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Abstract

We present the results from an eight-year tropospheric chemistry reanalysis for the pe-
riod 2005-2012 obtained by assimilating multiple data sets from the OMI, MLS, TES, and
MOPITT satellite instruments. The reanalysis calculation was conducted using a global
chemical transport model and an ensemble Kalman filter technique that simultaneously op-
timises the chemical concentrations of various species and emissions of several precursors.
The optimisation of both the concentration and the emission fields is an efficient method to
correct the entire tropospheric profile and its year-to-year variations, and to adjust vari-
ous tracers chemically linked to the species assimilated. Comparisons against independent
aircraft, satellite, and ozonesonde observations demonstrate the quality of the analysed
O3, NO,, and CO concentrations on regional and global scales and for both seasonal and
year-to-year variations from the lower troposphere to the lower stratosphere. The data as-
similation statistics imply persistent reduction of model error and improved representation
of emission variability, but also show that discontinuities in the availability of the measure-
ments lead to a degradation of the reanalysis. The decrease in the number of assimilated
measurements increased the ozonesonde minus analysis difference after 2010 and caused
spurious variations in the estimated emissions. The Northern/Southern Hemisphere OH ra-
tio was modified considerably due to the multiple species assimilation and became closer
to an observational estimate, which played an important role in propagating observational
information among various chemical fields and affected the emission estimates. The con-
sistent concentration and emission products provide unique information on year-to-year
variations of the atmospheric environment.

1 Introduction

Long-term records of the tropospheric composition of gases such as ozone (O3), carbon
monoxide (CO), and nitrogen oxides (NO,) are important for understanding the changes in
tropospheric chemistry and human activity and consequences for the atmospheric environ-
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ment and climate change (HTAP, 2010; IPCC, 2013). Satellite instruments provide observa-
tions of the global distributions of tropospheric composition. For example, measurements of
tropospheric O3 have been retrieved using the Tropospheric Emission Spectrometer (TES)
since 2004 (Beer, 2006) and by the Infrared Atmospheric Sounding Interferometer (1ASI)
since 2007 (Coman et al., 2012). Tropospheric NO, column concentrations have been re-
trieved by the Ozone Monitoring Instrument (OMI) since 2004 (Levelt et al., 2006), Scanning
Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) from 2002—
2012 (Bovensmann et al., 1999), Global Ozone Monitoring Experiment (GOME) from 1996—
2003, and GOME-2 since 2007 (Callies et al., 2000). The availability of satellite-derived
measurements of various chemical species has prompted increasing interest in develop-
ing methods for combining these sources of satellite observational information for studies
of long-term variations within the atmospheric environment and for improving estimates of
emissions sources (Inness et al., 2013; Streets et al., 2013).

Combining measurements of O3, CO and NO, in the atmosphere puts constraints on the
concentration of OH, the main radical responsible for the removal of pollution from the at-
mosphere and determining the lifetime of many chemicals (Levy, 1971; Logan et al., 1981;
Thompson, 1992). At the same time the combined use provides constraints on different
sources of surface emissions and production of NOy by lightning (LNOy) (e.g., Martin et al.,
2007; Miyazaki et al., 2014). The information that may be obtained from a combined use
of multiple satellite datasets without involving a model is limited, related to differing vertical
sensitivity profiles, different overpass times, and mismatches in spatial and temporal cover-
age between the instruments, as well as missing information on the chemical regime and
origin of the air masses.

Data assimilation is the technique for combining different observational data sets with
a model, by considering the characteristics of each measurement (e.g., Kalnay, 2003; Lahoz
and Schneider, 2014). Advanced data assimilation schemes like the Kalman filter or the
related 4D-Var technique use the information provided by satellite-derived measurements
and propagates it, in time and space, from a limited number of observed species to a wide
range of chemical components to provide global fields that are physically and chemically
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consistent and in agreement with the observations. Various studies have demonstrated the
capability of data assimilation techniques regarding the analysis of chemical species in the
troposphere and stratosphere.

