

Supplement of

Aerosol chemistry above an extended Archipelago of the Eastern Mediterranean basin during strong northern winds

E. Athanasopoulou et al.

Correspondence to: E. Athanasopoulou (eathana@phys.uoa.gr)

1 **S1 Supplementary model details**

2 The meteorological inputs for the PMCAMx applications are provided by the WRF/ARW model
3 (Skamarock et al. 2008) (<http://www.wrf-model.org/index.php>). The model is driven by the National
4 Centers for Environmental Prediction (NCEP) operational Global Final (FNL) Analyses ($1.0^\circ \times 1.0^\circ$
5 spatial resolution), in combination with Sea Surface Temperature (SST), from the Real-Time Global
6 SST ($0.5^\circ \times 0.5^\circ$ spatial resolution). The 25-category USGS land-use classification scheme was adopted
7 in order to provide land-cover data. The planetary boundary layer (PBL) parameterization used is the
8 'first-order' closure scheme developed by the Yonsei University (YSU) (Hong et al., 2006).

9 The WRF numerical simulations were performed using triple two-way nesting, with the first domain
10 covering the extended area of Europe (23.0 to 77.0°N , 14.5 to 44.5°E) with 0.5° horizontal resolution,
11 the second covering the extended area of Greece and Italy (29.3 to 50.2°N , 4.8 to 32.2°E) with 0.167°
12 horizontal resolution and the third following the horizontal grid system as PMCAMx. In the vertical
13 axis, 35 full sigma levels resolve the atmosphere (model top at 50hPa or 20 km), with a finer
14 resolution near the surface.

15 The global model GEOS-CHEM (Bey et al., 2001; <http://acmg.seas.harvard.edu/>) is applied in order to
16 cope with the transported air masses from outside the PMCAMx simulation domain. The model is
17 driven by assimilated meteorological data from the Goddard Earth Observing System, Version 5
18 (GEOS-5) of the NASA Global Modeling and Assimilation Office (<http://gmao.gsfc.nasa.gov>). The
19 version applied for the current study (v8-03-01) uses the SOA chemical mechanism, which includes
20 the NOx-Ox-hydrocarbon-aerosol species module and a SOA module based on the framework
21 proposed by Chung and Seinfeld (2002) and Henze et al. (2008). Moreover, the ISORROPIA II
22 package for aerosol thermodynamical equilibrium is used (Fountoukis and Nenes, 2007).

23 A 9-month (January to September 2011) simulation of the global model is initially performed (4°
24 latitude \times 5° longitude). Three-hour boundary conditions (BCs) are calculated for May-September
25 2011 (allowing 5-month model spin up) around a domain centered in Europe (22 to 74°N and -20 to
26 45°E). Then, a nested run over this window is applied, with 0.5° (latitude) \times 0.67° (longitude)
27 horizontal resolution (Protonotariou et al., 2013). The vertical grid is composed by 47 levels up to 0.01
28 hPa.

29

30 **S2 Emission model inputs**

31 The PMCAMx applications are provided with hourly emissions for a series of pollutants from different
32 source categories. Data for the area of Greece include NO_x, SO₂, NMVOC, CO, NH₃ and bulk PM₁₀
33 emissions from several types of industries, road transport, central heating, maritime activities,
34 railways, air traffic, agricultural activities and isoprene, terpenes, NO from forests (provided by the
35 Ministry of Environment for the year 2002). This emission database has been refined to account for

1 the changes related to the newer motor highway inside the Athens basin. These emissions vary against
2 season and weekday/weekend of the week.

3 In the frame of this study, emission rates for the area of Turkey are retrieved from the EMEP emission
4 dataset (<http://www.ceip.at/webdab-emission-database/officially-reported-emission-data/>). NO_x, SO_x,
5 NMVOC, CO, NH₃ PM_{2.5} and PM_{coarse} emissions from the 10 recommended SNAP sectors at 0.5° x
6 0.5° are horizontally downscaled to the model grid following the land use (eg. coarse ship emissions
7 are equally split only to the fine cells covered by the sea). The vertical downscaling of the EMEP
8 emissions for PMCAMx is done using the disaggregation factors proposed by Bieser et al. (2011), as
9 described in Mailler et al. (2013). The temporal disaggregation of the EMEP emissions from the yearly
10 totals to hourly values for a winter and a summer weekday and weekend is performed using the
11 temporal factors extracted from Greek National emissions.

