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Abstract. The UK is one of several countries around the world that has enacted legislation to reduce

its greenhouse gas emissions. In this study, we present top-down emissions of methane (CH4) and

nitrous oxide (N2O) for the UK and Ireland over the period August 2012 to August 2014. These

emissions were inferred using measurements from a network of four sites around the two countries.

We used a hierarchical Bayesian inverse framework to infer fluxes as well as a set of covariance5

parameters that describe uncertainties in the system. We inferred average UK total emissions of 2.09

(1.65–2.67) Tg yr−1 CH4 and 0.101 (0.068–0.150) Tg yr−1 N2O and found our derived UK estimates

to be generally lower than the a priori emissions, which consisted primarily of anthropogenic sources

and with a smaller contribution from natural sources. We used sectoral distributions from the UK

National Atmospheric Emissions Inventory (NAEI) to determine whether these discrepancies can be10

attributed to specific source sectors. Because of the distinct distributions of the two dominant CH4

emissions sectors in the UK, agriculture and waste, we found that the inventory may be overestimated

in agricultural CH4 emissions. We found that annual mean N2O emissions were consistent with both

the prior and the anthropogenic inventory but we derived a significant seasonal cycle in emissions.

This seasonality is likely due to seasonality in fertilizer application and in environmental drivers15

such as temperature and rainfall, which are not reflected in the annual resolution inventory. Through

the hierarchical Bayesian inverse framework, we quantified uncertainty covariance parameters and

emphasized their importance for high-resolution emissions estimation. We inferred average model

errors of approximately 20 and 0.4 ppb and correlation timescales of 1.0 (0.72–1.43) and 2.6 (1.9–

3.9) days for CH4 and N2O, respectively. These errors are a combination of transport model errors20

as well as errors due to unresolved emissions processes in the inventory. We found the largest CH4
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errors at the Tacolneston station in eastern England, which may be due to sporadic emissions from

landfills and offshore gas in the North Sea.

1 Introduction

Methane (CH4) and nitrous oxide (N2O) are the second and third most important long-lived green-25

house gases after carbon dioxide (CO2) and have 100-year global warming potentials with climate-

carbon feedback of 34 and 298, respectively (Myhre et al., 2013). Because of their importance to

climate, there is considerable interest in quantifying emissions at the national level for the purposes

of policy reduction measures.

In 2008, the UK brought into legislation the Climate Change Act 2008 (http://www.legislation.30

gov.uk/ukpga/2008/27/contents) with the legally binding target to reduce the country’s CO2 equiv-

alent emissions (by global warming potential) to 20 % of 1990 levels by 2050. As part of the ef-

forts over the past several decades to quantify emissions, the UK government produces the Na-

tional Atmospheric Emissions Inventory (NAEI, http://naei.defra.gov.uk), which currently includes

a yearly gridded 1 km x 1 km sectoral inventory of UK anthropogenic emissions of the major green-35

house gases (Fig. 1). National total emissions from this inventory are submitted yearly to the United

Framework Convention on Climate Change (UNFCCC, www.unfccc.int), which requires developed

countries to annually report their emissions of CO2, CH4, N2O, sulfur hexalfuoride (SF6), hydroflu-

orocarbons (HFCs) and perfluorocarbons (PFCs). In 2012, the UK reported 2.42 Tg yr−1 CH4 with

an uncertainty of 20 % and 0.116 Tg yr−1 N2O with an uncertainty of 69 % in the UNFCCC 201440

UK National Inventory Report. Of all the gases in the UK inventory, N2O has the highest emissions

uncertainty. In the same year, Ireland reported 0.575 Tg yr−1 CH4 with an uncertainty of 20 % and

0.024 Tg yr−1 N2O with an uncertainty of 88 % in the Ireland National Inventory Report.

Globally, emissions of these gases to the atmosphere come from both biogenic and anthropogenic

sources. In the UK however, anthropogenic sources dominate over natural sources (Tables 1 and 245

and references therein). The principal anthropogenic sources of CH4 in the UK in 2012, as reported

from NAEI inventories, were from agriculture (44 % of anthropogenic emissions), waste (40 %)

and energy (15 %). For N2O, NAEI reported emissions were largely from agricultural soils (75 %),

followed by fuel combustion (11 %) and animal waste management (8 %). Tables 3 and 4 give the

percentage contribution of the major anthropogenic and natural sources to the UK and Ireland totals.50

Alongside efforts to maintain a detailed bottom-up inventory, which compiles information using

emissions factors and source information, the UK implemented four monitoring stations around

the UK and Ireland to infer emissions through top-down methods using atmospheric observations.

