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Abstract. We present a method for assimilating total column CH4:CO2 ratio measurements from

satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike con-

ventional approaches, in which retrieved CH4:CO2 are multiplied by model derived total column

CO2 and only the resulting CH4 is assimilated, our method assimilates the ratio of CH4 and CO2

directly and is therefore called the ratio method. It is a dual tracer inversion, in which surface fluxes5

of CH4 and CO2 are optimized simultaneously. The optimization of CO2 fluxes turns the hard con-

straint of prescribing model derived CO2 fields into a weak constraint on CO2, which allows us to

account for uncertainties in CO2. The method has been successfully tested in a synthetic inversion

setup. We show that the ratio method is able to reproduce assumed true CH4 and CO2 fluxes starting

from a prior, which is derived by perturbing the true fluxes randomly. We compare the performance10

of the ratio method with that of the traditional proxy approach and the use of only surface measure-

ments for estimating CH4 fluxes. Our results confirm that the optimized CH4 fluxes are sensitive to

the treatment of CO2, and that hard constraints on CO2 may significantly compromise results that are

obtained for CH4. We find that the relative performance of ratio and proxy methods have a regional

dependence. The ratio method performs better than the proxy method in regions where the CO215

fluxes are most uncertain. However, both ratio and proxy methods perform better than the surface

measurement-only inversion, confirming the potential of space borne measurements for accurately

determining fluxes of CH4 and other GHGs.
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1 Introduction

In the past century, the concentrations of many potent greenhouse gases (GHGs) have increased20

in the atmosphere due to anthropogenic activities. The atmospheric dry air mole fraction of the

greenhouse gas methane (CH4), which has a global warming potential of 28–34 on a 100 year time

horizon (Myhre et al., 2013), has increased from 700ppb during the pre-industrial era to≈ 1800 ppb

today (Ferretti et al., 2005). These atmospheric concentrations are unprecedented during at least

the last 650 000 years (Spahni et al., 2005). The direct radiative forcing caused by the increase of25

methane since pre-industrial times is +0.48± 0.05Wm−2 (Myhre et al., 2013), which amounts

to 20 % of the present day cumulative radiative forcing due to all anthropogenic GHGs. Methane

also influences atmospheric chemistry and it is an important control on the oxidising capacity of the

atmosphere. Further details about the methane budget can be found in Kirschke et al. (2013). The

atmospheric growth rate of methane has varied considerably in the last two decades (Bousquet et al.,30

2006; Nisbet et al., 2014). Causes of these variations are still not fully understood, which calls for

better monitoring of its sources and sinks using both top-down and bottom-up studies.

The top-down approach uses inverse modeling techniques to reduce the uncertainty in the bottom-

up derived emission estimates on the basis of atmospheric measurements of CH4. In the past, sev-

eral studies applied the top-down method assimilating surface-based measurements from global35

monitoring networks operated by National Oceanic and Atmospheric Administration–Earth Sys-

tem Research Laboratory (NOAA/ESRL), the Advanced Global Atmospheric Gases Experiment,

and Commonwealth Scientific and Industrial Research Organization (Bousquet et al., 2011, 2006;

Hein et al., 1997; Houweling et al., 1999). However, due to poor spatial coverage of the surface

measurement sites, such inversions are effective in constraining the fluxes at sub-continental scales40

at best (Houweling et al., 1999).

Total column measurements of CO2 and CH4 (XCH4 and XCO2) from satellites have proven

valuable for inversion studies of CH4 and CO2, especially in regions where surface measurement

sites are sparse (Basu et al., 2014, 2013; Bergamaschi and Frankenberg, 2009; Houweling et al.,

2014). For example, atmospheric retrievals from the Thermal and Near infrared Sensor for carbon45

Observations (TANSO) onboard the GOSAT (Greenhouse gases Observering SATellite, Kuze et al.

(2009) ) have provided valuable constraints on the fluxes of CH4 and CO2 (Basu et al., 2013; Fraser

et al., 2013). The CH4 absorption band at 1.6 micron allows retrieval of its atmospheric concentration

with high sensitivity to the planetary boundary layer, where the signals of the sources are strongest.

Besides a good sensitivity to the sources, the quality of the inversion-derived CH4 budget depends50

strongly on the precision and accuracy of the measurements. It has been shown that systematic errors

on regional or seasonal scales of less than 1 % can jeopardize the usefulness of satellite measured

CH4 columns for estimating CH4 budget (Bergamaschi et al., 2007).

High quality XCH4 and XCO2 retrievals require accurate knowledge of the light-path of the pho-

tons that are measured by the satellite. Scattering of light on atmospheric particles (aerosol particles55
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and cloud droplets) may lead to significant light-path perturbations. The accuracy ofXCH4 retrievals

depends to a large extent on how well the retrieval technique can account for such scattering in-

duced perturbations. A commonly used technique is the so-called proxy method, which was origi-

nally developed for retrieving XCH4 and XCO2 using nearby spectral windows from SCIAMACHY

(Frankenberg et al., 2005). Since atmospheric scattering affects both compounds in a similar way,60

light-path errors largely cancel out in the ratio. The retrieval-derived ratio (X
obs
CH4

Xobs
CO2

) is multiplied with

a priori knowledge of atmospheric CO2 derived from a model (Xmodel
CO2 ) to generate proxy column

measurements of CH4 (Xproxy
CH4 ) (Eq. 1).

Xproxy
CH4 =

Xobs
CH4

Xobs
CO2

×Xmodel
CO2 , (1)

Xmodel
CO2 is usually derived from the results of a CO2 inversion using the surface measurements,65

such as CarbonTracker (Peters et al., 2007). It is assumed that: (1) CO2 exhibits comparatively

smaller unknown variations in the atmosphere than CH4, and (2) residual differences in scattering

between the spectral windows of CO2 (1562 to 1585 nm) and CH4 (1630 to 1670 nm) used in

the retrieval are insignificant. Hence, CO2 is used as proxy for changes in the light-path. Schepers

et al. (2012) discuss the performance of GOSAT RemoTeC proxy retrieval in detail. This retrieval70

dataset has been used successfully in inversion studies for optimizing CH4 fluxes (Alexe et al., 2014;

Monteil et al., 2013). In these studies the error in Xmodel
CO2 is assumed to be negligible compared to

retrieval error in Xobs
CH4

Xobs
CO2

. However, with the gradually improving quality of the GOSAT retrievals,

errors in model-derived CO2 may become a bottleneck for improving inversion-derived CH4 fluxes

(Schepers et al., 2012).75

In some regions, the sparse network of surface measurement sites does not provide sufficient

constraints on CO2 fluxes, leading to possible biases in Xmodel
CO2 (Schepers et al., 2012). In this study

we investigate a new method, called the ratio method, which circumvents the use of Xmodel
CO2 by

directly assimilating the retrieved ratio of total column CH4 and CO2 into an inversion that optimizes

CH4 and CO2 fluxes simultaneously. Thus, in the ratio method Eq. (1) is replace by80

Xratio =
Xobs

CH4

Xobs
CO2

(2)

Our motivation for implementing the ratio method is to find a representation of CO2 in the inver-

sion system, that is more consistent with both Xratio and CO2 surface measurements. Also, Xratio is

less biased and has a larger number of measurements than XCH4 and XCO2 full-physics retrievals

(Fraser et al., 2014). Fraser et al. (2014) introduced the assimilation of satellite retrieved Xratio in a85

maximum a posteriori (MAP) inversion system for constraining the surface fluxes of CH4 and CO2.