12 The daily emission rates from anthropogenic and natural sources of gaseous and particulate
13 atmospheric constituents used in the PMCAMx model are given in Table S1. The emissions of most
14 species in the two countries are in similar levels (e.g., nitrogen species are ca. 50 megaton/day).
15 Differences (e.g. in particulate sulfate) are attributed to difference in the surface coverage between the
16 two countries, and the fact that a significant part of Istanbul (and emission sources therein) is outside
17 the PMCAMx simulation domain (treated as BCs by GEOS-CHEM). At this point, it should be noted
18 that particulate sulfate is the most abundant anthropogenic emitted specie. This is in line with the
19 significance (above 60%) of the industrial contribution in PM₁₀ emissions in Athens and Istanbul
20 reported in Kanakidou et al. (2011) and explains the predominance of sulfate in the total aerosol
21 content in the EM (Kopanakis et al., 2012; Im et al., 2012; Tagaris et al., 2013).

22 Sea-salt particles, road (tire, brake, road wear and re-suspension) and soil dust emission fluxes are
23 calculated online with meteorology, following the methodology developed and applied by
24 Athanasopoulou et al. (2008, 2010). The size and chemical distribution of total aerosol emissions to
25 the species and size bins used by the current PMCAMx model applications are also described therein.
26 An update is related with the conversion of organic carbon (OC) to total organic aerosol (OA). In
27 particular, industrial and motorway OC emissions are multiplied by a factor of 1.25 and by 1.54,
28 respectively (Bergstrom et al., 2012; Brown et al., 2013), so that the modeled organic concentrations
29 are directly comparable to the measured organic mass. The chemical speciation of the non-methane
30 hydrocarbons from transportation and industry for SAPRC99 is described in Bossioli et al. (2002).

31 The emission databases used for the GEOS-CHEM applications are from fossil fuel burning (including
32 ships) from the EMEP inventory for the European domain (Vestreng and Klein, 2002), biofuel
33 emissions (Yevich and Logan, 2003), biogenic VOC emissions from vegetation based on the MEGAN
34 model (Guenther et al., 2006) and natural sources from the oceans (Spracklen et al., 2008), volcanic
35 activity (Chin et al., 2000) and lightning (Price and Rind, 1992). Global biomass burning emissions are

1 not included, because the updated emissions were not available for the year 2011 in the currently
2 applied GEOS-CHEM version.

3

4 **References**

5 Athanasopoulou, E., Tombrou, M., Pandis, S. N. and Russell, A. G.: The role of sea-salt
6 emissions and heterogeneous chemistry in the air quality of polluted coastal areas, *Atmos.*
7 *Chem. Phys.*, 8(19), 5755–5769, doi:10.5194/acp-8-5755-2008, 2008.

8 Athanasopoulou, E., Tombrou, M., Russell, A. G., Karanasiou, A., Eleftheriadis, K. and
9 Dandou, A.: Implementation of road and soil dust emission parameterizations in the aerosol
10 model CAMx: Applications over the greater Athens urban area affected by natural sources,
11 *Journal of Geophysical Research: Atmospheres*, 115(D17), n/a–n/a,
12 doi:10.1029/2009JD013207, 2010.

13 Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E. and Simpson, D.:
14 Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS)
15 framework: application of different assumptions regarding the formation of secondary organic
16 aerosol, *Atmos. Chem. Phys.*, 12(18), 8499–8527, doi:10.5194/acp-12-8499-2012, 2012.

17 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H.
18 Y., Mickley, L. J. and Schultz, M. G.: Global modeling of tropospheric chemistry with
19 assimilated meteorology: Model description and evaluation, *J. Geophys. Res.*, 106(D19),
20 23073–23095, doi:10.1029/2001JD000807, 2001.

21 Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Denier van der Gon, H.: Vertical
22 emission profiles for Europe based on plume rise calculations., *Environ. Pollut.*, 159, 2935–
23 2946, doi:10.1016/j.envpol.2011.04.030, 2011.

