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We thank the referee for his/her useful comments. We have included the referee’s com-
ments and comment specific replies (AC) in blue below. The corresponding changes
made in the manuscript are written in italics.

1 Summary of review:

This paper presents an implementation of a method for assimilating the ratio between
satellite observed total column methane and carbon dioxide, which is in some ways
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more robust than the standard proxy method, which is plagued by the uncertainty of
the model-derived XCO2, while maintaining the larger number of measurements as-
sociated than are left with a full physics retrieval. Overall the paper is well written
and the results are well-presented, and the method seems to hold some promise. It
would be a more interesting study had they chosen to assess real measurements in
this study rather than simply testing the mathematical framework using pseudo-data,
especially as the approach is not entirely new (see Fraser et al., 2014, who did use
real measurements), and the fact that there is now a long record of GOSAT measure-
ments available. I’m sure this was a decision guided by publication strategy rather than
scientific merit. but it does detract from the potential impact of the study. The experi-
mental design seems to overstate the capabilities of the satellite measurements due to
a variety of choices (not perturbing the pseudo-measurements, using "true" fluxes de-
rived using the same transport model, and possibly using a truth derived from satellite
measurements, although this last point is not clear). These need to be addressed and
potentially rectified. Despite these misgivings, the study is appropriate for publication
in ACP once the following points have been addressed.

2 Substantive points:

As mentioned by a previous reviewer, it seems that overall the newness of the method
is overstated, given that Fraser et al. have very recently published a similar approach
in the same journal. Given the similarities, the relative newness of the present study
should be better framed in context to this already published work, and, if possible, the
approaches and results should be compared. Of course this would be easier if this
study had used actual measurements in addition to testing the concept with pseudo-
measurements.

AC: Paul Palmer has also raised this issue in his review. We have included a more
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elaborate comparison between our method and the Fraser et al. (2014) approach in
the revised manuscript. Please refer to our replies to his first specific comments.

The performance of the inversion under these conditions is almost certainly overly op-
timistic. Adding a purely Gaussian noise to the "true" fluxes which were derived by the
same model is almost too easy a problem: The truth is clearly statistically compatible
with the prior assumptions, and the difference is very well-behaved, with no systematic
differences.

AC: We define our pseudo truth fluxes on a 4 x 6 (latitude x longitude) grid and then
add a Gaussian noise, which is correlated in space and time with parameters defined
in Table 1 of the manuscript. This method allows a significant deviation in the CO2
prior fluxes from the truth in regions with large uncertainties. Using a purely Gaussian
case has the advantage that we know how the inversion is supposed to behave, which
helped to verify the implementation of the method. Also, we don’t make ourselves de-
pendent on a particular choice of biased priors or measurements, as there is no choice
that could be considered general. To address the valid point raised by the reviewer, we
added the following statement to the paper:
“The performance of inversions assimilating satellite data in this study is optimistic com-
pared to inversions using real observations as we have not introduced any systematic
biases in our measurements.”

I’m not entirely convinced by the argument that the pseudo-measurements do not need
to be perturbed. Yes, if this perturbation is entirely Gaussian then many realizations
would result in a convergence to the true result, but isn’t the experiment meant to show
what information can be gleaned from the measurements in only one year (i.e. not for
many repeated years with identical fluxes but varying random mea- surement noise)?
This does not seem valid, and also overstates the information content of the satellite
measurements over those of the surface network, the latter having comparatively few
measurements, but notably better measurement precision (and ac- curacy). Or have
I misunderstood the purpose of the experiment? Either this explanation needs to be
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fully justified, or the experiment needs to be repeated with properly perturbed pseudo-
measurements.

AC: We weigh satellite and surface measurements according to their uncertainty, and
therefore the difference in precision does influence their performance. Again, if you
would repeat the experiment many times you would arrive at the unperturbed result.
The experiments are not meant to demonstrate the performance of satellite inversions,
but to compare the performance of the proxy and ratio methods.

Another question related to the "truth" scenarios: the references of Basu et al., 2013
and Houweling et al., 2014 are given, but the specific inversion from each of these
studies is not given. I assume that you are using the GOSAT+flask inversion from
Basu et al. and one of the SCIAMACHY+flask inversions from Houweling et al., but
I can’t really tell. This is relevant, as the Basu study in particular (as well as several
recent studies, including a just-published GOSAT inversion intercomparison in JGR by
Houweling et al.) point to the fundamental inconsistency of the CO2 fluxes derived from
GOSAT and those derived from surface-based measurements. Given this knowledge,
if the "truth" is a perturbed version of what is seen by GOSAT, it’s hardly surprising that
the satellite measurements are better able to reproduce the fluxes than are the surface
measurements. This should be further discussed, laying out explicitly which inversions
were the basis for the "truth" scenario. Furthermore, the choice of "true" fluxes derived
from the same transport model will likely minimize the true problem of transport errors.

AC: The pseudo true fluxes used in our study are not the posterior results of TM5-
4DVAR inversions done by are Basu et al, 2013 and Houweling et al, 2014. We use
the prior fluxes that were also used in those studies (taken from CarbonTraker, EDGAR,
GFED, etc.) as our pseudo true fluxes. Transport model uncertainties affect the per-
formance of both inversion methods, whereas our experiments are meant to isolate
their differences. We acknowledge that some of the choices we made (e.g. use the
same model to generate pseudo data) ignore transport biases, but like to repeat that
the main aim of this study is to evaluate the performance of the ratio method and to
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compare its performance to the proxy method. The use of true GOSAT data and need
for bias correcting these will be the subject of a future paper.

Granted, the lack of posterior uncertainty estimates makes it difficult to compare, but
assuming that the error bars are of a similar magnitude to those of the PROXY method
(which may well be an overestimation, although the PROXY method explicitly does not
take into account the uncertainty on the modelled XCO2), I’m not sure about how much
can be read into the differences in Figs. 7 and 8. Isn’t it likely that these PROXY and
RATIO (and for that matter SURFGHG) perform equally well within uncertainty in most
cases?
AC: Statistically the posterior of PROXY, RATIO and SURFGHG fall within the uncer-
tainty range of each other for most regions. This has strong connections to our choice
of prior fluxes. The truth is well within uncertainty range of the prior.
“Statistically the posteriors of PROXY, RATIO and SURFGHG fall within the uncertainty
range of each other for most regions in figure 7.”

In section 3.4 it’s argued that the surface network performs significantly more poorly
over Temperate North America because of the high model representation error in this
region. On what is this based? Why is it higher here than anywhere else? The data
records seem to be longer and the sampling better than most regions, and because it’s
a pseudodata experiment there shouldn’t be representation problems related to bound-
ary layer height, or other issues that would affect the surface-based inversion but not
the satellite inversion. Please explain.
AC: In reality, Temperate North America is well constrained with surface measurements
compared to other regions. The high model representation error in this region is the re-
sult of our concentration variability dependent model representation error, which makes
sense for a model that has a too coarse resolution to represent the CO2 variability over
continental USA. We have added the following to our revised manuscript:
“In Temperate North America, due to coarse resolution of the model in combination
with large emission gradients, large representation errors are assigned to the simu-
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lated measurements. Also, we do not take the full advantage of surface measurement
coverage of this region as we use only fully processed NOAA/ESRL flask measure-
ments.“

Further to the discussion in 3.4: Is the problem with RATIO in Northern Africa its inabil-
ity to distinguish the biomass burning fluxes? This was a point in Fraser et al. (2014),
it might be good to include in the discussion.
AC: We are not optimizing the biomass burning fluxes in our inversions, so that should
not be the reason for poor performance of RATIO in Northern Africa.

It might also be relevant to discuss the sparsity of not only surface but also satellite
measurements in the tropical land regions.
AC: The reviewer is right that in applications with true GOSAT data the number of data
in the tropics will be lesser than used in our experiment. To clarify this point, we added
the following to our manuscript:
“As we do not filter-out measurements taken in cloudy scenes and we use medium gain
measurements in our inversion, we are optimistic about the satellite coverage in the
tropics compared to real-life inversions. However, it is also true that satellite measure-
ments are an important additional source of information about GHGs concentrations in
these regions.”

Clarification: p8809, lines 15-19: I think I understand what is meant here with the
treatment of the prior, but isn’t there still a smoothing error that needs to be taken into
account due to the different vertical grids of the model and the prior? (See Rodgers
and Connor, JGR, 2003, if this isn’t clear.) An equation here might help clarify.
AC: The same prior profile is used for generation of pseudo satellite column data and
for converting the model profiles to model columns. There will be an interpolation error,
but it will be same for the pseudo measurements and the model that is trying to fit the
data. Therefore this error does not play a role in our experiments. However, in an
application with real data, interpolation errors would play a role, but the ratio and proxy
method would be affected similarly.
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3 Very minor points/typos:

p8803, line 8: about methane -> about the methane
p8803, lines 15-20: rework this, the text is awkward and misleading. CSIRO is not a
network, nor is NOAA/ESRL, they’re organizations that operate networks.

p8803, line 27: onboard Greenhouse -> onboard the Greenhouse (although it might be
better to just say GOSAT, and include the full name in the parentheses if you feel it’s
necessary).
p8803, line 29: constrains -> constraints
p8805, line 2: RemoteC -> RemoTeC
p8806, line 10: setup -> set up (written together it is only a noun, not a verb)
p8807, line 11: method operator -> method the operator
p8807, line 19: assumned -> assumed
p8811, line 3: form -> from
p8811, line 4 line 7: land TransCom -> TransCom land
p8811, line 12: regions -> region
p8811 line 15: postrior -> posterior
p8812, line 16: in-comparioson -> in comparison
p8812, line 22: worse -> worst
p8814, line 15: is -> are
p8814, line 17: the Fig. -> Fig.
p8814, line 19: the Sect. -> Sect.
p8814, line 22: satellites -> satellite
p8816, line 24: regions -> region
p8817, line 7: BEr -> Boreal Eurasia (either use short forms throughout, or spell it out
fully)
p8817, line 23: constrain -> constraint
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p8818, line 5: ratio -> the ratio
p8819, line 8: side of problem -> side of the problem
p8819, line 19: remove comma
p8820, line 1: factor 2 -> factor of 2
p8820, line 27-28: in the applications -> in applications
Figure 5 caption: fluxes deviation from the true fluxes at land Transcom regions -> flux
departures from the true fluxes for the land TransCom regions
Figures 2 and 10: please change the units on the axis labels to "months" instead of
C2076 "m" to avoid confusion In general.
When did XCO2 and XCH4 become XCO2 and XCH4 ? I feel like the latter is more
widely used.
Also, I agree with a previous reviewer that the current title underplays the discussion of
the CO2 fluxes, which play quite a large role in the discussion.
I assume that the figures relate to only the biogenic (i.e. not fossil fuel, and perhaps
not fire) fluxes, but it would be good to clarify this.

