

1 **Contribution from biogenic organic compounds to particle**
2 **growth during the 2010 BEACHON-ROCS campaign in a**
3 **Colorado temperate needle leaf forest**

4

5 **L. Zhou^{1, 2}, R. Gierens¹, A. Sogachev³, D. Mogensen¹, J. Ortega⁴, J. N. Smith^{4, 5},**
6 **P. C. Harley⁴, A. J. Prenni⁶, E. J. T. Levin⁷, A. Turnipseed⁴, A. Rusanen¹, S.**
7 **Smolander^{1,8}, A. B. Guenther⁹, M. Kulmala¹, T. Karl¹⁰ and M. Boy¹**

8 [1]{Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland}

9 [2]{Helsinki University Centre of Environment, P.O. Box 65, FI-00014 University of
10 Helsinki, Finland}

11 [3]{Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399,
12 P.O. Box 49, Building 118, 4000, Roskilde, Denmark}

13 [4]{National Center for Atmospheric Research, Boulder, Colorado, USA}

14 [5]{Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland}

15 [6]{National Park Service, Air Resources Division, Lakewood, CO, USA}

16 [7]{Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA}

17 [8]{NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Cooperative
18 Institute for Climate Science, Princeton, NJ, USA}

19 [9]{Atmospheric Sciences and Global Change Division, Pacific Northwest National
20 Laboratory, Richland, Washington, USA}

21 [10]{University of Innsbruck, Institute for Meteorology and Geophysics (IMGI), Innrain 52,
22 6020 Innsbruck, Austria}

23 Correspondence to: L. Zhou (luxi.zhou@helsinki.fi)

24

25 **Abstract**

26 New particle formation (NPF) is an important atmospheric phenomenon. During an NPF
27 event, particles first form by nucleation and then grow further in size. The growth step is

1 crucial because it controls the number of particles that can become cloud condensation nuclei.
2 Among various physical and chemical processes contributing to particle growth, condensation
3 by organic vapors has been suggested as important. In order to better understand the influence
4 of biogenic emissions on particle growth, we carried out modeling studies of NPF events
5 during the BEACHON-ROCS campaign at Manitou Experimental Forest Observatory in
6 Colorado, USA. The site is representative of the semi-arid Western US. With the latest
7 Criegee intermediates reaction rates implemented in the chemistry scheme, the model
8 underestimates sulfuric acid concentration by 50%, suggesting either missing sources of
9 atmospheric sulfuric acid or an overestimated sink term. The results emphasize the
10 contribution from biogenic volatile organic compound emissions to particle growth by
11 demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-
12 ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle
13 loadings significantly while their concentrations are insufficient to grow the particles during
14 the day. The growth of ultrafine particles in daytime appears to be closely related to the OH
15 oxidation products of MBO.

16

17 **1 Introduction**

18 Atmospheric aerosols have the potential to change the climate as they influence the Earth's
19 radiative balance as well as the hydrological cycle (e.g. Lohmann and Feicher, 2005;
20 Kerminen et al., 2005). Apart from their climatic influences, aerosols reduce visibility and
21 impact health. Therefore it is important to understand the life cycle of atmospheric aerosols
22 and estimate their impacts on climate and health. One important phenomenon associated with
23 the atmospheric aerosol system is new particle formation (NPF) (Kulmala et al., 2004c).
24 During a NPF event, particles first form from nucleation. The exact mechanism behind
25 nucleation is still unclear, but various studies have suggested possible nucleation compounds
26 including water, sulfuric acid, ammonia, and organic compounds (Zhang et al., 2004; Sipilä et
27 al., 2010; Kirkby et al., 2011; Schobesberger et al., 2013). The nucleated particles then grow
28 further via various processes including condensation of vapors and coagulation (Kulmala et
29 al., 2004b; Kulmala and Kerminen, 2008; Kerminen et al., 2010). This growth step
30 determines the formation rate of detectable particles (usually > 3 nm) as well as the impact of
31 NPF on cloud condensation nuclei populations (Kulmala et al., 2013). Organic compounds
32 are the main drivers of the growth step and are thus critical for aerosol formation (Kerminen

1 et al., 2000; Sellegrí et al., 2005; Boy et al., 2005; Allan et al., 2006; Laaksonen et al., 2008;
2 Ehn et al., 2014).

3 Volatile organic compounds (VOC) are of both anthropogenic and biogenic origin.
4 Vegetation produces biogenic volatile organic compounds (BVOC) for a variety of
5 physiological purposes (e.g. Fuentes et al., 2000; Sharkey et al., 2008). There are complex
6 mechanisms that control BVOC emissions. The emission abundance and chemical speciation
7 varies by vegetation species as well as environmental conditions such as light and
8 temperature. Since the first enclosure study of BVOC emissions in the late 1920s (Isidorov,
9 1990), numerous assessments by lab experiments and field measurements have been carried
10 out to quantify BVOC emissions. The global BVOC emissions by terrestrial ecosystems are
11 estimated to be about 1000 Tg C yr⁻¹, of which about 50% is isoprene and 15% is
12 monoterpenes (Guenther et al., 2012). This is nearly eight times the global VOC emissions of
13 anthropogenic origin, which are estimated to be about 130 Tg C yr⁻¹ (Lamarque et al., 2010).

14 The impact of these huge BVOC emissions is of great scientific interest. Apart from their
15 potential impacts on air quality (Andreae and Crutzen, 1997; Atkinson, 2000), BVOC are
16 known to affect the climate system by contributing to aerosol formation and growth.
17 However, the understanding of how BVOC contribute to aerosol formation is incomplete. The
18 vast amount of different BVOC species, numerous atmospheric chemistry reaction pathways
19 and uncertain microphysics make a complete understanding of these processes very difficult.
20 Many studies have suggested the condensing organic compounds to be non-volatile or have
21 extremely low volatility (Spracklen et al., 2011; Riipinen et al., 2011; Donahue et al., 2011;
22 Kulmala et al., 2013). For example, Ehn et al. (2014) investigated extremely low volatility
23 organic compounds (ELVOC) arising from monoterpene oxidation, which has been predicted
24 by Kulmala et al. (1998) to enhance the condensational growth of aerosols in chamber
25 experiments under atmospherically relevant conditions. This study has supplemented the link
26 between secondary organic aerosol (SOA) formation and one of the most abundant families of
27 BVOC, monoterpenes. Besides monoterpenes, 2-Methyl-3-buten-2-ol (MBO), another
28 important BVOC emitted by pine trees in western North America (Harley et al., 1998), is also
29 a potential precursor of SOA (Arthur et al., 2009). Recent smog chamber studies and field
30 measurements revealed that OH-initiated oxidation of MBO leads to SOA formation (Zhang
31 et al., 2012; Zhang et al., 2014).

1 Building on past research about the role of organic compounds in new particle formation, we
2 aim to study in particular the influence of biogenic organic compounds on particle growth via
3 a modeling approach. This modeling activity was conducted for the Bio-hydro-atmosphere
4 interactions of Energy, Aerosol, Carbon, H₂O, Organics & Nitrogen – Rocky Mountain
5 Organic Carbon Study (BEACHON-ROCS) field campaign at the Manitou Experimental
6 Forest Observatory (MEFO) during August 2010 (Ortega et al., 2014). The campaign focused
7 on the biosphere-atmosphere exchange of reactive organic gases and thus provided an
8 excellent dataset of aerosol precursor gases. The Manitou Experimental Forest Observatory is
9 a mountainous forest site in close proximity to human activity. It provides an opportunity to
10 study biogenic SOA formation at a rural-urban interface (Cui et al., 2014). Various studies
11 have indicated that biogenic SOA formation in forest environments can be enhanced by the
12 inflow of anthropogenic pollutants (Boy et al., 2008; Hoyle et al., 2011; Jung et al., 2013).
13 The modeling tool used in this study is the chemical-transport column model, SOSAA (Boy et
14 al., 2011; Zhou et al., 2014). Despite the limitation for simulating horizontal transport, this
15 process-orientated model is valuable for gaining detailed understanding of local phenomena.
16 Due to the complex terrain at the Manitou site, the first task in this study was to assess the
17 accuracy of reconstructing the highly variable meteorological conditions using a column
18 model. The second task was to compare the modeled aerosol precursor gases against the
19 measurements. In addition to sulfuric acid (H₂SO₄), we focused on MBO and monoterpenes
20 because they dominate the biogenic emissions at the site (Karl et al., 2014; Kaser et al.,
21 2013a; Kaser et al., 2013b; Kim et al., 2010). After assessing the model performance with
22 respect to the meteorology and related precursor gases, we proceeded with the study on the
23 effects of BVOC and their oxidation products on particle growth.

24

25 **2 Materials and methods**

26 **2.1 Manitou Experimental Forest Observatory and BEACHON-ROCS field** 27 **campaign**

28 All observations presented in this study were obtained during the BEACHON-ROCS field
29 campaign at Manitou Experimental Forest Observatory (MEFO) in August 2010. The
30 campaign is part of the BEACHON project, which aims to investigate ecosystem-atmosphere
31 exchange of trace gases and aerosols and their potential feedbacks between biogeochemical
32 and hydrological cycles. Ortega et al. (2014) have provided a very detailed description of the

1 BEACHON project as well as MEFO; here we only provide a summary of the site and
2 campaign descriptions related to this study.

3 MEFO is located in the Front Range of the Colorado Rocky Mountains (39.1°N 105.1°W and
4 2370 m above sea level). It is a mountainous site in close proximity to large urban centers
5 (e.g. Denver is about 85 km northeast of the site and Colorado Springs about 40 km to the
6 southeast). Due to shielding by the Rampart Range to the east and Pikes Peak to the south, the
7 site normally encounters clean continental air masses from the southwest. Exceptions include
8 episodic but frequent intrusions of anthropogenic air masses due to upslope flow during the
9 mornings and air moving downslope from the south during the evenings. Ponderosa pine is
10 the dominant tree species at the forested site. The median tree age at the site was 49.5 years
11 and the average canopy height was about 18.5 m in 2010 (DiGangi et al., 2011).
12 Approximately 50% of the precipitation falls as rain during the summer season (June-
13 September), primarily during afternoon thunderstorms characterized by brief but intense
14 periods of rainfall and lightning. The site is representative for the semi-arid Western US
15 where biosphere-atmosphere exchange processes of energy, water, carbon, and nitrogen are
16 sensitive to the amount of precipitation.

17 Measurements of VOC used a valve switching system which changed sampling lines every 5
18 min and cycled through six Teflon inlets mounted at 1.6 m, 5.0 m, 12.0 m, 17.7 m, and 25.1 m
19 over a 30 min period. VOC concentrations were measured by a Proton-Transfer-Reaction
20 Mass Spectrometer (PTR-MS, Ionicon Analytik GmbH). The instrument is based on soft
21 chemical ionization using protonated water ions (H_3O^+) (Hansel et al., 1995; Lindner et al.,
22 1998). Other trace-gas measurements from the measurement mast include CO, CO₂, water
23 vapor, NO, NO₂, O₃ and SO₂. The mast was also equipped with sonic anemometers as well as
24 temperature and radiation probes for continuous meteorological measurements and for
25 observing turbulent fluxes using a closed-path eddy covariance system. Detailed descriptions
26 of the flux and concentration measurements of VOC are presented in Kaser et al. (2013b).
27 Sulfuric acid and OH concentrations were measured using Chemical-Ionization Mass
28 Spectrometry (CIMS) (Tanner et al., 1997). The inlet was 2.7 m above ground level, facing
29 perpendicular to the primary wind direction. The uncertainties for H₂SO₄ measurements are
30 estimated to be 30% - 60% (Plass-Dülmer et al., 2011). The uncertainties for OH
31 measurements are estimated as 35% with a detection limit at 4×10^5 molecules cm⁻³ (Kim et
32 al., 2013). Downwelling NO₂ photolysis rates were measured by filter radiometers
33 (Meteorologie Consult GmbH, Junkermann et al., 1989) at the top of the chemistry

1 measurement mast. The ratio of downwelling to upwelling NO_2 photolysis rate was measured
2 on 10 August 2010. The ratio was then used to estimate the total NO_2 photolysis rate for the
3 rest of the campaign period (DiGangi et al., 2011).