24 Bossioli, E., Tombrou, M., and Pilinis, C.: Adapting the Speciation of the VOCs Emission
25 Inventory, in the Greater Athens Area, *Water Air Soil Poll.*, Focus, 2(5–6), 141–153, 2002.

26 Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals,
27 and criteria for three-dimensional air quality models, *Atmospheric Environment*, 40(26),
28 4946–4959, doi:10.1016/j.atmosenv.2005.09.087, 2006.

29 Brown, S. G., Lee, T., Roberts, P. T. and Collett, J. L.: Variations in the OM/OC ratio of
30 urban organic aerosol next to a major roadway, *Journal of the Air & Waste Management
31 Association*, 63(12), 1422–1433, doi:10.1080/10962247.2013.826602, 2013.

1 Chin, M., Rood, R. B., Lin, S.J., Müller, J.F., and Thompson, A. M.: Atmospheric sulfur cycle
2 in the global model GOCART: Model description and global properties, *J. Geophys. Res.*, 105,
3 24,661-24,687, 2000.

4 Chung, S. H. and Seinfeld, J. H.: Global distribution and climate forcing of carbonaceous
5 aerosols, *J. Geophys. Res.*, 107(D19), 4407, doi:10.1029/2001JD001397, 2002.

6 Emery C, Tai E, Yarwood G (2001) Enhanced meteorological modeling and performance
7 evaluation for two Texas Ozone Episodes, Report to the Texas Natural Resources
8 Conservation Commission, prepared by ENVIRON, International Corp., Novato, CA

9 Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic
10 equilibrium model for $K^+ + Ca^{2+} + Mg^{2+} + NH_4^+ + Na^+ + SO_4^{2-} + NO_3^- + Cl^- + H_2O$ aerosols,
11 *Atmos. Chem. Phys.*, 7(17), 4639–4659, doi:10.5194/acp-7-4639-2007, 2007.

12 Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M., Jacob, D. J. and Heald, C. L.:
13 Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high-
14 vs. low-yield pathways, *Atmos. Chem. Phys.*, 8(9), 2405–2420, doi:10.5194/acp-8-2405-
15 2008, 2008.

16 Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit
17 treatment of entrainment processes. *Mon Weather Rev* 134:2318–2341

18 Im, U., Markakis, K., Koçak, M., Gerasopoulos, E., Daskalakis, N., Mihalopoulos, N.,
19 Poupkou, A., Kindap, T., Unal, A. and Kanakidou, M.: Summertime aerosol chemical
20 composition in the Eastern Mediterranean and its sensitivity to temperature, *Atmospheric
21 Environment*, 50, 164–173, doi:10.1016/j.atmosenv.2011.12.044, 2012.

22 Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E.,
23 Dermitzaki, E., Unal, A., Koçak, M., Markakis, K., Melas, D., Kouvarakis, G., Youssef, A. F.,
24 Richter, A., Hatzianastassiou, N., Hilboll, A., Ebojie, F., Wittrock, F., von Savigny, C.,
25 Burrows, J. P., Ladstaetter-Weissenmayer, A. and Moubasher, H.: Megacities as hot spots of
26 air pollution in the East Mediterranean, *Atmospheric Environment*, 45(6), 1223–1235,
27 doi:10.1016/j.atmosenv.2010.11.048, 2011.

28 Kopanakis, I., Eleftheriadis, K., Mihalopoulos, N., Lydakis-Simantiris, N., Katsivela, E.,
29 Pentari, D., Zarmpas, P. and Lazaridis, M.: Physico-chemical characteristics of particulate
30 matter in the Eastern Mediterranean, *Atmospheric Research*, 106, 93–107,
31 doi:10.1016/j.atmosres.2011.11.011, 2012.

1 Mailler, S., Khvorostyanov, D. and Menut, L.: Impact of the vertical emission profiles on
2 background gas-phase pollution simulated from the EMEP emissions over Europe, *Atmos.*
3 *Chem. Phys.*, 13(12), 5987–5998, doi:10.5194/acp-13-5987-2013, 2013.