Assimilation of satellite limb measurements for O3 profiles and nadir measurements for
O3 columns have been used to study O3 variations in the stratosphere and the upper tropo-
sphere (e.g., Stajner and Wargan, 2004; Jackson, 2007; Stajner et al., 2008; Wargan et al.,
2010; Flemming et al., 2011; Barre et al., 2013; Emili et al., 2014). Long-term integrated
data sets of stratospheric O3 have been produced by several studies by combining multiple
satellite retrieval datasets (e.g., Kiesewetter et al., 2010; Van der A et al., 2010). The assim-
ilation of satellite observations has been also applied to investigate global variations in the
tropospheric composition of gases such as O3 and CO (e.g., Parrington et al., 2009; Coman
et al., 2012; Miyazaki et al., 2012b). For providing long-term integrated data of tropospheric
composition, as a pioneer study, Inness et al. (2013) performed an eight-year reanalysis of
tropospheric chemistry for 2003—2010 using an advanced data assimilation system. They
included atmospheric concentrations of Oz, CO, NO,, and formaldehyde (CH,O) as the
forecast model variables in the integrated forecasting system with modules for atmospheric
composition (C-IFS), and they demonstrated improved O3 and CO profiles for the free tro-
posphere. They also highlighted biases remaining in the lower troposphere associated with
fixed surface emissions, which are not adjusted in the 4D-Var assimilation scheme pre-
sented by Inness et al. (2013).

Currently available bottom-up inventories of emissions, produced based on statistical
data such as emission related activities and emissions factors, contain large uncertain-
ties, mainly because of inaccurate activity rates and emission factors for each category
and poor representation of their seasonal and interannual variations (e.g., Jaeglé et al.,
2005; Xiao et al., 2010; Reuter et al., 2014). Top-down inverse approaches using satel-
lite retrievals have been applied to obtain optimised emissions of CO (e.g. Kopacz et al.,
2010; Hooghiemstra et al., 2011) and NO, (e.g. Lamsal et al., 2010; Miyazaki et al., 2012a;
Mijling et al., 2013) by minimising the differences between observed and simulated con-
centrations, as summarised by Streets et al. (2013). In addition to surface emissions, the
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improved representations of LNO, sources are important for a realistic representation of
O3 formation and chemical processes in the upper troposphere (Schumann and Huntrieser,
2007; Miyazaki et al., 2014).

The simultaneous adjustment of emissions and concentrations of various species is
a new development in tropospheric chemical reanalysis and long-term emissions analysis.
Miyazaki et al. (2012b) developed a data assimilation system, called CHASER-DAS, for the
simultaneous optimization of the atmospheric concentration of various trace gases, together
with an optimization of the surface emissions of NO, and CO, and the LNO, sources, while
taking their complex chemical interactions into account, as represented by the CHASER
chemistry-transport model. Within the simultaneous optimisation framework, the analysis
adjustment of atmospheric concentrations of chemically related species has the potential
to improve the emission inversion (Miyazaki and Eskes, 2013; Miyazaki et al., 2014). This
was compared with an emission inversion based on measurements from one species alone,
where uncertainties in the model chemistry affect the quality of the emission source esti-
mates. In addition, the improved estimates of emissions benefit the atmospheric concen-
tration analysis through a reduction in model forecast error. The simultaneous adjustment
of the emissions and the concentrations is therefore a powerful approach to optimize all
aspects of the chemical system influencing tropospheric O3 (Miyazaki et al., 2012b).

In this study, we present a tropospheric chemistry reanalysis data set for the eight-
year period from 2005 to 2012 using CHASER-DAS. This reanalysis is produced with the
CHASER-DAS system introduced in Miyazaki et al. (2012b). The system uses the ensem-
ble Kalman filter (EnKF) assimilation technique and assimilates Microwave Limb Sounder
(MLS), OMI, TES, and Measurement of Pollution in the Troposphere (MOPITT) retrieved
observations. The chemical concentrations and emission sources are simultaneously op-
timised during the reanalysis, and are expected to provide useful information for various
research topics related to the inter-annual variability of the atmospheric environment and
short-term trends.

The remainder of this paper is structured as follows. Section 2 describes the observations
used for the assimilation and validation. Section 3 introduces the data assimilation system
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and Sect. 4 evaluates the reanalysis performance based on analyses of data assimilation
statistics. Section 5 presents comparisons against independent observations. Section 6
describes the emission source estimation results. Section 7, which discusses possible er-
rors in the reanalysis data and offers thoughts on future developments, is followed by the
conclusions in Sect. 8.