4 Dry particle size distribution measurements between 15 – 350 nm were made at ground level
5 using a differential mobility particle sizer (DMPS) during the campaign period. Sample flow
6 first passed through a diffusion drier and a bipolar charge neutralizer (Aerosol Dynamics
7 Inc.), containing four ^{210}Po strips (NRD Staticmaster 2U500). Particles were then size
8 selected using a differential mobility analyzer (DMA; TSI 3071) and counted with a
9 condensation particle counter (CPC; TSI 3010). The DMA stepped through 20 dry particle
10 diameters chosen such that $d\log_{10}D_p$ remained constant. Measurements were made at each
11 size setting for 30 seconds.

12 NCAR GPS Advanced Upper-Air Sounding System (GAUS) launched sondes to investigate
13 the evolution of the boundary layer. The measurements are available from 12 August 2010
14 noon to 14 August 2010 noon and from 21 August 2010 noon to 23 August 2010 noon. The
15 interval between each measurement point is either one or two hours.

16 **2.2 SOSAA model**

17 The SOSAA model is a one-dimensional chemical-transport model with detailed aerosol
18 dynamics. It was constructed to study various processes in the planetary boundary layer in
19 and above a forest canopy, which includes biogenic emissions, vertical transport, air
20 chemistry and aerosol dynamics (Boy et al., 2011; Zhou et al., 2014). The different processes
21 have been modularized so that the model is optimized for implementing various
22 parameterizations. The boundary layer meteorology code is based on the one-dimensional
23 version of SCADIS (SCAlar DIStribution, Sogachev et al., 2002; Sogachev et al., 2012). The
24 emission module in the model is based on MEGAN (Model of Emissions of Gases and
25 Aerosols from Nature, Guenther et al., 2006). The chemical mechanism scheme is produced
26 by selecting chemical reactions primarily from the Master Chemical Mechanism, MCM v3.2
27 (Jenkin et al., 1997; Saunders et al., 2003; Jenkin et al., 2012), via the website:
28 <http://mcm.leeds.ac.uk/MCM>. The selected chemical reactions are processed using the KPP -
29 kinetic preprocessor (Damian et al., 2002). The chemical scheme accommodates great
30 flexibility in selecting desired reactions. The aerosol module in SOSAA is based on the
31 aerosol dynamics model UHMA, which is a sectional box model developed for studies of
32 tropospheric new particle formation and growth under clear sky conditions (Korhonen et al.,

1 2004). It includes all basic aerosol processes, including nucleation, condensation, coagulation
2 and dry deposition. The model performance has been validated against field measurements
3 from Hyytiälä, Finland in various studies (Boy et al., 2013; Mogensen et al., 2011; Mogensen
4 et al., 2014; Smolander et al., 2014).

5 The biogenic emission module based on MEGAN requires emission factors for representative
6 vegetation types to estimate the net fluxes of BVOCs from canopy to the atmosphere. The
7 emission factors define the emission of a given compound at standard conditions and have an
8 uncertainty of a factor of three or more when global default values are used, primarily due to
9 the large variability in emission rates for different plants (Guenther et al., 1995). In this study
10 monoterpane emission factors were obtained from leaf cuvette measurements (Harley et al.,
11 2014), while the MBO emission factor is suggested by Kaser et al. (2013a), which is based on
12 both leaf cuvette emission measurements and canopy-scale analysis.

13 The chemistry scheme employed by the model for this study includes the full MCM chemical
14 paths for the following parent molecules: methane, methanol, formaldehyde, acetone,
15 acetaldehyde, MBO, isoprene, alpha-pinene, beta-pinene, limonene and beta-caryophyllene.
16 For other emitted organic compounds, for which no MCM chemistry path is available, we
17 have included their first order oxidation reactions with OH, O₃ and NO₃. Those compounds
18 include: myrcene, sabinene, 3-carene, ocimene, cineole, and 'other' monoterpenes, farnesene,
19 and 'other' sesquiterpenes (Atkinson, 1994). In the case of linalool we have included its
20 reaction with OH and NO₃ to form acetone and 'condensable material' and its reaction with O₃
21 to additionally produce formaldehyde. For the reactions of the stabilized Criegee
22 Intermediates (sCI) from alpha-, beta-pinene and limonene, we have used the rates from
23 Mauldin et al. (2012) similar to 'Scenario C' in Boy et al. (2013). For the sCI from isoprene,
24 we used the rates from Welz et al. (2012) as done in 'Scenario D' in Boy et al. (2013). Sulfuric
25 acid and nitric acid are removed from the gas phase based on the condensation sinks
26 calculated from background aerosol loading.

27 It is not fully understood which mechanisms drive nucleation in the atmosphere. Various
28 parameterizations have been created for predicting atmospheric nucleation (e.g. Pierce and
29 Adams, 2009; Paasonen et al., 2010). The nucleation mechanism, however, has minor
30 influence on the actual production rate of the observable particles compared to the subsequent
31 growth step because the nucleated clusters have rather short lifetimes (Kulmala and
32 Kerminen, 2008; Kulmala et al., 2013). For this reason, we opted to use only the kinetic

1 nucleation parameterization in this study (Weber et al., 1997). It was chosen also because
2 Zhou et al. (2014) showed that the SOSAA model with kinetic nucleation parameterization
3 gave good predictions of NPF events at a boreal forest site in Hyytiälä, Finland. In kinetic
4 nucleation, two sulfuric acid molecules collide to form a cluster as in the kinetic gas theory.
5 Some of the formed clusters will break apart, but some will remain stable and then grow to
6 become particles. The nucleation rate, J , is related to the sulfuric acid concentration, $[H_2SO_4]$,
7 via

$$8 J = K \cdot [H_2SO_4]^2 \quad (1)$$

9 where K is the kinetic coefficient that includes both the collision frequency and the
10 probability of forming a stable cluster after the collision (Weber et al., 1997; Sihto et al.,
11 2006; Zhou et al., 2014). The nucleated particles were then added to the first size bin (at 2
12 nm) in the model. Before carrying out our modeling studies for particle growth, a sensitivity
13 study was done to establish a suitable value for the nucleation coefficient K . By comparing
14 the simulated and DMPS measured total number concentrations for particles between 20 and
15 80 nm, K was set to $5 \cdot 10^{-15} \text{ cm}^{-3} \text{ s}^{-1}$.

16 The SOSAA model requires four groups of input data. The first group includes the site land
17 cover characteristics, such as the leaf density and canopy height. The second group consists of
18 meteorological parameters including radiation, vertical profiles of wind speed, temperature
19 and relative humidity. These inputs are available from the micrometeorology mast
20 measurements at MEFO. ERA-Interim reanalysis data by ECMWF (Dee et al., 2011) for wind
21 speed, temperature and humidity were used as the boundary conditions for the upper border of
22 the model column. Since one of the radiation inputs, the actinic flux spectrum, was not
23 measured at MEFO, we used the scaled actinic flux spectrum from the Tropospheric
24 Ultraviolet and Visible (TUV) Radiation Model (Madronich, 1993). The scaling factors are
25 based on the measured NO_2 photolysis rates and the TUV modeled rates (Madronich and
26 Flocke, 1998). The third group consists of five inorganic gas concentrations (NO , NO_2 , CO ,
27 O_3 and SO_2) measured from the chemistry measurement mast and the sulfuric acid sink to the
28 background particles. The condensation sink of sulfuric acid was calculated based on the
29 method described by Pirjoja et al. (1998). These parameters were read in every half hour with
30 a linear interpolation in between. The last group of input data is the measured particle number
31 size distribution. The model only reads in the measured number size distribution once a day at

1 midnight for initialization. More detailed description of model input is available from Boy et
2 al. (2011).

3

4 **2.3 Modeling experiments**

5 In order to investigate the influence of organics on particle growth, three organic vapors
6 (Vapor I – III) were set to take part in the condensation process in addition to sulfuric acid.
7 Since the main biogenic emissions at the site are MBO and monoterpenes, Vapor I – III were
8 set to be the lumped sums of first stable reaction products from OH, O₃ and NO₃ oxidation of
9 MBO or/and monoterpenes. This treatment of organic condensing vapors is similar to the
10 approach of Lauros et al. (2011) and Zhou et al. (2014). Three model experiments were
11 designed to study the influence of MBO and monoterpenes on particle growth:

12 • Experiment I: Lumped sums of first stable reaction products from OH, O₃, and NO₃
13 oxidation of monoterpenes were included as the organic condensing Vapor I, II, and III
14 respectively.

15 • Experiment II: Lumped sums of first stable reaction products from OH, O₃, and NO₃
16 oxidation of MBO were included as the organic condensing Vapor I, II, and III respectively.

17 • Experiment III: Lumped sums of first stable reaction products from OH oxidation of
18 both monoterpenes and MBO were included as the organic condensing Vapor I. Lumped
19 sums of first stable reaction products from O₃ and NO₃ oxidation of monoterpenes were
20 included as the organic condensing Vapor II and III, which were the same as Vapor II and III
21 in Experiment I.

22 The aerosol module simulates particle growth by calculating the condensation flux of each
23 condensing vapor onto the particle surfaces (Korhonen et al., 2004). An iterative method was
24 used in each experiment to estimate the saturation vapor concentration of the condensing
25 organic vapors, by varying the saturation vapor pressure of each compound and by comparing
26 the modeled particle size distribution with the observed distribution. In all experiments,
27 sulfuric acid condenses onto particles with the assumption that once it is condensed, it will not
28 evaporate from the particles.

29

1 **3 Model validation for meteorology and chemistry**

2 Since the SOSAA model does not accommodate precipitation, all the observational data
3 presented in this section have been filtered to exclude rain events. When comparing averaged
4 diurnal profiles of a specific parameter, the modeled profile is the average of the period for
5 which observation data are available.

6 **3.1 Meteorology**

7 Figure 1 presents the average behavior of the modeled temperature, wind speed and relative
8 humidity compared to the measurements above the canopy at 30 meters. Because the site is
9 situated in a north-south slope (draining to the north), the meteorology is influenced by the
10 diurnal mountain-valley flows. While daytime wind directions are variable, nighttime winds
11 are dominated by the drainage from the south (Ortega et al., 2014). Unfortunately the column
12 model SOSAA cannot capture this behavior related to the topography. The model simulates a
13 comparable temperature for daytime but fails to decrease the temperature sufficiently during
14 nighttime. The big diurnal variation applies not only to the temperature but also to the relative
15 humidity (RH). The model again simulates comparable RH levels during the day but fails to
16 capture it at night. The underestimation in RH at night is mainly a result of the overestimation
17 of temperature. The simulated wind speed agrees well with the measurements during daytime.
18 At night, the wind speed was observed to fluctuate around 2 m s^{-1} above the canopy, but the
19 modeled wind speed is around 3 m s^{-1} . As already mentioned, the model cannot simulate the
20 drainage flows related to the topography, and a clear discrepancy of the nighttime wind
21 speeds can be expected as the nighttime drainage has been observed to be effective at the site.
22 In general the model gave satisfactory predictions of the three meteorological variables during
23 daytime, though notable deviations are found during nighttime.

24 22 August 2010, day of year (DOY) 234, was selected out of the five sounding days for
25 demonstrating vertical profiles of the potential temperature at the site (Fig. 2). Mast
26 measurements are provided in addition to sounding data in order to extend the measured
27 profile close to the surface. Mast measurements and sounding measurements differ because 1)
28 the mast observations presented are half an hour averages, while the sounding can only
29 provide an instantaneous value; 2) the instruments are not the same (least likely and only has
30 minor contribution to the difference) and 3) measurements were not made at exactly the same
31 location. At 05:00:00 LT, both the model and measurements show a typical nocturnal stable
32 boundary layer. We focus on the gradient of potential temperature that describes the stability.