AC: All minor comments are addressed in the revised version of the manuscript.

Interactive comment on Atmos. Chem. Phys. Discuss., 15, 8801, 2015.
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We thank the referee for his/her useful comments. We have included the referee’s com-
ments and comment specific replies (AC) in blue below. The corresponding changes
made in the manuscript are written in italics.

1 Summary of review:

Authors develop and test surface CH4 flux inversion scheme designed to ingest the
XCH4/XCO2 ratio retrieved from satellite observations. Authors mention that similar
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method was applied earlier by Fraser et al 2014 using a different transport model and
inversion method, thus the new results extend the analysis to the case of grid-scale
inversion. The pseudo-data experiment is used to quantify the theoretical performance
of the method. The advantage of the developed technique is its ability to use soft
constrain on CO2 fluxes instead of hard constrain applied in a traditional approach
when only XCH4 retrieved with proxy method is used. According to the conclusions,
the advantage of the technique is limited to regions of large uncertainties in CO2 fluxes
and simulated XCO2. The manuscript is well written, except for several mistypes, the
originality and scientific value of the results justify acceptance for publication. Minor
revision addressing the comments below is needed.

2 Comments:

8807 line 5. Authors suggest that CONGRAD is different from M1QN3 in assuming
the cost function as multidimensional parabola, and thus less applicable to nonlinear
problems. There are two considerations that do not go along with this discussion.
Firstly, Meirink et al, (2008) point that the origin of CONGRAD is a code applied by
Fisher and Courtier, (1995) to the nonlinear problem of weather forecast. Secondly,
M1QN3 makes estimate of Hessian which is equivalent to approximating the cost func-
tion as multidimensional parabola, thus this can not be mentioned as disadvantage of
CONGRAD. The actual reason for M1QN3 to perform better in nonlinear case could
be ability to rebuild Hessian approximation several times on the course of descent to
minimum.

AC: We agree with the referee. We have made the following update in our manuscript:

“Mathematically, it has the fastest convergence rate for linear inversions, but it may
perform poorly for non-linear inversions.” “Our inversion setup for the proxy approach
is linear. However, for the new ratio method operator H includes Eq. (2), and hence,
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the inversion becomes non-linear making M1QN3 a more suitable optimizer than CON-
GRAD. M1QN3 is a quasi-Newton algorithm based optimizer (Gilbert and Lemaréchal,
1989), which is commonly used in non-linear inverse modeling (Cressot et al., 2014;
Krol et al., 2013; Muller and Stavrakou, 2005). It has the ability to rebuild the sec-
ond derivative of the cost functions several times during its descent to minimum, and
therefore, performs better for non-linear inverse problems.”

8810 line 24. Authors use both CONGRAD and M1QN3, for consistent comparison
single method could be better. So, why single method M1QN3 is not used for all inver-
sions? Need to check if the results are stable with respect to the method applied.

AC: CONGRAD is generally our first choice optimizer for proxy inversions using real
data, as it is the most efficient optimization method for linear inversions problems. This
is an important advantage of proxy inversions, and we did not want to take away this
advantage from PROXY. However, we have included results from new proxy inversions
using M1QN3 and CONGRAD in Appendix A.

“To compare the difference in convergence between M1QN3 and CONGRAD, we per-
formed additional proxy inversions using both optimization methods (see Appendix A)”

“Appendix A: M1QN3 and CONGRAD

We tested the convergence rate of CONGRAD and M1QN3 using PROXY setup de-
scribed in Section 2.4. For this purpose, we carried out inversions with both optimizers
for 30, 60 and 100 iterations and compared these to the standard inversion using 50 it-
erations. Figure 1 shows the corresponding posterior CH4 flux departures from PROXY
that are also shown in figure 7. We find that both the optimizers converge within 100 it-
erations. After 60 iterations, CONGRAD already reaches the solution, whereas M1QN3
shows slower convergence. Significant flux differences are found between the optimiz-
ers for inversions with 30 and 60 iterations. For CONGRAD, the difference between
inversions with 50 and 60 iterations is negligible.”
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3 Typos

8811 line 4. Sounds better to say “Transcom land regions” instead of “land Transcom
regions”

8811 line 8, 10 and below. Should variables cor and bias be written in italics to separate
them from the rest of the text?

8812 line 15. Written as “for 100 M1QN3”, it looks incomplete, would be more under-
standable when text is extended as “for 100 iterations of M1QN3”

8807 line 19. assumned -> assumed

8809 line 21. ‘Transport model’ starts with capital T here, could be mistype?

8812 line 16. in-comparioson -> in comparison

AC: All minor corrections are addressed in the revised manuscript.

Interactive comment on Atmos. Chem. Phys. Discuss., 15, 8801, 2015.
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Fig. 1. Annual CH4 flux departures from PROXY (see figure 7). The first part of a legend’s
label indicates the optimizer used and the second part indicates number of iterations
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Received and published: 10 July 2015

We thank Paul Palmer for his useful comments. We have included the referee’s com-
ments and comment specific replies (AC, in blue) below. The corresponding changes
made in the manuscript are written in italics.

1 Summary of review:

The authors outline a new method to interpret space-borne atmospheric observations
of XCH4/XCO2 to infer surface fluxes of CH4 and CO2. They concurrently assimilate
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surface observations of these gases to help separate the information embedded in
the ratio. The paper is generally good but weak in describing the method in places.
Unfortunately, the newness of the method is greatly exaggerated with the technique
outlined and demonstrated in a recent paper in this journal. Nevertheless, once this
and other comments have been addressed I don’t see why it can’t be accepted for
publication.

2 Specific comments

The authors advertise the newness of the method but this is deceitful. The broad
methodology has been reported in Fraser et al, 2014. I’m sure details of the authors’
new methodology are indeed new but they cannot claim the method is new. Their
one mention of Fraser et al as being noteworthy is disingenuous at best. On a more
positive note, it is encouraging that this method works well using a different transport
model and inversion method (4D-Var vs MAP for Fraser et al, 2014). At the very least,
these authors should discuss the similarities in their method and results with those
previously reported by Fraser et al, 2014.

AC: We agree with the referee that Fraser et al. (2014) already used a joint inversion
approach. However, we are the first to apply the method to the variational inverse
modeling approach. We have clarified this as follows:

“We present a method for assimilating total column CH4:CO2 measurements from
satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach.”

We have now given appropriate references of Fraser et al. (2014) by adding:

“Fraser et al. (2014) developed a method for assimilating Xratio in the MAP inversion
setup coupled to the GEOS-Chem global 3-D atmospheric chemistry transport model.
Similar to our findings, their OSSEs show that the assimilations of Xratio along with
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surface measurements of CH4 and CO2 can reproduce the true fluxes. However, there
are some important differences with our study:

1. We focus on a comparison between the proxy and ratio approach and also perform
a CO2 inversion using surface measurements for calculating the model derived CO2
fields used in the proxy approach. This way the propagation of errors from modeled
CO2 fields into proxy CH4 measurements is also simulated. Instead, Fraser et al.
(2014) add a constant or random bias to the Xratio measurements.

2. Fraser et al. (2014) report posterior uncertainties of CH4 and CO2 fluxes derived
from their Xratio inversions. Although posterior flux uncertainties can in principle be
derived from our method also, they are not reported here for computational reasons.

3. The ratio inversion system is weakly non-linear. The Fraser et al. (2014) ratio
inversions assume linearity. We do a non-linear inversion using a suitable optimizer.”

Section 2.1: Do the authors assume that R and B are diagonal?

AC: R is assumed diagonal and B is not. The correlation lengths used for calculating B
is given in table 1 of the manuscript. We have added the following to clarify:

“We assume no prior correlation between flux categories of CO2 biosphere, CO2
oceanic and CH4 total. The spatiotemporal covariance components for each cate-
gories were included in B.”

“The diagonal terms of R are the squared sum of measurement uncertainty and model
representation error. We assume no correlation between the measurements. There-
fore, all the non-diagonal terms of R are set to zero.”

Section 2.1: Not reporting a posteriori uncertainties is a major weakness of the method.
How do they know that a posteriori fluxes are indeed significantly better than the a priori
fluxes? I appreciate that small uncertainties is not a perfect metric but it is useful.

AC: In figure 7, we see that the mean annual posterior fluxes of ratio are closer to the
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truth than the prior. We can assume the posterior uncertainties for RATIO and PROXY
are of similar order given the facts that: (1) same amount of information is assimilated
in both inversions; (2) we do not introduce any prior correlation between CO2 and CH4
fluxes; (3) PROXY has measurement information coming form SURFCO2. Therefore,
it is likely that the posterior fluxes from using the RATIO method have smaller uncer-
tainties than the prior, and hence significantly closer to truth.

Section 2.2:âĂĺ Typo: assumned.

AC: The typo is corrected in the revised manuscript.

Section 2.2:âĂĺ The authors mention nothing about temporal and spatial correlations
(see above comment about R and B).

AC: We have added the necessary information about temporal and spatial correlations
(See our response to earlier comment about R and B).

Section 2.3: Did the authors sample the RemoTecv1.9 data for cloud-free scenes de-
termined by small AODs and cloud fractions?

AC: We do not sample the RemoTecv1.9 data for cloud-free scenes. We have added
the following to clarify:

“We do not sample GOSAT data for cloud free conditions, and therefore assimilate
a rather optimistic number of GOSAT measurements. However, satellites such as
Sentinel-5 will provide a comparable amount of data”.

Section 2.3: Some brief details about the representation error would be useful to report
in this paper rather than a simple reference to Basu et al, 2013.

AC: We have added a brief description of the model representation error calculation in
the revised manuscript.