Quantification of emissions at the national level requires dense measurement networks to provide

enough coverage and information to constrain fluxes at high resolution. The four greenhouse gas55

stations of the UK DECC (Deriving Emissions linked to Climate Change) network were situated to
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constrain emissions of potent greenhouse gases from the UK. These four stations are located at Mace

Head (MHD, 53.33◦ N, 9.90◦ W, 25 ma.s.l.) on the western coast of Ireland, and telecommunication

towers at Ridge Hill (RGL, 52.00◦ N, 2.54◦ W, 204 ma.s.l.) in western England, Tacolneston (TAC,

52.52◦ N, 1.14◦ E, 56 ma.s.l.) in eastern England and Angus (TTA, 56.56◦ N, 2.99◦ W, 400 ma.s.l.)60

in eastern Scotland. While operations at Mace Head have been supported by the UK government for

several decades, the latter three sites were funded by the UK’s Department of Energy and Climate

Change beginning in 2011. With the exception of Angus, which currently only measures CO2 and

CH4, the remaining sites are additionally equipped to monitor N2O and SF6.

Emissions of CH4 and N2O have previously been estimated both globally and regionally for65

the UK and Northwest Europe using inverse methods (Manning et al., 2011; Corazza et al., 2011;

Bergamaschi et al., 2015). While global emissions have been estimated to be around 554± 56 and

15.7± 1.1 Tg-N yr−1 (Prather et al., 2012), respectively, regional and national-scale emissions are

significantly more uncertain. Manning et al. (2011) used a regional approach to infer emissions for

the UK using measurements from Mace Head, Ireland and found the UK’s contribution in 200770

to be 1.9 (0.8–3.3) Tg yr−1 CH4 and 0.070 (0.055–0.090) Tg yr−1 N2O. Bergamaschi et al. (2015),

using a variety of global and regional approaches, derived 2006–2007 emissions for the UK and

Ireland that ranged between 2.5–4.8 Tg yr−1 for CH4 and 0.07–0.17 Tg yr−1 for N2O, depending

on the inversion method and chemical transport model (with NAME derived emissions generally

being lower than those from the other studies). The large range in derived emissions, which were75

almost always larger than the individual uncertainties of each model/inversion, highlights the need

for robust uncertainty quantification and investigation into systematic model errors.

The objectives of this study were to: (1) quantify UK and Ireland emissions of CH4 and N2O using

atmospheric observations for the period of August 2012 to August 2014; (2) use spatial patterns

in derived emissions to understand sources of discrepancy between the top-down and bottom-up80

inventories at the sectoral and regional levels; (3) quantify critical uncertainty parameters, including

spatially and temporally varying variances and correlations using a hierarchical Bayesian inverse

method (Ganesan et al., 2014); (4) use the derived parameters to inform development of national-

scale monitoring networks.

2 Measurements85

Information about the network stations and measurement setup has been summarized in Table 5.

Observations of atmospheric CH4 and N2O mole fraction have been collected since 1987 and 1978,

respectively, at Mace Head, Ireland, which is one of the core long-term observatories of the Ad-

vanced Global Atmospheric Gases Experiment (AGAGE). Ambient air measurements were made

on a gas chromatograph (GC, Agilent 5890) equipped with a flame ionization detector (FID, Carle)90

for CH4 and electron capture detector (ECD, Agilent) for N2O every 40 min. Standards were filled
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wet in electropolished stainless steel cylinders and were calibrated on the Tohoku University and

SIO-98 calibration scales, respectively. A detailed description of the methodology can be found in

Prinn et al. (2000).