1 The model exhibits a stronger gradient at the canopy top (18.5 m) compared to both the mast
2 measurements and the sounding observation. The modeled profile improves during daytime.
3 At 11:00:00 LT, the boundary layer has developed since morning up to about 800 meters in
4 the model, while the sounding data show it may be higher than 1 km. The simulated potential
5 temperature gradient near ground is similar to the mast measurements, despite a slight
6 difference in magnitude. At 19:00:00, the gradients have already become positive. The
7 strongest gradient modeled is again a few hundred meters lower than the sounding data. This
8 tendency of SOSAA to slightly underestimate the height of the mixed layer has also been
9 observed in studies made in Hyytiälä, Finland (Mogensen et al., 2014). At 22:00:00 LT, the
10 nocturnal boundary layer has built up. We see the model profile shows a gradient below the
11 canopy at around 10 meters, indicating an inversion inside the canopy. The sounding
12 measurements show strongest potential temperature gradient above the canopy. In general,
13 despite the underestimated daytime boundary layer height, the model at least predicted a
14 satisfactory potential temperature profile up to the top of measurement mast.

15 To investigate the model performance with respect to the surface energy balance and the
16 vertical mixing strength, we compared the modeled average diurnal profile of the latent and
17 sensible heat fluxes and friction velocity with the eddy covariance measurements above
18 canopy (Fig. 3). A positive flux indicates that the atmosphere is gaining heat from the surface
19 and vice versa for the negative flux. The modeled latent heat flux is in general comparable
20 with observations except during morning when the model underestimates the fluxes slightly.
21 The sensible heat flux is in general overestimated during daytime. This is probably related to
22 inaccuracies of the other components of the energy balance, namely the heat flux and storage
23 to the soil and the net radiation. These can also cause the leaf temperature to be modeled
24 incorrectly, which promotes the simulated sensible heat flux. The friction velocity is well
25 simulated compared to the measurements during daytime. The nighttime overestimation is
26 due to the overestimation of wind speed (Fig. 1), which increases vertical wind shear and thus
27 the amount of turbulent mixing. The well modeled friction velocity suggests that the model
28 should have reasonable vertical turbulence mixing.

29 To summarize, the model's meteorological performance is satisfactory during daytime. The
30 simulated basic meteorological parameters (temperature and its gradient, humidity, and wind
31 speed) as well as the turbulent fluxes of latent heat and momentum (which directly depends
32 on the magnitude of the friction velocity presented in Fig. 3) agree well with the observations.
33 The height of the boundary layer, which dictates the volume of air into which the emitted

1 compounds are diluted, had a tendency to be underestimated by around 20%. As the
2 difference relative to the total boundary layer height is not large, this is not expected to have a
3 high impact. However, during nighttime the drainage flows down the side of the mountain
4 cause difficulties for the model to simulate the meteorological conditions. We therefore focus
5 on daytime conditions in the following analysis.

6 **3.2 Chemistry**

7 The chemistry analysis focuses on aerosol precursor gases (MBO, monoterpenes and sulfuric
8 acid), OH and the oxidation products of MBO and monoterpenes. Averaged diurnal
9 concentrations are presented in this section to show the general behavior of modeled
10 chemistry. The averages are made for period 13-14 and 16 – 13 August 2015 when the
11 measurements of all species mentioned above are available.

12 The averaged diurnal profiles show that the monoterpene concentration has a clear diurnal
13 variation in both the observations and model simulation (Fig. 4). The concentration is high
14 during the night and low during the day. The nighttime concentration is high mainly due to
15 the suppressed boundary layer height and the decreased losses from oxidation. On the other
16 hand, the concentration decreases during daytime as the boundary layer height increases and
17 due to the presence of OH. The model simulated comparable concentrations but an increasing
18 trend for MT during night. The main reason could be that the model overestimated the
19 nighttime temperature up to five degrees, which possibly leads to overestimation of
20 monoterpene emissions. Sensitivity studies have been conducted for the response of total
21 monoterpene emission rate to temperature. An increase of five Celsius degrees in the night
22 may increase the emission rates by 80% to 100%. On average the simulated monoterpene
23 concentration during daytime agrees well with the measurement (Fig. 4). The MBO
24 concentration is high during daytime and low in nighttime due to the light-dependent
25 production. The model captures the diurnal trend of MBO concentration well (Fig. 4). The
26 simulated daytime MBO concentration is about 20% to 25% lower than the observation,
27 which slightly exceeds the instrument uncertainty of 20%. Because the large standard
28 deviations of the measurement dataset, Fig. 5 presents the modeled and measured MBO
29 concentrations from 10 to 23 August 2010 (DOY 222 to 235). It shows that the modeled
30 concentration is comparable to the measurement except at some nights when the
31 concentration is overestimated.

1 The modeled average diurnal profile of OH is in good agreement with the observations before
2 noon (Fig. 6). After this time, the model results become higher than the observations, which
3 should result from 1) missing sinks and 2) overestimated production. The missing sink terms
4 has been studied previously at MEFO by Nakashima et al. (2004). Based on measurements,
5 Nakashima et al. concluded a missing OH reactivity of 29.5%, which may mainly due to
6 oxidized products of biogenic species. Mogensen et al. (2011) also concluded missing OH
7 reactivity more than 50% in a boreal forest environment in southern Finland. In addition to
8 unknown missing sinks, the underestimated MBO concentrations may also contribute to the
9 overestimated MBO. We suspect the photolysis production of OH may be overestimated due
10 to the method in scaling the actinic flux spectrum. Though the modeled NO₂ photolysis rate is
11 within measurement uncertainty of 10% to 20% (Seroji et al., 2004), it is still possible that the
12 photolysis rate is indeed overestimated in the afternoon, as can be seen in Figure 7. Except 13
13 August 2015, all days in the period for which the averaged profiles are made were cloudy in
14 the afternoon. The deviation in both OH concentration and NO₂ photolysis rate suggest either
15 the molecular parameterizations in predicting photolysis rates or the scaling method in
16 preparing the actinic flux spectrum may be biased during cloudy conditions.

17 The modeled sulfuric acid concentration is only half of the observed value (Fig. 6). One
18 reason could be that the condensation sink of sulfuric acid is overestimated. Another reason
19 should relate to the unknown sulfuric acid production term missing from the chemistry
20 scheme (Eisele and Tanner, 1993; Boy et al., 2013; Berresheim et al., 2014). Because the
21 underestimation is observed both during night and daytime, the missing production term is
22 likely not related to photolysis. It should also be noted that the CIMS measurements may have
23 uncertainties of 30% to 60% (Plass-Dülmer et al., 2011). Importantly, the diurnal trend in
24 sulfuric acid concentrations is well captured, which is crucial for correctly simulating new
25 particle formation event.

26 The modeled diurnal concentration profiles of the sum of first stable reaction products from
27 OH, O₃ and NO₃ oxidation of monoterpenes and MBO are shown in Fig. 8. The list of first
28 stable reaction compounds are listed in Table 2. The concentrations of reaction products from
29 MBO oxidation are 10 to 100 times higher than the concentrations of reaction products from
30 monoterpenes, except in case of NO₃ oxidation. The concentrations of O₃ oxidation products
31 are about two to three orders of magnitude greater than that of OH oxidation products,
32 irrespective of the precursor species. Comparing to the concentrations of first stable O₃
33 oxidation products of MBO, which are fairly stable at a level of 3—6·10¹¹ molecules cm⁻³, the

1 concentrations of NO_3 oxidation products of MBO are negligible. The nighttime
2 concentrations of NO_3 oxidation products of monoterpenes are comparable with the daytime
3 concentrations of OH oxidation products of monoterpenes. The concentrations of NO_3
4 oxidation products of monoterpenes exhibit a clear diurnal trend that the concentrations are
5 high during the night low during the day, which are explained by the same diurnal trends of
6 NO_3 and monoterpenes concentrations. Opposite to the trend of NO_3 oxidation products of
7 monoterpenes, the concentrations of OH oxidation products of MBO show a clear diurnal
8 profile that peaks at noon and drops during night. Because the fast growth of nucleated
9 clusters often happens during daytime, it is suspected that the OH oxidation products of MBO
10 may possibly contribute to the early growth of particles at the site.

11 The overall outcome of emissions and chemistry is satisfactory in that all relevant aerosol
12 precursor gases are well simulated with respect to the diurnal trends. In theory,
13 underestimation of sulfuric acid concentrations should lead to less SOA formation, but this
14 problem can be compensated for during the sensitivity studies of the nucleation coefficient.

15

16 **4 Aerosol simulations**

17 The saturation vapor concentrations of organic condensing vapors (Vapor I, II, and III) in two
18 model experiments are listed in Table 1. The simulation results provide strong evidence that
19 BVOC play an important role in particle growth at MEFO (Fig. 9). In Experiment I, despite
20 using a very low saturation vapor concentration of 1 molecule cm^{-3} for Vapor I (OH oxidation
21 products of monoterpenes), the model simulated insufficient growth for particles to reach 15
22 nm, which is the minimum detectable size of the DMPS instrument used during the campaign.
23 The saturation vapor concentration for the ozone oxidation products (Vapor II) cannot be less
24 than 10^{10} molecules cm^{-3} due to its high concentration during the night; otherwise it would
25 cause unrealistic night-time particle growth (Fig. 8). With the same consideration, the
26 saturation vapor concentration of Vapor II in Experiment II was also kept quite high, at 10^{11}
27 molecules cm^{-3} . In Experiment II, nucleated clusters are able to grow large enough to pass the
28 instrument detection limit, but the particles do not continue to grow strongly enough in the
29 evening. Since there is no MBO source during the night, there should be some other aerosol
30 precursor gases present, for example, monoterpenes. Experiment III combined the
31 contributions from the oxidation products of both monoterpenes and MBO – the OH
32 oxidation products from MBO enable the freshly nucleated particles in the daytime to grow

1 large and fast enough while the nighttime NO_3 oxidation products from monoterpenes allow
2 particles to grow up to 100 nm. The simulated growth of particles above 15 nm compares well
3 with the DMPS measurements. These simulations are also consistent with results from Levin
4 et al. (2012; 2014) for hygroscopicity measurements at the BEACHON-ROCS site; these
5 authors showed that growth of new particles was likely driven by biogenic secondary organic
6 species, and the NPF events ultimately impacted aerosol chemical and physical properties for
7 particles up to cloud condensation nuclei (CCN) sizes.

8 Since lump sums of different oxidation products were used as the condensing vapors in this
9 modeling study, it was not possible to assign exact physical properties to the vapors. Based on
10 the implemented chemistry scheme, the molar mass of the three condensing vapors should
11 range from 200 to 300 Da. The saturation vapor concentration of 10^6 molecules cm^{-3} would
12 thus correspond to approximately $0.0001 - 0.0005 \mu\text{g m}^{-3}$, which is close to the saturation
13 vapor concentration of the extreme low volatility compounds suggested by Donahue et al.
14 (2011). The three experiments suggest the importance of extremely low volatility compounds
15 for growing particles, especially the role of monoterpenes and MBO as precursor gases in
16 different time of a day.

17 Particle number size distributions are shown together with above canopy wind direction
18 observations for the period of 19 to 22 August 2010 (DOY 231 to 234, Fig. 10), when
19 continuous sulfuric acid, MBO and monoterpene concentration measurements were available
20 (Fig. 11). We see that the modeled onset of nucleation, the first appearance of sub-3 nm
21 particles in simulated number size distribution, usually starts when the wind direction changes
22 from south to north. This is consistent with the fact that the source of anthropogenic influence
23 is from the Denver area northeast of the site. Anthropogenic SO_2 is advected to the forest and
24 is oxidized to H_2SO_4 on the way. The H_2SO_4 then triggers nucleation. We see the H_2SO_4
25 concentration rise in tandem with the change in wind direction. On 19 August 2010 (DOY
26 231) around noon the wind direction changed from west to northeast and to north. At the
27 same time as the air mass changed, we see a decrease in the concentration of measured
28 background particles larger than 100 nm. At that time a burst of particles between 20 to 50 nm
29 was observed. These particles were likely formed north of the measurement site and then
30 brought to the site through advection. A few hours later at about 19:00:00 LT, a short rain
31 quickly washed out most particles. This burst of particles before the rain matched well with
32 the simulated particle number size distribution for the same time period. We suspect that a
33 new particle formation event did occur in the forest on that day, but was just not captured by

1 the measurement instrument. In the evening, particles were removed by precipitation.
2 Similarly on 20 August 2010 (DOY 232), when the wind direction fluctuated between north
3 and south and the air mass was transported around the forest, we see a burst of particles
4 between 20 to 50 nm in the afternoon. For the rest of the day the particles were observed to
5 continue growing while wind persisted blowing from the south. The southern wind was likely
6 to bring polluted air to the site at late evening, which appeared as the high concentration of
7 particles over between 50 and 100 nm. Apart from this abrupt increase in concentrations of 50
8 – 100 nm particles, which cannot be captured by the column model, the observed number size
9 distribution is well simulated. Although no new particle formation was observed on 21
10 August 2010 (DOY 233), the model simulated a weak formation event. This tendency of the
11 model to predict new particle formation events when none are observed has already been
12 reported in the previous SOSAA model study by Zhou et al. (2014). It likely results from our
13 incomplete understanding of the NPF phenomenon, especially in cluster nucleation. Kinetic
14 nucleation parameterization by sulfuric acid is indeed too simple to account for the process,
15 which makes the simulated nucleation too sensitive to sulfuric acid concentration. On 22
16 August 2010 (DOY 234), the DMPS instrument captured Aitken mode particles for just a
17 short period of about an hour and the model simulation shows the same distribution at the
18 same time. The high MBO concentration observed on that day also favored SOA formation.
19 We thus suspect that the particles were forming in the area but the instrument failed to capture
20 the complete process due to the strong turbulence in the forest.