4 Price, C. and Rind, D.: A Simple lightning parameterization for calculating global lightning
5 distributions. *J. Geophys. Res.*, 97(D9), 9919-9933, doi:10.1029/92JD00719, 1992.

6 Protonotariou A, Bossioli E, Tombrou M, Bossioli E, Mihalopoulos N, Biskos G, Kalogiros
7 J, Kouvarakis G. Amiridis V (2013) Air Pollution in Eastern Mediterranean: Nested-Grid
8 GEOS-CHEM Model Results and Airborne Observations, *Springer Atmos. Sci.* 3: 1203-1209,
9 DOI: 10.1007/978-3-642-29172-2_168

10 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., W. Wang, W. and
11 Powers, J. G.: A Description of the Advanced Research WRF Version 3, NCAR Technical
12 Note TN-468+STR., 113 pp, 2008.

13 Tagaris, E., Sotiropoulou, R. E. P., Gounaris, N., Andronopoulos, S. and Vlachogiannis, D.:
14 Air quality over Europe: modelling gaseous and particulate pollutants, *Atmos. Chem. Phys.*,
15 13(18), 9661–9673, doi:10.5194/acp-13-9661-2013, 2013.

16 Tesche TW, McNally DE, Emery CA, Tai E (2001) Evaluation of the MM5 model over the
17 Midwestern U.S. for three 8-hr oxidant episodes. Prepared for the Kansas City Ozone
18 Technical Work Group, prepared by Alpine Geophysics, LLC, Ft. Wright, KY and
19 ENVIRON International Corp., Novato, CA

20 Turpin, B. J. and Lim, H.-J.: Species Contributions to PM2.5 Mass Concentrations: Revisiting
21 Common Assumptions for Estimating Organic Mass, *Aerosol Science and Technology*, 35(1),
22 602–610, doi:10.1080/02786820119445, 2001.

23 Vestreng, V., and Klein, H.: Emission data reported to UN-ECE/EMEP: Quality assurance
24 and trend analysis & presentation of WebDab, Norwegian Meteorological Institute, Oslo,
25 Norway, 2002.

26 Yevich, R. and Logan, J. A.: An assessment of biofuel use and burning of agricultural waste
27 in the developing world, *Global Biogeochem. Cycles*, 17(4), 1095,
28 doi:10.1029/2002GB001952, 2003. (Guenther et al., 2006

1 Table S1. Emission rates for the gaseous and aerosol species in PM₄₀. Numbers correspond to
 2 daily sums (summer weekday) for each of the two countries within the PMCAMx simulation
 3 domain.

Gas and aerosol (PM ₄₀) species		Total emission rates			
		Greece		Turkey	
		Area sources	Point sources	Area sources	Point sources
Gases (megamols day ⁻¹)	Carbon monoxide	140	9.2	51	54
	Sulfur dioxide	3.4	27	0.2	45
	Nitric oxide	44	5.7	12	35
	Nitrogen dioxide	3.2	0.8	0.8	2.5
	Ammonia	35	-	34	0.6
	Non-methane hydrocarbons	52	0.9	37	0.6
	Large chain hydrocarbons	0.5	-	0.2	-
Aerosol components (tons day ⁻¹)	Organics	31	9	16	17
	Sulfate	362	522	14	38
	Elemental carbon	61	47	28	13
	Sodium chloride ^a	23,867	-	23,867	-
	Crustal species ^b	750	-	750	-
	Rest aerosol components (species not treated by the PMCAMx)	703	210	2.6	219
	Nitrate ^c	0.029	-	0.011	-

4 ^aSodium chloride corresponds mainly to sea-salt emissions of the whole simulation domain, developed
 5 as described in Athanasopoulou et al. (2008). It is noted that sea-salt emissions are calculated online
 6 with meteorology, thus they differ from day-to-day. This value corresponds to the date 29 August
 7 2011.

8 ^bAeolian soil dust emissions (mainly calcium, potassium, magnesium) from the whole simulation
 9 domain are calculated online with meteorology, thus they differ from day-to-day (Athanasopoulou et
 10 al., 2010). This value corresponds to the date 29 August 2011.

11 ^cNitrate is only produced due to road dust re-suspension (Athanasopoulou et al., 2010).