Measurement at the telecommunications towers at Ridge Hill, Tacolneston and Angus have been95

made since March 2012, July 2012 and March 2011, respectively, with CH4 measurement occur-

ring at all three sites and N2O measurement occurring only at Ridge Hill and Tacolneston (http:

//www.metoffice.gov.uk/atmospheric-trends/). Methane analysis was conducted using a Picarro Cav-

ity Ring Down spectrometer (CRDS). Ridge Hill and Tacolneston were equipped with the G2301

CRDS instrument continuously over the measurement period and employed sample drying using100

a Nafion membrane driven by a dry countercurrent gas. Angus measurements were made on the

G1301 series until May 2013, after which, a G2301 model was installed. No sample drying was

employed at this site. A water vapor correction (as measured by the instrument) was used at all sites

and all measurements were calibrated using dry standards filled in aluminum cylinders. Methane

observations were calibrated on the NOAA-2004 calibration scale and were converted to the Tohoku105

University scale for consistency with Mace Head observations using a calibration factor of 1.0003

(Dlugokencky et al., 2005). Sampling heights on the towers were 45 and 90 ma.g.l. at Ridge Hill,

54, 100 and 185 ma.g.l. at Tacolneston and 222 ma.g.l. at Angus. For stations with multiple in-

lets, each height was sampled sequentially. In this study, an average measurement of the two lowest

heights was used (measurements from 185 ma.g.l. at Tacolneston were not used due to the additional110

complexity of representing this height in the boundary layer).

Nitrous oxide observations at the telecommunication tower sites were made approximately every

10 min on a GC-ECD system, based on the system described in Ganesan et al. (2013) and Hall et al.

(2011) and were calibrated on the SIO-98 scale. For the N2O configuration, measurements at Ridge

Hill and Tacolneston were only made at 90 and 100 ma.g.l., respectively.115

Measurements were averaged over two hours, both day and night. This period was chosen to

minimize data volume and to be consistent with the sampling period of the halocarbon measurement

system in the network. Data was filtered for local influence using a transport model. Measurements

corresponding to times when there was a high sensitivity of mole fractions to emissions from the nine

grid cells surrounding the station (at 25 km resolution) were identified as being likely to be affected120

by local processes due to the more stagnant air. Local processes act on scales that are smaller than

the spatial and temporal resolutions of the model and therefore would not be captured by the model.

Furthermore local processes tend to have a high impact on observations and would therefore lead

to large errors in retrieved fluxes. For these reasons, measurements considered to be prone to local

effects were removed from the analysis. Approximately 17 (16), 14 (16) , 8 (8) and 4% of data was125

filtered from MHD, RGL, TAC and TTA for CH4 (N2O), respectively.

For CH4 observations, the measurement uncertainty was described by the variability of one-

minute data in the two-hour averaging period. For N2O observations, measurement uncertainty was

4



the quadratic sum of the instrument precision (calculated as the standard deviation, SD, of the ap-

proximately hourly measurements of the standard each day) and the variability in the averaging pe-130

riod. Typical measurement uncertainties were 10 ppb CH4 and 0.3 ppb N2O. Model errors (due to

transport errors as well as errors due to unresolved processes) were estimated as part of the inversion

framework.

3 Atmospheric transport model

The UK Met Office model, NAME III (Numerical Atmospheric dispersion Modelling Environment135

version 3, henceforth called NAME) was used to quantify the relationship between surface emissions

and simulated measurements at each observation point and time. For each two hour period, NAME

tracked particles backwards in time for 30 days and as particles were transported through the three-

dimensional model, recorded the mass of particles and amount of time spent interacting with the

first hundred meters a.g.l. (i.e., the surface). This directly provided the sensitivity of concentrations140

at the measurement site to surface emissions. Twenty thousand particles were released each hour at

a source strength of 1 gs−1. The model was driven by the Met Office’s Unified Model (UM) analysis

meteorology at 0.352◦× 0.234◦ resolution (∼ 25 km) with 70 vertical levels. After July 2014, the

resolution of the UM meteorology was increased to∼ 17 km but NAME output retained the original

∼ 25 km resolution. The inversion domain extended from approximately 36 to 67◦ N and −14 to145

31◦ E, covering the UK and most of continental Europe. For the purposes of estimating boundary

conditions (discussed further in Sect. 4) a second, larger domain (9 to 81◦ N and −100 to 46◦ E

at resolution 0.563x0.375 ◦) was used to identify the origins of air masses that entered the smaller

inversion domain.