However, the transport model and inversion method used in their study are different from the ones

used here.

We perform Observing System Simulation Experiments (OSSEs) to test the performance of the

ratio method for reproducing the assumed true fluxes of CH4 and CO2. The results are compared90
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with inversions using proxy retrievals and only surface measurements. In the following Sect. 2, we

elaborate on our inverse modeling setup, and describe our OSSE experiments. In Sect. 3, we analyze

and compare the inversion-estimated posterior fluxes of CH4 and CO2. In Sect. 4, we further discuss

the significance and limitations of our findings and evaluate the future potential of the ratio method

for application in inversion studies, leading to our final conclusions.95

2 Method

2.1 Inverse modeling

We use the TM5-4DVAR inversion system in this study. It comprises of the Tracer Transport Model

version 5 (TM5, Krol et al., 2005) coupled to a variational data assimilation system (4DVAR,

Meirink et al., 2008). TM5 simulates the spatio-temporal distribution of a tracer in the atmosphere100

for a given set of fluxes and initial concentrations that are prescribed as boundary conditions to the

model. We have set up a dual tracer version of TM5-4DVAR for simultaneous simulation of CH4

and CO2. By combining the output of the two tracers, this model allows us to simulate Xratio (see

Eq. 2). The 4DVAR technique uses model calculated and observational dataset of Xratio to optimize

a state vector x, consisting of surface fluxes of CH4 and CO2. The optimum is found by minimizing105

a Bayesian cost function, defined as

J(x) =
1

2
(x−xb)

TB−1(x−xb)+
1

2
(y−Hx)TR−1(y−Hx) (3)

where xb is the a priori knowledge of x, and H is the observation operator, which converts the output

of the model, forced by x, to corresponding mixing ratios at the measurement sites of y. Hence, Hx

represents the model simulated counterpart of the observation vector y. R and B are error covariance110

matrices for y−Hx and xb, respectively. Each iteration of TM5-4DVAR is composed of a forward

and an adjoint TM5 run (Errico, 1997). The forward run is used to calculate the value of the cost

function for a trial state vector xj (using Eq. 3). The adjoint run provides the corresponding cost

function gradient (∇J(x)). At the end of each inversion iteration j, ∇J(xj) and the state vector

xj are fed into an optimizer module to calculate the state vector for the next iteration (xj+1). For115

linear inverse problems we use the conjugate gradient optimizer (CONGRAD, Lanczos, 1950), that

has been used extensively for linear inversion problems (Basu et al., 2013; Houweling et al., 2014;

Monteil et al., 2011, 2013). Mathematically, it has the fastest convergence rate for linear inversions,

but it may perform poorly for non-linear inversions

Our inversion setup for the proxy approach is linear. However, for the new ratio method the op-120

erator H includes Eq. (2), and hence, the inversion becomes non-linear making M1QN3 a more

suitable optimizer than CONGRAD. M1QN3 is a quasi-Newton algorithm based optimizer (Gilbert

and Lemaréchal, 1989), which is commonly used in non-linear inverse modeling (Cressot et al.,

2014; Krol et al., 2013; Muller and Stavrakou, 2005). It has the ability to rebuild the second deriva-

4



tive of the cost functions several times during its descent to minimum, and therefore, performs better125

for non-linear inverse problems.

To compare the difference in convergence between M1QN3 and CONGRAD, we performed ad-

ditional proxy inversions using both optimization methods (see Appendix A ). We find that M1QN3

has a slower convergence rate in comparison to CONGRAD, and therefore the number of iterations

needed to find the inversion solution is generally higher. Another drawback of the M1QN3 algorithm130

that is available to us is that, unlike CONGRAD, it provides no information about the posterior flux

uncertainties in a straightforward way.

2.2 Truth and prior

The assumed true CH4 and CO2 fluxes for our inversion setup are taken from Houweling et al.

(2014) and Basu et al. (2013), respectively. The generation of pseudo observations y is explained135

in the next section. Concerning the state vector x, CH4 fluxes are optimized for a single category

representing the net flux from all the contributing processes at the surface, discretized per model grid

box and per month. For CO2, we optimize for fluxes from the biosphere and the ocean, discretized

in time and space like methane. We do not optimize emissions from other categories like biomass

burning and fossil fuel usage, as they are assumed to have relatively small uncertainties. Table 1140

shows the parameters used to calculate the error covariance matrix B for the prior fluxes. We assume

no prior correlation between flux categories of CO2 biosphere, CO2 oceanic and CH4 total. The

spatiotemporal covariance components for each category were included in B. For details about this

implementation of B in our inversion see Basu et al. (2013). We use one set of prior fluxes xb for all

inversions, which was created by adding Gaussian noise to the true CH4 and CO2 fluxes. The noise is145

generated using the a priori flux uncertainties accounting for spatial and temporal error correlations,

as described in Chevallier et al. (2007). Figure 2 shows the time series of the true and prior fluxes for

four Transcom regions (explained in Fig. 1). As can be seen, the assumptions regarding the a priori

flux uncertainties lead to realistic deviations from the truth in terms of seasonality and net monthly

flux.150

2.3 Measurements

Pseudo surface observations are generated from a forward run of TM5 using the “true” fluxes as

boundary conditions, and they are sampled at coordinates and times of samples collected by co-

operative flask-sampling network run by NOAA/ESRL (Dlugokencky et al., 2009) in the period 1

June 2009 to 30 May 2010 at the sites shown in Fig. 1. In total, we use 3934 surface measurements155

of CH4 (from 93 sites) and 1184 measurements of CO2 (from 85 sites). Similarly, synthetic total

column measurements are generated at the times and locations of the GOSAT RemoTeC v1.9 proxy

satellite retrievals for the same time period (Schepers et al., 2012). We do not sample GOSAT data

for cloud free conditions, and therefore assimilate a rather optimistic number of GOSAT measure-
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ments. However, satellites such as Sentinel-5 will provide a comparable amount of data. The forward160

run of TM5 calculates 25 layer vertical model profiles at the retrieval coordinates. These profiles are

converted into the corresponding total columns using the retrieval derived averaging kernels (see e.g.

