own and generally form part of a regional pattern (Bella et al., 2006), the correlation 705 

increased considerably when accumulating results to a 1° spatial scale. For the same reason model 706 

performance was found to be best in savannas and woody savannas, where the highest number of 707 

fires occur and the sample size is thus largest, or in areas of large fire size where omission was 708 

relatively low. Model performance was therefore best when optimal burning conditions were 709 

reached, often coinciding with the peak of the burning season. Because often only a reasonably large 710 

sample of observations made at the MODIS detection opportunities is actually representative of fire 711 

activity in a certain region, the added value of the 0.1° spatial resolution (e.g., GFASv1.1/1.2) is 712 

somewhat limited compared to a coarser 0.5° spatial resolution (e.g., GFASv1.0). 713 

 714 

Overall, using the climatological approach resulted in the best model performance, although in 715 

specific cases using the persistent approach showed better results. For example, at 0.1° spatial and 716 

daily temporal resolution the persistent approach performed best, likely because it only predicts fire 717 

activity on days of actual fires while the climatological approach may predict fire activity with some 718 

delay. Also the climatological approach used mean values for the fire duration and may therefore 719 

overestimate FRE from smaller fires while underestimating the larger fires. Despite the improved 720 

results of the climatological approach as opposed to the persistent approach, estimating FRE in near 721 

real time based on MODIS observations remains challenging, especially at high spatiotemporal 722 

resolutions. Largest uncertainties originate from the high spatiotemporal variability of the fire diurnal 723 

cycle combined with the limited number of daily MODIS detection opportunities. Moreover, the fire 724 
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diurnal cycle as analyzed here may to some extent be affected by the inability of SEVIRI to detect the 725 

smallest fires, along with other sources of uncertainty in the FRP observations (Wooster et al., 2015; 726 

Roberts et al., 2015). Finally, the characterization of the fire diurnal cycle and discussion of its 727 

spatiotemporal drivers presented here provide a first step to upscale the climatological model to a 728 

global scale, but a better understanding of the fire diurnal cycle and its drivers for other regions of 729 

the globe remains an important issue.  730 

 731 

Within GFAS, to handle the uncertainties introduced into the MODIS-derived FRE estimates by 732 

neglecting the diurnal cycle influence, the estimated FRE is converted into estimates of dry matter 733 

burned (DM) using land cover-specific conversion factors. These were derived via comparison of 734 

long-term monthly FRE estimates to the DM estimates calculated over the same period by the Global 735 

Fire Emissions Database (GFED 3.1; van der Werf et al., 2010; Kaiser et al., 2012). It is currently 736 

assumed that by allowing the conversion factors to vary with land cover type the impact of any land 737 

cover-varying diurnal cycle is also incorporated, reducing the influence of the diurnal cycle. The 738 

issues discussed above, along with the accuracy of the GFED DM calculations, which are for example 739 

affected by the quality of the burned area product and the biochemical models used, all influence 740 

values of the land cover-specific FRE-to-DM conversions factors presented by Kaiser et al. (2012). 741 

 742 

Wooster et al. (2005) and Freeborn et al. (2008) previously explored the conversion factors between 743 

FRE and DM using small scale experiments, and found that they appeared relatively independent of 744 

vegetation type. However, when moving to the satellite-scale there are additional factors influencing 745 

this FRE-to-DM relationship, for example the fire regime of an area and the degree to which MODIS 746 

misses the lowest FRP fires, and the canopy density of trees that might obscure some of the thermal 747 

radiation being emitted by fires burning in the ground fuels (Freeborn et al., 2014). The thermal 748 

radiation recorded in satellite products is additionally reduced by cloud cover and erroneous flagging 749 

of smoke as clouds during data processing. Konovalov et al. (2014) nevertheless found FRE-to-DM 750 

relationships relatively similar to those of the earlier small-scale experiments when using 751 

atmospheric observations and biomass burning trace gas and aerosol emissions factors to estimate 752 

fuel consumption. Exploring methods to incorporate the fire diurnal cycle in the GFAS global FRP-753 

based near real time emission inventory is a first step in taking into account some of these issues in 754 

order to improve global FRE estimates made at relatively high spatiotemporal resolutions, and 755 

hopefully also in reconciling some of the differences in current emission inventories. 756 