“The model representation error is the error made by our finite resolution model in
simulating a sample at a specific location. Its size scales with the sub grid concentration
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variability, and is calculated using the local concentration gradients simulated by the
model (Basu et al., 2013)”

Section 2.3: I’m not sure I completely follow the logic associated with the decision
about not perturbing pseudo observations. It depends if they want to characterize their
inversion system ability to infer fluxes.

AC: The aim of our study is: 1. To understand, in a Gaussian framework, the adverse
effects of the biases introduced by a model-derived CO2 field on the posterior CH4
fluxes of a proxy inversion. 2. To understand whether the ratio inversion method can
help us get better knowledge of the CH4 fluxes in regions where the proxy method
doesn’t perform well.

As we explained already in the manuscript, our choice of not adding noise to the proxy
and ratio measurements does not affect the comparison between the two methods.
If we perturb the pseudo measurements with noise according to the data covariance
matrix R, we will have to do several inversions with different noise realizations to catch
the mean behavior. This multi-inversion mean would correspond to the results of a
single inversion without noise. For this reason we do not perturb the data.

Section 2.4: The authors do not clearly explain in the abstract or elsewhere why their
RATIO methodology uses the surface data. They do not explain why they are using
these data.

AC: We have explained this in section 4 (paragraph 1):

“The method requires assimilation of surface measurements of CH4 and CO2 as an
additional constraint, since a ratio alone is not sufficient to independently constrain the
CH4 and CO2 fluxes.”

Section 2.4: There is no mention anywhere that the ratio data have a smaller system-
atic bias relative to the full-physics products.

AC: Full physics methane retrievals are outside the scope of our experiments. However,
C4663

it is true that Xratio has less bias than the full physics XCO2 and XCH4 retrievals, as
the scattering-related biases tend to cancel out. We followed the suggestion by the
reviewer and added the following line to the revised manuscript.

“Also, Xratio is less biased and has a larger number of measurements than XCH4 and
XCO2 full-physics retrievals (Fraser et al., 2014)“

Based on the remainder of the paper it is not clear why the paper title, abstract etc
is focused on inferring CH4 fluxes even though the method clearly has a capability to
infer CO2 fluxes (see section 3.4).

AC: We agree with the referee and we changed the title of the paper to:

“On the use of satellite-derived CH4:CO2 columns in a joint inversion of CH4 and CO2
fluxes”

Discussion: There is a paragraph apologizing for not reporting uncertainties, which is
clearly not good enough. Maybe they could compare/contrast the reporting of uncer-
tainties from other methods.

AC: As outlined in the manuscript, this lack of posterior uncertainties in our variational
approach is caused by the non-linearity introduced by the ratio method. However, the
lack of posterior uncertainties in our synthetic experiment is partly compensated by
the fact that we know the true fluxes. Furthermore we make the not unreasonable
assumption that the posterior uncertainties of the RATIO and PROXY methods are
of similar magnitude. The reason is that they make use of the same observational
and a priori constraints. However, we agree with the referee that further discussion is
needed. Therefore we have added a paragraph to the discussion section (please refer
to our reply of the first specific comment).

Reference: Fraser, A., Palmer, P. I., Feng, L., Bösch, H., Parker, R., Dlugokencky, E.
J., Krummel, P. B., and Langenfelds, R. L.: Estimating regional fluxes of CO2 and CH4
using space-borne observations of XCH4: XCO2, Atmos. Chem. Phys., 14, 12883-
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12895, doi:10.5194/acp-14-12883-2014, 2014.

Interactive comment on Atmos. Chem. Phys. Discuss., 15, 8801, 2015.
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:::
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:::::::
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::::::::::::::
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:
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Abstract. We present a new method for assimilating
::::
total

:::::::
column CH4::::

:CO2:::::
ratio measurements

from satellites , which have been retrieved using the proxy-ratio approach, for inverse modeling of

CH4 fluxes
:::
and

::::
CO2:::::

fluxes
:::::
using

:::
the

:::::::::
variational

:::::::
approach. Unlike conventional approaches, in which

retrieved CH4/::CO2 ratios are multiplied by model derived total column CO2 and only the resulting

CH4 is assimilated, our method assimilates the ratio of CH4 and CO2 directly and is therefore called5

the ratio method. It is a dual tracer inversion, in which surface fluxes of CH4 and CO2 are optimized

simultaneously. The optimization of CO2 fluxes turns the hard constraint of prescribing model de-

rived CO2 fields into a weak constraint on CO2, which allows us to account for uncertainties in

CO2. The method has been successfully tested in a synthetic inversion setupusing the TM5-4DVAR

inverse modeling system. We show that the ratio method is able to reproduce assumed true CH410

and CO2 fluxes starting from a prior, which is derived by perturbing the true fluxes randomly. We

compare the performance of the ratio method with that of the traditional proxy approach and the

use of only surface measurements for estimating CH4 fluxes. Our results confirm that the optimized

CH4 fluxes are sensitive to the treatment of CO2, and that hard constraints on CO2 may significantly

compromise results that are obtained for CH4. We see
:::
find that the relative performance of ratio15

and proxy methods have a regional dependence. The ratio method performs better than the proxy

method in regions where the CO2 fluxes are most uncertain. However, both ratio and proxy methods

perform better than the surface measurement-only inversion,
:
confirming the potential of space borne

measurements for accurately determining fluxes of CH4 and other GHGs.
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1 Introduction20

In the past century, the concentrations of many potent greenhouse gases (GHGs) have increased

in the atmosphere due to anthropogenic activities. The atmospheric dry air mole fraction of the

greenhouse gas methane (CH4), which has a global warming potential of 28–34 on a 100 year

time horizon (Myhre et al., 2013), has increased from 700ppb during the pre-industrial era to

≈ 1800 ppb today (Ferretti et al., 2005). These atmospheric concentrations are unprecedented dur-25

ing at least the last 650 000 years (Spahni et al., 2005). The direct radiative forcing caused by the

increase of methane since pre-industrial times is +0.48± 0.05Wm−2 (Myhre et al., 2013), which

amounts to 20 % of the present day cumulative radiative forcing due to all anthropogenic GHGs.

Methane also influences atmospheric chemistry and it is an important control on the oxidising ca-

pacity of the atmosphere. Further details about
:::
the methane budget can be found in Kirschke et al.30

(2013). The atmospheric growth rate of methane has varied considerably in the last two decades

(Nisbet et al., 2014; Bousquet et al., 2006)
:::::::::::::::::::::::::::::::::::
(Bousquet et al., 2006; Nisbet et al., 2014) . Causes of these

variations are still not fully understood, which calls for better monitoring of its sources and sinks us-

ing both top-down and bottom-up studies.

The top-down approach uses inverse modeling techniques to reduce the uncertainty in the bottom-35

up derived emission estimates on the basis of atmospheric measurements of CH4. In the past, several

studies applied the top-down method to
::::::::::
assimilating surface-based measurements from global mon-

itoring networks such as the
:::::::
operated

:::
by National Oceanic and Atmospheric Administration–Earth

System Research Laboratory (NOAA/ESRL), the Advanced Global Atmospheric Gases Experiment,

and Commonwealth Scientific and Industrial Research Organisation (Houweling et al., 1999; Bousquet et al., 2011, 2006; Hein et al., 1997)
:::::::::::
Organization40

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bousquet et al., 2011, 2006; Hein et al., 1997; Houweling et al., 1999) . However, due to poor spa-

tial coverage of the surface measurement sites, such inversions are effective in constraining the fluxes

at sub-continental scales at best (Houweling et al., 1999).

Total column measurements of CO2 and CH4 (XCH4 and XCO2:::::
XCH4::::

and
:::::
XCO2) from satellites

have proven valuable for inversion studies of CH4 and CO2, especially in regions where surface45

measurement sites are sparse (Bergamaschi and Frankenberg, 2009; Basu et al., 2014, 2013; Houweling et al., 2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Basu et al., 2014, 2013; Bergamaschi and Frankenberg, 2009; Houweling et al., 2014) .

For example, atmospheric retrievals from the Thermal and Near infrared Sensor for carbon Observa-

tions (TANSO) onboard
:::
the

:::::::
GOSAT

:
(Greenhouse gases Observering SATellite(GOSAT, Kuze et al., 2009) ,

::::::::::::::::
Kuze et al. (2009) ) have provided valuable constrains

::::::::
constraints

:
on the fluxes of CH4 and CO2

(Basu et al., 2013; Fraser et al., 2013). The CH4 absorption band at 1.6 micron allows retrieval of its50

atmospheric concentration with high sensitivity to the planetary boundary layer, where the signals

of the sources are strongest. Besides a good sensitivity to the sources, the quality of the inversion-

derived CH4 budget depends strongly on the precision and accuracy of the measurements. It has

been shown that systematic errors on regional or seasonal scales of less than 1 % can jeopardize

the usefulness of satellite measured CH4 columns for estimating CH4 budget (Bergamaschi et al.,55

2007).
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High qualityXCH4
andXCO2 :::::

XCH4::::
and

:::::
XCO2 retrievals require accurate knowledge of the light-

path of the photons that are measured by the satellite. Scattering of light on atmospheric particles

(aerosol particles and cloud droplets) may lead to significant light-path perturbations. The accuracy

of XCH4 :::::
XCH4:

retrievals depends to a large extent on how well the retrieval technique can ac-60

count for such scattering induced perturbations. A commonly used technique is the so-called proxy

method, which was originally developed for retrieving XCH4
and XCO2 :::::

XCH4::::
and

::::::
XCO2 using

nearby spectral windows from SCIAMACHY (Frankenberg et al., 2005). Since atmospheric scatter-

ing affects both compounds in a similar way, light-path errors largely cancel out in the ratio. The

retrieval-derived ratio (
Xobs

CH4

Xobs
CO2

:::::

Xobs
CH4

Xobs
CO2

) is multiplied with a priori knowledge of atmospheric CO2 de-65

rived from a model (Xmodel
CO2 :::::

Xmodel
CO2 ) to generate proxy column measurements of CH4 (Xproxy

CH4 :::::
Xproxy

CH4 )

(Eq. 1).