Monteil et al., 2013). In total, we use 443 523 GOSAT total column retrievals of both CH4 and CO2

(see Fig. 3).

The observational part of the cost function is calculated by weighing the mismatch between the165

model simulations and measurements (y−Hx) with the data error covariance matrix R. The diago-

nal terms of R are the squared sum of measurement uncertainty and model representation error. We

assume no correlation between the measurements. Therefore, all the non-diagonal terms of R are

set to zero. The model representation error is the error made by our finite resolution model in simu-

lating a sample at a specific location. Its size scales with the subgrid concentration variability, and is170

calculated using the local concentration gradient simulated by the model. Further details about the

calculation of the model representation error in our setup can be found in Basu et al. (2013). For the

measurement uncertainties we follow the recommendations of the data providers. For the GOSAT

retrieved total column ratios, the uncertainty was calculated by error propagation of the instrument’s

measurement noise of the CH4 and CO2 total columns given in retrieval data set. The uncertainties175

of proxy CH4 total columns are also calculated in similar ways. In principle, they should be the ratio

uncertainties plus the Xmodel
CO2 uncertainty (see Eqs. 1 and 2). However, the uncertainties from Xmodel

CO2

are neglected in real world applications, and we follow the same procedure. Hence, in our experi-

ment, the ratio and proxy columns have the same relative uncertainties. For computational efficiency,

we assume no correlation between the measurements (i.e. all the non-diagonal term of R are set to180

zero).

Formally, we should perturb the pseudo measurements with noise according to the data covariance

matrix R, following the same procedure as for the a priori fluxes. However, to catch the mean be-

havior one would have to do several inversions with different noise realizations. This multi-inversion

mean would correspond to the results of a single inversion without noise. For this reason we do not185

perturb the data. It should also be noted that satellite measurements are simulated using the same

prior profiles as used for the real RemoTeC GOSAT retrievals. Since the same prior profile is used

in the inversion and in the generation of pseudo data, its contribution cancels out in the model data

mismatch and therefore does not influence the results.

In the ratio inversion, the GOSAT measurements are in terms of Xratio, whereas the output of the190

transport model is in terms ofXobs
CH4 andXobs

CO2. The observation operator H transforms the absolute

columns to column ratios using Eq. (2). For calculating the gradient of J(x), the adjoint of H is

needed for propagating the sensitivities of the cost function from Xratio to the corresponding sensi-

tivities of Xobs
CH4 and Xobs

CO2. This adjoint is derived by applying the adjoint coding rules described

in Errico (1997). It should be noted that the problem is only weakly non-linear since the values of195
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Xobs
CO2 vary in the narrow range of ≈ 350–400 ppm in our calculations, and the inversion-derived

adjustments to Xobs
CO2 are only a small fraction of that range.

2.4 Experiment

In this study, we perform OSSEs comparing different global inversion setups using the same truth

and a priori fluxes. The inversions system is run at a 6◦×4◦ horizontal resolution and 25 vertical hy-200

brid sigma-pressure levels from the surface to the top of the atmosphere. Simulations are performed

for the period 1 June 2009 to 30 May 2010. The transport in TM5 is driven by meteorological fields

from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis

project (Dee et al., 2011). Table 2 provides an overview of the inversions that have been performed,

specifying the fluxes that were optimized, the optimizer that was used with number of iterations,205

and the type of measurements assimilated. The PROXY inversion requires Xmodel
CO2 (see Eq. 1), which

is calculated by sampling the output of a forward run of TM5 using posterior CO2 fluxes from the

SURFCO2 inversion and applying the GOSAT averaging kernel.

The TRU-DAT represents an inversion which assumes that we have perfect knowledge of Xmodel
CO2 .

It is used as a best-case scenario for the proxy method. In contrast, Xmodel
CO2 for PRICO2 was calcu-210

lated using prior CO2 fluxes transformed directly into observations using TM5 without optimization

using CO2 surface measurements. This inversion represents a worst case scenario for the proxy

method. The RATIO inversion uses our new ratio method, assimilating surface CH4 and CO2 obser-

vations, and Xratio for optimizing surface CH4 and CO2 fluxes. PROXY represents the common use

of proxy retrievals in atmospheric inverse modelling. In PROXY, the same amount of measurements215

are assimilated in a series of two linear inversions: (1) optimization of CO2 fluxes with surface

observations (SURFCO2), (2) an inversion using surface CH4 and Xproxy
CH4 (PROXY). We use 50 it-

erations of CONGRAD for both of these inversions. In RATIO, all the information is assimilated in

a single inversion using 100 iteration of M1QN3.

2.5 Analysis220

In Sect. 3, we analyze the monthly time series of posterior fluxes from different inversions using

Taylor plots (Taylor, 2001) and mean annual departures from the true fluxes aggregated over the

Transcom land regions. We only show the analysis of the fluxes over the land as the fluxes of CH4

are negligible over the oceans. We define the following parameters to represent the average deviation

of the posterior fluxes from the truth over all the Transcom land regions:225

κ= |cor− 1|,

γ = |σ/σtruth− 1|,

β = |bias|, (4)
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where cor is the cross-correlation between the posterior and true monthly flux time series for a Transcom

region, and σ/σtruth is the relative SD of the posterior and true monthly flux time series of a Transcom230

region. In the Taylor plots, σ/σtruth = 1 and cor = 1 represent the true fluxes and therefore, we sub-

tract 1 from both the values in Eq. (4) to represent the deviation of prior or posterior fluxes from true

fluxes. Finally, bias is the difference between the posterior and true net annual flux of a Transcom

region. It should be noted that κ and γ are dimensionless, and β has a unit of Tg yr−1 for CH4 and

PgCyr−1 for CO2.Table 3 lists the values of these parameters for the inversions performed in this235

study. The closer these values are to zero for an inversion, the better it is performing, With each

parameter at zero the agreement between the true and inversion-optimized fluxes is perfect.

3 Results

3.1 Ratio method implementation

Figure 3 summarizes the performance of RATIO (see also Table 2). The pseudoXratio measurements240

have typical values in the range of 4.4 to 4.8ppb ppm−1. We observe that the latitudinal gradient of

CH4 atmospheric concentration is a dominant mode of variation in Xratio. The randomly generated

globally and annually integrated a priori CO2 flux, combining land and ocean, is 2.01PgCyr−1

larger than the true flux (truth=−4.65PgCyr−1, prior=−2.640PgCyr−1). As a result of this,

the a priori fluxes overestimate the global CO2 increase. The global annual prior CH4 flux is only245

6.85Tg yr−1 lower than the truth (truth = 541.764Tg yr−1, prior = 534.905Tg yr−1), which is

a much smaller relative deviation from the true fluxes compared to CO2. Hence, the percentage mis-

match between the modeled prior and measured Xratio is mostly positive over the globe (Fig. 3c).