 757 

6 Conclusions 758 

 759 

Emission inventories based on FRP observations have great potential to improve biomass burning 760 

emission estimates, by eliminating the need for modelling of fuel loads and fuel consumption, and 761 

can be produced in near real time. However, to date uncertainties in FRE estimation remain high 762 

when using polar orbiting FRP datasets, largely due to difficulties in combining the limited temporal 763 

resolution observations and knowledge about the fire diurnal cycle. Geostationary data can alleviate 764 

this issue, but brings its own problems related to the non-detection of the lower FRP fires due to the 765 

coarse spatial resolution of the geostationary observations. Geostationary dataset are also not global 766 

in extent. Here we explored the spatial dependencies of the fire diurnal cycle and its impact on active 767 

fire detections made at the time of MODIS overpasses. Two modelling approaches were developed 768 
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to derive hourly FRE estimates based on data-assimilation and SEVIRI FRP observations subsampled 769 

at MODIS detection opportunities. The first approach ignored the fire diurnal cycle assuming 770 

persistent fire activity between two MODIS detection opportunities, while the second approach 771 

combined prior knowledge of the fire diurnal cycle with active fire observations at MODIS detection 772 

opportunities to simulate the fire diurnal cycle. Both approaches were evaluated against the actual 773 

hourly FRP observations made by SEVIRI. Our main conclusions are: 774 

1. We considered various drivers of the spatial distribution of fire diurnal cycle: dominant land 775 

cover, fire size, annual number of fire days, and diurnal climate conditions and found that all 776 

played a role. The strong relation between fire size and fire diurnal cycle for grass fuelled 777 

fires, and the climatic gradient in diurnal cycle, indicate that using fuel characteristics rather 778 

than land cover alone to characterize the fire diurnal cycle provides a potential pathway to 779 

improve these estimates. Here we showed that this information can partly be obtained by 780 

studying the fire characteristics, such as fire size, which are contained within the remote 781 

sensing data themselves. 782 

2. Ignoring the fire diurnal cycle may cause structural errors in FRE estimates, and likely results 783 

in a general overestimation of FRE due to the timing of the MODIS overpasses. The errors 784 

vary regionally, mostly due to variations in the fire diurnal cycle, while results get more 785 

accurate at higher latitudes due to the increasing number of daily MODIS detection 786 

opportunities caused by orbital convergence. 787 

3. Due to the large day-to-day variations in the fire diurnal cycle at the grid cell level, and the 788 

scarce number of MODIS observations of any one location per day, daily FRP fields calculated 789 

from observations made at MODIS detection opportunities are characterized by low 790 

precision (i.e., observations are not representative for daily fire activity) and high omission 791 

(i.e., non observation of fires). Therefore a sufficiently large sample size of MODIS 792 

observations is required to accurately estimate FRE, as shown earlier by Freeborn et al. 793 

(2011). In zones of frequent fires, where fires are generally part of a regional biomass 794 

burning pattern, model performance greatly improved when moving to a coarser scale, 795 

increasing the sample size. Model performance was also considerably better for zones of 796 

relatively large fires that were characterized by low omission. Production of emission 797 

inventories at very high spatiotemporal resolution using data from a limited number of low-798 

Earth orbit satellite observations may therefore provide somewhat restricted added value 799 

compared to those derived at coarser spatiotemporal scales. 800 

4. Relative overrepresentation of day- or nighttime FRP observations may cause large day to 801 

day variations in estimated FRE when the diurnal cycle is ignored. 802 

5. The way we observe the fire diurnal cycle is scale dependent, mostly because of the large 803 

variation in fire diurnal cycle, even within the same grid cell between different days.  804 

 805 

We recommend implementing the climatological model within GFAS in Copernicus Atmosphere 806 

Services in order to improve global and regional FRE estimates and further reconcile emission 807 

estimates from the various different inventories currently available. 808 
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Table 1. Mean values of the parameters of the Gaussian function per land cover type (excluding days 1020 

of cloud cover and weighted by FRE), SD are shown in parenthesis. Values of σ and the ratio of ρpeak 1021 

and mean day-time FRP at MODIS detection opportunities (MODISmean) were used within the 1022 

climatological approach to model hourly FRP (see Sect. 3.5). 1023 

Land cover   σ  ρpeak  ρbase hpeak ρpeak/MODISmean 

 (hour) (MW)  (MW)  (hour) (–) 

Temperate forest  1.14 (0.55) 846 (392) 24.2 (12.7) 13.31 (4.50) 3.17 

Tropical forest 0.85 (0.45) 1364 (863) 27.3 (19.6) 13.34 (2.57) 3.03 

Woody savanna  0.94 (0.50) 1501 (934) 21.1 (16.8)  13.21 (2.08) 3.07 

Savanna  1.09 (0.53) 1711 (899) 39.0 (25.5) 13.08 (2.58) 2.88 

Shrubland  1.35 (0.63) 3079 (1552) 108.9 (56.9) 13.16 (4.46) 2.87 

Grassland  1.06 (0.53) 1642 (863) 37.3 (21.1) 12.95 (4.44) 3.08 

Cropland  0.95 (0.48) 1259 (705) 23.9 (16.0) 13.33 (3.22) 2.94 

 1024 

Table 2. Estimated annual FRE during 2010–2012 by the two model approaches as percentage of 1025 

SEVIRI FRE (cloud corrected).  1026 

Land cover  SEVIRI  
(PJ yr-1) 

Persistent 
(%)  

Climatological 
(%) 