A complete description of NAME can be found in Ryall and Maryon (1998), Morrison and Web-150

ster (2005) and Jones et al. (2007) and of its use in trace gas emissions estimation in Manning et al.

(2011).

4 Inversion framework

We followed the hierarchical Bayesian inversion methodology outlined in Ganesan et al. (2014) and

extended this method to solve for additional hyper-parameters. This method allows for the system-155

atic estimation of fluxes and critical uncertainty parameters, which was shown to result in a more

complete characterization of uncertainties in the system.

For each month of this study, we estimated fluxes from a set of k regions over Europe (with 64 out

of 135 regions for CH4 and 51 out of 116 regions for N2O occurring over the UK and Ireland) and

parameters governing the boundary conditions to the domain. The sizes of the estimated regions were160

based on the model-derived sensitivities for the measurement sites available for each gas (i.e., Scot-

land is more highly resolved for CH4 than N2O owing to the additional measurement information at

5



Angus). These unknown parameters comprised vector x. Sensitivities of mole fractions to emissions

from these regions were a prior emissions weighted average of the sensitivities from individual grid

cells and so the distribution of the prior within each region was retained in the inversion.165

4.1 Hyper-parameters

We estimated the mean and SD, µx and σx, respectively, which described the emissions PDF and

a set of hyper-parameters that characterized the model-measurement likelihood. These were σyt and

σys, which described temporal and spatial variances of a separable covariance matrix (described fur-

ther below) and correlation parameters, τ , ν and l. These variances described the mismatch between170

modeled and observed mole fractions and include the effects of model error and any errors due

to unresolved processes. The correlation timescale, τ , described an exponentially decaying tempo-

ral correlation and the spatial correlation length-scale, l, and smoothness parameter, ν, described

a Matérn covariance function (Stein, 1999).

T and S are the separable time and space components of covariance R (described further in175

Sect. 4.3), where σyt contains the variances of T and τ forms the off-diagonals and σys contains

the variances of S and ν, l form the off-diagonals. σyt was estimated for each 2 day period of the

month and σys was derived for each site over the month. Temporal correlation was represented by

Eq. (1) with tij representing each element in covariance matrix, T for points i and j separated by

time t. The Matérn covariance function is a commonly used function in spatial statistics to describe180

covariance between two points, i and j separated by Euclidean distance, d. It is described by Eq. (2),

with sij representing the elements in spatial covariance matrix, S. Γ is the gamma function and Kν

is the modified Bessel function of the second kind. When ν = 0.5, the Matérn function becomes an

exponential covariance function and when ν� 0.5, it approaches a squared exponential function

(similar to Gaussian).185

tij =
√
tii ·

√
tjj · exp

(
−t
τ

)
(1)

sij =
√
sii ·
√
sjj ·

1

Γ(ν)2ν−1

(√
2ν
d

l

)ν
Kν

(√
2ν
d

l

)
(2)

These hyper-parameters account for “uncertainties in uncertainties” and reduce the effect of sub-

jective assumptions on a priori emissions uncertainties, model uncertainties and correlation scales.190

Fluxes, boundary conditions and hyper-parameters were informed by the data, z, through a Markov

chain Monte Carlo (MCMC) framework, which has previously been shown to result in a more com-

plete uncertainty quantification because these parameters and their uncertainties are passed system-

atically through the inversion (Ganesan et al., 2014; Rigby et al., 2011).
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4.2 Boundary conditions195

Boundary conditions were estimated for each of ten boundaries to the domain and represented the

part of the measured concentration not simulated by the 30-day air histories. A schematic for these

boundaries is provided in the Figure 2. Multiple boundary conditions were estimated to represent the

variable levels and directions from which air enters the domain (for example, due to a north–south

gradient). The boundary conditions represent the concentrations on the boundaries of the outer do-200

main, which is thought to be the direction associated with the ‘source’ of the air mass (e.g., winds

that enter the inner inversion domain from the west sometimes originate from the southern outer

boundary). Therefore, the concentrations entering the inner inversion domain are comprised of the

concentrations on the outer boundaries plus the effect of any emissions in between the two domains.