21

22 **5 Conclusion**

23 We applied the 1-D chemical-transport model with detailed aerosol dynamics, SOSAA, to
24 simulate results obtained during the summer 2010 BEACHON-ROCS campaign at Manitou
25 Forest Observatory. The model succeeded in reconstructing the meteorological conditions and
26 several important gas species including OH, MBO and monoterpenes during the daytime.
27 Although the latest Criegee reaction rates have been included, sulfuric acid concentration is
28 still underestimated by 50% compared to the measurements.

29 The SOSAA model indicated that mixing strength and chemistry can be reasonably predicted
30 and so aerosol simulations were then conducted in order to investigate particle growth. Due to
31 the assumption of horizontal homogeneity for a column model, there is some uncertainty due
32 to the incomplete description of the area's complex terrain and inhomogeneous forest

1 composition. Nevertheless, model simulations are useful for investigating SOA formation,
2 depicting the phenomenon with less influence of horizontal advection, which can hamper our
3 direct field observations. By diluting the advection effects via averaging, Fig. 9 presents a
4 possible pattern of particle growth at the site based on measurements and a successful
5 reproduction of the phenomenon by a state-of-the-art model incorporating the latest
6 knowledge of the processes involved. The modeled results emphasize the contribution from
7 local BVOC emissions to the particle growth. It is indicated that the organic condensing
8 compounds responsible for the growth of ultrafine particles may have a low saturation vapor
9 concentration around 10^6 molecules cm^{-3} . The compounds should have a similar daily pattern
10 and concentration level as the OH oxidation products of MBO, which is the dominant local
11 biogenic emitted compound. The concentrations of monoterpene oxidation products are found
12 to be insufficient for growing the ultrafine particles during daytime but their contribution to
13 the particle loading during nighttime could be important. Due to the anthropogenic origin of
14 SO_2 , which is the precursor gas of sulfuric acid that triggers nucleation, the model study
15 suggests that new particle formation events are likely to happen locally in the forest and
16 meantime under the influence of anthropogenic pollution.

17 The SOSAA model has been shown as a good tool for studying various atmospheric processes
18 including SOA formation constrained by observations. The model is expected to improve in
19 several aspects, one of which is the growth parameterization. At the moment the chosen
20 condensing molecules are lumped to several condensing vapor classes and assigned with
21 approximated properties. A new parameterization that calculates the exact physical properties,
22 such as saturation vapor pressure, for each specific condensing molecule is being developed.

23

24 **Acknowledgements**

25 We would like to thank the National Center for Atmospheric Research (NCAR) Advanced
26 Study Program, Helsinki University Centre of Environment (HENVI), the EC Seventh
27 Framework Program (Marie Curie Reintegration Program, “ALP-AIR”, grant no. 334084)
28 and the Nordic Centers of Excellence CRAICC for their generous financial support. We
29 would like to acknowledge participants in the NCAR BEACHON project for data sharing. We
30 wish to express thanks to our colleagues for all the discussions, especially to Dr. Sasha
31 Madronich, Dr. Tuomo Nieminen and Dr. Sam Hall for the valuable suggestions. We thank
32 CSC-IT center, Finland for providing the computing service. The National Center for

1 Atmospheric Research is sponsored by the United States National Science Foundation. Any
2 opinions, findings and conclusions or recommendations expressed in the publication are those
3 of the authors and do not necessarily reflect the views of the National Science Foundation.

4

5 **References**

6 Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds, *J. Phys. Chem. Ref.*
7 *Data, Monograph No. 2*, 1–216, 1450, 1994.

8 Allan, J. D., Alfarra, M. R., Bower, K. N., Coe, H., Jayne, J. T., Worsnop, D. R., Aalto, P. P.,
9 Kulmala, M., Hyötyläinen, T., Cavalli, F. and Laaksonen, A.: Size and composition
10 measurements of background aerosol and new particle growth in a Finnish forest during
11 QUEST 2 using an Aerodyne Aerosol Mass Spectrometer, *Atmos. Chem. Phys.*, 6, 315-327,
12 10.5194/acp-6-315-2006, 2006.

13 Andreae, M. O. and Crutzen, P. J.: Atmospheric Aerosols: Biogeochemical Sources and Role
14 in Atmospheric Chemistry, *Science*, 276, 1052-1058, 10.1126/science.276.5315.1052, 1997.

15 Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, *Atmos. Environ.*, 34, 2063-2101,
16 2000.

17 Berresheim, H., Adam, M., Monahan, C., O'Dowd, C., Plane, J. M. C., Bohn, B. and Rohrer,
18 F.: Missing SO₂ oxidant in the coastal atmosphere? – observations from high-resolution
19 measurements of OH and atmospheric sulfur compounds, *Atmos. Chem. Phys.*, 14, 12209-
20 12223, 10.5194/acp-14-12209-2014, 2014.

21 Boy, M., Kulmala, M., Ruuskanen, T. M., Pihlatie, M., Reissell, A., Aalto, P. P., Keronen, P.,
22 Dal Maso, M., Hellen, H., Hakola, H., Jansson, R., Hanke, M. and Arnold, F.: Sulphuric acid
23 closure and contribution to nucleation mode particle growth, *Atmos. Chem. Phys.*, 5, 863-
24 878, 10.5194/acp-5-863-2005, 2005.

25 Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg, J., Rathbone, J.,
26 Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B.,
27 Kulmala, M. and Guenther, A.: New particle formation in the Front Range of the Colorado
28 Rocky Mountains, *Atmos. Chem. Phys.*, 8, 1577-1590, 10.5194/acp-8-1577-2008, 2008.

29 Boy, M., Sogachev, A., Lauros, J., Zhou, L., Guenther, A. and Smolander, S.: SOSA --- a new
30 model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL ---

1 Part 1: Model description and initial evaluation, *Atmos. Chem. Phys.*, 11, 43-51, 10.5194/acp-
2 11-43-2011, 2011.

3 Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dülmer,
4 Sipilä, M., Petäjä, T., Mauldin, L., Berresheim, H. and Kulmala, M.: Oxidation of SO₂ by
5 stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid
6 concentrations, *Atmos. Chem. Phys.*, 13, 3865-3879, 10.5194/acp-13-3865-2013, 2013.

7 Chan, A. W. H., Galloway, M. M., Kwan, A. J., Chhabra, P. S., Keutsch, F. N., Wennberg, P.
8 O., Flagan, R. C. and Seinfeld, J. H.: Photooxidation of 2-Methyl-3-Buten-2-ol (MBO) as a
9 Potential Source of Secondary Organic Aerosol, *Environ. Sci. Technol.*, 43, 4647-4652, 2009;
10 2009.

11 Cui, Y. Y., Hodzic, A., Smith, J. N., Ortega, J., Brioude, J., Matsui, H., Levin, E. J. T.,
12 Turnipseed, A., Winkler, P. and de Foy, B.: Modeling ultrafine particle growth at a pine forest
13 site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011, *Atmos. Chem.*
14 *Phys.*, 14, 11011-11029, 10.5194/acp-14-11011-2014, 2014.

15 Damian, V., Sandu, A., Damian, M., Potra, F. and Carmichael, G. R.: The kinetic
16 preprocessor KPP-a software environment for solving chemical kinetics, *Comput. Chem.*
17 *Eng.*, 26, 1567-1579, 2002.

18 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P. and Kobayashi, S.: The
19 ERA-Interim reanalysis: Configuration and performance of the data assimilation system. *Q J*
20 *Roy Meteor Soc.*, 137:553–597, 2011.

21 DiGangi, J. P., Boyle, E. S., Karl, T., Harley, P., Turnipseed, A., Kim, S., Cantrell, C.,
22 Maudlin III, R. L., Zheng, W., Flocke, F., Hall, S. R., Ullmann, K., Nakashima, Y., Paul, J.
23 B., Wolfe, G. M., Desai, A. R., Kajii, Y., Guenther, A. and Keutsch, F. N.: First direct
24 measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy
25 formaldehyde sources, *Atmos. Chem. Phys.*, 11, 10565-10578, 10.5194/acp-11-10565-2011,
26 2011.

27 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M.,
28 Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I., Rissanen, M.,
29 Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T.,
30 Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T.,

1 Petäjä, T., Wahner, A., Kerminen, V., Kulmala, M., Worsnop, D. R., Wildt, J. and Mentel, T.
2 F.: A large source of low-volatility secondary organic aerosol, *Nature*, 506, 476-479, 2014.

3 Eisele, F. L. and Tanner, D. J.: Measurement of the gas phase concentration of H₂SO₄ and
4 methane sulfonic acid and estimates of H₂SO₄ production and loss in the atmosphere, *J.*
5 *Geophys. Res. Atmos.*, 98, 9001-9010, 10.1029/93JD00031, 1993.

6 Fuentes, J. D., Gu, L., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J. W., Ciccioli,
7 P., Lamb, B., Geron, C., Guenther, A., Sharkey, T. D. and Stockwell, W.: Biogenic
8 Hydrocarbons in the Atmospheric Boundary Layer: A Review, *Bull. Amer. Meteor. Soc.*, 81,
9 1537-1575, 2000; 2000.

10 Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P.,
11 Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju,
12 R., Taylor, J. and Zimmerman, P.: A global model of natural volatile organic compound
13 emissions, *J. Geophys. Res. Atmos.*, 100, 8873-8892, 10.1029/94JD02950, 1995.

14 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I. and Geron, C.: Estimates of
15 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
16 Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181-3210, 10.5194/acp-6-3181-2006, 2006.

17 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K. and
18 Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1
19 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, *Geosci.*
20 *Model Dev.*, 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012.

21 Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W. and Lindinger, W.: Proton
22 transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level, *Int. J. Mass*
23 *Spectrom. Ion Processes*, 149-150, 609-619, 1995.

24 Harley, P., Eller, A., Guenther, A. and Monson, R.: Observations and models of emissions of
25 volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control
26 by light, temperature and stomatal conductance, *Oecologia*, 176, 35-55, 2014.

27 Hoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., Hallar, A. G.,
28 Huff Hartz, K., Petters, M. D., Petäjä, T., Rosenoern, T. and Sullivan, A. P.: A review of the
29 anthropogenic influence on biogenic secondary organic aerosol, *Atmos. Chem. Phys.*, 11,
30 321-343, 10.5194/acp-11-321-2011, 2011.

31 Isidorov, V.: *Organic Chemistry of the Earth's Atmosphere*, Springer-Verlag, Berlin, 1990.

1 Jenkin, M. E., Saunders, S. M. and Pilling, M. J.: The tropospheric degradation of volatile
2 organic compounds: a protocol for mechanism development, *Atmos. Environ.*, 31, 81-104,
3 1997.