XCH4CH4
:::

proxy =
Xobs

CH4

Xobs
CO2

Xobs
CH4

Xobs
CO2

:::::

×XCO2CO2
:::

model, (1)

Xmodel
CO2 :::::

Xmodel
CO2:

is usually derived from the results of a CO2 inversion using the surface measure-

ments, such as CarbonTracker (Peters et al., 2007). It is assumed that: (1) CO2 exhibits compar-70

atively smaller unknown variations in the atmosphere than CH4, and (2) residual differences in

scattering between the spectral windows of CO2 (1562 to 1585 nm) and CH4 (1630 to 1670 nm)

used in the retrieval are insignificant. Hence, CO2 is used as proxy for changes in the light-path.

Schepers et al. (2012) discuss the performance of the GOSAT RemoteC
:::::::
GOSAT

::::::::
RemoTeC

:
proxy

retrieval in detail. This retrieval dataset has been used successfully in inversion studies for optimiz-75

ing CH4 fluxes (Monteil et al., 2013; Alexe et al., 2014)
:::::::::::::::::::::::::::::::::
(Alexe et al., 2014; Monteil et al., 2013) .

In these studies the error in Xmodel
CO2 :::::

Xmodel
CO2 :

is assumed to be negligible compared to retrieval er-

ror in
Xobs

CH4

Xobs
CO2

:::::

Xobs
CH4

Xobs
CO2

. However, with the gradually improving quality of the GOSAT retrievals, errors in

model-derived CO2 may become a bottleneck for improving inversion-derived CH4 fluxes (Schep-

ers et al., 2012).80

In some regions, the sparse network of surface measurement sites does not provide sufficient

constraints on CO2 fluxes, leading to possible biases inXmodel
CO2 ::::::

Xmodel
CO2 (Schepers et al., 2012). In this

study we investigate a new method, called the ratio method, which circumvents the use of Xmodel
CO2

:::::
Xmodel

CO2:
by directly assimilating the retrieved ratio of total column CH4 and CO2 into an inversion

that optimizes CH4 and CO2 fluxes simultaneously. Thus, in the ratio method Eq. (1) is replace by85

Xratio =
Xobs

CH4

Xobs
CO2

Xobs
CH4

Xobs
CO2

:::::

(2)

Our motivation for implementing the ratio method is to find a representation of CO2 in the

inversion system, that is more consistent with both Xratio and CO2 surface measurements. It is

noteworthy that Fraser et al. (2014) have also assimilated
Xobs

CH4

Xobs
CO2

:::::
Also,

:::::
Xratio :

is
::::

less
::::::
biased

:::
and

:::
has

::
a

:::::
larger

::::::
number

::
of
::::::::::::

measurements
::::
than

:
XCH4 :::

and XCO2 ::::::::::
full-physics

:::::::
retrievals

::::::::::::::::::
(Fraser et al., 2014) .90
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::::::::::::::::::::::::
Fraser et al. (2014) introduced

:::
the

::::::::::
assimilation

::
of

:::::::
satellite

::::::::
retrieved

::::
Xratio::

in
::
a

::::::::
maximum

::
a

::::::::
posteriori

::::::
(MAP)

:::::::
inversion

::::::
system

:
for constraining the surface fluxes of CH4 and CO2. However, the transport

model and inversion method used in their study are different from the ones used here.

We perform Observing System Simulation Experiments (OSSEs) to test the performance of the

ratio method for reproducing the assumed true fluxes of CH4 and CO2. The results are compared95

with inversions using proxy retrievals and only surface measurements. In the following Sect. 2, we

elaborate on our inverse modeling setup, and describe our OSSE experiments. In Sect. 3, we analyze

and compare the inversion-estimated posterior fluxes of CH4 and CO2. In Sect. 4, we further discuss

the significance and limitations of our findings and evaluate the future potential of the ratio method

for application in inversion studies, leading to our final conclusions.100

2 Method

2.1 Inverse modeling

We use the TM5-4DVAR inversion system in this study. It comprises of the Tracer Transport Model

version 5 (TM5, Krol et al., 2005) coupled to a variational data assimilation system (4DVAR,

Meirink et al., 2008). TM5 simulates the spatio-temporal distribution of a tracer in the atmosphere105

for a given set of fluxes and initial concentrations that are prescribed as boundary conditions to the

model. We have setup
:::
set

::
up

:
a dual tracer version of TM5-4DVAR for simultaneous simulation of

CH4 and CO2. By combining the output of the two tracers, this model allows us to simulate Xratio

(see Eq. 2). The 4DVAR technique uses model calculated and observational dataset of Xratio to op-

timize a state vector x, consisting of surface fluxes of CH4 and CO2. The optimum is found by110

minimizing a Bayesian cost function, defined as

J(x) =
1

2
(x−xb)

TB−1(x−xb)+
1

2
(y−Hx)TR−1(y−Hx) (3)

where xb is the a priori knowledge of x, and H is the observation operator, which converts the

output of the model, forced by x, to corresponding mixing ratios at the measurement sites of

y. Hence, Hx represents the model simulated counterpart of the observation vector y. R and B115

are error covariance matrices for y−Hx and xb, respectively. Each iteration of TM5-4DVAR is

composed of a forward and an adjoint TM5 run (Errico, 1997). The forward run is used to cal-

culate the value of the cost function for a trial state vector xj (using Eq. 3). The adjoint run pro-

vides the corresponding cost function gradient (∇J(x)). At the end of each inversion iteration

j, ∇J(xj) and the state vector xj are fed into an optimizer module to calculate the state vec-120

tor for the next iteration (xj+1). For linear inverse problems we use the conjugate gradient op-

timizer (CONGRAD, Lanczos, 1950), that has been used extensively for linear inversion problems

(Monteil et al., 2011, 2013; Houweling et al., 2014; Basu et al., 2013)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Basu et al., 2013; Houweling et al., 2014; Monteil et al., 2011, 2013) .

Mathematically, it has the fastest convergence rate for linear inversionsproblems, but it performs
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:::
may

:::::::
perform

:
poorly for non-linear inversion problems, because it assumes that the shape of the cost125

function is a multi-dimensional parabola.
::::::::
inversions

:

For non-linear problems we use M1QN3, a quasi-Newton algorithm based optimizer (Gilbert and Lemaréchal, 1989) ,

which is also commonly used in inverse modeling (Cressot et al., 2014; Krol et al., 2013; Muller and Stavrakou, 2005) .

Our inversion setup for the proxy approach is linear. However, for the new ratio method
:::
the operator

H includes Eq. (2), and hence, the inversion becomes non-linear making M1QN3 a more suitable130

optimizer than CONGRAD. M1QN3
:
is

:
a
::::::::::::
quasi-Newton

::::::::
algorithm

:::::
based

::::::::
optimizer

:::::::::::::::::::::::::::
(Gilbert and Lemaréchal, 1989) ,

:::::
which

::
is

:::::::::
commonly

::::
used

::
in

::::::::
non-linear

::::::
inverse

::::::::
modeling

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cressot et al., 2014; Krol et al., 2013; Muller and Stavrakou, 2005) .

:
It
:::
has

:::
the

::::::
ability

::
to

::::::
rebuild

:::
the

::::::
second

::::::::
derivative

::
of

:::
the

::::
cost

:::::::
functions

::::::
several

:::::
times

::::::
during

::
its

:::::::
descent

::
to

::::::::
minimum,

::::
and

::::::::
therefore,

::::::::
performs

:::::
better

:::
for

::::::::
non-linear

::::::
inverse

:::::::::
problems.

::
To

::::::::
compare

:::
the

:::::::::
difference

::
in
:::::::::::

convergence
::::::::

between
:::::::
M1QN3

::::
and

:::::::::::
CONGRAD,

:::
we

::::::::::
performed135

::::::::
additional

:::::
proxy

:::::::::
inversions

::::
using

::::
both

:::::::::::
optimization

:::::::
methods

:::
(see

:::::::::
Appendix

::
A

:
).
:::
We

::::
find

:::
that

:::::::
M1QN3

has a slower convergence rate in comparison to CONGRAD, and therefore the number of iterations

needed to find the inversion solution is generally higher. Another drawback of the M1QN3 algorithm

that is available to us is that, unlike CONGRAD, it provides no information about the posterior flux

uncertainties in a straight forward
:::::::::::::
straightforward way.140

2.2 Truth and prior

The assumned
:::::::
assumed

:
true CH4 and CO2 fluxes for our inversion setup are taken from Houwel-

ing et al. (2014) and Basu et al. (2013), respectively. The generation of pseudo observations y is

explained in the next section. Concerning the state vector x, CH4 fluxes are optimized for a single

category representing the net flux from all the contributing processes at the surface, discretized per145

model grid box and per month. For CO2, we optimize for fluxes from the biosphere and the ocean,

discretized in time and space like methane. We do not optimize emissions from other categories like

biomass burning and fossil fuel usage, as they are assumed to have relatively small uncertainties.

Table 1 shows the parameters used to calculate the error covariance matrix B for the prior fluxes.
:::
We

::::::
assume

::
no

:::::
prior

:::::::::
correlation

:::::::
between

::::
flux

::::::::
categories

:::
of

::::
CO2:::::::::

biosphere,
::::
CO2::::::

oceanic
::::
and

::::
CH4:::::

total.150

:::
The

:::::::::::::
spatiotemporal

:::::::::
covariance

::::::::::
components

:::
for

::::
each

:::::::
category

:::::
were

:::::::
included

::
in

:::
B. For details about

the
:::
this implementation of B in our inversion see Basu et al. (2013). We use one set of prior fluxes

xb for all inversions, which was created by adding Gaussian noise to the true CH4 and CO2 fluxes.

The noise is generated using the a priori flux uncertainties accounting for spatial and temporal error

correlations, as described in Chevallier et al. (2007). Figure 2 shows
::
the

:
time series of the true and155

prior fluxes for four Transcom regions (explained in Fig. 1). As can be seen, the assumptions regard-

ing the a priori flux uncertainties lead to realistic deviations from the truth in terms of seasonality

and net monthly flux.