The figure also compares the prior and posterior misfits of RATIO to the “true” Xratio. The measure-

ment uncertainty of Xratio increases towards higher latitudes. We find a gradient norm reduction of250

≈ 2000 for 100 iterations of M1QN3. As expected, the posterior mismatches are strongly reduced

in comparioson to the prior, demonstrating that the ratio inversion system works mathematically and

that it is reasonably efficient in minimizing the cost function. The improved fit of measurements also

leads to a convergence of the posterior fluxes towards the true fluxes, as will be discussed in detail

in Sects. 3.3 and 3.4.255

3.2 TRU-DAT and PRICO2

As explained in Sect. 2.4, TRU-DAT and PRICO2 represent best and worst case scenarios of the im-

pact of errors in Xmodel
CO2 on the results of a proxy inversion. Here we analyze the differences between

these inversions, which inform us about the sensitivity of the proxy method to errors in Xmodel
CO2 . Fig-

ure 4 compares the performance of PRICO2 and TRU-DAT using Taylor plots. In these plots, each260

point represents a 12 month timeseries of CH4 fluxes integrated over a Transcom land region. Com-

pared to the prior (κ= 0.286 and γ = 0.211), the posterior fluxes of TRU-DAT shows much better
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agreement with the true fluxes (κ= 0.024 and γ = 0.042). PRICO2 (κ= 0.210 and γ = 0.258), on

the other hand, performs even worse than the prior in terms of γ. Figure 5 shows how well the

TRU-DAT and PRICO2 inversions are capable of reproducing the true annual fluxes integrated over265

Transcom land regions. The β values are 2.370, 2.409 and 0.621Tg yr−1 for PRIOR, PRICO2 and

TRU-DAT, respectively. Again, we observe that on average the results of TRU-DAT are closest to

the truth, and that the results for PRICO2 are further away from truth than the a priori fluxes. This

tells us that the performance of inversions assimilating proxy data is sensitive to our knowledge of

the CO2 fluxes. In practical applications, however, the CO2 fluxes will first be optimized using sur-270

face measurements to obtain a better representation of atmospheric CO2 concentrations. Inversions

representing this approach will be discussed in the next section.

3.3 PROXY, RATIO and SURFCH4

Next we analyze the difference between the proxy inversion (PROXY), using optimized CO2 con-

centrations from SURFCO2, and our new ratio method (RATIO). For comparison, we also include275

results of SURFCH4 using only surface CH4 measurements. The performance of these inversions is

analyzed as in Sect. 4.2, and the results are summarized in Figs. 6 and 7. All three inversions improve

the cor of the posterior fluxes with the truth compared to the prior but have varied performance in

improving σ/σtruth. The prior fluxes of Boreal North America are closer to the truth than any of the

posterior fluxes. However, it should be realized that the prior fluxes were created by adding random280

noise to the truth, which happens to be a small perturbation occasionally. This is why we average

results over all Transcom land regions to derive meaningful comparisons. The κ and γ values, rep-

resenting the average performance over Transcom land regions, are shown in Table 3. We observe

that RATIO and PROXY perform better than SURFCH4, confirming the importance of information

provided by the satellite measurements.285

Figure 7 shows the departures of the annual fluxes from the truth aggregated over Transcom land

regions. The β values are 2.37, 1.40, 1.43, and 1.96Tg yr−1 for PRIOR, RATIO, PROXY and SUR-

FCH4, respectively (see Table 3). Overall, we find that the performance of RATIO and PROXY

is similar. RATIO performs better than PROXY in 6 regions, and PROXY is better in the other 5

regions. The PROXY inversion shows the worst performance in Boreal North America, Temperate290

North America and Boreal Eurasia, and RATIO has the worst performance in Southern Africa.

We find that with the additional information provided by the satellite measurements RATIO and

PROXY are able to reproduce the true fluxes better than SURFCH4. However, it is difficult to con-

clude if RATIO or PROXY performs better, as their relative performances vary across the regions.

As can be seen in Figs. 6 and 7, PROXY clearly has a poor performance over Temperate North295

America. Similarly, RATIO performs worse in Southern Africa than PROXY. These varying rela-

tive performances are further investigated in the next subsection. Annual flux uncertainties of the

fluxes are shown as error bars in Fig. 7. It should be noted that unlike PROXY and SURFCH4, RA-
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TIO does not estimate posterior uncertainties. This drawback of RATIO will be further discussed in

Sect. 4. The reduction in uncertainty is larger for PROXY than SURFCH4 in the regions where we300

have less surface measurements (in Tropical South America, Temperate South America, Northern

Africa). This can be attributed to the larger number of satellite observations in comparison to surface

measurements in these regions. In other regions, both inversions show similar uncertainty reductions

due to a higher gradient norm reduction achieved by SUFCH4 (3.1× 1010) compared to PROXY

(3.9× 103). Both inversions are run for 50 iterations, but PROXY has a larger number of data to305

assimilate than SURFCH4, and therefore, it achieves a lower gradient norm reduction.

3.4 CO2 fluxes

As explained in Sect. 1, the motivation for our ratio technique is to obtain a more consistent represen-

tation of the CO2 concentration fields in the atmosphere. In this subsection, we address the question

whether RATIO optimized CO2 fluxes are indeed closer to the truth than those obtained using SUR-310

FCO2 (which are used for PROXY). Figure 8 shows the deviations of posterior CO2 fluxes from

the truth for RATIO and SURFCO2. In general, annual a priori CO2 fluxes show large relative de-

viations from the truth compared to CH4. This is a direct consequence of the assumed a priori flux

uncertainties (see Table 1). The β values (Table 3) are 0.327, 0.185 and 0.134PgCyr−1 for PRIOR,

SURFCO2 and RATIO, respectively. RATIO is able to constrain CO2 fluxes better than SURFCO2.315

The difference between SURFCO2 and RATIO is explained by regions such as Temperate North

America and Temperate South America, which are relatively poorly constrained by SURFCO2. In

Temperate North America, due to coarse resolution of the model in combination with large emis-

sion gradients, large representation errors are assigned to the simulated measurements. Also, we do

not take the full advantage of surface measurement coverage of this region as we use only fully320

processed NOAA/ESRL flask measurements. A lack of surface measurements can be the reason for

poor performance of SURFCO2 in Temperate South America. We observe that RATIO is performing

better in these regions with the help of satellite measurements.