For some directions (in particular the Northeast), there could be significant emissions sources, how-205

ever, from the predominant directions (Southwest and Northwest), emissions sources are expected

to be smaller. These emission sources do not affect the results of the inversion, which require bound-

ary conditions to simulate the net concentrations outside of the inversion domain; however, physical

interpretation of the boundary conditions must account for these emissions.

The boundary condition to the west-south-west (WSW) edge was formulated as a polynomial210

shown by Eq. (3), with six sinusoidal terms, a linear trend term and an offset term.

BCWSW =

3∑
i

[
ai · sin

(
2πi(t− t0)

T

)
+ bi · cos

(
2πi(t− t0)

T

)]
+ cx+ d (3)

Offsets to this WSW boundary represented the values on the seven other horizontal boundaries,

a boundary from 3 to 9 km (low to mid troposphere) and a boundary at 9 km (upper troposphere215

to stratosphere). In total, PDF parameters to 17 boundary conditions were estimated as part of the

inversion each month. Sensitivities to these boundary conditions were computed for each site by

using the model to track which direction and height air had entered the domain over the previous

30 days for each 2 h simulation. It was assumed that each baseline parameter remained constant over

the month and was the same for all sites, though the effect of air coming from each boundary would220

be “felt” at different times, depending on the meteorology of that particular site. A full description

of the boundary condition estimation method is provided in the Supplement.

4.3 Estimation scheme

The hierarchical estimation scheme can be outlined as follows:
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y = Hx+ ε (4)225

ε∼N(0,R) (5)

z = Cy+η (6)

η ∼N(0,D) (7)

y is a vector of model simulated mole fractions of size mn for all times during the period of230

interest and for all sites (including times/locations when no observations exist), H is a mn×k array

of model sensitivities that maps x to y and ε is a stochastic error term. C is a p×mn matrix that

samples values of y at the p times/locations that observations exist, z is a vector of p observations

with stochastic error η and D is a p× p “nugget” term of uncorrelated instrumental uncertainties.

The covariance matrix, R, governs the model uncertainty for all “possible” observations in time and235

space. For example, if measurements were made every two hours over a year at four sites, there

would be 4380 (365 x 12) possible measurements at four locations and T would be of size 4380

and S of size four. It is likely, however, that some of these measurements would be missing due to

instrumental or site problems and y is an additional parameter that is sampled in the MCMC chain

and compared to observations through matrix C. Therefore, we assume that errors in the model will240

be correlated even at times/locations that observations do not exist.

The joint distribution of x, µx, σx, σyt, σys, τ , ν, l and y is expressed through Eq. (8), through

the hierarchical propagation of Bayes’ theorem and the probability chain rule, where ρ(·) describes

the prior PDF and ρ(· | ·) is a conditional of the first parameter given the second.

ρ(x,µx,σx,σyt,σys, τ,ν, l,y|z)∝ ρ(z|y,D) · ρ(y|x,σyt,σys, τ,ν, l)245

· ρ(x|µx,σx) · ρ(µx) · ρ(σx) · ρ(σyt) · ρ(σys) · ρ(τ) · ρ(ν) · ρ(l) (8)

As shown in Eq. (8), each hyper-parameter (µx, σx, σyt, σys, τ , ν, l) requires an “a priori”

PDF to be specified. Through MCMC, these PDFs are sampled from and used to form the posterior

PDF. The lognormal distribution (LN) was used for x, µx, σx, σy and σys to represent skewed250

distributions that are not defined for negative values. This prevents unphysical solutions from being

reached. A discrete uniform distribution (U) was used as a non-informative prior for correlation

hyper-parameters, τ , ν and l. Model and measurement uncertainties were assumed to be Gaussian

(N) as it was assumed that these random errors were symmetric around the median. Regions that

contained a net sink (for N2O, some oceanic areas are sinks at certain times of the year) were esti-255

mated with Gaussian distributions.