2 Data assimilation system

The CHASER-DAS system (Miyazaki et al., 2012a, b, 2014; Miyazaki and Eskes, 2013) has
been developed based on an EnKF approach and a global chemical transport model called
CHASER. The data assimilation settings used for the reanalysis calculation are mostly the
same as in Miyazaki et al. (2014), but the calculation was extended to cover the eight years
from 2005—-2012, and several updates were applied to the a priori and state vector settings.
Brief descriptions of the forecast model, data assimilation approach, and experimental set-
tings are presented below.

2.1 Forecast model

The CHASER model (Sudo et al., 2002, 2007) was used as a forecast model. It has so-
called T42 horizontal resolution (2.8° for longitude and the T42 Gaussian grid for latitude)
and 32 vertical levels from the surface to 4 hPa. It is coupled to the atmospheric general
circulation model (AGCM) version 5.7b of the Center for Climate System Research and
Japanese National Institute for Environmental Studies (CCSR/NIES). Meteorological fields
are provided by the AGCM at every time step of CHASER (i.e., every 20 min). The AGCM
fields were nudged toward the National Centers for Environmental Prediction/Department
of Energy Atmospheric Model Intercomparison Project || (NCEP-DOE/AMIP-II) reanalysis
(Kanamitsu et al., 2002) at every time step of the AGCM to reproduce past meteorological
fields. The nudged AGCM enabled us to perform CHASER calculations that included short-
term atmospheric variations and parameterised transport processes by sub-grid-scale con-
vection and boundary layer mixing.
6
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The a priori value for surface emissions of NO, and CO were obtained from bottom-up
emission inventories. Anthropogenic NO, and CO emissions were obtained from the Emis-
sion Database for Global Atmospheric Research (EDGAR) version 4.2. Emissions from
biomass burning are based on the monthly Global Fire Emissions Database (GFED) ver-
sion 3.1 (van der Werf et al., 2010). Emissions from soils are based on monthly mean
Global Emissions Inventory Activity (GEIA) (Graedel et al., 1993). EDGAR version 4.2 was
not available after 2008 at the time the reanalysis was started; therefore, the emissions for
2008 were used in the calculations for 2009—2012. GFED 3.1 was not available for 2012
and thus, the emissions averaged over 2005-2011 were used in the calculation for 2012.
For surface NO, emissions, a diurnal variability scheme developed by Miyazaki et al. (2012)
was applied depending on the dominant category for each area: anthropogenic, biogenic,
and soil emissions.

For the calculation of a priori LNO, emissions, the global distribution of the flash rate
was parameterised in CHASER for convective clouds based on the relation between light-
ning activity and cloud top height (Price and Rind, 1992). To obtain a realistic estimate
of the global annual total flash occurrence, a tuning factor was applied for the global total
frequency, which is independent of the lightning adjustment in the assimilation. The global
distribution of the total flash rate is generally reproduced well by the model in comparison
with the observations, except for overestimations over northern South America and under-
estimations over both Central Africa and most of the oceanic intertropical convergence zone
(Miyazaki et al., 2014).

2.2 Data assimilation technique

The data assimilation technique employed is an EnKF approach, i.e., a local ensemble
transform Kalman filter (LETKF, Hunt et al., 2007) based on the ensemble square root
filter (SRF) method, which uses an ensemble forecast to estimate the background error
covariance matrix. The covariance matrices of the observation error and background error
determine the relative weights given to the observation and the background in the anal-
ysis. The LETKF has conceptual and computational advantages over the original EnKF.
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First, the analysis is performed locally in space and time, which reduces sampling errors
caused by limited ensemble size. Second, performing the analysis independently for differ-
ent grid points allow parallel computations to be performed that reduce the computational
cost. These advantages are important in the chemical reanalysis calculation because of
the many analysis steps included in the eight-year reanalysis run and the large state vector
size used for the multiple states optimisation (cf., Sects. 2.3 and 2.7).

The assimilation step transforms a background ensemble (a:?;z‘ =1,...,k) into an anal-
ysis ensemble (z;7=1,...,k) and updates the analysis mean, where = represents the
model variable, b the background state, a the analysis state, and k the ensemble size. The
forecast and analysis steps are described briefly below.