Figure 9 shows how well the inversion-derived CO2 fluxes reproduce the true seasonality. Com-

pared with CH4, the prior fluxes correlate well with the truth, despite their relatively large a priori un-325

certainties. This reflects the large seasonal variation in the biospheric CO2 fluxes. For CO2, the dif-

ferences in the Taylor diagrams are dominated by variations in σ/σtruth. Overall, RATIO (κ= 0.125,

γ = 0.225) performs better than SURFCO2 (κ= 0.180, γ = 0.241). RATIO is able to reproduce

the true seasonality for most regions except Northern Africa, Temperate Eurasia and Tropical Asia.

In Temperate Eurasia, SURFCO2 performs very well. However, it performs worse than RATIO in330

Tropical Asia. In Tropical South America and Temperate South America, we find a similar perfor-

mance of RATIO and SURFCO2. The prior for Europe does not deviate much from the truth, so the

relative performance for the two methods cannot be judged adequately.
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3.5 The link between CO2 and CH4

In principle, the performance of PROXY should improve with the performance of SURFCO2. If335

SURFCO2 reproduces the true CO2 fluxes exactly, the only source of error in Xproxy
CH4 due to Xmodel

CO2

will be the representation error of the finite resolution model used for generating spatio-temporal

fields of CO2. Also in the case of RATIO, the correctness of posterior CH4 fluxes is dependent upon

the correctness of CO2 fluxes and vice-versa. For example, Figs. 8 and 9 show that Southern Africa

has a poor performance of RATIO, and that SURFCO2 has a poor performance in Temperate North340

America for constraining CO2 fluxes. This is also reflected in the poor performance of RATIO and

PROXY in constraining CH4 fluxes in these regions (Sect. 3.3). The performance of SURFCO2

varies regionally, which causes a corresponding pattern in the performance of PROXY. The same

relation should hold for the posterior CO2 and CH4 fluxes calculated with RATIO. To quantify this

relation, we define pCH4 as a measure of the relative accuracy of RATIO and PROXY derived CH4345

fluxes, and pCO2 as a measure of the relative accuracy of RATIO and SURFCO2 derived biosphere

CO2 fluxes for each Transcom region. They are defined as

pCH4 =
∣∣∣xPROXY

CH4 −xtruth
CH4

∣∣∣− ∣∣∣xRATIO
CH4 −xtruth

CH4

∣∣∣,
pCO2 =

∣∣∣xSURFCO2
CO2 −xtruth

CO2

∣∣∣− ∣∣∣xRATIO
CO2 −xtruth

CO2

∣∣∣, (5)

where the x’s denote timeseries of monthly fluxes integrated over land Transcom regions. The sub-350

scripts indicate the tracer, and the superscripts indicate whether the fluxes refer to the truth or inver-

sion estimates. pCH4 and pCO2 are arrays of 12 month timeseries for each Transcom land region.

They are defined such that: (1) pCH4,i > 0 implies that RATIO is performing better than PROXY for

CH4 fluxes in the month i. (2) pCO2,i > 0 implies that RATIO is performing better than SURFCO2

for CO2 fluxes in month i. (3) For values of pCH4,i and pCO2,i less than 0 the reverse of (1) and (2)355

is true.

The upper panel of Fig. 10 shows pCO2 and pCH4 series for Boreal North America. Lower panel

of Fig. 10 shows the cross-correlations between pCH4 and pCO2 for each Transcom land region. As

it can be seen, this value is above 0.7 (mean = 0.809) for all regions except for Australia (0.202) and

Boreal Eurasia (0.539). A lack of surface measurements in these two regions can be the reason for the360

low correlation, as surface measurement stations are needed for good performance of both RATIO

and PROXY (Sect. 4). Overall, we conclude that the relative performance of the proxy and ratio

methods depends strongly on the relative performance of the surface-only and ratio CO2 inversions.

4 Discussion

We have developed the “ratio” method for TM5-4DVAR inversions system. It is an inversion system365

for assimilating the ratio of satellite-retrieved total columns of CH4 and CO2 along with surface

measurements for constraining their surface fluxes. The main advantage of this method over the
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traditional proxy method is that it does not impose model-derived CO2 concentrations as a hard

constraint on the CH4 flux optimization. Instead, our method allows optimization of CO2 and CH4

fluxes within a single consistent framework. This way we can benefit from the proxy retrieval, which370

has proven to be highly efficient in reducing the errors due to light-path modification by atmospheric

scattering, but at the same time, avoid projection of errors in Xmodel
CO2 on the inverted CH4 fluxes. The

method requires assimilation of surface measurements of CH4 and CO2 as an additional constraint,

since a ratio alone is not a sufficient constraint for absolute values of CH4 and CO2 fluxes. For

example, the inversions can reduce the absolute CH4 and CO2 modeled columns by the same factor375

and can still fit their ratio column to give a lower value of the cost function (Eq. 3).

The performance of the ratio method is tested in comparison with the traditional proxy method and

surface-only inversions in an OSSE using the TM5-4DVAR atmospheric inversion system. Overall,

we observe that the ratio method is capable of reproducing the true CH4 and CO2 fluxes better than

the surface-only inversion. The performance of the ratio method in comparison to the proxy method380

varies among Transcom land regions. The performance of inversions assimilating satellite data in

this study is optimistic compared to inversions using real observations as we have not introduced

any systematic biases in our measurements. Also, as we do not filterout measurements taken in

cloudy scenes and we use medium gain measurements in our inversion, we are optimistic about the

satellite coverage in the tropics compared to real-life inversions. However, it is also true that satellite385

measurements are an important additional source of information about GHGs concentrations in these

regions.

The ratio method is a more complicated inversion to solve than a proxy inversion as it is a non-

linear inversion problem, and therefore the widely used CONGRAD optimizer cannot be used. In

our setup, we use the M1QN3 optimizer, which is capable of handling the non-linearty. However, to390

inter-compare inversions using different optimizers requires attention as mathematically their mode

of operation is different. For example, CONGRAD solves for the largest spatial and temporal scales

in the first few iterations, gradually adjusting finer scales in subsequent iterations. M1QN3 works in

similar manner, however, it has a much slower convergence rate for the finer scales than CONGRAD.

Hence the overall convergence rate of M1QN3 is slower than CONGRAD, and to achieve the same395

gradient norm reduction it takes more iterations (Krol et al., 2013).

Another drawback of M1QN3 compared to CONGRAD is that no information is obtained about

posterior flux uncertainties. They are essential for inverse modeling applications using real data

to quantify the constraints on the fluxes imposed by measurements. This is true, despite the fact

that several important sources of uncertainty, such as transport model uncertainties, are difficult400

to account for. Furthermore, the accuracy of CONGRAD’s uncertainty approximation may be rather

poor for large optimization problems, limiting its use. An alternative method for calculating posterior

uncertainties is to use a Monte Carlo approach (Chevallier et al., 2007). This method can be applied

also to inversions using M1QN3, although the method is computationally expensive. So far we have
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not investigated possible alternatives for M1QN3. However, we would like to stress that there is405

a scope to find a more efficient optimizer for solving this non-linear optimization problem, and

future studies into the application of the ratio method should put an effort in this direction.