By assimilating data from multiple sites and at high-frequency, the size of the estimation problem

can get very large for MCMC. To reduce the computational cost of multiplying, inverting and com-

puting the determinant of large matrices over 50 000 iterations, it was assumed that the covariance
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matrix, R, was separable in space and time (Eq. 9). This has been widely employed in geostatisics,260

where it is assumed that correlations in time are not dependent on position and correlations in space

are not dependent on time (e.g., Meirink et al., 2008; Thompson et al., 2011; Yadav and Michalak,

2013).

R(t, t+ ∆t,s,s+ ∆s) = T(t, t+ ∆t)S(s,s+ ∆s) (9)265

By assuming separability in the covariance matrix, we could exploit the following properties:

1. R = T ⊗ S, where separable square matrix R of size mn can be written as the Kronecker

product of two matrices governing the temporal and spatial covariances, respectively. T is

a square matrix of size m and S is a square matrix of size n.

270

2. R−1 = (T⊗ S)−1 = T−1 ⊗ S−1, so the computation of the inverse of a square matrix of size

mn can be decomposed into the inverse of two smaller matrices.

3. det(R) = det(T ⊗ S) = det(T)n det(S)m, so the computation of the determinant of a square

matrix of size mn can be decomposed into the determinant of two smaller similar matrices.275

4. a= R−1b, where a and b are vectors of length mn. In this analysis, b represents residual

vectors (y−Hx) and (z−Cy) and a represents the vector required to compute the likelihoods

in Eq. (8). This operation can now be computed as A = S−1 B T−1T , where B is an array

composed of b reordered to size n×m and A, also of dimension n×m can be restacked to280

form a. The advantage of this computation is that the Kronecker product forming R does not

need to be explicitly computed and the product of the (large) covariance matrix and vector can

be reformulated as the product of smaller arrays.

Because the computational cost of these operations are approximately of the order n3, assuming

separability makes a dramatic improvement in efficiency for MCMC.285

4.4 A priori values

Tables 1 and 2 describe the a priori median values for all of the hyper-parameters of the system (with

the superscript µ referring to the median of that respective distribution). Hyper-parameter SDs of

the lognormal distributions (denoted by superscript σ), µx
σ , σσx , σσyt and σσys were calculated such

that the 16th to 84th (cf., 1-σ of a Gaussian distribution) percentile range was equal to 100% of the290

median emissions.
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Gridded anthropogenic emissions for the UK were from the NAEI for 2012. Anthropogenic emis-

sions for other countries were taken from the Emission Database for Global Atmospheric Research

version 4.2 (EDGAR, JRC/PBL, 2011) but these emissions were scaled by country to the UNFCCC

reported emissions to maintain consistency with the numbers reported by individual countries.295

Natural emissions were compiled from a variety of sources outlined in Tables 1 and 2. To account

for anthropogenic land that was classed as natural in these inventories (for example, the natural soil

N2O source did not mask out agricultural land), natural emissions were scaled by the fraction of

natural land in each UK and European country based on land cover maps (Morton et al., 2011; EEA,

2007). While there are additional complexities with classifying emissions from land as natural or300

anthropogenic, we assume that this scaling approach will, to first-order, correct for overestimation

in natural inventories. The contributions of the major source sectors to the UK and Ireland totals are

presented in Tables 3 and 4. Anthropogenic sources were approximately 90% of the total for both

gases.

A priori, it was assumed that offsets to the horizontal boundary conditions was zero (i.e., the305

MHD baseline was assumed for all horizontal directions). For upper-air boundary conditions, the

mean fraction-weighted (based on sensitivities derived by the NAME model) difference between

upper-air influenced observations and baseline was assumed.

5 Results and Discussion

We present top-down CH4 and N2O emissions for the UK and Ireland from August 2012 to August310

2014 along with an analysis of the uncertainty parameters derived in the inversion. Results are pre-

sented as the median of the posterior PDFs and uncertainties for all parameters correspond to the 5th

to 95th percentile range. In addition, the simulated posterior and prior time series, derived baselines

and comparison with observations are provided in the Supplement.