12

1 Table S2. Mathematical formulation and statistical benchmarks, goals and criteria for
 2 evaluating the model system used in this study.

Metrics	Formulas ^a	Benchmarks, Goals, Criteria	Notes
Mean Bias	$MB = \frac{1}{N} \sum_{i=1}^N (E_i - O_i)$	$\leq \pm 0.1 \text{g/kg}$, $\leq \pm 0.5 \text{K}$, $\leq \pm 10 \text{deg}$, $\leq \pm 0.5 \text{m/s}$	
Mean Absolute Gross Error	$MAGE = \frac{1}{N} \sum_{i=1}^N E_i - O_i $	$< 2 \text{g/kg}$, $\leq 2 \text{K}$, $\leq 30 \text{deg}$, -	Statistical benchmarks for water vapor mixing ratio, air temperature, wind direction and wind speed, respectively
Root Mean Square Error	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^N E_i - O_i ^2}$	-, -, -, $\leq 2 \text{m/s}$	
Index of Agreement	$IA = 1 - \left[\frac{N \cdot RMSE^2}{\sum_{i=1}^N (E_i - \bar{O} + O_i - \bar{O})^2} \right]$	≥ 0.6 , ≥ 0.8 , -, ≥ 0.6	(Tesche et al., 2001; Emery et al., 2001).
Mean Fractional Bias	$MFB = \frac{1}{N} \sum_{i=1}^N \frac{(E_i - O_i)}{\frac{(O + E)}{2}} \cdot 100\%$	± 30 , ± 64 , ± 47 , ± 187 , ± 32 , ± 31 , ± 122 , ± 30 (goals ^b) ± 60 , ± 88 , ± 74 , ± 189 , ± 62 , ± 61 , ± 135 , ± 60 (criteria ^b)	Aerosol performance metrics for sulfate, nitrate, ammonium, chloride, organics, OC, EC and PM_{10} , respectively. When goals (criteria) are met, performance is good (acceptable).
Mean Fractional Error	$MFE = \frac{1}{N} \sum_{i=1}^N \frac{ E_i - O_i }{\frac{(O + E)}{2}} \cdot 100\%$	50, 101, 83, 192, 58, 56, 149, 50 (goals ^b) 75, 118, 102, 193, 81, 80, 158, 75 (criteria ^b)	
Normalized Mean Bias	$NMB = \frac{1}{N} \sum_{i=1}^N \frac{(E_i - O_i)}{O_i} \cdot 100\%$		
Normalized Mean Error	$NME = \frac{1}{N} \sum_{i=1}^N \frac{ E_i - O_i }{O_i} \cdot 100\%$		
Correlation coefficient	$r = \left[\frac{\sum_{i=1}^N (E_i - \bar{E})(O_i - \bar{O})}{\sum_{i=1}^N (E_i - \bar{E}) \sum_{i=1}^N (O_i - \bar{O})} \right]$		
Standard deviation	$Stdev = \sqrt{\frac{1}{N} \sum_{i=1}^N x_i - \bar{x} ^2}$		x_i and \bar{x} are the raw and mean estimation or observation values

3 ^a E is the estimated (modeled) and O is the observed value of each parameter, paired in space and time
 4 for each i of N data pairs. \bar{E} and \bar{O} are the mean values of estimations and observations, respectively.

5 ^b The goals and criteria for aerosol components are given by the equations below (Boylan and Russell,
 6 2006):

7 $MFB = \pm 170e^{-0.5(\frac{\bar{O}+\bar{E}}{0.5})+30}$ and $MFE = 150e^{-0.5(\frac{\bar{O}+\bar{E}}{0.75})+50}$ (goals),

8 $MFB = \pm 140e^{-0.5(\frac{\bar{O}+\bar{E}}{0.5})+60}$ and $MFE = 125e^{-0.5(\frac{\bar{O}+\bar{E}}{0.75})+75}$ (criteria), where \bar{E} and \bar{O} are the mean
 9 values of estimations and observations, respectively.