Fraser et al. (2014) developed a method for assimilatingXratio in the MAP inversion setup coupled

to the GEOS-Chem global 3-D atmospheric chemistry transport model. Similar to our findings, their

OSSEs show that the assimilation of Xratio along with surface measurements of CH4 and CO2 can410

reproduce the true fluxes. However, there are some important differences with our study:

1. We focus on a comparison between the proxy and ratio approach and also perform a CO2

inversion using surface measurements for calculating the model derived CO2 fields used in

the proxy approach. This way the propagation of errors from modeled CO2 fields into proxy

CH4 measurements is also simulated. Instead, Fraser et al. (2014) add a constant or random415

bias to the Xratio measurements.

2. Fraser et al. (2014) report posterior uncertainties of CH4 and CO2 fluxes derived from their

Xratio inversions. Although posterior flux uncertainties can in principle be derived from our

method also, they are not reported here for computational reasons.

3. The ratio inversion system is weakly non-linear. The Fraser et al. (2014) ratio inversions as-420

sume linearity. We do a non-linear inversion using a suitable optimizer.

Now that we have demonstrated that the ratio method works in a synthetic environment, the next

step is the application of the method to real satellite data. A first step in this direction is to validate

GOSAT observed XCH4: XCO2 with TCCON. After that we plan to apply the ratio method to real

satellite data, and compare the outcome with inversions using the GOSAT proxy and full-physics425

retrieval products. With improved constraints on the CO2 side of the problem, as more space borne

CO2 measurements becoming available from GOSAT and OCO-2, the proxy method is expected to

perform better for methane. In this case one would expect the results of the proxy and ratio methods

to converge. Whether or not this will really happen depends on the mutual consistency of the various

data streams. The ratio method provides an internally consistent setup (i.e within a single inversion430

system) to test this and to identify remaining biases. It should be noted that computationally, the

ratio method has the advantage that it optimizes CH4 and CO2 fluxes together. This method can

also be applied to other pairs of tracers, which are retrieved from close-by spectral ranges in the

satellite measurement spectra. For example, CO total columns will be retrieved from TROPOMI (to

be launched in 2016) using CH4 as the proxy for atmospheric scattering, and there is a possibility435

that our ratio method can be applied successfully to this pair of tracers.
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5 Conclusions

We developed a new inverse modeling method within the TM5-4DVAR inverse modeling framework

for direct assimilation of satellite observed ratios of total column CH4 and CO2. The dual tracer

inversion solves for surface fluxes of CH4 and CO2. Our current implementation also assimilates440

surface measurements of CO2 and CH4 to further constrain the two tracer inverse problem. To

deal with the weak non-linearity introduced by the optimization of tracer ratios we make use of the

M1QN3 optimizer, instead of the CONGRAD optimizer, which was used so far for inversions using

proxy retrievals. Although the optimization of the ratio inversion using M1QN3 is about a factor

of 2 less efficient than the corresponding proxy inversion using CONGRAD, we nevertheless find445

satisfactory gradient norm reductions (by a factor of≈ 2000 in 100 iterations). We tested our method

in an OSSE setup. We observe good convergence of posterior model columns toward the true ratio

columns, and the ratio method is able to reproduce the true CH4 and CO2 fluxes from randomly

perturbed prior fluxes.

We performed additional inversions in our OSSE setup to compare the performance of inversions450

using proxy and ratio retrievals from GOSAT. In addition, we compare the performances of these

inversions, which also use surface measurements, with inversions that only use surface measure-

ments. Additional inversions are performed to test the sensitivity of proxy inversions to the quality

of the model derived CO2 concentrations, which are used to translate the retrieved tracer ratios into

total columns of CH4. The performance of these inversions is evaluated by comparing the inversion-455

derived fluxes to a set of true fluxes from which the synthetic measurements were derived. The per-

formance is assessed for monthly and annual fluxes integrated over the 11 Transcom land regions.

Our results demonstrate that the estimation of CH4 fluxes using the proxy inversion is sensitive to

errors in the modeled derived CO2 concentrations.

We conclude that for most Transcom regions the ratio method is capable of reproducing the true460

seasonality and annually integrated CH4 fluxes. However, it should be noted that availability of sur-

face measurements is important for good performance of the ratio method. The relative performance

of the proxy and ratio methods shows a relationship with errors in CO2, with ratio method perform-

ing better in regions where the CO2 fluxes are poorly constrained. In our synthetic simulations, the

ratio inversion is capable of improving the CO2 fluxes compared with the use of CO2 surface-only465

measurements, which explains why it outperforms the proxy method in certain regions. This points

to the applicability of the ratio method for improving CO2 fluxes in these regions. Further research

is needed to test the performance of the ratio method in applications using real satellite data.

Appendix A: M1QN3 and CONGRAD

We tested the convergence rate of CONGRAD and M1QN3 using the setup of PROXY described470

in section 2.4. For this purpose, we carried out inversions with both optimizers for 30, 60 and 100

14



iterations and compared these to the standard inversion using 50 iterations. Figure 1.11 shows the

corresponding posterior CH4 flux departures from PROXY that are also shown in figure 7. We find

that both the optimizers converge within 100 iterations. After 60 iterations, CONGRAD already

reaches the solution, whereas M1QN3 shows slower convergence. Significant flux differences are475

found between the optimizers for inversions with 30 and 60 iterations. For CONGRAD, the differ-

ence between inversions with 50 and 60 iterations is negligible.

Acknowledgements. This work is supported by the Netherlands Organization for Scientific Research (NWO),

project number ALW-GO-AO/11-24. The computations were carried out on the Dutch national supercom-

puter Cartesius, and we thank SURFSara (www.surfsara.nl) for their support. We thank our data providers:480

NOAA/ESRL cooperative flask-sampling network surface observations were obtained from the website http:

//www.esrl.noaa.gov/gmd/dv/ftpdata.html; Access to the GOSAT data was granted through the 3rd GOSAT

research announcement jointly issued by JAVA, NIES, and MOE. We would like to acknowledge Guillaume

Monteil (IMAU) for his useful input.

15

www.surfsara.nl
http://www.esrl.noaa.gov/gmd/dv/ftpdata.html
http://www.esrl.noaa.gov/gmd/dv/ftpdata.html
http://www.esrl.noaa.gov/gmd/dv/ftpdata.html


References485

Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R.,

Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and

Kort, E. A.: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products

from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, doi:10.5194/acp-15-113-2015, 2015.

Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R.,490

Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT

retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, doi:10.5194/acp-13-8695-2013, 2013.