5



2.3 Measurements

Pseudo surface observations are generated from a forward run of TM5 using the “true” fluxes as160

boundary conditions, and they are sampled at coordinates and times of samples collected by the

NOAA/ESRL cooperative flask-sampling network
::
run

:::
by

::::::::::::
NOAA/ESRL (Dlugokencky et al., 2009)

in the period 1 June 2009 to 30 May 2010 at the sites shown in Fig. 1. In total, we use 3934 surface

measurements of CH4 (from 93 sites) and 1184 measurements of CO2 (from 85 sites). Similarly,

synthetic total column measurements are generated at the times and locations of the GOSAT Re-165

moTeC v1.9 proxy satellite retrievals for the same time period (Schepers et al., 2012).
:::
We

::
do

::::
not

::::::
sample

:::::::
GOSAT

::::
data

:::
for

:::::
cloud

:::
free

::::::::::
conditions,

:::
and

::::::::
therefore

:::::::::
assimilate

:
a
:::::
rather

:::::::::
optimistic

:::::::
number

::
of

:::::::
GOSAT

::::::::::::
measurements.

::::::::
However,

::::::::
satellites

::::
such

::
as

:::::::::
Sentinel-5

:::
will

:::::::
provide

:
a
::::::::::
comparable

:::::::
amount

::
of

::::
data.

:
The forward run of TM5 calculates 25 layer vertical model profiles at the retrieval coordi-

nates. These profiles are converted into the corresponding total columns using the retrieval derived170

averaging kernels (see e.g. Monteil et al., 2013). In total, we use 443 523 GOSAT total column

retrievals of both CH4 and CO2 (see Fig. 3).

The observational part of
::
the

:
cost function is calculated by weighing the mismatch between the

model simulations and measurements (y−Hx) with the data error covariance matrix R. The diago-

nal terms of R are the squared sum of measurement uncertainty and model representation error.
:::
We175

::::::
assume

::
no

:::::::::
correlation

::::::::
between

::
the

:::::::::::::
measurements.

:::::::::
Therefore,

::
all

:::
the

:::::::::::
non-diagonal

:::::
terms

::
of

::
R

:::
are

:::
set

::
to

::::
zero. The model representation error is the error made by our finite resolution model in simulating

a sample at a specific location. Its size scales with the sub grid
::::::
subgrid

:
concentration variability, and

is calculated using the local concentration gradient simulated by the model. Further details about the

calculation of the model representation error in our setup can be found in Basu et al. (2013). For the180

measurement uncertainties we follow the recommendations of the data providers. For the GOSAT

retrieved total column ratios, the uncertainty was calculated by error propagation of the instrument’s

measurement noise of the CH4 and CO2 total columns given in retrieval data set. The uncertainties

of proxy CH4 total columns are also calculated in similar ways. In principle, they should be the ratio

uncertainties plus the Xmodel
CO2 ::::::

Xmodel
CO2 uncertainty (see Eqs. 1 and 2). However, the uncertainties from185

Xmodel
CO2 :::::

Xmodel
CO2 :

are neglected in real world applications, and we follow the same procedure. Hence, in

our experiment, the ratio and proxy columns have the same relative uncertainties. For computational

efficiency, we assume no correlation between the measurements (i.e. all the non-diagonal term of R

are set to zero).

Formally, we should perturb the pseudo measurements with noise according to the data covariance190

matrix R, following the same procedure as for the a priori fluxes. However, to catch the mean be-

havior one would have to do several inversions with different noise realizations. This multi-inversion

mean would correspond to the results of a single inversion without noise. For this reason we do not

perturb the data. It should also be noted that satellite measurements are simulated using the same

prior profiles as used for the real RemoTeC GOSAT retrievals. Since the same prior profile is used195
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in the inversion and in the generation of pseudo data, its contribution cancels out in the model data

mismatch and therefore does not influence the results.

In the ratio inversion, the GOSAT measurements are in terms of Xratio, whereas the output of the

Transport
:::::::
transport

:
model is in terms ofXobs

CH4
andXobs

CO2:::::
Xobs

CH4:::
and

::::::
Xobs

CO2. The observation operator

H transforms the absolute columns to column ratios using Eq. (2). For calculating the gradient of200

J(x), the adjoint of H is needed for propagating the sensitivities of the cost function from Xratio

to the corresponding sensitivities of Xobs
CH4

and Xobs
CO2 :::::

Xobs
CH4 :::

and
::::::
Xobs

CO2. This adjoint is derived by

applying the adjoint coding rules described in Errico (1997). It should be noted that the problem is

only weakly non-linear since the values ofXobs
CO2 :::::

Xobs
CO2:

vary in the narrow range of≈ 350–400 ppm

in our calculations, and the inversion-derived adjustments to Xobs
CO2 ::::

Xobs
CO2:

are only a small fraction205

of that range.

2.4 Experiment

In this study, we perform OSSEs comparing different global inversion setups using the same truth

and a priori fluxes. The inversions system is run at a 6◦×4◦ horizontal resolution and 25 vertical hy-

brid sigma-pressure levels from the surface to the top of the atmosphere. Simulations are performed210

for the period 1 June 2009 to 30 May 2010. The transport in TM5 is driven by meteorological fields

from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis

project (Dee et al., 2011). Table 2 provides an overview of the inversions that have been performed,

specifying the fluxes that were optimized, the optimizer that was used with number of iterations, and

the type of measurements assimilated. The PROXY inversion requires Xmodel
CO2 ::::::

Xmodel
CO2 (see Eq. 1),215

which is calculated by sampling the output of a forward run of TM5 using posterior CO2 fluxes

from the SURFCO2 inversion and applying the GOSAT averaging kernel.

The TRU-DAT represents an inversion which assumes that we have perfect knowledge ofXmodel
CO2 :::::

Xmodel
CO2 .

It is used as a best-case scenario for the proxy method. In contrast, Xmodel
CO2 ::::::

Xmodel
CO2 for PRICO2 was

calculated using prior CO2 fluxes transformed directly into observations using TM5 without op-220

timization using CO2 surface measurements. This inversion represents a worst case scenario for

the proxy method. The RATIO inversion uses our new ratio method, assimilating surface CH4 and

CO2 observations, and Xratio for optimizing surface CH4 and CO2 fluxes. PROXY represents the

common use of proxy retrievals in atmospheric inverse modelling. In PROXY, the same amount of

measurements are assimilated in a series of two linear inversions: (1) optimization of CO2 fluxes225

w.r.t. the surface data
::::
with

::::::
surface

:::::::::::
observations

:
(SURFCO2), (2) an inversion using surface CH4

and Xproxy
CH4 :::::

Xproxy
CH4:

(PROXY). We use 50 CONGRAD iterations
:::::::
iterations

::
of

:::::::::::
CONGRAD for both of

these inversions. In RATIO, all the information is assimilated in a single inversion using 100
:::::::
iteration

::
of M1QN3iterations.
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2.5 Analysis230

In Sect. 3, we analyze the monthly time series of posterior fluxes from different inversions using

Taylor plots (Taylor, 2001) and mean annual departures form
::::
from

:
the true fluxes aggregated over

the land Transcom
::::::::
Transcom

::::
land

:
regions. We only show the analysis of the fluxes over the land as

the fluxes of CH4 are negligible over the oceans. We define the following parameters to represent the

average deviation of the posterior fluxes from the truth over all the land Transcom regions:
::::::::
Transcom235

:::
land

:::::::
regions:

:

κ= |cor− 1|,

γ = |σ/σtruth− 1|,

β = |bias|, (4)

where cor
::
cor is the cross-correlation between the posterior and true monthly flux timeseries

::::
time240

:::::
series for a Transcom regions

:::::
region, and σ/σtruth is the relative SD of the posterior and true monthly

flux timeseries
::::
time

:::::
series

:
of a Transcom region. In the Taylor plots, σ/σtruth = 1 and cor

::
cor = 1

represent the true fluxes and therefore, we subtract 1 from both the values in Eq. (4) to represent the

deviation of prior or postrior
:::::::
posterior fluxes from true fluxes. Finally, bias

:::
bias is the difference of

:::::::
between the posterior and true net annual flux of a Transcom region. It should be noted that κ and245

γ are dimensionless, and β has a unit of Tg yr−1 for CH4 and PgCyr−1 for CO2.Table 3 lists the

values of these parameters for the inversions performed in this study. The closer these values are to

zero for an inversion, the better it is performing, With each parameter at zero the agreement between

the true and inversion-optimized fluxes is perfect.

3 Results250

3.1 Ratio method implementation

Figure 3 summarizes the performance of RATIO (see also Table 2). The pseudoXratio measurements

have typical values in the range of 4.4 to 4.8ppb ppm−1. We observe that the latitudinal gradient of

CH4 atmospheric concentration is a dominant mode of variation in Xratio. The randomly generated

globally and annually integrated a priori CO2 flux, combining land and ocean, is 2.01PgCyr−1255

larger than the true flux (truth=−4.65PgCyr−1, prior=−2.640PgCyr−1). As a result of this,

the a priori fluxes overestimate the global CO2 increase. The global annual prior CH4 flux is only

6.85Tg yr−1 lower than the truth (truth = 541.764Tg yr−1, prior = 534.905Tg yr−1), which is

a much smaller relative deviation from the true fluxes compared to CO2. Hence, the percentage mis-

match between the modeled prior and measured Xratio is mostly positive over the globe (Fig. 3c).260

The figure also compares the prior and posterior misfits of RATIO to the “true” Xratio. The measure-

ment uncertainty of Xratio increases towards higher latitudes. We find a gradient norm reduction of
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≈ 2000 for 100
::::::::
iterations

::
of M1QN3. As expected, the posterior mismatches are strongly reduced

in-comparioson
::
in

:::::::::::
comparioson

:
to the prior, demonstrating that the ratio inversion system works

mathematically and that it is reasonably efficient in minimizing the cost function. The improved fit265

of measurements also leads to a convergence of the posterior fluxes towards the true fluxes, as will

be discussed in detail in Sects. 3.3 and 3.4.