4 Jenkin, M. E., Saunders, S. M., Wagner, V. and Pilling, M. J.: Protocol for the development
5 of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic
6 volatile organic compounds, *Atmos. Chem. Phys.*, 3, 181-193, 10.5194/acp-3-181-2003,
7 2003.

8 Junkermann, F., Platt, U., and Volz-Thomas, A.: A photoelectric detector for the
9 measurement of photolysis frequencies of ozone and other atmospheric molecules, *J. Atmos.*
10 *Chem.*, 8, 203–227, 1989.

11 Jung, J., Miyazaki, Y. and Kawamura, K.: Different characteristics of new particle formation
12 between urban and deciduous forest sites in Northern Japan during the summers of 2010-
13 2011, *Atmos. Chem. Phys.*, 13, 51-68, 10.5194/acp-13-51-2013, 2013.

14 Karl, T., Kaser, L. and Turnipseed, A.: Eddy covariance measurements of isoprene and 232-
15 MBO based on NO+ time-of-flight mass spectrometry, *Int. J. Mass Spectrom.*, 365-366, 15-
16 19, 2014.

17 Kaser, L., Karl, T., Guenther, A., Graus, M., Schnitzhofer, R., Turnipseed, A., Fischer, L.,
18 Harley, P., Madronich, M., Gochis, D., Keutsch, F. N. and Hansel, A.: Undisturbed and
19 disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and
20 MEGAN 2.1 model results, *Atmos. Chem. Phys.*, 13, 11935-11947, 10.5194/acp-13-11935-
21 2013, 2013a.

22 Kaser, L., Karl, T., Schnitzhofer, R., Graus, M., Herdlinger-Blatt, I. S., DiGangi, J. P., Sive,
23 B., Turnipseed, A., Hornbrook, R. S., Zheng, W., Flocke, F. M., Guenther, A., Keutsch, F. N.,
24 Apel, E. and Hansel, A.: Comparison of different real time VOC measurement techniques in a
25 ponderosa pine forest, *Atmos. Chem. Phys.*, 13, 2893-2906, 10.5194/acp-13-2893-2013,
26 2013b.

27 Kerminen, V., Virkkula, A., Hillamo, R., Wexler, A. S. and Kulmala, M.: Secondary organics
28 and atmospheric cloud condensation nuclei production, *J. Geophys. Res. Atmos.*, 105, 9255-
29 9264, 10.1029/1999JD901203, 2000.

1 Kerminen, V., Lihavainen, H., Komppula, M., Viisanen, Y. and Kulmala, M.: Direct
2 observational evidence linking atmospheric aerosol formation and cloud droplet activation,
3 Geophys. Res. Lett., 32, - L14803, 10.1029/2005GL023130, 2005.

4 Kerminen, V. -., Petäjä, T., Manninen, H. E., Paasonen, P., Nieminen, T., Sipilä, M.,
5 Junninen, H., Ehn, M., Gagné, S., Laakso, L., Riipinen, I., Vehkamäki, H., Kurten, T., Ortega,
6 I. K., Dal Maso, M., Brus, D., Hyvärinen, A., Lihavainen, H., Leppä, J., Lehtinen, K. E. J.,
7 Mirme, A., Mirme, S., Hörrak, U., Berndt, T., Stratmann, F., Birmili, W., Wiedensohler, A.,
8 Metzger, A., Dommen, J., Baltensperger, U., Kiendler-Scharr, A., Mentel, T. F., Wildt, J.,
9 Winkler, P. M., Wagner, P. E., Petzold, A., Minikin, A., Plass-Dülmer, C., Pöschl, U.,
10 Laaksonen, A. and Kulmala, M.: Atmospheric nucleation: highlights of the EUCAARI project
11 and future directions, Atmos. Chem. Phys., 10, 10829-10848, 10.5194/acp-10-10829-2010,
12 2010.

13 Kim, S., Karl, T., Guenther, A., Tyndall, G., Orlando, J., Harley, P., Rasmussen, R. and Apel,
14 E.: Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC) in
15 a ponderosa pine ecosystem: interpretation of PTR-MS mass spectra, Atmos. Chem. Phys.,
16 10, 1759-1771, 10.5194/acp-10-1759-2010, 2010.

17 Kim, S., Wolfe, G. M., Mauldin, L., Cantrell, C., Guenther, A., Karl, T., Turnipseed, A.,
18 Greenberg, J., Hall, S. R., Ullmann, K., Apel, E., Hornbrook, R., Kajii, Y., Nakashima, Y.,
19 Keutsch, F. N., DiGangi, J. P., Henry, S. B., Kaser, L., Schnitzhofer, R., Graus, M., Hansel,
20 A., Zheng, W. and Flocke, F. F.: Evaluation of HO_x sources and cycling using measurement-
21 constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT)
22 dominated ecosystem, Atmos. Chem. Phys., 13, 2031-2044, 10.5194/acp-13-2031-2013,
23 2013.

24 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagne,
25 S., Ickes, L., Kurten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S.,
26 Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A.,
27 Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud,
28 W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E.,
29 R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela,
30 A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y.,
31 Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
32 Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U.

1 and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
2 aerosol nucleation, *Nature*, 476, 429-433, 2011.

3 Korhonen, H., Lehtinen, K. E. J. and Kulmala, M.: Multicomponent aerosol dynamics model
4 UHMA: model development and validation, *Atmos. Chem. Phys.*, 4, 757-771, 10.5194/acp-4-
5 757-2004, 2004.

6 Kulmala, M., Toivonen, A., Mäkelä, J. M. and Laaksonen, A.: Analysis of the growth of
7 nucleation mode particles observed in Boreal forest, *Tellus B*, 50, 449 – 462, 1998.

8 Kulmala, M., Kerminen, V., Anttila, T., Laaksonen, A. and O'Dowd, C. D.: Organic aerosol
9 formation via sulphate cluster activation, *J. Geophys. Res. Atmos.*, 109, - D04205,
10 10.1029/2003JD003961, 2004a.

11 Kulmala, M., Laakso, L., Lehtinen, K. E. J., Riipinen, I., Dal Maso, M., Anttila, T.,
12 Kerminen, V. -., Hörrak, U., Vana, M. and Tammet, H.: Initial steps of aerosol growth,
13 *Atmos. Chem. Phys.*, 4, 2553-2560, 10.5194/acp-4-2553-2004, 2004b.

14 Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. -., Birmili,
15 W. and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a
16 review of observations, *J. Aerosol Sci.*, 35, 143-176, 2004c.

17 Kulmala, M. and Kerminen, V.: On the formation and growth of atmospheric nanoparticles,
18 *Atmos. Res.*, 90, 132-150, 2008.

19 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T.,
20 Petäjä, T., Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E.,
21 Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen, P., Mikkilä, J., Vanhanen, J.,
22 Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamäki,
23 H., Bäck, J., Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M. V., Smith, J. N., Ehn, M.,
24 Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A., Kerminen, V. and Worsnop, D. R.: Direct
25 Observations of Atmospheric Aerosol Nucleation, *Science*, 339, 943-946,
26 10.1126/science.1227385, 2013.

27 Laaksonen, A., Kulmala, M., O'Dowd, C. D., Joutsensaari, J., Vaattovaara, P., Mikkonen, S.,
28 Lehtinen, K. E. J., Sogacheva, L., Dal Maso, M., Aalto, P., Petäjä, T., Sogachev, A., Yoon, Y.
29 J., Lihavainen, H., Nilsson, D., Facchini, M. C., Cavalli, F., Fuzzi, S., Hoffmann, T., Arnold,
30 F., Hanke, M., Sellegrí, K., Umann, B., Junkermann, W., Coe, H., Allan, J. D., Alfarra, M. R.,
31 Worsnop, D. R., Riekkola, M. -., Hyötyläinen, T. and Viisanen, Y.: The role of VOC

1 oxidation products in continental new particle formation, *Atmos. Chem. Phys.*, 8, 2657-2665,
2 10.5194/acp-8-2657-2008, 2008.

3 Lamarque, J. -, Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse,
4 Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van
5 Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi,
6 K. and van Vuuren, D. P.: Historical (1850-2000) gridded anthropogenic and biomass burning
7 emissions of reactive gases and aerosols: methodology and application, *Atmos. Chem. Phys.*,
8 10, 7017-7039, 10.5194/acp-10-7017-2010, 2010.

9 Lauros, J., Sogachev, A., Smolander, S., Vuollekoski, H., Sihto, S.-L., Mammarella, I.,
10 Laakso, L., Üllar, R. and Boy, M.: Particle concentration and flux dynamics in the
11 atmospheric boundary layer as the indicator of formation mechanism, *Atmos. Chem. Phys.*,
12 11, 5591-5601, 10.5194/acp-11-5591-2011, 2011.

13 Levin, E. J. T., Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Sullivan, R. C., Atwood, S.
14 A., Ortega, J., DeMott, P. J. and Smith, J. N.: An annual cycle of size-resolved aerosol
15 hygroscopicity at a forested site in Colorado, *J. Geophys. Res.-Atmos.*, 117, D06201,
16 doi:10.1029/2011jd016854, 2012.

17 Levin, E. J. T., Prenni, A. J., Palm, B. B., Day, D. A., Campuzano-Jost, P., Winkler, P. M.,
18 Kreidenweis, S. M., DeMott, P. J., Jimenez, J. L. and Smith, J. N.: Size-resolved aerosol
19 composition and its link to hygroscopicity at a forested site in Colorado, *Atmospheric
20 Chemistry and Physics*, 14, 2657 – 2667, 10.5194/acp-14-2657-2014, 2014.

21 Lindinger, W., Hansel, A. and Jordan, A.: On-line monitoring of volatile organic compounds
22 at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical
23 applications, food control and environmental research, *Int. J. Mass Spectrom. Ion Processes*,
24 173, 191-241, 1998.

25 Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, *Atmos. Chem. Phys.*,
26 5, 715-737, 10.5194/acp-5-715-2005, 2005.

27 Madronich, S.: UV radiation in the natural and perturbed atmosphere, *Environmental Effects
28 of UV (Ultraviolet) Radiation* (M. Evini, ed.), Lewis Publisher, Boca Raton, pp. 17-69, 1993.

29 Madronich, S. and Flocke, S.: The role of solar radiation in atmospheric chemistry, *Handbook
30 of Environmental Chemistry* (P. Boule, ed.), Springer-Verlag, Heidelberg, 1998.

1 Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T.,
2 Stratmann, F., Kerminen, V. -M and Kulmala, M.: A new atmospherically relevant oxidant of
3 sulphur dioxide, *Nature*, 488, 193-196, 2012.

4 Mogensen, D., Smolander, S., Sogachev, A., Zhou, L., Sinha, V., Guenther, A., Williams, J.,
5 Nieminen, T., Kajos, M. K., Rinne, J., Kulmala, M. and Boy, M.: Modelling atmospheric OH-
6 reactivity in a boreal forest ecosystem, *Atmos. Chem. Phys.*, 11, 9709-9719, 10.5194/acp-11-
7 9709-2011, 2011.

8 Mogensen, D., Gierens, R., Crowley, J. N., Keronen, P., Smolander, S., Sogachev, A.,
9 Nölscher, A. C., Zhou, L., Kulmala, M., Tang, M. J., Williams, J. and Boy, M.: The oxidation
10 capacity of the boreal forest: first simulated reactivities of O₃ and NO₃, *Atmos. Chem. Phys.*
11 *Discuss.*, 14, 30947-31007, 10.5194/acpd-14-30947-2014, 2014.

12 Nakashima Y., Kato,S., Greenberg,J., Harley,P., Karl,T., Turnipseed,A., Apel,E.,
13 Guenther,A., Smith,J. & Kajii,Y. (2014). Total OH reactivity measurements in ambient air in
14 a southern Rocky mountain ponderosa pine forest during BEACHON-SRM08 summer
15 campaign. *Atmos. Environ.* 85: 1-8.

16 Ortega, I. K., Olenius, T., Kupiainen-Määttä, O., Loukonen, V., Kurtén, T. and Vehkamäki,
17 H.: Electrical charging changes the composition of sulfuric acid-ammonia-dimethylamine
18 clusters, *Atmos. Chem. Phys.*, 14, 7995-8007, 10.5194/acp-14-7995-2014, 2014.