Table S3. Prediction skill metrics of the basic meteorological parameters and submicron aerosol concentrations (**prd**, in **bold**) against airborne measurements (obs) from the nine flights during the period of interest (29 August – 09 September 2011). Performance metrics with green (red) fonts indicate **good** (**poor**) model performance, according to the selected criteria of evaluation, given in Table S2. The rest model outputs (performance metrics with black fonts) are acceptable (average model performance).

Metrics	Water vapor mixing ratio g/kg	Temperature K	Wind speed m/s	Wind direction deg	Sulfate	Nitrate	Ammonium	Chloride	Organics
Mean prd	4.2	278.9	8.0		4.8 (5.5/3.8)	0.9 (1.9/0.4)	1.1 (1.7/0.5)	0.02 (0.05/0)	1.4 (2.3/0.9)
Mean obs	4.2	279.2	8.4		5.0 (5.8/3.7)	0.1 (0.2/0.04)	1.0 (1.5/0.5)	0.01 (0.02/0)	2.4 (4.4/1.1)
Max prd	14.2	300.3	19.5		12.1 (12.1/9.7)	7.9 (7.9/2.7)	4.2 (4.2/1.5)	0.4 (0.4/0.03)	6.8 (6.8/4.8)
Max obs	14.4	304.2	24.1		23.4 (23.4/15.0)	1.9 (1.9/1.5)	5.2 (5.2/2.5)	0.8 (0.3/0.8)	10.7 (10.7/9.4)
Stdev prd	3.7	11.7	2.9		2.4 (2.4/2.2)	1.5 (2.1/0.4)	0.8 (0.8/0.4)	0.07 (0.1/0)	1.3 (1.4/0.9)
Stdev obs	3.9	11.1	4.1		3.8 (3.8/3.4)	0.1 (0.1/0.1)	0.9 (0.8/0.5)	0.03 (0.03/0.03)	2.5 (2.2/1.9)
IA	0.96	0.99	0.70		-	-	-	-	-
MB	0.05	-0.26	-0.40	8.07	-0.2 (-0.3/0.1)	0.8 (1.7/0.3)	0.1 (0.2/-0.02)	0.01 (0.03/0)	-0.9 (-2.1/-0.2)
MAGE	1.10	1.63		23.44	2.2 (2.4/1.8)	0.9 (1.9/0.4)	0.6 (0.8/0.3)	0.03 (0.1/0)	1.4 (2.2/0.8)
RMSE				3.64	3.1 (3.5/2.4)	1.7 (2.7/0.6)	0.8 (1.0/0.4)	0.07 (0.1/0.03)	2.0 (2.7/1.3)
MFB (%)					20.4 (6.0 /41.2)	67.8 (17.1 / 93.8)	21.9 (17.0 / 27.1)	-150.1 (-74.7 /- 194.3)	2.0 (- 64.2 / 42.9)
MFE (%)					55.2 (43.8 /71.6)	184.0 (173.7 / 189.3)	63.4 (57.4 / 69.9)	18.3 (162.2 /- 65.7)	83.3 (74.5 / 88.7)
NMB (%)					-0.03 (- 0.06/0.02)	9.3 (9.3/9.1)	0.1 (0.1/-0.03)	1.8 (1.3/-2.7)	-0.4 (-0.5/- 0.2)
NME (%)					0.4 (0.4/0.5)	10.3 (10.2/10.5)	0.6 (0.6/0.6)	3.9 (2.7/-7.7)	0.6 (0.5/0.7)
r					0.6 (0.4/0.7)	0.3 (-0.1/-0.1)	0.6 (0.2/0.6)	0.2 (0.1/0.03)	0.8 (0.6/0.8)

r^2		0.3 (0.2/0.5)	0.1 (0.01/0.01)	0.3 (0.03/0.4)	0.03(0/0)	0.6 (0.4/0.6)			
% within a factor of 2		70.2 (79.8/56.4)	4.5 (3.7/4.9)	59.2 (65.1/52.9)	6.6 (3.7/8.3)	41.9 (48.2/37.9)			
No of samples	16052	16052	16052	15133	1335 (787/548)	2244 (765/1479)	1518 (788/730)	1624 (599/1025)	2066 (788/1278)

Table S4. Prediction skill metrics of the aerosol concentrations (**prd**, in **bold**) against ground measurements (obs) during the period of interest (29 August – 09 September 2011). MFB and MFE with **green** fonts indicate **good** model performance, according to the selected criteria of evaluation, given in Table S2.