3.2 TRU-DAT and PRICO2

As explained in Sect. 2.4, TRU-DAT and PRICO2 represent best and worse
::::
worst

:
case scenarios

of the impact of errors in Xmodel
CO2 ::::::

Xmodel
CO2 :

on the results of a proxy inversion. Here we analyze the270

differences between these inversions, which inform us about the sensitivity of the proxy method

to errors in Xmodel
CO2::::::

Xmodel
CO2 . Figure 4 compares the performance of PRICO2 and TRU-DAT using

Taylor plots. In these plots, each point represents a 12 month timeseries of CH4 fluxes integrated

over a land Transcom
::::::::
Transcom

::::
land

:
region. Compared to the prior (κ= 0.286 and γ = 0.211),

the posterior fluxes of TRU-DAT shows much better agreement with the true fluxes (κ= 0.024 and275

γ = 0.042). PRICO2 (κ= 0.210 and γ = 0.258), on the other hand, performs even worse than the

prior in terms of γ. Figure 5 shows how well the TRU-DAT and PRICO2 inversions are capable

of reproducing the true annual fluxes integrated over land Transcom
::::::::
Transcom

::::
land

:
regions. The β

values are 2.370, 2.409 and 0.621Tg yr−1 for PRIOR, PRICO2 and TRU-DAT, respectively. Again,

we observe that on average the results of TRU-DAT are closest to the truth, and that the results280

for PRICO2 are further away from truth than the a priori fluxes. This tells us that the performance

of inversions assimilating proxy data is sensitive to our knowledge of the CO2 fluxes. In practical

applications, however, the CO2 fluxes will first be optimized using surface measurements to obtain

a better representation of atmospheric CO2 concentrations. Inversions representing this approach

will be discussed in the next section.285

3.3 PROXY, RATIO and SURFCH4

Next we analyze the difference between the proxy inversion (PROXY), using optimized CO2 con-

centrations from SURFCO2, and our new ratio method (RATIO). For comparison, we also include

results of SURFCH4 using only surface CH4 measurements. The performance of these inversions

is analyzed as in Sect. 4.2, and the results are summarized on
::
in Figs. 6 and 7. All three inversions290

improve the cor
:::
cor of the posterior fluxes with the truth compared to the prior but have varied per-

formance in improving σ/σtruth. The prior fluxes of Boreal North America are closer to the truth than

any of the posterior fluxes. However, it should be realized that the prior fluxes were created by adding

random noise to the truth, which happens to be a small perturbation occasionally. This is why we

average results over all land Transcom
::::::::
Transcom

::::
land

:
regions to derive meaningful comparisons.295

The κ and γ values, representing the average perfomence over land Transcom
::::::::::
performance

:::::
over

9



::::::::
Transcom

::::
land

:
regions, are shown in Table 3. We observe that RATIO and PROXY perform better

than SURFCH4, confirming the importance of information provided by the satellite measurements.

Figure 7 shows the departures of the annual fluxes from the truth aggregated over land Transcom

region.
::::::::
Transcom

::::
land

::::::::
regions.

:::
The

:
β values are 2.37, 1.40, 1.43, and 1.96Tg yr−1 for PRIOR,300

RATIO, PROXY and SURFCH4, respectively (see Table 3). Overall, we find that the performance

of RATIO and PROXY is similar. RATIO performs better than PROXY in 6 regions, and PROXY is

better in the other 5 regions. The PROXY inversion shows the worst performance in Boreal North

America, Temperate North America and Boreal Eurasia, and RATIO has the worst performance in

Southern Africa.305

Overall, we
:::
We find that with the additional information provided by the satellite measurements

RATIO and PROXY are able to reproduce the true fluxes better than SURFCH4. However, it is

difficult to conclude if RATIO or PROXY performs better, as their realtive
::::::
relative

:
performances

vary across the regions. As can be seen in Figs. 6 and 7, PROXY clearly has a poor performance

over Temperate North America. Similarly, RATIO performs worse in Southern Africa than PROXY.310

These varying relative performances is
::
are

:
further investigated in the next subsection. Annual flux

uncertainties of the fluxes are shown as error bars in the Fig. 7. It should be noted that unlike PROXY

and SURFCH4, RATIO does not estimate posterior uncertainties. This drawback of RATIO will be

further discussed in the Sect. 4. The reduction in uncertainty is larger for PROXY than SURFCH4 in

the regions where we have less surface measurements (in Tropical South America, Temperate South315

America, Northern Africa). This can be attributed to the larger number of satellites
::::::
satellite

:
obser-

vations in comparison to surface measurements in these regions. In other regions, both inversions

show similar uncertainty reductions due to a higher gradient norm reduction achieved by SUFCH4

(3.1×1010) compared to PROXY (3.9×103). Both inversions are run for 50 iterations, but PROXY

has a larger number of data to assimilate than SURFCH4, and therefore, it achieves a lower gradient320

norm reduction.

3.4 CO2 fluxes

As explained in Sect. 1, the motivation for our ratio technique is to obtain a more consistent represen-

tation of the CO2 concentration fields in the atmosphere. In this subsection, we address the question

whether RATIO optimized CO2 fluxes are indeed closer to the truth than those obtained using SUR-325

FCO2 (which are used for PROXY). Figure 8 shows the deviations of posterior CO2 fluxes from

the truth for RATIO and SURFCO2. In general, annual a priori CO2 fluxes show large relative

deviations from the truth compared to CH4. This is a direct consequence of the assumed a priori

flux uncertainties (see Table 1). The β values (Table 3) are 0.327, 0.185 and 0.134PgCyr−1 for

PRIOR, SURFCO2 and RATIO, respectively. RATIO is able to constrain CO2 fluxes better than330

SURFCO2. The difference between SURFCO2 and RATIO is explained by regions such as Temper-

ate North America and Temperate South America, which are relatively poorly constrained by SUR-
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FCO2. RATIO is performing better in these regions with the help of satellite measurements. This

difference in the performance can also be attributed to the high model representation error associated

with the point measurementsin Temperate North America and a
:
In

:::::::::
Temperate

:::::
North

::::::::
America,

::::
due

::
to335

:::::
coarse

:::::::::
resolution

::
of

:::
the

::::::
model

::
in

:::::::::::
combination

::::
with

:::::
large

::::::::
emission

::::::::
gradients,

:::::
large

::::::::::::
representation

:::::
errors

:::
are

::::::::
assigned

::
to

:::
the

:::::::::
simulated

:::::::::::::
measurements.

:::::
Also,

:::
we

:::
do

:::
not

::::
take

::::
the

:::
full

:::::::::
advantage

:::
of

::::::
surface

:::::::::::
measurement

::::::::
coverage

::
of
::::

this
::::::
region

::
as

:::
we

::::
use

::::
only

:::::
fully

::::::::
processed

::::::::::::
NOAA/ESRL

:::::
flask

::::::::::::
measurements.

::
A lack of surface measurement stations

:::::::::::
measurements

::::
can

::
be

:::
the

::::::
reason

:::
for

:::::
poor

::::::::::
performance

:::
of

:::::::::
SURFCO2

:
in Temperate South America.

::
We

:::::::
observe

::::
that

:::::::
RATIO

::
is

::::::::::
performing340

:::::
better

::
in

::::
these

:::::::
regions

::::
with

:::
the

::::
help

::
of

::::::
satellite

:::::::::::::
measurements.

Figure 9 shows how well the inversion-derived CO2 fluxes reproduce the true seasonality. Com-

pared with CH4, the prior fluxes correlate well with the truth, despite their relatively large a priori un-

certainties. This reflects the large seasonal variation in the biospheric CO2 fluxes. For CO2, the dif-

ferences in the Taylor diagrams are dominated by variations in σ/σtruth. Overall, RATIO (κ= 0.125,345

γ = 0.225) performs better than SURFCO2 (κ= 0.180, γ = 0.241). RATIO is able to reproduce

the true seasonality for most regions except Northern Africa, Temperate Eurasia and Tropical Asia.

In Temperate Eurasia, SURFCO2 performs very well. However, it performs worse than RATIO in

Tropical Asia. In Tropical South America and Temperate South America, we find a similar perfor-

mance of RATIO and SURFCO2. The prior for Europe does not deviate much from the truth, so the350

relative performance for the two methods cannot be judged adequately.

3.5 The link between CO2 and CH4

In principle, the performance of PROXY should improve with the performance of SURFCO2. If

SURFCO2 reproduces the true CO2 fluxes exactly, then the only source of error in Xproxy
CH4

due to

Xmodel
CO2 :::::

Xproxy
CH4::::

due
::
to

::::::
Xmodel

CO2 will be the representation error of the finite resolution model used for355

generating spatio-temporal fields of CO2. Also in the case of RATIO, the correctness of posterior

CH4 fluxes is dependent upon the correctness of CO2 fluxes and vice-versa. For example, Figs. 8

and 9 show that Southern Africa has a poor performance of RATIO, and that SURFCO2 has a poor

performance in Temperate North America for constraining CO2 fluxes. This is also reflected in the

poor performance of RATIO and PROXY in constraining CH4 fluxes in these regions (Sect. 3.3).360

The performance of SURFCO2 varies regionally, which causes a corresponding pattern in the perfor-

mance of PROXY. The same relation should hold for the posterior CO2 and CH4 fluxes calculated

with RATIO. To quantify this relation, we define pCH4
as a measure of the relative accuracy of RA-

TIO and PROXY derived CH4 fluxes, and pCO2
as a measure of the relative accuracy of RATIO and

SURFCO2 derived
:::::::
biosphere

:
CO2 fluxes for each Transcom region. They are defined as365

pCH4CH4
:::

=
∣∣∣xPROXY

CH4CH4
:::
−xtruth

CH4CH4
:::

∣∣∣− ∣∣∣xRATIO
CH4CH4

:::
−xtruth

CH4CH4
:::

∣∣∣,
pCO2CO2

:::
=
∣∣∣xSURFCO2

CO2CO2
:::
−xtruth

CO2CO2
:::

∣∣∣− ∣∣∣xRATIO
CO2CO2

:::
−xtruth

CO2CO2
:::

∣∣∣, (5)
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where the x’s denote timeseries of monthly fluxes integrated over land Transcom regions. The sub-

scripts indicate the tracer, and the superscripts indicate whether the fluxes refer to the truth or in-

version estimates. pCH4 and pCO2 :::::
pCH4 :::

and
:::::
pCO2:are arrays of 12 month timeseries for each land370

Transcom regions
::::::::
Transcom

::::
land

::::::
region. They are defined such that: (1) pCH4,i > 0

:::::::::
pCH4,i > 0

:
im-

plies that RATIO is performing better than PROXY for CH4 fluxes in the month i. (2) pCO2,i > 0

:::::::::
pCO2,i > 0

:
implies that RATIO is performing better then

::::
than SURFCO2 for CO2 fluxes in month

i. (3) For values of pCH4,i and pCO2,i less then
::::::
pCH4,i :::

and
::::::
pCO2,i::::

less
::::
than 0 the reverse of (1) and

(2) is true.375

The upper panel of Fig. 10 shows pCO2
and pCH4 :::::

pCO2:::
and

:::::
pCH4:

series for Boreal North Amer-

ica. Lower panels
::::
panel

:
of Fig. 10 shows the cross-correlations between pCH4 and pCO2 for each

land Transcom
:::::
pCH4 :::

and
:::::
pCO2:::

for
::::
each

::::::::
Transcom

::::
land

:
region. As it can be seen, this value is above

0.7 (mean = 0.809) for all regions except for Australia (0.202) and BEr
:::::
Boreal

:::::::
Eurasia (0.539).