19 Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petäjä, T., Plass-Dülmer, C., Flentje,
20 H., Birmili, W., Wiedensohler, A., Hörrak, U., Metzger, A., Hamed, A., Laaksonen, A.,
21 Facchini, M. C., Kerminen, V. - and Kulmala, M.: On the roles of sulphuric acid and low-
22 volatility organic vapours in the initial steps of atmospheric new particle formation, *Atmos.*
23 *Chem. Phys.*, 10, 11223-11242, 10.5194/acp-10-11223-2010, 2010.

24 Pierce, J. R. and Adams, P. J.: Uncertainty in global CCN concentrations from uncertain
25 aerosol nucleation and primary emission rates, *Atmos. Chem. Phys.*, 9, 1339-1356,
26 10.5194/acp-9-1339-2009, 2009.

27 Pirjola, L., Kulmala, M., Wilck, M., Bischoff, A., Stratmann, F. and Otto, E.: Formation of
28 sulphuric acid aerosols and cloud condensation nuclei: an expression for significant
29 nucleation and model comparison, *J. Aerosol Sci.*, 30, 1079-1094, 1999.

1 Plass-Dülmer, C., Elste, T., Paasonen, P. and Petäjä, T.: Sulphuric acid measurements by
2 CIMS – uncertainties and consistency between various data sets, Geophysical Research
3 Abstracts 13, EGU2011-11681.

4 Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Häkkinen, S., Ehn, M., Junninen, H.,
5 Lehtipalo, K., Petäjä, T., Slowik, J., Chang, R., Shantz, N. C., Abbatt, J., Leaitch, W. R.,
6 Kerminen, V. -., Worsnop, D. R., Pandis, S. N., Donahue, N. M. and Kulmala, M.: Organic
7 condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN)
8 concentrations, *Atmos. Chem. Phys.*, 11, 3865-3878, 10.5194/acp-11-3865-2011, 2011.

9 Saunders, S. M., Jenkin, M. E., Derwent, R. G. and Pilling, M. J.: Protocol for the
10 development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric
11 degradation of non-aromatic volatile organic compounds, *Atmos. Chem. Phys.*, 3, 161-180,
12 10.5194/acp-3-161-2003, 2003.

13 Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M., Lehtipalo, K., Dommen, J.,
14 Ehrhart, S., Ortega, I. K., Franchin, A., Nieminen, T., Riccobono, F., Hutterli, M., Duplissy,
15 J., Almeida, J., Amorim, A., Breitenlechner, M., Downard, A. J., Dunne, E. M., Flagan, R. C.,
16 Kajos, M., Keskinen, H., Kirkby, J., Kupc, A., Kürten, A., Kurtén, T., Laaksonen, A., Mathot,
17 S., Onnela, A., Praplan, A. P., Rondo, L., Santos, F. D., Schallhart, S., Schnitzhofer, R.,
18 Sipilä, M., Tomé, A., Tsagkogeorgas, G., Vehkamäki, H., Wimmer, D., Baltensperger, U.,
19 Carslaw, K. S., Curtius, J., Hansel, A., Petäjä, T., Kulmala, M., Donahue, N. M. and
20 Worsnop, D. R.: Molecular understanding of atmospheric particle formation from sulfuric
21 acid and large oxidized organic molecules, *Proc. Natl. Acad. Sci. U.S.A.*,
22 10.1073/pnas.1306973110, 2013.

23 Sellegrí, K., Hanke, M., Umann, B., Arnold, F. and Kulmala, M.: Measurements of organic
24 gases during aerosol formation events in the boreal forest atmosphere during QUEST, *Atmos.*
25 *Chem. Phys.*, 5, 373-384, 10.5194/acp-5-373-2005, 2005.

26 Seroji, A. R., Webb, A. R., Coe, H., Monks, P. S. and Rickard, A. R.: Derivation and
27 validation of photolysis rates of O₃, NO₂, and CH₂O from a GUV-541 radiometer, *Journal of*
28 *Geophysical Research: Atmospheres*, 109, n/a-n/a, 10.1029/2004JD004674, 2004.

29 Sharkey, T. D., Wiberley, A. E. and Donohue, A. R.: Isoprene Emission from Plants: Why
30 and How, *Ann. Bot.*, 101, 5-18, 10.1093/aob/mcm240, 2008.

1 Sihto, S. -, Kulmala, M., Kerminen, V. -, Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen,
2 H., Arnold, F., Janson, R., Boy, M., Laaksonen, A. and Lehtinen, K. E. J.: Atmospheric
3 sulphuric acid and aerosol formation: implications from atmospheric measurements for
4 nucleation and early growth mechanisms, *Atmos. Chem. Phys.*, 6, 4079-4091, 10.5194/acp-6-
5 4079-2006, 2006.

6 Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J.,
7 Mauldin, R. L., Hyvärinen, A., Lihavainen, H. and Kulmala, M.: The Role of Sulfuric Acid in
8 Atmospheric Nucleation, *Science*, 327, 1243-1246, 10.1126/science.1180315, 2010.

9 Sogachev, A., Menzhulin, G. V., Heimann, M. and Lloyd, J.: A simple three-dimensional
10 canopy-planetary boundary layer simulation model for scalar concentrations and fluxes,
11 *Tellus B*, Vol 54, No 5 (2002), 2002.

12 Sogachev, A., Kelly, M. and Leclerc, M.: Consistent Two-Equation Closure Modelling for
13 Atmospheric Research: Buoyancy and Vegetation Implementations, *Bound.-Layer Meteor.*,
14 145, 307-327, 2012.

15 Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W.,
16 Zhang, Q., Canagaratna, M. R., Allan, J., Coe, H., McFiggans, G., Rap, A. and Forster, P.:
17 Aerosol mass spectrometer constraint on the global secondary organic aerosol budget, *Atmos.*
18 *Chem. Phys.*, 11, 12109-12136, 10.5194/acp-11-12109-2011, 2011.

19 Tanner, D. J., Jefferson, A. and Eisele, F. L.: Selected ion chemical ionization mass
20 spectrometric measurement of OH, *J. Geophys. Res. Atmos.*, 102, 6415-6425,
21 10.1029/96JD03919, 1997.

22 Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J. and Jefferson, A.:
23 Measurements of new particle formation and ultrafine particle growth rates at a clean
24 continental site, *J. Geophys. Res. Atmos.*, 102, 4375-4385, 10.1029/96JD03656, 1997.

25 Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E. and
26 Taatjes, C. A.: Direct Kinetic Measurements of Criegee Intermediate (CH₂OO) Formed by
27 Reaction of CH₂I with O₂, *Science*, 335, 204-207, 10.1126/science.1213229, 2012.

28 Zhang, H., Worton, D. R., Lewandowski, M., Ortega, J., Rubitschun, C. L., Park, J.,
29 Kristensen, K., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Jaoui, M., Offenberg, J. H.,
30 Kleindienst, T. E., Gilman, J., Kuster, W. C., de Gouw, J., Park, C., Schade, G. W., Frossard,
31 A. A., Russell, L., Kaser, L., Jud, W., Hansel, A., Cappellin, L., Karl, T., Glasius, M.,

1 Guenther, A., Goldstein, A. H., Seinfeld, J. H., Gold, A., Kamens, R. M. and Surratt, J. D.:
2 Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-
3-Buten-2-ol (MBO) in the Atmosphere, *Environ. Sci. Technol.*, 46, 9437-9446, 2012; 2012.

4 Zhang, H., Zhang, Z., Cui, T., Lin, Y. H., Bhathela, N. A., Ortega, J., Worton, D. R.,
5 Goldstein, A. H., Guenther, A., Jimenez, J. L., Gold, A. and Surratt, J. D.: Secondary Organic
6 Aerosol Formation via 2-Methyl-3-buten-2-ol Photooxidation: Evidence of Acid-Catalyzed
7 Reactive Uptake of Epoxides, *Environ. Sci. Technol. Lett.*, 1, 242-247, 10.1021/ez500055f
8 [doi], 2014.

9 Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L. T. and Molina, M.
10 J.: Atmospheric New Particle Formation Enhanced by Organic Acids, *Science*, 304, 1487-
11 1490, 10.1126/science.1095139, 2004.

12 Zhou, L., Nieminen, T., Mogensen, D., Smolander, S., Rusanen, A., Kulmala, M. and Boy,
13 M.: SOSAA – a new model to simulate the concentrations of organic vapours, sulphuric acid
14 and aerosols inside the ABL – Part 2: Aerosol dynamics and one case study at a boreal forest
15 site, *Boreal Environ. Res.*, 19B: 237, 2014.

16

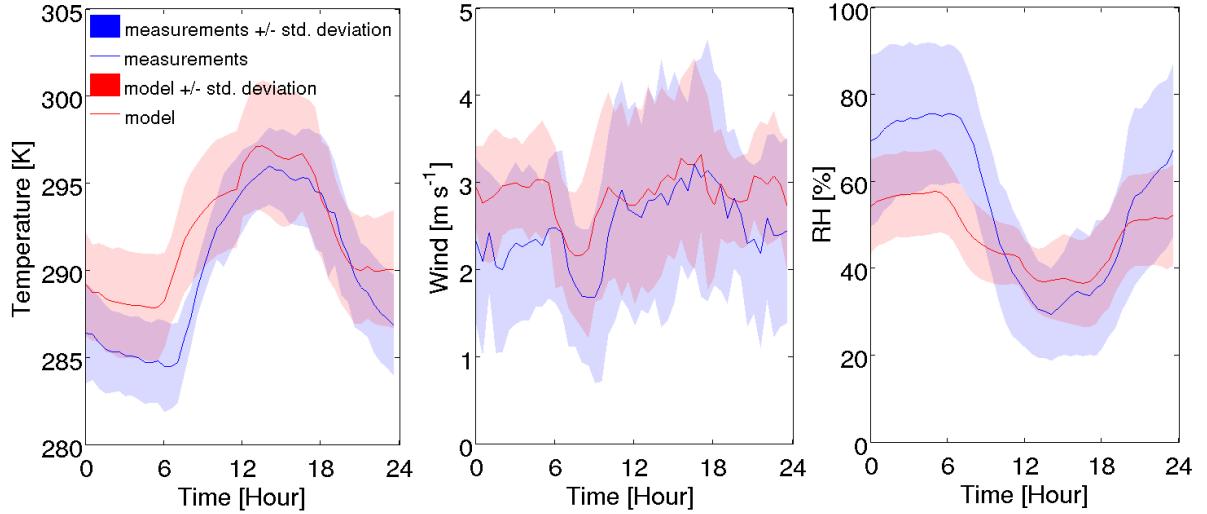
1 Table 1. Saturation vapor concentration of each organic condensing vapor, unit: # cm⁻³

	Vapor I	Vapor II	Vapor III
Experiment I	1	10 ¹⁰	1
Experiment II	10 ⁶	10 ¹¹	1
Experiment III	10 ⁶	10 ¹¹	10 ⁶