5.1 Emissions and boundary conditions315

Figure 3 shows CH4 and N2O emissions by month over the study period. On average, the UK’s

emissions were 2.09 (1.65–2.67) Tg yr−1 CH4 and 0.101 (0.068–0.150) Tg yr−1 N2O and Ireland’s

emissions were 0.62 (0.50–0.74) Tg yr−1 CH4 and 0.025 (0.019–0.033) Tg yr−1 N2O. Both UK CH4

and N2O emissions were generally lower than the total and anthropogenic a priori emissions. The

difference in annual average CH4 emissions from the total prior is statistically significant (with the320

annual average prior lying outside of the uncertainty of the posterior) but the N2O difference is not

significant when accounting for uncertainties. A change in natural emissions, which are only 5-12%

of the prior for both gases, may explain some of the difference, but are likely not large enough to

account for all of it. Emissions from Ireland were consistent with the prior for both gases.
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The CH4 emissions derived in this study are statistically consistent with the 2007 UK emissions325

estimated by Manning et al. (2011), while the N2O emissions are slightly higher. The uncertainties

derived in this study are smaller for CH4 but larger for N2O and the differences in uncertainties for

the two studies is likely due to the different methodologies used as well as the additional measure-

ment stations in this study. The hierarchical method provides a framework for more completely and

rigorously characterizing random uncertainties in the system, but does not account for systematic330

uncertainties. The emissions and uncertainties derived here lie in the lower range of results obtained

by Bergamaschi et al. (2015), and while could be attributed to the additional measurement stations

used, likely also point to large systematic differences between models.

Methane emissions between February and May 2013 were the most uncertain due to missing

data from Angus and similarly, N2O emissions in December 2012 and January 2013 had larger335

uncertainties than other times of the year due to the fact that the N2O instrumentation at Ridge Hill

was down during those two months. Uncertainties were on average approximately 36% larger on UK

CH4 emissions during January-May 2013 and 50% larger on UK N2O emissions during December

2013- January 2014, than the average of months sampled by the full network.

Boundary conditions from the WSW, WNW, NNW, NNE and the two upper air directions were340

the most constrained, as reflected by the significant uncertainty reduction from the prior (over 50%),

while air from the other directions were almost never sampled and thus reflected the prior distribu-

tions.

While CH4 emissions do not show significant seasonality, N2O in contrast has a pronounced sea-

sonal cycle, with a maximum in the summer months and minimum in the winter. Though the a priori345

emissions have a small seasonal cycle due to the natural soil and oceanic sources of N2O, the derived

amplitude of approximately 0.05 Tg yr−1 is much larger in the posterior estimates and is statistically

significant. Thompson et al. (2014) found a seasonal cycle over Europe with a timing consistent with

our findings, however the magnitude of the seasonal cycle was larger and matched closely with the

prior that was used. The difference in amplitude likely to do with the greater prevalence of natural350

soils in Europe as a whole rather then in the UK. A small seasonality was found in Ireland’s N2O

emissions but this seasonality was not significant relative to the uncertainties.

Figures 4 and 5 show spatial maps of median derived emissions for the two gases over the study

period, the percentage difference from the prior, fractional uncertainties (ratio of the difference be-

tween 5th and 95th percentiles to the median) and uncertainty reduction from the prior. Dots in the355

difference map indicates regions where the difference was statistically significant (i.e., the prior was

outside the 5th to 95th percentile range of the posterior emissions).

Spatial maps of the dominant sectors of the UK NAEI are shown in Fig. 1. Comparison of the

posterior emissions distribution with the sectoral inventory maps allows us to determine whether

differences between the top-down and bottom-up emissions can be attributed to particular sectors.360

The two dominant and approximately equivalent sources of CH4 in the UK are agriculture (cattle,
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manure) and waste (landfill) sectors, each contributing approximately 40 and 35 % respectively of

the total prior emissions. While agricultural sources are more diffuse than landfill sources, the maps

for the waste sector show a distinct spatial pattern. The waste sector dominates emissions from the

eastern and central England. Agricultural emissions are generally well-distributed around the coun-365

try with the highest emissions in western England, Wales, Northern Ireland and southern Scotland,

in grassland regions where livestock production is prevalent. While emissions from the entire do-

main are generally lower than the prior, the largest difference, as a percentage of the prior, occurs

throughout Scotland, western England and eastern Ireland. An analysis of the uncertainties derived

for each region for each month shows these differences to be statistically significant, with the prior370

lying outside the 5th to 95th percentile range of the posterior distribution. These results suggests that

the agricultural sector due to its prevalence in those regions, may be overestimated in the inventory.