Basu, S., Krol, M., Butz, A., Clerbaux, C., Sawa, Y., Machida, T., Matsueda, H., Frankenberg, C., Hasekamp, O.,

and Aben, I.: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL,

and IASI, Geophys. Res. Lett., 41, 1809–1815, doi:10.1002/2013GL059105, 2014.495

Bergamaschi, P. and Frankenberg, C.: Inverse modeling of global and regional CH4 emissions using SCIA-

MACHY satellite retrievals, J. Geophys. Res., 114, 1–28, doi:10.1029/2009JD012287, 2009.

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O.,

Körner, S., Heimann, M., Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric methane

from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys.500

Res., 112, D02304, doi:10.1029/2006JD007268, 2007.

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. a., Prigent, C., Van der Werf, G. R.,

Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M.,

Steele, L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic and natural sources to atmospheric

methane variability, Nature, 443, 439–43, doi:10.1038/nature05132, 2006.505

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-

Cheiney, A., Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M.,

Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in

atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 3689–3700, doi:10.5194/acp-11-3689-2011,

2011.510

Chevallier, F., Bréon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon Observatory to the estimation

of CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res.,

112, D09307, doi:10.1029/2006JD007375, 2007.

Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney, A., Franken-

berg, C., Parker, R., Pison, I., Scheepmaker, R. A., Montzka, S. A., Krummel, P. B., Steele, L. P., and Langen-515

felds, R. L.: On the consistency between global and regional methane emissions inferred from SCIAMACHY,

TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577–592, doi:10.5194/acp-14-577-

2014, 2014.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,

M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,520

Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,

Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-

J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim

16

http://dx.doi.org/10.5194/acp-15-113-2015
http://dx.doi.org/10.5194/acp-13-8695-2013
http://dx.doi.org/10.1002/2013GL059105
http://dx.doi.org/10.1029/2009JD012287
http://dx.doi.org/10.1029/2006JD007268
http://dx.doi.org/10.1038/nature05132
http://dx.doi.org/10.5194/acp-11-3689-2011
http://dx.doi.org/10.1029/2006JD007375
http://dx.doi.org/10.5194/acp-14-577-2014
http://dx.doi.org/10.5194/acp-14-577-2014
http://dx.doi.org/10.5194/acp-14-577-2014


reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,

553–597, doi:10.1002/qj.828, 2011.525

Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie,

K. A., Lang, P. M., Crotwell, A. M., Miller, J. B., and Gatti, L. V.: Observational constraints on recent

increases in the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803, doi:10.1029/2009GL039780,

2009.

Errico, R. M.: What is an adjoint model?, B. Am. Meteorol. Soc., 78, 2577–2591, doi:10.1175/1520-530

0477(1997)078<2577:WIAAM>2.0.CO;2, 1997.

Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge, D. M., Lassey, K. R., Lowe, D. C., Macfarling Meure,

C. M., Dreier, M. F., Trudinger, C. M., van Ommen, T. D., and Langenfelds, R. L.: Unexpected changes to

the global methane budget over the past 2000 years, Science, 309, 1714–1717, doi:10.1126/science.1115193,

2005.535

Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U., and Wagner, T.: Assessing methane emissions from

global space-borne observations, Science, 308, 1010–1014, doi:10.1126/science.1106644, 2005.

Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E. J., Fraser, P. J., Krum-

mel, P. B., Langenfelds, R. L., O’Doherty, S., Prinn, R. G., Steele, L. P., van der Schoot, M., and Weiss, R. F.:

Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction540

measurements, Atmos. Chem. Phys., 13, 5697–5713, doi:10.5194/acp-13-5697-2013, 2013.

Fraser, A., Palmer, P. I., Feng, L., Bösch, H., Parker, R., Dlugokencky, E. J., Krummel, P. B., and Langen-

felds, R. L.: Estimating regional fluxes of CO2 and CH4 using space-borne observations of XCH4: XCO2,

Atmos. Chem. Phys., 14, 12883–12895, doi:10.5194/acp-14-12883-2014, 2014.

Gilbert, J. C. and Lemaréchal, C.: Some numerical experiments with variable-storage quasi-Newton algorithms,545

Math. Program., 45, 407–435, doi:10.1007/BF01589113, 1989.

Gurney, K., Law, R., Denning, A., Rayner, P., Baker, D., Bousquet, P., Bruhwiler, L., Chen, H., Ciais, P., Fan,

S., Fung, I., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Ken, M., Peylin, P.,

Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: Towards

robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626–550

630, doi:10.1038/415626a, 2002.

Hein, R., Crutzen, P. J., and Heimann, M.: An inverse modeling approach to investigate the global atmospheric

methane cycle, Global Biogeochem. Cy., 11, 43–76, doi:10.1029/96GB03043, 1997.

Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M.: Inverse modeling of methane sources

and sinks using the adjoint of a global transport model Sander global methane emissions, J. Geophys. Res.,555

104, 26137–26160, 1999.

Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Morino, I., Notholt, J., Sher-

lock, V., Wunch, D., Beck, V., Gerbig, C., Chen, H., Kort, E. A., Röckmann, T., and Aben, I.: A multi-year

methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements, At-

mos. Chem. Phys., 14, 3991–4012, doi:10.5194/acp-14-3991-2014, 2014.560

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P.,

Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser,

A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F.,

17

http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1029/2009GL039780
http://dx.doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
http://dx.doi.org/10.1126/science.1115193
http://dx.doi.org/10.1126/science.1106644
http://dx.doi.org/10.5194/acp-13-5697-2013
http://dx.doi.org/10.5194/acp-14-12883-2014
http://dx.doi.org/10.1007/BF01589113
http://dx.doi.org/10.1038/415626a
http://dx.doi.org/10.1029/96GB03043
http://dx.doi.org/10.5194/acp-14-3991-2014


Langenfelds, R. L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,

Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R.,565

Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss,

R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nat. Geosci., 6,

813–823, doi:10.1038/ngeo1955, 2013.

Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Den-

tener, F., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm570

and applications, Atmos. Chem. Phys., 5, 417–432, doi:10.5194/acp-5-417-2005, 2005.

Krol, M. C., Hooghiemstra, P. B., van Leeuwen, T. T., van der Werf, G. R., Novelli, P. C., Deeter, M. N., Aben,

I., and Röckmann, T.: Correction to “Interannual variability of carbon monoxide emission estimates over

South America from 2006 to 2010”, J. Geophys. Res.-Atmos., 118, 5061–5064, doi:10.1002/jgrd.50389,

2013.575

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation

Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitor-

ing, Appl. Optics, 48, 6716–6733, 2009.

Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral

operators, J. Res. Nat. Bur. Stand., 45, 255, doi:10.6028/jres.045.026, 1950.580

Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse

modelling of atmospheric methane emissions: method and comparison with synthesis inversion, Atmos.

Chem. Phys., 8, 6341–6353, doi:10.5194/acp-8-6341-2008, 2008.