2

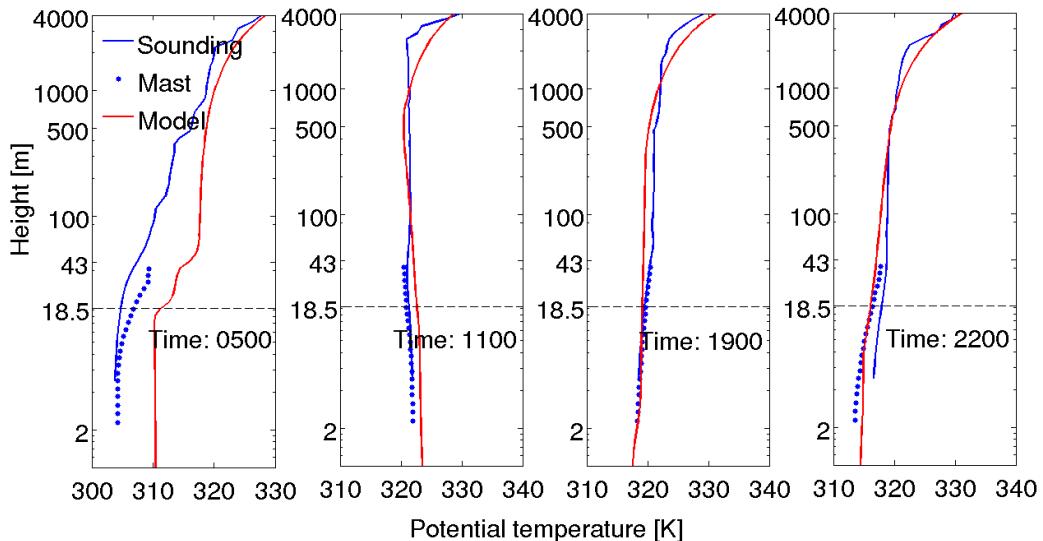
3

4

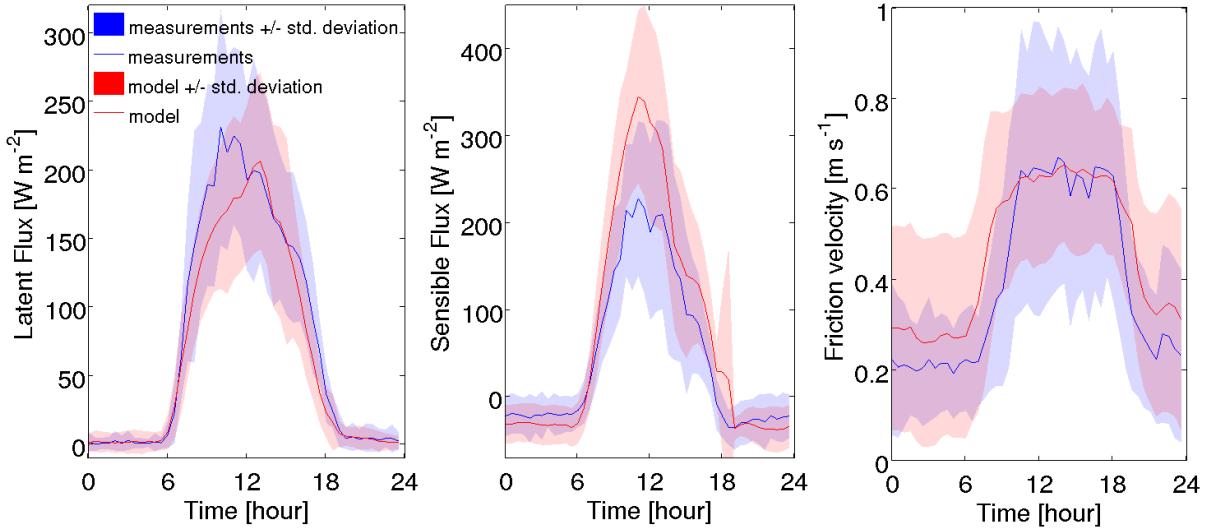

5 Table 2. Stable reaction products of OH, O₃ and NO₃ oxidation of monoterpenes and ozone
6 based on MCM chemistry

	OH	O ₃	NO ₃
Monoterpenes	LIMAO ₂ LIMBO ₂ LIMCO ₂ BPINAO ₂ BPINBO ₂ BPINCO ₂ APINAO ₂ APINBO ₂ APINCO ₂	LIMOOA LIMBOO C92302 NOPINOOA NOPINONE NAPINOOA NAPINOOB	NLIMO ₂ NBPINAO ₂ NBPINBO ₂ NAPINAO ₂ NAPINBO ₂
MBO	MBOAO ₂ MBOBO ₂	IBUTALOH MBOOO IPROPOL CH ₃ COCH ₃	NMBOAO ₂ NMBOBO ₂

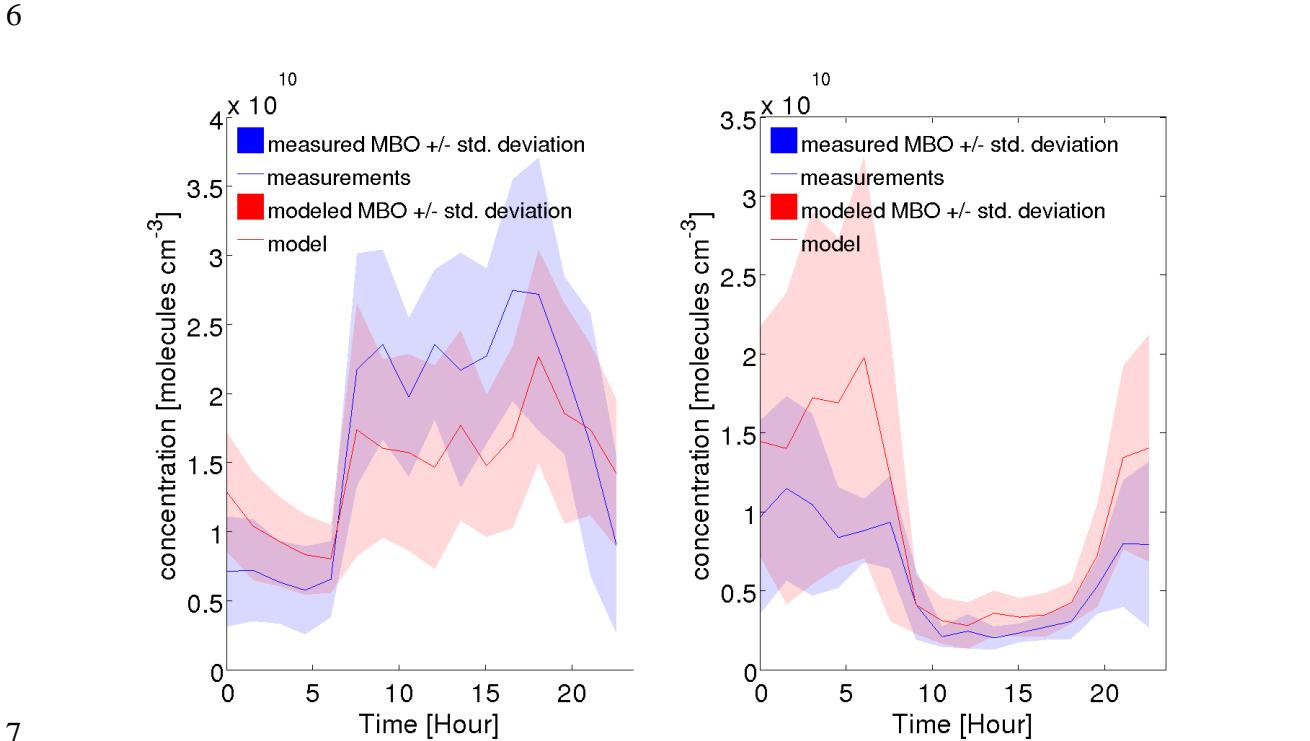
7


8

9

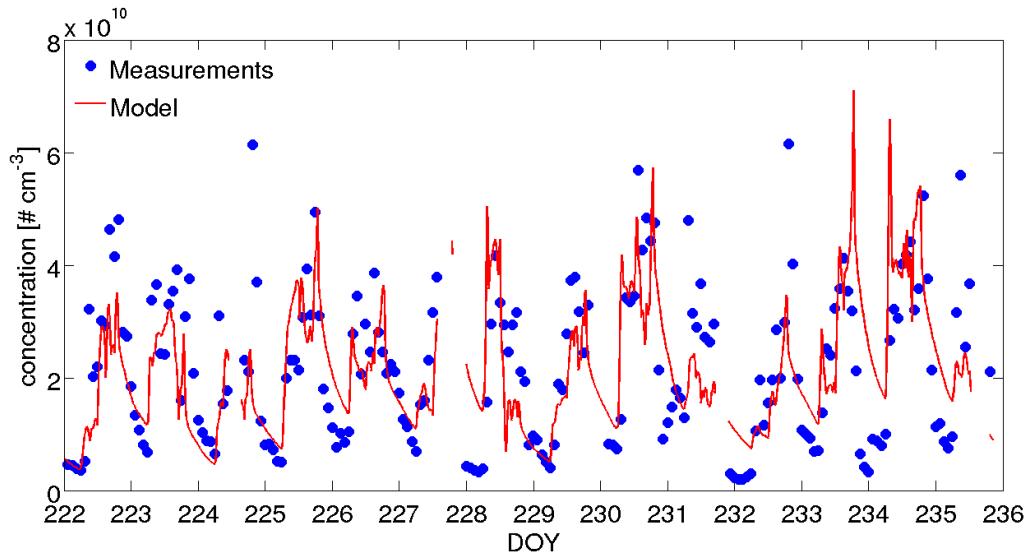

2 Figure 1. Averaged modeled and measured diurnal cycles of temperature (left)
3 (middle), and relative humidity (RH, right). Measurement average (line) and ± 1 standard
4 deviation (shaded area) are in blue, model average (line) and ± 1 standard deviation are in red.
5 The comparisons are made above canopy at 30 m.

6



7
8 Figure 2. Observed and modeled vertical profiles of potential temperature at different time on
9 22 August 2010 (DOY 234). The y-axis (height) is in logarithmic scale.

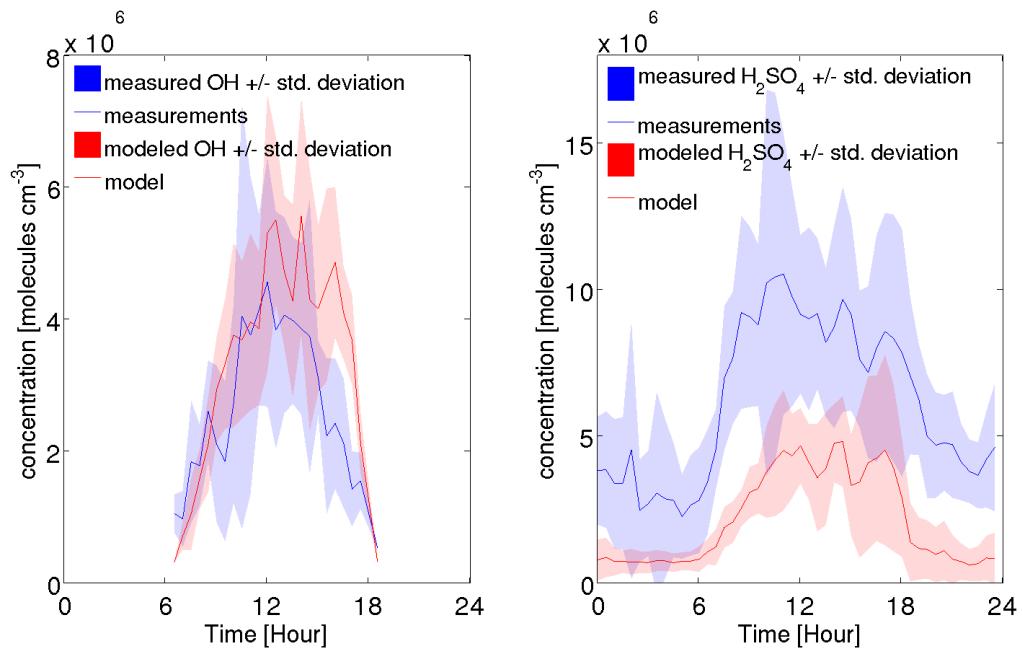
10



1 Figure 3. Averaged modeled and measured diurnal cycles of latent heat flux (left), sensible
2 heat flux (middle) and friction velocity (right). Measurement average (line) and ± 1 standard
3 deviation (shaded area) are in blue, model average (line) and ± 1 standard deviation (shaded
4 area) are in red. The comparison is made above the canopy at 30 m.
5

8 Figure 4. Averaged modeled and measured diurnal cycles of MBO (left) and monoterpenes
9 (MT, right) concentrations. Measurement average (line) and ± 1 standard deviation (shaded
10 area) are in blue, model average (line) and ± 1 standard deviation (shaded area) are in red. The
11 comparison is made at 3.5 m.