2.2.1 The forecast step

In the forecast step, the background ensemble mean Zb and its perturbation X are ob-
tained from the evolution of each ensemble member using the forecast model at every
model grid,

;:—Zw?; XP = b — b, (1)

X is the ith column of an N x k matrix XP, where N indicates the system dimension
(the state vector size times the physical system dimension). Based on the assumption that
background ensemble perturbations XP sample the forecast errors, the background error
covariance is estimated as follows:

PP =X2(X")", (2)

where the background error covariance PP varies with time and space, reflecting dominant
atmospheric processes and locations of the observations.
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An ensemble of background vectors y® and an ensemble of background perturbations in
the observation space Y® are estimated using the observation operator H (cf., Sect. 2.5):

y? = H (20); Yo =y® — 3P, 3)
2.2.2 The analysis step

The analysis ensemble mean is obtained by updating the background ensemble mean:

x@ = 2P 4 XPPI(YP) TR (y° — o), (4)

where y° represents the observation vector, R is the p x p observation error covariance,
and p indicates the number of observations. The observation error information is obtained
for each retrieval (cf., Sect. 2.6), where P? is the k x k local analysis error covariance in the
ensemble space:

1

P (k=1)I (Y?)"R1YP o (5)

pa— |1
1+A

A covariance inflation factor (A = 6 %) was applied to inflate the forecast error covariance
at each analysis step. The inflation is used to prevent an underestimation of background
error covariance and resultant filter divergence caused by model errors and sampling errors.
The estimation of the P2 matrix does not require any calculation of large vectors or matrices
with NV dimensions in the LETKF algorithm.

The new analysis ensemble perturbation matrix in the model space (X?) is obtained by
transforming the background ensemble X with P2:

. 11/2
X2 = XP [(k - 1)Pa} . (6)
The new ensemble members x? after the next forecast step are then obtained from model

simulations starting from the analysis ensemble x;.
9
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2.3 State vector

The state vector for the reanalysis calculation is chosen to optimise the tropospheric chem-
ical system and to improve the reanalysis performance. The state vector used in the re-
analysis includes several emission sources (surface emissions of NO, and CO, and LNO,
sources) as well as the predicted concentrations of 35 chemical species. The chemical con-
centrations in the state vector are expressed in the form of volume mixing ratio, while the
emissions are represented by scaling factors for each surface grid cell for the total NO,
and CO emissions at the surface (not for individual sectors), and for each production rate
profile of the LNO, sources. Perturbations obtained by adding these model parameters
into the state vector introduced an ensemble spread of chemical concentrations and emis-
sions in the forecast step. The background error correlations, estimated from the ensemble
model simulations at each analysis step, determine the relationship between the concentra-
tions and emissions of related species, which can reflect daily, seasonal, interannual, and
geographical variations in transport and chemical reactions. The emission sources were
optimised at every analysis step throughout the reanalysis period, which reduced the initial
bias in the a priori emissions during the data assimilation cycle.

2.4 Covariance localisation

The EnKF approach always has the problem of introducing unrealistic long distance error
correlations because of the limited number of ensemble members. During the reanalysis
calculation, such spurious correlations lead to errors in the fields that may accumulate and
will influence the reanalysis quality in a negative way. In order to improve the filter perfor-
mance, the covariance among non- or weakly related variables in the state vector is set to
zero based on sensitivity calculation results, as in Miyazaki et al. (2012b). The analysis of
surface emissions of NO, and CO allowed for error correlations with OMI NO>, and MOPITT
CO data, while those with other data were neglected. For the LNO, sources, covariances
with MOPITT CO data were neglected. Concentrations of NO, species and O3 were op-
timised from TES Oz, OMI NO,, and MLS O3 and HNO3z observations. One difference to
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the study of Miyazaki et al. (2012b) is that concentrations of non-methane hydrocarbons
(NMHC) were not optimised in the reanalysis. The assimilation of MOPITT CO data led to
concentrations of NMHC that increased to unrealistic values during the reanalysis, likely
associated with too much chemical destruction of CO (cf., Sect. 7.4.2).

Covariance localization was also applied to avoid the influence of remote observations,
which is described in Sect. 2.7.