Monteil, G., Houweling, S., Dlugockenky, E. J., Maenhout, G., Vaughn, B. H., White, J. W. C., and Rock-

mann, T.: Interpreting methane variations in the past two decades using measurements of CH4 mixing ratio585

and isotopic composition, Atmos. Chem. Phys., 11, 9141–9153, doi:10.5194/acp-11-9141-2011, 2011.

Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D., Hasekamp, O., Frankenberg, C., Scheepmaker,

R., Aben, I., and Röckmann, T.: Comparison of CH4 inversions based on 15 months of GOSAT and SCIA-

MACHY observations, J. Geophys. Res.-Atmos., 118, 11807–11823, doi:10.1002/2013JD019760, 2013.

Müller, J.-F. and Stavrakou, T.: Inversion of CO and NOx emissions using the adjoint of the IMAGES model,590

Atmos. Chem. Phys., 5, 1157–1186, doi:10.5194/acp-5-1157-2005, 2005.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D.,

Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and

Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge595

University Press, Cambridge, UK and New York, NY, USA, 2013.

Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the rise–again, Science, 343, 493–495,

doi:10.1126/science.1247828, 2014.

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler,

L. M. P., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O.,600

Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange:

CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, doi:10.1073/pnas.0708986104, 2007.

18

http://dx.doi.org/10.1038/ngeo1955
http://dx.doi.org/10.5194/acp-5-417-2005
http://dx.doi.org/10.1002/jgrd.50389
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.5194/acp-8-6341-2008
http://dx.doi.org/10.5194/acp-11-9141-2011
http://dx.doi.org/10.1002/2013JD019760
http://dx.doi.org/10.5194/acp-5-1157-2005
http://dx.doi.org/10.1126/science.1247828
http://dx.doi.org/10.1073/pnas.0708986104


Table 1. Covariance parameters of the a priori flux uncertainties per grid box per month used in the inversions.

The uncertainty is expressed as a fraction of the a priori flux. Error correlations are defined by exponential (“e”)

and Gaussian (“g”) correlation functions using the specified length scales (Basu et al., 2013).

Tracer category Uncertainty (%) Temporal (months) Spatial (km)

CH4 Total 50 3.0-e 500.0-g

CO2 Biosphere 250 3.0-e 1000.0-g

CO2 Ocean 250 6.0-e 1000.0-g

Table 2. Summary of the inversions performed in this study.

Inversion Measurements Fluxes optimized Optimizer (No of iterations)

RATIO Xratio, surface CH4, CO2 CH4, CO2 M1QN3 (100)

SURFCO2 surface CO2 CO2 CONGRAD (50)

PROXY Xproxy
CH4 , surface CH4 CH4 CONGRAD (50)

SURFCH4 surface CH4 CH4 CONGRAD (50)

TRU-DAT Xproxy
CH4 , surface CH4 CH4 CONGRAD (50)

PRICO2 Xproxy
CH4 , surface CH4 CH4 CONGRAD (50)
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Figure 1. The dynamic symbols (blue-green crosses) show the location of the NOAA measurements sites

included in inversions using surface measurements (see Table 2). The lengths of vertical blue and horizontal

green bars are proportional to the number of CO2 and CH4 measurements, respectively. Continents are divided

into 11 Transcom land regions (Gurney et al., 2002) which will be referred to in Sects. 4 and 3 as: Boreal North

America (BNA), Temperate North America (TNA), Tropical South America (TrSA), Temperate South America

(TSA), Northern Africa (NAf), Southern Africa (SAf), Boreal Eurasia (BEr), Temperate Eurasia (TEr), Tropical

Asia (TrAs), Australia (Aus), and Europe (Eur).

Figure 2. Timeseries of the true (green) and prior (blue) fluxes integrated over Tropical South America, Tem-

perate South America, Boreal Eurasia and Temperate Eurasia. For CH4, we show the total fluxes, and for CO2,

we show the biosphere fluxes. (see Table 1)
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Figure 3. Fit of the RATIO inversion to the annually averaged “true” Xratio pseudo measurements. (a) True

pseudoXratio measurement, (b) a priori modeledXratio, (c) mismatch between the a priori model and the pseudo

data, (d) the corresponding mismatch of the posterior model, (e) the number of GOSAT measurements, (f) the

1σ data uncertainty of Xratio. The values represent yearly averages per 6◦ × 4◦ (latitude × longitude) grid box,

except the bottom left panel which shows yearly integrals on 6◦ × 4◦ (latitude × longitude).

Figure 4. Taylor plots (Taylor, 2001) of monthly prior (grey triangles) and posterior CH4 fluxes integrated over

11 Transcom land regions for the inversions TRU-DAT (red circles) and PRICO2 (blue circles). In these plots,

each dot represents a seasonal variation of a single Transcom region. The true fluxes are at the intersection point

of the x axis and the bold arc (representing a cor = 1 and σ/σtruth = 1).
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Figure 5. Annual prior and posterior CH4 flux departures from the true fluxes for the Transcom land regions

for the inversions TRU-DAT and PRICO2. The true fluxes are written at the top of the plot in Tg yr−1. The

vertical black lines on the bars show 1σ uncertainty of the corresponding values.

Figure 6. As Fig. 4 for the RATIO, PROXY and SURFCH4 inversions.
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Table 3. κ, γ and β values of the inversions performed in this study (see Eq. 4 and Table 2). The β values have

a unit of Tg yr−1 for CH4 and PgCyr−1 for CO2. κ and γ are unitless quantities.

Tracer Inversion κ γ β

CH4

PRIOR 0.286 0.211 2.370

RATIO 0.122 0.129 1.396

PROXY 0.119 0.137 1.432

SURFCH4 0.218 0.162 1.959

TRU-DAT 0.024 0.042 0.621

PRICO2 0.210 0.258 2.409

CO2

PRIOR 0.232 0.392 0.327

SURFCO2 0.180 0.241 0.185

RATIO 0.125 0.225 0.134

Figure 7. As Fig. 5 for RATIO, PROXY and SURFCH4.
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Figure 8. As Fig. 5 for the biosphere CO2 fluxes in RATIO and SURFCO2 inversions.

Figure 9. As Fig. 4 for the biosphere CO2 fluxes in RATIO and SURFCO2 inversions.
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Figure 10. Top: pCH4 and pCO2 timeseries for Boreal North America. Bottom: cross-correlations between

pCH4 and pCO2 for Transcom land regions (see Eq. 5).

Figure 1.11. Absolute annual CH4 flux departures of the inversion results from PROXY, which is run for 50

iterations using CONGRAD (see figure 7). The first part of label of each legend indicates the optimizer used

for the inversion (m1q: M1QN3; con: CONGRAD), and the second part indicates number of iterations used.”
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