Metrics	PM ₁ Sulfate µgm ⁻³	PM ₁₀ OC ^a Vigla (N. Aegean)	PM ₁₀ EC / Finokalia (S. Aegean)	PM ₁₀
Mean prd	-/ 6.4	2.0/2.1	0.32/0.26	-/29.1
Mean obs	-/5.9	2.3/2.9	0.25/0.38	-/30.6
Max prd	-/12.5	4.8/4.3	0.6/0.4	-/47.8
Max obs	-/14.3	5.0/8.1	0.8/1.2	-/59.8
Stdev prd	-/3.1	1.0/0.8	0.13/0.0.8	-/8.6
Stdev obs	-/3.5	1.1/1.3	0.20/0.23	-/12.8
MB	-/0.5	-0.2/-0.8	0.07/-0.12	-/1.5
MAGE	-/2.4	0.7/1.2	0.16/0.19	-/13.9
RMSE	-/2.9	0.9/1.5	0.21/0.27	-/17.9
MFB (%)	-/12.9	-11.3/-28.2	40.8/-18.6	-/10.6
MFE (%)	-/45.1	36.6/46.1	63.1/55.6	-/47.4
NMB (%)	-/0.1	-0.1/-0.3	0.3/-0.3	-/0.0
NME (%)	-/0.4	0.3/0.4	0.7/0.5	-/0.5
r	-/0.6	0.6/0.2	0.3/0.1	-/-0.4
r ²	-/0.4	0.4/0.05	0.1/0.0	-/0.2
% within a factor of 2	-/78.8	83.9/80.9	54.8/71.4	-/76.9
No of samples	-/184	31/42	31/42	-/26

^aOrganic aerosol predictions are divided by 2.1 (Turpin and Lim, 2001), to extract the carbon mass (OC).