Temperate forest  2.9  98  118 

Tropical forest  61.3  179  98 

Woody savanna  1513.2  174  93 

Savanna 990.7  155  99 

Shrubland  91.7  120  115 

Grassland  106.5  125  108 

Cropland  74.5  147  90 

Total  2841.9  163  97 

 1027 

Table 3. Pearson’s r between hourly and daily FRE as observed by SEVIRI and estimated by the two 1028 

modelling approaches. Correlation is calculated for two spatial scales, the original 0.1° resolution and 1029 

a 1° aggregated resolution (in parentheses) to test regional model performance. 1030 

Land cover  Persistent  
hourly 

Climatological 
hourly 

Persistent 
daily 

Climatological  
daily 

Temperate forest  0.24 (0.33) 0.20 (0.32) 0.44 (0.50) 0.21 (0.39) 

Tropical forest  0.13 (0.25) 0.15 (0.27) 0.32 (0.41) 0.16 (0.41) 

Woody savanna  0.19 (0.44)  0.20 (0.52) 0.48 (0.80)  0.25 (0.79) 

Savanna  0.25 (0.45) 0.25 (0.51) 0.54 (0.78)  0.30 (0.76) 

Shrubland  0.35 (0.47)  0.32 (0.47) 0.61 (0.63)  0.37 (0.60) 

Grassland  0.22 (0.32)  0.20 (0.35) 0.46 (0.55)  0.22 (0.52) 

Cropland  0.19 (0.32) 0.17 (0.36) 0.42 (0.61)  0.18 (0.60) 

Total  0.22 (0.43) 0.22 (0.50) 0.50 (0.76)  0.27 (0.75) 
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 1032 
Figure 1. Hourly-mean FRP time-series derived from SEVIRI data, the same data but only sampled at 1033 

MODIS detection opportunities, and an optimally fitted Gaussian function fitted to the full SEVIRI FRP 1034 

time-series. These two examples are for a 0.1° shrubland grid cell in Portugal (a, b) and a 0.1° 1035 

savanna grid cell in Africa (c, d). (a, c) represent the hourly time-series and (b, d) the aggregated fire 1036 

diurnal cycle over the 5 study days. Time is indicated as local time. 1037 

 1038 
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 1039 
Figure 2. Weighted mean values of parameters of the optimally fitted Gaussian model for each 0.1° 1040 

grid cell, including all cloud free days during the study period. (a) Peak daytime FRP ρpeak, (b) night 1041 

time FRP ρbase, (c) SD of the FRE distribution over the day σ (related to the fire duration over the day, 1042 

or width of the diurnal cycle), and (d) hour of peak fire activity hpeak (local time). Grid cells with 1043 

emitted energy below 5 MJ over the study period (approximately the FRE emitted during one small 1044 

fire event) were excluded from the figure to facilitate interpretation. 1045 

 1046 
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 1047 
Figure 3. Characteristics of the fire regime and fuel types based on 2010 – 2012 data. (a) Mean 1048 

annual FRE per 0.1° grid cell, (b) dominant land cover type, (c) fire size (i.e., weighted mean burned 1049 

area per fire event) and (d) mean annual number of days with fire activity per grid cell over the study 1050 

period. Abbreviations of land cover classes: water (Wa), temperate forest (TeF), tropical forest (TrF), 1051 

woody savanna (WSa), savanna (Sav), shrubland (Shr), grassland (Gra) and agriculture (Agr). 1052 

 1053 
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 1054 
Figure 4. Detection of fire activity at MODIS detection opportunities. (a) Percentage of FRE emitted 1055 

on days that the SEVIRI instrument did not observe active fires at MODIS overpasses. (b) Number of 1056 

MODIS detection opportunities per day during the burning season (mean over the study period, 1057 

weighted for monthly FRP). 1058 

 1059 

 1060 
Figure 5. Total fire radiative energy (FRE) estimated via the two modelling approaches using SEVIRI 1061 

observations taken at only the MODIS detection opportunities, expressed as fraction of the total FRE 1062 

calculated using the entire set of hourly mean, 0.1° SEVIRI FRP observations (cloud cover corrected). 1063 

(a) Persistent approach, and (b) climatological approach. Distribution of the grid cell values is shown 1064 

in the lower left corners.  1065 

 1066 
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 1067 
Figure 6. Daily FRE for four study regions (areas of 85000 to 567000 km2) derived from the complete 1068 

SEVIRI dataset (cloud cover corrected) and estimated by the two modelling approaches developed 1069 

here. (a) Daily FRE for Portugal, mostly including shrublands and temperate forests, (b) fires in 1070 

Nigeria burning in croplands, (c) woody savannas in DRC, and (d) shrublands and savannas in 1071 

Botswana. Study regions are shown in Fig. 7, and land cover was determined using the dominant land 1072 

cover classes (Sect. 2.3; Fig. 3b). 1073 
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 1074 
Figure 7. Study regions used in Fig. 6. Abbreviations refer to: Botswana (BWA), the Democratic 1075 

Republic of Congo (DRC), Nigeria (NGA) and Portugal (PRT). 1076 

 1077 

 1078 