2.5 Observation operator

The observation operator (H) includes the spatial interpolation operator (.S), a priori profile
(xapriori), and averaging kernel (A), which maps the model fields (:cE) into retrieval space
(yf-’) thereby accounting for the vertical averaging implicit in the observations, as follows:

y? = H(:IJE’) = Zapriori + A(S(:IJ?) - wapriori)7 (7)

where :cf is the N-dimensional state vector and yf is the p-dimensional model equivalent
of the observational vector. The averaging kernel A defines the vertical sensitivity profile
of the satellite observation. Even though the retrieval y° and the model equivalent y'; both
depend on the a-priori, the use of the kernel removes the dependence of the analysis or
the relative model—retrieval comparison (y? — y°)/y§’ on the retrieval a-priori profile (Eskes
and Boersma, 2003; Migliorini, 2012).

2.6 Observation error

The observation error provided in the retrieval data products includes contributions from
the smoothing errors, model parameter errors, forward model errors, geophysical noise,
and instrument errors. In addition, a representativeness error was added for the OMI NO,
and MOPITT CO observations to account for the spatial resolution differences between
the model and the observation using a super-observation approach following Miyazaki
et al. (2012a). The super-observation error was estimated by considering an error corre-
lation of 15 % among the individual satellite observations within a model grid cell.
11
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2.7 Reanalysis settings

Because a single continuous data assimilation calculation for eight years requires a long
computational time, we parallelised the reanalysis calculation. Eight series of one-year cal-
culations from the 1 January of each year in 2005-2012 with a two-month spin-up starting
from the 1 November of the previous year were conducted to produce the eight-year re-
analysis data set. Each one-year run was parallelized on 16 processors. The two-month
spin-up removed the differences in the analysis between the different time series, providing
a continuous eight-year data set. Because of distinct diurnal variations in the tropospheric
chemical system, the data assimilation cycle was set to be short (i.e., 120 min) to reduce
sampling errors. The emission and concentration fields were analysed and updated at every
analysis step.

In the reanalysis calculation the ensemble size was set to 30, which is somewhat smaller
than the 48 members used in our previous studies. A smaller ensemble size reduces
computational cost, but slightly degrades analysis performance, as quantified in Miyazaki
et al. (2012b). The horizontal localisation scale L was set to 450 km for NO, emissions
and to 600 km for CO emissions, LNO,, and for the concentrations. The physical vertical
localization length was set to In(P1/P2) [hPa] = 0.2. These choices are based on sensi-
tivity experiments (Miyazaki et al., 2012b), for which the influence of an observation was
set to zero when the horizontal distance between the observation and analysis point was
larger than 2L x 1/10/3 (the cut off radius is set to 2191 km for L = 600 km). We also
account for the influence of the averaging kernels of the instruments, which captures the
vertical sensitivity profiles of the retrievals. The ensemble members and ensemble spread
(error covariance) do vary from one location to the next, and from one species to the next,
thereby representing the large number of degrees of freedom contained in the model and
they way these are constrained by the observations.

The a priori error was set to 40 % for surface emissions of NO, and CO and 60 % for LNOy
sources, but a model error term was not implemented for emissions during the forecast. To
prevent covariance underestimation and maintain emission variability during the long-term
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reanalysis calculation, we applied covariance inflation to the emission source factors in the
analysis step, i.e., model error is implemented through a covariance inflation term. The
standard deviation was artificially inflated to a minimum predefined value (30 % of the initial
standard deviation) at each analysis step. This was found to be important for representing
realistic seasonal and interannual variability in the emission estimates, as confirmed by the
improved agreements between the predicted concentrations and independent observations
when this emission covariance inflation setting is used.

In addition to the standard reanalysis run, we conducted a control run for the eight-year
period from 2005 to 2012 and several sensitivity calculations for 2005 and 2010 by changing
the data assimilation settings. The control run was performed without any data assimilation,
but using the same model settings as used in the reanalysis run. The settings and results
of sensitivity calculations are presented in Sect. 7.

3 Observations
3.1 Assimilated data sets

The assimilated observations were obtained from the OMI, TES, and MLS on the Aura
satellite, launched in July 2004 and from MOPITT on Earth Observing System (EOS) Terra,
which was launched in December 1999.