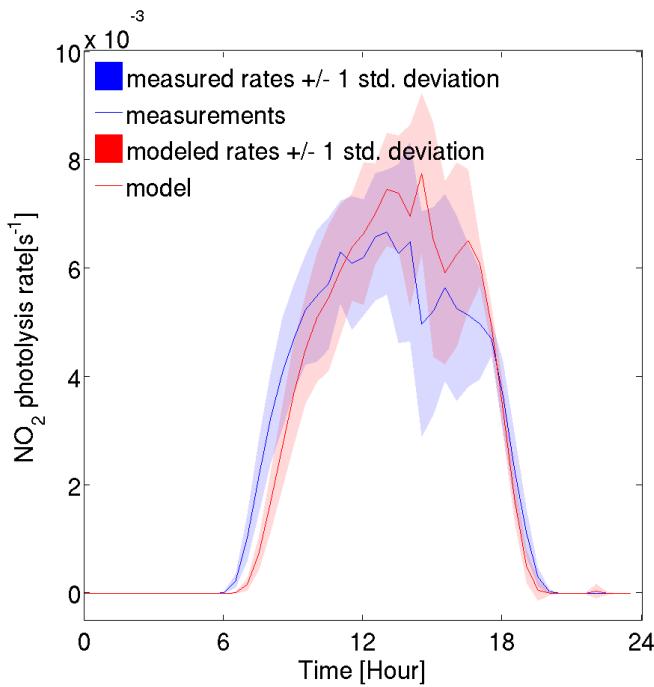
1

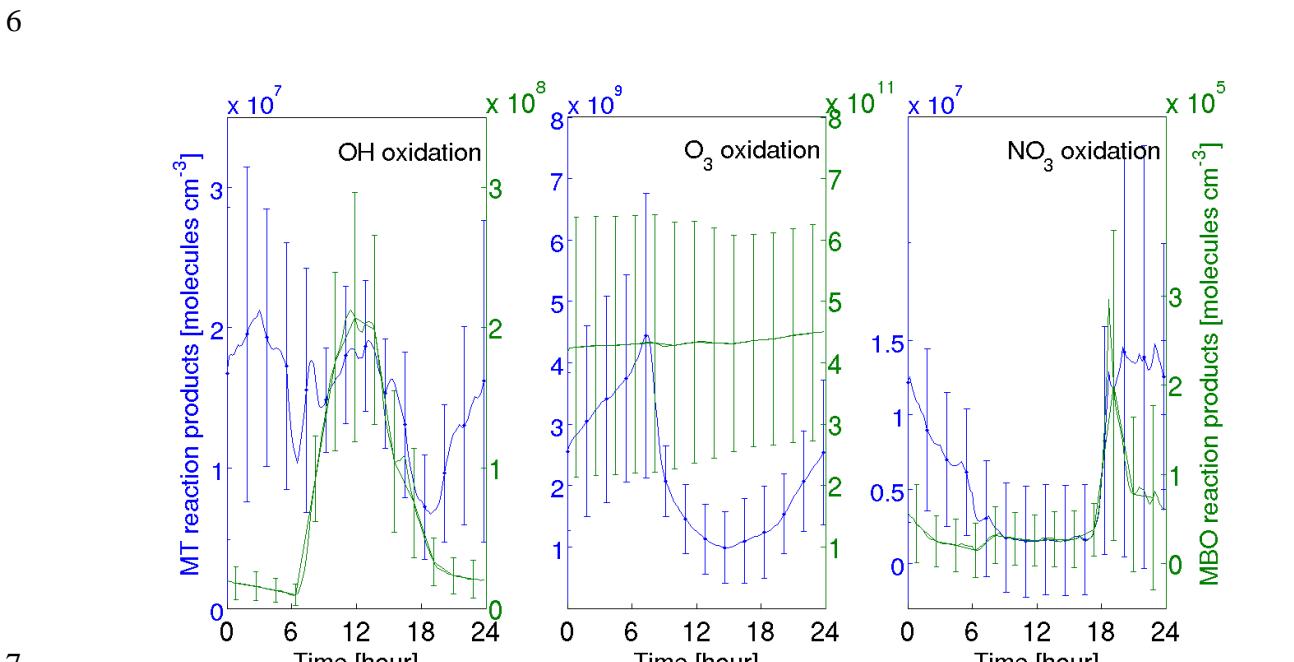


2

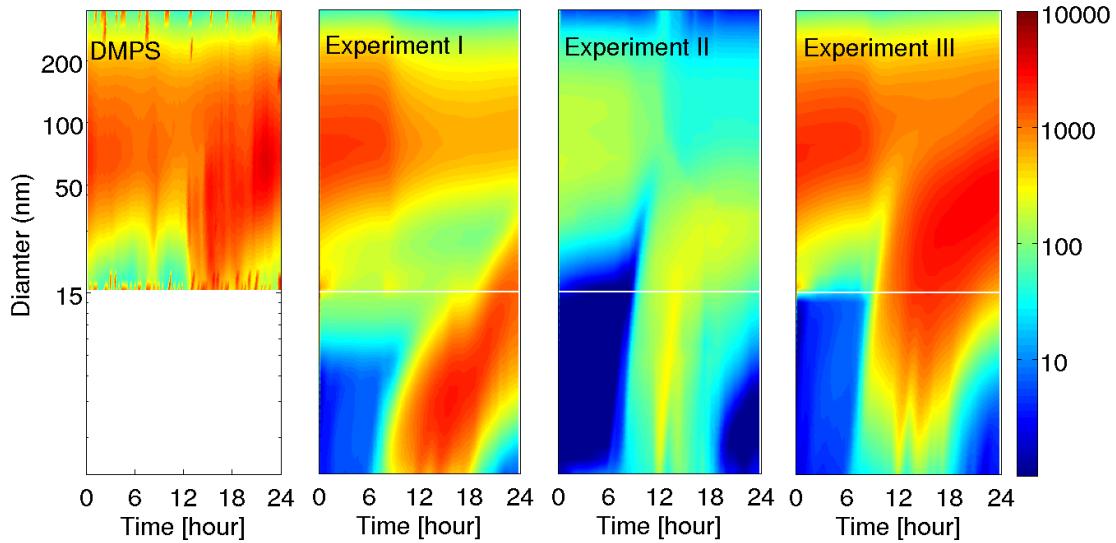
3 Figure 5. Measured and modeled MBO concentration at 3.5 m.

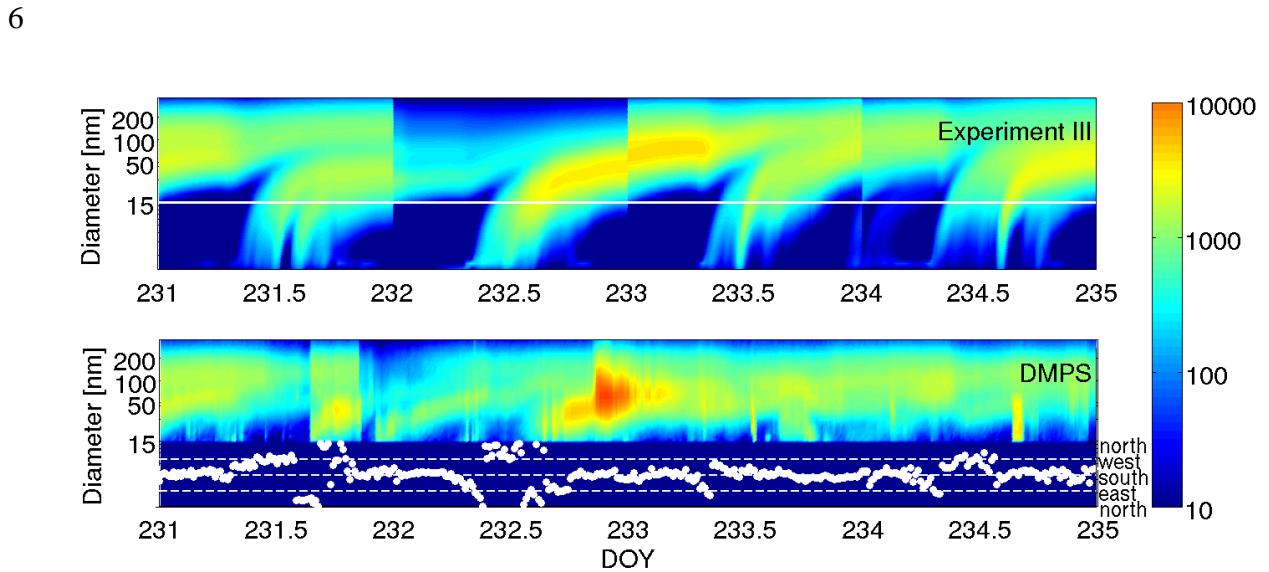
4

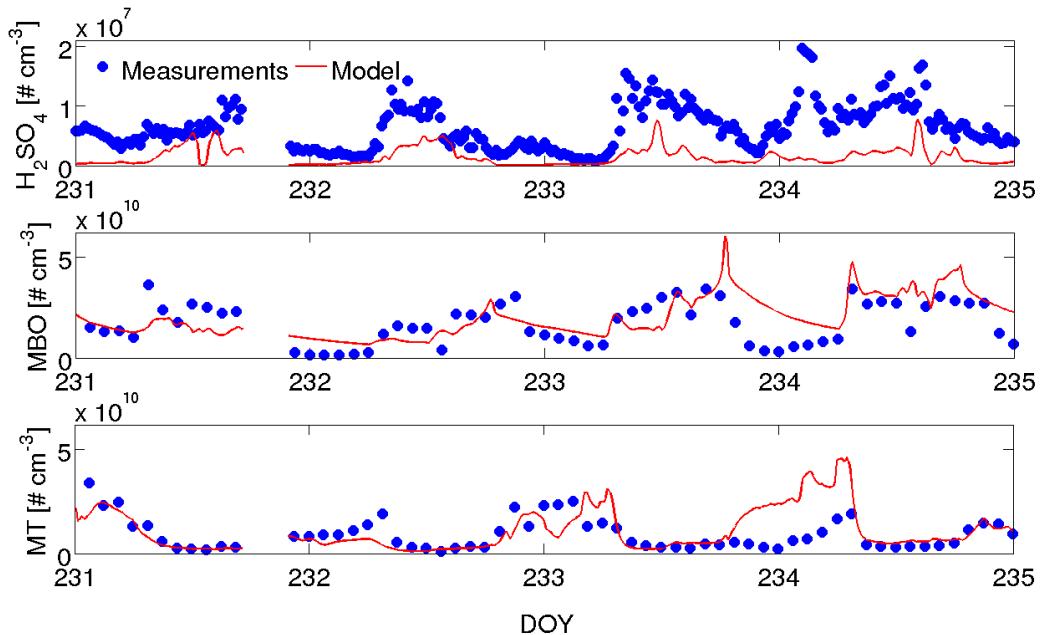

5


6

7 Figure 6. Averaged modeled and measured diurnal cycles of OH concentration (left), and
8 sulfuric acid concentration (right). Measurement average (line) and ± 1 standard deviations
9 (shaded area) are in blue, model average (line) and ± 1 standard deviations (shaded area) are in
10 red. The comparisons for OH and sulfuric acid are made at 2 m.


11


1 Figure 7. Averaged modeled and measured diurnal cycles of photolysis rate NO_2 .
2 Measurement average (line) and ± 1 standard deviations (shaded area) are in blue, model
3 average (line) and ± 1 standard deviations (shaded area) are in red. The comparison for
4 photolysis rate is made above the canopy at 25 m.
5


7 Figure 8. Averaged modeled diurnal cycles of OH , O_3 , and NO_3 oxidation products of
8 monoterpenes (plotted against left y-axis in blue) and MBO (plotted against right y-axis in
9 green). The error bars are ± 1 standard deviation.
10

1 Figure 9. Averaged one-day number size distributions based on the DMPS measurements and
 2 model Experiment I – III. The concentration unit is molecules cm^{-3} . DMPS instrument has
 3 cutoff size at 15 nm. The averages are made only for periods when measurements are
 4 available.

7 Figure 10. Particle number size distribution from 19 August 2010 (DOY 231) to 22 August
 8 2010 (DOY 234) based on the model Experiment III (top) and DMPS measurements
 9 (bottom). The DMPS instrument has a 15 nm lower detection limit. Particle concentration
 10 units are molecules cm^{-3} . Observation of wind direction at 30 m is plotted as white dots in the
 11 lower portion of the bottom figure.