A lack of surface measurement
::::::::::::
measurements in these two regions can be the reason for the low380

correlation,
:
as surface measurement stations are needed for good performence

::::::::::
performance

:
of both

RATIO and PROXY (Sect. 4). Overall, we conclude that the relative performance of the proxy and

ratio methods depends strongly on the relative performance of the surface-only and ratio CO2 inver-

sions.

4 Discussion385

We have developed the “ratio” method
::
for

::::::::::::
TM5-4DVAR

::::::::
inversions

:::::::
system. It is an inversion system

for assimilating the ratio of satellite-retrieved total columns of CH4 and CO2 along with surface

measurements for constraining their surface fluxes. The main advantage of the
:::
this

:
method over the

traditional proxy method is that it does not impose model-derived CO2 concentrations as a hard

constraint on the CH4 flux optimization. Instead, our method allows optimization of CO2 and CH4390

fluxes within a single consistent framework. This way we can benefit from the proxy retrieval, which

has proven to be highly efficient in reducing the errors due to light-path modification by atmospheric

scattering(Sect. 1), but at the same time, avoid projection of errors in Xmodel
CO2 :::::

Xmodel
CO2 :

on the inverted

CH4 fluxes. The method requires assimilation of surface measurements of CH4 and CO2 as an

additional constrain, since ,
::::::::
constraint,

:::::
since a ratio alone is not a sufficient constrain

::::::::
constraint for395

absolute values of CH4 and CO2 fluxes. For example, the inversions can reduce the absolute CH4

and CO2 modeled columns by the same factor and can still fit their ratio column to give a lower

value of the cost function (Eq. 3).

The performance of the ratio method is tested in comparison with the traditional proxy method and

surface-only inversions in an OSSE using the TM5-4DVAR atmospheric inversion system. Overall,400

we observe that the ratio method is capable of reproducing the true CH4 and CO2 fluxes better

than the surface-only inversion. The performance of
:::
the ratio method in comparison to the proxy

12



method varies among land Transcom regions.
::::::::
Transcom

::::
land

:::::::
regions.

:::
The

:::::::::::
performance

::
of

:::::::::
inversions

::::::::::
assimilating

::::::
satellite

::::
data

::
in
::::

this
:::::
study

::
is

::::::::
optimistic

:::::::::
compared

::
to

:::::::::
inversions

::::
using

::::
real

:::::::::::
observations

::
as

:::
we

::::
have

:::
not

:::::::::
introduced

::::
any

:::::::::
systematic

:::::
biases

::
in

:::
our

:::::::::::::
measurements.

:::::
Also,

::
as

:::
we

:::
do

:::
not

:::::::
filterout405

:::::::::::
measurements

:::::
taken

::
in
::::::

cloudy
::::::

scenes
::::
and

:::
we

:::
use

:::::::
medium

::::
gain

::::::::::::
measurements

::
in

:::
our

:::::::::
inversion,

:::
we

::
are

:::::::::
optimistic

:::::
about

:::
the

:::::::
satellite

::::::::
coverage

::
in

:::
the

::::::
tropics

::::::::
compared

::
to
:::::::
real-life

:::::::::
inversions.

:::::::::
However,

:
it
::
is

::::
also

::::
true

:::
that

:::::::
satellite

::::::::::::
measurements

::::
are

::
an

:::::::::
important

::::::::
additional

::::::
source

::
of

:::::::::::
information

:::::
about

:::::
GHGs

::::::::::::
concentrations

::
in

:::::
these

:::::::
regions.

The ratio method is a more complicated inversion to solve than a proxy inversion as it is a non-410

linear inversion problem, and therefore the widely used CONGRAD optimizer cannot be used. In

our setup, we use the M1QN3 optimizer, which is capable of handling the non-linearty. However, to

inter-compare inversions using different optimizers requires attention as mathematically their mode

of operation is different. For example, CONGRAD constraints
:::::
solves

:::
for the largest spatial and

temporal scales in the first few iterations, gradually adjusting finer scales in subsequent iterations.415

M1QN3 works in similar manner, however, it has a much slower convergence rate for the finer scales

than CONGRAD. Hence the overall convergence rate of M1QN3 is slower than CONGRAD, and to

achieve the same gradient norm reduction it takes more iterations (Krol et al., 2013).

Another drawback of M1QN3 compared to CONGRAD is that no information is obtained about

posterior flux uncertainties, since the method does not collect information about Hessian of the cost420

function like CONGRAD. Posterior uncertainties
:
.
::::
They

:
are essential for inverse modeling applica-

tions using real data to quantify the constraints on the fluxes imposed by measurements. This is true,

despite the fact that several important sources of uncertainty, such as transport model uncertainties,

are difficult to account for. Furthermore, the accuracy of CONGRAD’s uncertainty approximation

may be rather poor for large optimization problems, limiting its use. An alternative method for calcu-425

lating posterior uncertainties is to use a Monte Carlo approach (Chevallier et al., 2007). This method

can be applied also to inversions using M1QN3, although the method is computationally expensive.

So far we have not investigated possible alternatives for M1QN3. However, we would like to stress

that there is a scope to find a more efficient optimizer for solving this non-linear optimization prob-

lem, and future studies into the application of the ratio method should put an effort in this direction.430

::::::::::::::::::::::::
Fraser et al. (2014) developed

:
a
:::::::
method

::
for

::::::::::
assimilating

:::::
Xratio::

in
:::
the

:::::
MAP

:::::::
inversion

:::::
setup

:::::::
coupled

::
to

::
the

::::::::::::
GEOS-Chem

:::::
global

::::
3-D

::::::::::
atmospheric

::::::::
chemistry

::::::::
transport

::::::
model.

::::::
Similar

::
to

:::
our

::::::::
findings,

::::
their

::::::
OSSEs

::::
show

::::
that

:::
the

::::::::::
assimilation

::
of
:::::
Xratio:::::

along
:::::
with

::::::
surface

::::::::::::
measurements

::
of

::::
CH4

::::
and

::::
CO2

::::
can

::::::::
reproduce

:::
the

::::
true

:::::
fluxes.

::::::::
However,

:::::
there

:::
are

:::::
some

::::::::
important

:::::::::
differences

::::
with

:::
our

::::::
study:

1.
:::
We

:::::
focus

::
on

::
a
::::::::::
comparison

:::::::
between

:::
the

::::::
proxy

:::
and

:::::
ratio

::::::::
approach

:::
and

::::
also

:::::::
perform

::
a
:
CO2435

:::::::
inversion

:::::
using

:::::::
surface

::::::::::::
measurements

:::
for

:::::::::
calculating

:::
the

::::::
model

:::::::
derived CO2 ::::

fields
::::
used

:::
in

::
the

::::::
proxy

::::::::
approach.

::::
This

::::
way

:::
the

::::::::::
propagation

::
of

::::::
errors

::::
from

:::::::
modeled

:
CO2:::::

fields
:::
into

::::::
proxy

CH4::::::::::::
measurements

::
is

::::
also

:::::::::
simulated.

:::::::
Instead,

::::::
Fraser

::
et

:::
al.

:::::
(2014)

::::
add

:
a
::::::::

constant
::
or

:::::::
random

:::
bias

::
to

:::
the

:::::
Xratio::::::::::::

measurements.
:
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2.
:::::
Fraser

::
et

:::
al.

::::::
(2014)

:::::
report

::::::::
posterior

::::::::::
uncertainties

:::
of CH4 :::

and CO2 ::::
fluxes

:::::::
derived

::::
from

:::::
their440

::::
Xratio::::::::::

inversions.
::::::::
Although

::::::::
posterior

:::
flux

:::::::::::
uncertainties

::::
can

::
in

::::::::
principle

::
be

:::::::
derived

::::
from

::::
our

::::::
method

:::::
also,

::::
they

:::
are

:::
not

:::::::
reported

::::
here

:::
for

::::::::::::
computational

:::::::
reasons.

:

3.
:::
The

::::
ratio

::::::::
inversion

::::::
system

::
is

::::::
weakly

:::::::::
non-linear.

:::
The

::::::::::::::::::::
Fraser et al. (2014) ratio

::::::::
inversions

:::::::
assume

:::::::
linearity.

:::
We

:::
do

:
a
:::::::::
non-linear

::::::::
inversion

::::
using

::
a
:::::::
suitable

::::::::
optimizer.

:

Now that we have demonstrated that the ratio method works in a synthetic environment
:
, the next445

step is the application of the method to real satellite data. A first step in this direction is to validate

GOSAT observed XCH4 over XCO2 ratios
:::::
XCH4:

:::::
XCO2:

with TCCON. After that we plan to apply

the ratio method to real satellite data, and compare the outcome with inversions using the GOSAT

proxy and full-physics retrieval products. With improved constraints on the CO2 side of
::
the

:
problem,

as more space borne CO2 measurements becoming available from GOSAT and OCO-2, the proxy450

method is expected to perform better for methane. In this case one would expect the results of the

proxy and ratio methods to converge. Whether or not this will really happen depends on the mutual

consistency of the various data streams. The ratio method provides an internally consistent setup (i.e

within a single inversion system) to test this and to identify remaining biases. It should be noted that

computationally, the ratio method has the advantage that it optimizes CH4 and CO2 fluxes together.455

This method can also be applied to other pairs of tracers, which are retrieved from close-by spectral

ranges in the satellite measurement spectra. For example, CO total columns will be retrieved from

TROPOMI (to be launched in 2016) using CH4 as the proxy for atmospheric scattering, and there is

a possibility , that our ratio method can be applied successfully to this pair of tracers.