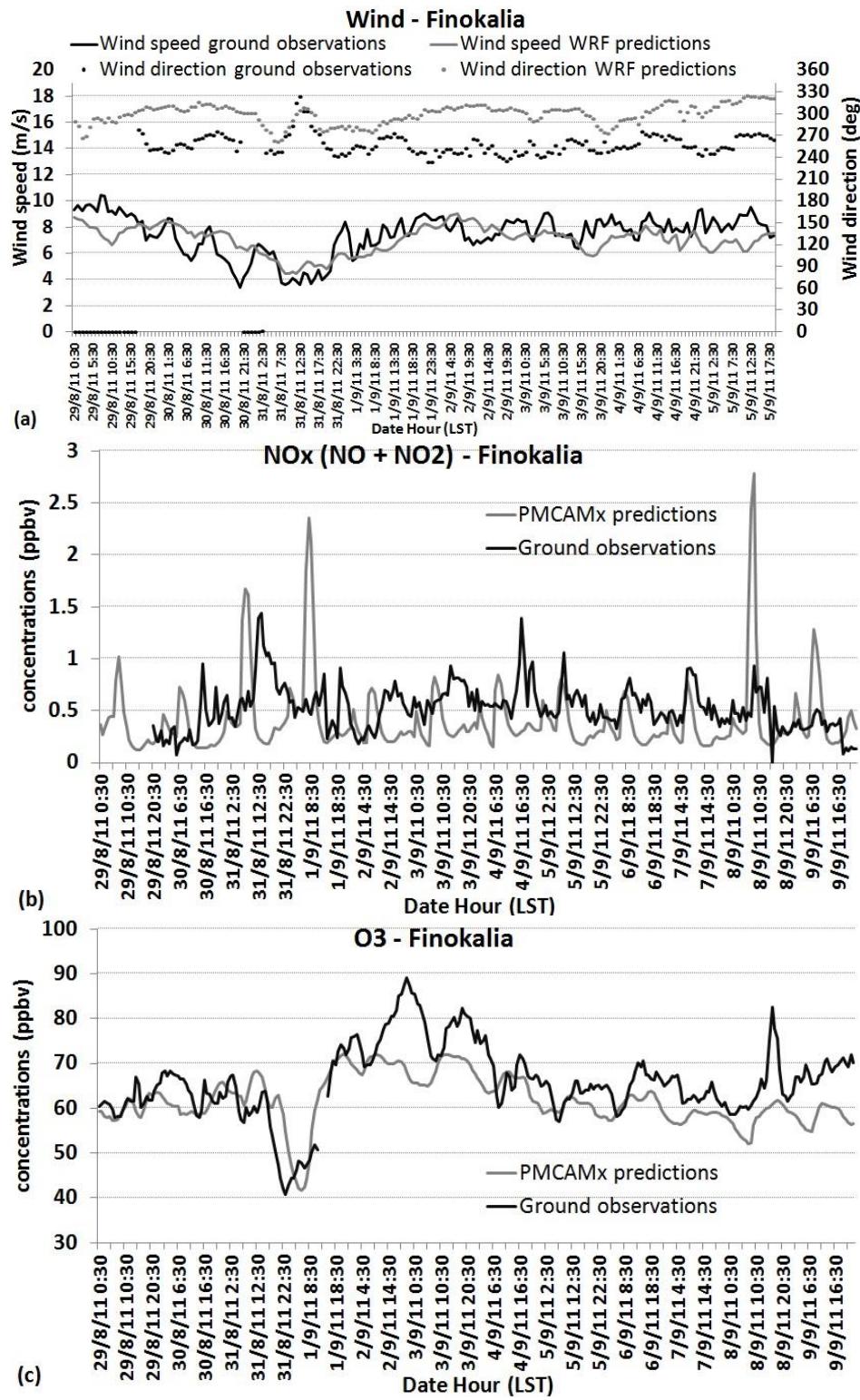


Figure S1. Comparison of predictions (grey) with hourly measurements (black) of: (a) wind speed (m s^{-1}) and wind direction (deg), (b) NO_x concentrations (ppbv) and (c) O_3 concentrations (ppbv) over Finokalia (Crete).

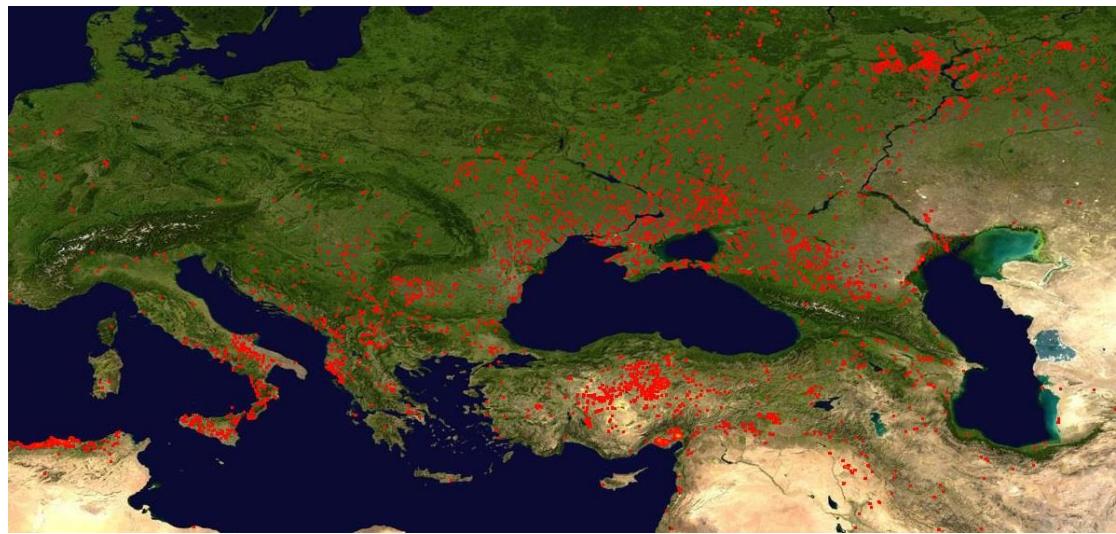


Figure S2. MODIS image acquisition, showing the fire events in Turkey, south and east Europe from 29 August until 07 September 2011.