3.1.1 OMI tropospheric NO, column

The OMI provides measurements of both direct and atmosphere-backscattered sunlight
in the ultraviolet—visible range (Levelt et al., 2006). The reanalysis used tropospheric NO,
column retrievals obtained from the version-2 DOMINO data product (Boersma et al., 2011).
The analysis increments in the assimilation of OMI NO, were limited to adjust only the
surface emissions of NO,, LNO, sources, and concentrations of NO, species. Low-quality
data were excluded before assimilation following the recommendations of the product’s
specification document (Boersma et al., 2011). Since December 2009, approximately half

13

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



20

25

of the pixels have been compromised by the so-called row anomaly which reduced the daily
coverage of the instrument.

3.1.2 TES O3

The TES O3 data used are the version 5 level 2 nadir data obtained from the global survey
mode (Herman and Kulawik, 2013). This data set consists of 16 daily orbits with spatial
resolution of 5-8 km along the orbit track. The vertical resolution of TES O3 profile retrievals
is typically 6 km in the tropics and in the summer hemisphere for cloud free conditions
(Worden et al., 2004). The standard quality flags were used to exclude low-quality data
(Herman and Kulawik, 2013). We also excluded data poleward of 72°, because of the small
retrieval sensitivity. The data assimilation was performed based on the logarithm of the
mixing ratio following the retrieval product specification.

3.1.3 MLS O3 and HNO3

The MLS data used are the version 3.3 O3 and HNOs level 2 products (Livesey et al., 2011).
We excluded tropical-cloud-induced outliers, following the recommendations in Livesey
et al. (2011). We used data for pressures lower than 215 hPa for O3 and 150 hPa for HNO3
to constrain the LNO, sources and concentration of O3 and NO, species. The accuracy
and precision of the measurement error, described in Livesey et al. (2011), were included
as the diagonal element of the observation error covariance matrix.

3.1.4 MOPITT CO

The MOPITT CO data used are the version 6 level 2 TIR products (Deeter et al., 2013).
The MOPITT instrument is mainly sensitive to free tropospheric CO, especially in the mid-
dle troposphere, with Degrees of Freedom for signal (DOFs) typically much larger than 0.5.
We excluded data poleward of 65° and during nighttime because of data quality problems
(Heald et al., 2004). The data at 700 hPa were used for constraining the surface CO emis-
sions.
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3.2 Validation data sets

For the comparisons with satellite observations, the model concentrations were interpo-
lated to the retrieval pixels at the overpass time of the satellite while applying the averag-
ing kernel of each retrieval, and then both the retrieved and simulated concentrations are
mapped on a horizontal grid with a resolution of 2.5° x 2.5°. For comparisons with aircraft
and ozonesonde observations, the data were binned on a pressure grid with an interval of
30 hPa and mapped with a horizontal resolution of 5.0° x 5.0°, while the model output was
interpolated to the time and space of each sample.

3.2.1 GOME-2 and SCIAMACHY NO;

Tropospheric NO, retrievals were obtained from the TEMIS website (www.temis.nl) and
consists of the version 2.3 GOME-2 and SCIAMACHY products (Boersma et al., 2011).
The ground pixel size of the GOME-2 retrievals is 80 km x 40 km with a global coverage
within 1.5 days, whereas that of the SCIAMACHY retrievals is 60 km x 30 km with global
coverage provided approximately once every six days. The equatorial overpass times of
GOME-2 and SCIAMACHY are at 09:30 and 10:00 LT, respectively. Observations with radi-
ance reflectance of < 50 % from clouds with quality flag = O were used for validation.

3.2.2 MOZAIC/IAGOS aircraft data

Aircraft O3 and CO measurements obtained from the Measurement of Ozone, Water Va-
por, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for
Global Observing System (MOZAIC/IAGOS) programmes (Petzold et al., 2012; Zbinden
et al., 2013) were used to validate the tropospheric profiles near airports and the upper
tropospheric spatial distributions at flight altitude of about 12 km in the NH and some parts
of the tropics. The data are available at www.iagos.fr. The measurements of O3 and CO
have an estimated accuracy of +(2 ppb +2 %) and +5 ppb (+5 %), respectively (Zbinden
et al., 2013).
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3.2.3 HIPPO aircraft data

HIAPER Pole-to-Pole Observation (HIPPO) aircraft measurements provide global informa-
tion on vertical profiles of various species over the Pacific (Wofsy et al., 2012). Latitudinal
and vertical variations of O3 and CO obtained from the five HIPPO campaigns (HIPPO I,
8-30 January 2009; HIPPO II, 31 October to 22 November 2009; HIPPO llI, 24 March to
16 April 2010; HIPPO 1V, 14 June to 11 July 2011; and HIPPO V, 9 August to 9 Septem-
ber 2011) were used to validate the assimilated profiles.