5 Conclusions460

We developed a new inverse modeling method within the TM5-4DVAR inverse modeling framework

for direct assimilation of satellite observed ratios of total column CH4 and CO2. The dual tracer

inversion solves for surface fluxes of CH4 and CO2. Our current implementation also assimilates

surface measurements of CO2 and CH4 to further constrain the two tracer inverse problem. To

deal with the weak non-linearity introduced by the optimization of tracer ratios we make use of the465

M1QN3 optimizer, instead of the CONGRAD optimizer, which was used so far for inversions using

proxy retrievals. Although the optimization of the ratio inversion using M1QN3 is about a factor

::
of 2 less efficient than the corresponding proxy inversion using CONGRAD, we nevertheless find

satisfactory gradient norm reductions (by a factor of≈ 2000 in 100 iterations). We tested our method

in an OSSE setup. We observe good convergence of posterior model columns toward the true ratio470

columns, and the ratio method is able to reproduce the true CH4 and CO2 fluxes from randomly

perturbed prior fluxes.

We performed additional inversions in our OSSE setup to compare the performance of inversions

using proxy and ratio retrievals from GOSAT. In addition, we compare the performances of these
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inversions, which also use surface measurements, with inversions that
::::
only use surface measure-475

ments. Additional inversions are performed to test the sensitivity of proxy inversions to the quality

of the model derived CO2 concentrations, which are used to translate the retrieved tracer ratios into

total columns of CH4. The performance of these inversions is evaluated by comparing the inversion-

derived fluxes to a set of true fluxes from which the synthetic measurements were derived. The per-

formance is assessed for monthly and annual fluxes integrated over the 11 land Transcom
::::::::
Transcom480

:::
land

:
regions. Our results demonstrate that the estimation of CH4 fluxes using the proxy inversion is

sensitive to errors in the modeled derived CO2 concentrations.

We conclude that for most Transcom regions the ratio method is capable of reproducing the true

seasonality and annually integrated CH4 fluxes. However, it should be noted that availability of sur-

face measurements is important for good performance of the ratio method. The relative performance485

of the proxy and ratio methods shows a relationship with errors in CO2, with ratio method perform-

ing better in regions where the CO2 fluxes are poorly constrained. In our synthetic simulations, the

ratio inversion is capable of improving the CO2 fluxes compared with the use of CO2 surface-only

measurements, which explains why it outperforms the proxy method in certain regions. This points

to the applicability of the ratio method for improving CO2 fluxes in these regions. Further research490

is needed to test the performance of the ratio method in the applications using real satellite data.

Appendix A:
:::::::
M1QN3

::::
and

::::::::::
CONGRAD

:::
We

:::::
tested

:::
the

:::::::::::
convergence

:::
rate

:::
of

::::::::::
CONGRAD

::::
and

:::::::
M1QN3

:::::
using

:::
the

:::::
setup

::
of

:::::::
PROXY

:::::::::
described

::
in

::::::
section

:::
2.4.

::::
For

:::
this

::::::::
purpose,

:::
we

::::::
carried

:::
out

:::::::::
inversions

::::
with

::::
both

:::::::::
optimizers

:::
for

:::
30,

:::
60

:::
and

::::
100

:::::::
iterations

::::
and

::::::::
compared

:::::
these

::
to
:::

the
::::::::

standard
::::::::
inversion

:::::
using

::
50

:::::::::
iterations.

::::::
Figure

::::
1.11

::::::
shows

:::
the495

:::::::::::
corresponding

::::::::
posterior

:
CH4 :::

flux
:::::::::
departures

::::
from

::::::::
PROXY

:::
that

:::
are

::::
also

::::::
shown

::
in

:::::
figure

::
7.

:::
We

::::
find

:::
that

::::
both

::::
the

:::::::::
optimizers

::::::::
converge

::::::
within

:::
100

:::::::::
iterations.

:::::
After

:::
60

::::::::
iterations,

:::::::::::
CONGRAD

:::::::
already

::::::
reaches

:::
the

::::::::
solution,

:::::::
whereas

:::::::
M1QN3

::::::
shows

::::::
slower

:::::::::::
convergence.

:::::::::
Significant

::::
flux

::::::::::
differences

:::
are

:::::
found

:::::::
between

:::
the

::::::::
optimizers

:::
for

:::::::::
inversions

:::
with

:::
30

:::
and

:::
60

::::::::
iterations.

:::
For

:::::::::::
CONGRAD,

:::
the

::::::::
difference

:::::::
between

::::::::
inversions

::::
with

:::
50

:::
and

:::
60

::::::::
iterations

:
is
:::::::::
negligible.

:
500
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Table 1. Covariance parameters of the a priori flux uncertainties per grid box per month used in the inversions.

The uncertainty is expressed as a fraction of the a priori flux. Error correlations are defined by exponential (“e”)

and Gaussian (“g”) correlation functions using the specified length scales (Basu et al., 2013).

Tracer category Uncertainty (%) Temporal (months) Spatial (km)

CH4 Total 50 3.0-e 500.0-g

CO2 Biosphere 250 3.0-e 1000.0-g

CO2 Ocean 250 6.0-e 1000.0-g

Table 2. Summary of the inversions performed in this study.

Inversion Measurements Fluxes optimized Optimizer (No of iterations)

RATIO Xratio, surface CH4, CO2 CH4, CO2 M1QN3 (100)

SURFCO2 surface CO2 CO2 CONGRAD (50)

PROXY Xproxy
CH4 ::::

Xproxy
CH4 , surface CH4 CH4 CONGRAD (50)

SURFCH4 surface CH4 CH4 CONGRAD (50)

TRU-DAT Xproxy
CH4 ::::

Xproxy
CH4 , surface CH4 CH4 CONGRAD (50)

PRICO2 Xproxy
CH4 ::::

Xproxy
CH4 , surface CH4 CH4 CONGRAD (50)

Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp, O., Blavier, J.-F., Deutscher,

N. M., Griffith, D. W. T., Hase, F., Kyro, E., Morino, I., Sherlock, V., Sussmann, R., and Aben, I.:

Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measure-

ments: Performance comparison of proxy and physics retrieval algorithms, J. Geophys. Res., 117, D10307,

doi:10.1029/2012JD017549, 2012.630

Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., Flückiger, J.,

Schwander, J., Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric methane and nitrous oxide

of the Late Pleistocene from Antarctic ice cores, Science, 310, 1317–1321, doi:10.1126/science.1120132,

2005.

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106,635

7183–7192, 2001.

19

http://dx.doi.org/10.1029/2012JD017549
http://dx.doi.org/10.1126/science.1120132


BNA BEr

Saf

NAf

Er

TSA

TrSA

TNA

TrA

TEr

Aus

Figure 1. The dynamic symbols (blue-green crosses) show the location of the NOAA measurements sites

included in inversions using surface measurements (see Table 2). The lengths of vertical blue and horizontal

green bars are proportional to the number of CO2 and CH4 measurements, respectively. Continents are divided

into 11 Transcom land regions (Gurney et al., 2002) which will be referred to in Sects. 4 and 3 as: Boreal North

America (BNA), Temperate North America (TNA), Tropical South America (TrSA), Temperate South America

(TSA), Northern Africa (NAf), Southern Africa (SAf), Boreal Eurasia (BEr), Temperate Eurasia (TEr), Tropical

Asia (TrAs), Australia (Aus), and Europe (Eur).

Figure 2. Timeseries of the true (green) and prior (blue) fluxes integrated over Tropical South America, Tem-

perate South America, Boreal Eurasia and Temperate Eurasia.
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Figure 3. Fit of the RATIO inversion to the annually averaged “true” Xratio pseudo measurements. (a) True

pseudoXratio measurement, (b) a priori modeledXratio, (c) mismatch between the a priori model and the pseudo

data, (d) the corresponding mismatch of the posterior model, (e) the number of GOSAT measurements, (f) the

1σ data uncertainty of Xratio. The values represent yearly averages per 6◦ × 4◦ (latitude × longitude) grid box,

except the bottom left panel which shows yearly integrals on 6◦ × 4◦ (latitude × longitude).

Figure 4. Taylor plots (Taylor, 2001) of monthly prior (grey triangles) and posterior CH4 fluxes integrated over

11 land Transcom
:::
land regions for the inversions TRU-DAT (red circles) and PRICO2 (blue circles). In these

plots, each dot represents a seasonal cycle
::::::
variation

:
of a single Transcom region. The true fluxes are at the

intersection point of the x axis and the bold arc (representing a cor = 1 and σ/σtruth = 1).
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Figure 5. Annual prior and posterior CH4 fluxes deviation
:::
flux

::::::::
departures

:
from the true fluxes at land

::
for

:::
the

Transcom
:::
land regions for the inversions TRU-DAT and PRICO2. The true fluxes are written at the top of the

plot in Tg yr−1. The vertical black lines on the bars show 1σ uncertainty of the corresponding values.

Figure 6. As Fig. 4 for the RATIO, PROXY and SURFCH4 inversions.
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Table 3. κ, γ and β values of the inversions performed in this study (see Eq. 4 and Table 2). The β values have

a unit of Tg yr−1 for CH4 and PgCyr−1 for CO2. κ and γ are unitless quantities.

Tracer Inversion κ γ β

CH4

PRIOR 0.286 0.211 2.370

RATIO 0.122 0.129 1.396

PROXY 0.119 0.137 1.432

SURFCH4 0.218 0.162 1.959

TRU-DAT 0.024 0.042 0.621

PRICO2 0.210 0.258 2.409

CO2

PRIOR 0.232 0.392 0.327

SURFCO2 0.180 0.241 0.185

RATIO 0.125 0.225 0.134

Figure 7. As Fig. 5 for RATIO, PROXY and SURFCH4.
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Figure 8. As Fig. 5 for the
:::::::
biosphere CO2 fluxes in RATIO and SURFCO2 inversions.

Figure 9. As Fig. 4 for the
:::::::
biosphere CO2 fluxes in RATIO and SURFCO2 inversions.
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Figure 10. Top: pCH4:::::
pCH4 and pCO2 ::::

pCO2 timeseries for Boreal North America. Bottom: cross-correlations

between pCH4 ::::
pCH4:

and pCO2 ::::
pCO2:

for land Transcom
::::
land regions (see Eq. 5).

Figure 1.11.
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