3.2.4 NASA Aircraft campaign data

Vertical profiles of seven key gases (O3, CO, NO,, OH, HO,, HNO3, and CH,Q) obtained
from six aircraft campaigns: Intercontinental Chemical Transport Experiment — Phase B
(INTEX-B), Arctic Research of the Composition of the Troposphere from Aircraft and Satel-
lites (ARCTAS)-A, ARCTAS-B, Deriving Information on Surface Conditions from Column
and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), Deep Con-
vection Clouds & Chemistry (DC3)-DC8, and DC3-GV were used.

The DC-8 measurements obtained during the INTEX-B campaign over the Gulf of Mexico
(Singh et al., 2009) were used for the comparison for March 2006. Data collected over
highly polluted areas (over Mexico City and Houston) were removed from the comparison,
because they can cause serious errors in representativeness (Hains et al., 2010).

The NASA Arctic Research of the Composition of the Troposphere from Aircraft and
Satellites (ARCTAS) mission (Jacob et al., 2010) was conducted in two three-week deploy-
ments based in Alaska (April 2008, ARCTAS-A) and western Canada (June—July 2008,
ARCTAS-B). During ARCTAS-A, most of the measurements were collected between 60—
90° N, whereas during ARCTAS-B, the measurements were mainly recorded in the sub-
Arctic between 50-70° N.

During the NASA DISCOVER-AQ campaign over Baltimore (US) in July 2011, the NASA
P-3B aircraft performed extensive profiling of the optical, chemical, and microphysical prop-
erties of aerosols (Crumeyrolle et al., 2014).
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The Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated
the impact of deep, mid-latitude continental convective clouds, including their dynamical,
physical, and lightning processes, on upper tropospheric composition and chemistry during
May and June 2012 (Barth et al., 2015). The observations were conducted in three loca-
tions, northeastern Colorado, west Texas to central Oklahoma, and northern Alabama. The
observations obtained from the DC-8 (DC3-DC8) and G-V (DC3-GV) aircrafts were used.

3.2.5 Ozonesonde data

Ozonesonde observations taken from the World Ozone and Ultraviolet radiation Data Cen-
ter (WOUDC) database (available at http://www.woudc.org) were used to validate the ver-
tical O3 profiles. All available data from the WOUDC database are used for the validation
(totally 19273 profiles for 149 stations during 2005-2012). The observation error is 5-10 %
between 0-30 km (Smit et al., 2007).

3.2.6 WDCGG CO

The CO concentration observations were obtained from the World Data Centre for Green-
house Gases (WDCGGQG) operated by the World Meteorological Organization (WMQO) Global
Atmospheric Watch program (http://ds.data.jma.go.jp/gmd/wdcgg/). Hourly and event ob-
servations from 59 stations were used to validate the surface CO concentrations.

4 Data assimilation statistics

41 x? diagnosis

The long-term stability of the data assimilation performance is important in evaluating the
reanalysis. The x? test can be used to evaluate the data assimilation balance (e.g. Mé-
nard and Chang, 2000), which is estimated from the ratio of the actual Observation-minus-
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Forecast (OmF: y° — H (acb)) to the sum of the estimated model and observation error
covariances in the observational space (HP°H” + R), as follows:

_ 1 by T ~1/2(,0 b
Y_ﬁ(HP HT 4 R)~/2(y —H(w )), 8)
2 =traceYY?, 9)

where m is the number of observations. y2 becomes 1 if the background error covariances
(PP) are properly determined to match with the observed OmF (y° — H(:z:b)) under the
presence of the prescribed observation error (R).

Figure 1 shows the temporal evolution of the number of assimilated observations (m) and
x? for each assimilated measurement type. The number of super observation is shown for
the OMI NO, and MOPITT CO. For most cases, the mean values of x? are generally within
50 % difference from the ideal value of 1, which suggests that the forecast error covariance
is reasonably well specified in the data assimilation throughout the reanalysis. Note that
the covariance inflation factor for the concentrations and emissions were optimized to ap-
proach to the ideal value based on sensitivity experiments (Miyazaki et al., 2012b). For the
OMI NO, assimilation, the x? is > 1, which indicates overconfidence in the model or under-
estimation of the super-observation error (computed as a combination of the measurement
error and the representativeness error). The x? for the OMI NO, was less sensitive to the
choice of the inflation factor compared to that for other assimilated measurements. Lower
tropospheric NO» is controlled by fast chemical reactions restricted by biased chemical
equilibrium states, leading to an underestimation of the background error covariance during
the forecast. Although the emission analysis introduces spread to the concentration ensem-
ble, the perturbations are present primarily near the surface and tend to be removed in the
free troposphere because of the short chemical lifetime of NO,.

Before 2010, the annual mean 2 is roughly constant , which confirms the good stability
of the performance. Seasonal and interannual variations, especially after 2010, of 2 can be
attributed to variations in the coverage and quality of satellite retrievals as well as changes in
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atmospheric conditions (e.g., chemical lifetime and dominant transport type). The increased
x2 for OMI NO, after 2010 is associated with a decrease in the number of the assimilated
measurements and changes in the super observation error. Both the mean measurement
error and the representativeness error (a function of the number of OMI observations) are
typically larger in 2010-2012 than in 2005-2009; the mean measurement error and the
total super observation error (a sum of the measurement error and the representativeness
error) averaged over 30-55° N in January are about 7 and 9 % larger in 2010-2012 than
in 2005-2009, respectively. After 2010, the excessive x? indicates underestimations in the
analysis spread, while the increased OmF indicates smaller corrections by the assimilation
(cf., Sect. 4.2). To correct the concentrations and emission from OMI super observations
that have larger super observation errors, the forecast error needs to be further inflated.
A technique to adaptively inflate the forecast error covariance for the concentrations and
emissions of NO and NO, is required to better represent the data assimilation balance
throughout the reanalysis.

4.2 OmF

OmF statistics are computed in observation space to investigate the structure of model—
observation differences and to measure improvements in the reanalysis (Fig. 2). Model
biases, as measured from the OmF in the control run, are persistent throughout the reanal-
ysis period and vary considerably with season. The figure shows an underestimation (i.e.,
positive OmF) of tropospheric NO, columns compared with the OMI NO, data from the
SH subtropics to NH mid-latitudes, an underestimation of tropospheric CO compared with
MOPITT CO data in the NH, an overestimation (i.e., negative OmF) of middle and upper
tropospheric O3 in the extratropics compared with TES and MLS O3 data, and underesti-
mation of middle tropospheric O3 in the tropics compared with TES. The underestimation
of tropospheric CO by CHASER was found to be very similar to that in most of the other
CTMs (Shindell et al., 2006).

After 2010, the positive OmF for MOPITT CO in the control run decreases in the NH, and
the positive OmF for OMI NO, increases in the NH mid-latitudes. As the quality of these
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retrievals is considered constant in the reanalysis period (e.g., Worden et al., 2013), the
interannual variations of OmF are probably attributed to long-term changes in the model
bias. The anthropogenic emission inventories for 2008 were used in the model simulation
for 2009—2012, which could be partly responsible for the absence of a concentration trend
in the model.

In the reanalysis run, the OmF bias and RMSE for MLS O3 becomes nearly zero globally
because of the assimilation. The systematic reductions of the OmF confirm the continuous
corrections for model errors by the assimilation. The remaining error is almost equal to the
mean observational error. The OmF reduction is relatively smaller for MLS HNOj3 than for
MLS O3 because of the larger observational errors.

The mean OmF bias against TES O3 data in the middle troposphere is almost completely
removed because of the assimilation, and the mean OmF RMSE is reduced by about 40 %
in the SH extratropics and by up to 15 % from the tropics to the NH. The error reduction is
weaker in the lower troposphere (figure not shown) because of the reduced sensitivity of
the TES retrievals to lower tropospheric O3. The analysed OmF becomes larger after 2010
corresponding to the decreased number of assimilated measurements.

Data assimilation removes most of the OmF bias against MOPITT CO data with a mean
bias (RMSE) reduction of about 85 % (60 %) 