The small natural component, which is less than 10% of the total prior, could also be overestimated,

but this would not entirely explain the difference between the prior and the posterior emissions.

In our seasonal analysis for N2O (Fig. 6), we find a significant difference between the prior and375

posterior in winter (DJF), which in part is because there is no seasonal cycle represented in the an-

thropogenic component of the prior. In the winter, this difference is statistically significant through-

out most of the land regions of the UK and Ireland. The NAEI sectoral distribution for agricultural

N2O shows that emissions are relatively evenly spread around the country, with emissions gener-

ally being from fertilized grasslands in the west of England and from fertilized arable land, pig and380

poultry production in the East. While emissions throughout the UK and Ireland grow toward spring

and summer, spatial maps of the posterior emissions show the largest emissions in eastern England

during the spring and in central England during the summer. A study over one UK sheep-grazed

grassland, which was fertilized three times over the spring and summer, showed fertilizer N2O emis-

sions to last from one to three weeks, following fertilizer application, with the maximum emission385

occurring in July (Skiba et al., 2012). However, emissions depend strongly not only on fertilizer ap-

plication, but also on precipitation and temperature and these can have strong regional differences as

well as year-to-year variability. These findings suggest that the pronounced seasonal cycle is likely

to due seasonality in fertilized soils as well as seasonality in environmental drivers, which are not

reflected in the annual resolution NAEI inventory. Further elucidating the drivers of this seasonality390

requires process or empirical models of N2O production.

Analysis of the uncertainties derived in the inversion (panels c and d of Figs. 4 and 5) shows the

greatest observational constraint in the∼ 100 km around the stations, which predominantly constrain

southern and central England and western Ireland. Uncertainties for N2O emissions are typically

larger than for CH4 emissions, likely due to the lower signal-to-noise ratio of N2O observations395

(i.e., CH4 is measured with higher precision and pollution events are larger). For CH4, an increase

in emissions was found to occur in Wales. While the difference from the prior was not statistically

significant (i.e., the fractional difference from the prior each month typically lay within the 5 to 95
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percentiles), the posterior uncertainty showed that the region is well-constrained by the network (and

primarily by Ridge Hill). For this region covering eastern Wales, there was considerable month-to-400

month variability (about half of the months during the period showed this increase and half did not).

This is likely caused by poorly resolved meteorology around two large point sources (Cardiff and

Swansea) that are surrounded by mountains just to the west of Ridge Hill. This feature could be

improved with a more highly resolved grid and/or meteorology in that region.

Two sensitivity studies are provided in the Supplement to assess the effect of the prior on the pos-405

terior solution. The first inversion assumed that the prior consisted only of anthropogenic emissions

and the second assumed that the natural emissions were not scaled by land use statistics (an upper-

bound on natural emissions). We found that the the majority of the UK and Ireland were largely

insensitive to the choice of prior and that the four station network has enough data density to con-

strain the UK and Ireland totals. While Northern Scotland is not very sensitive in the network, by410

design this is an area with low emissions and therefore does not significantly impact the UK total.

5.2 Covariance hyper-parameters

Figure 7 shows derived model-measurement uncertainties for each site. These uncertainties could

be due to model error or any unresolved processes in the inversion. The median posterior value is

shown, with error bars indicating the 5th and 95th percentile solutions. On average, uncertainties for415

the CH4 and N2O studies were ∼ 20 ppb and 0.4 ppb, respectively. For the CH4 study, Tacolneston

consistently exhibited the largest error, the cause of which could be from two factors: the largest

CH4 pollution events are measured at Tacolneston and there are known nearby sources (gas fields in

the North Sea and landfills in east England) with sporadic emissions that may not be reflected in the

temporally constant NAEI prior or resolved in the monthly inversion. Mace Head and Angus have420

the smallest uncertainties, both due to the smaller magnitude of pollution at these sites and due to

the more constant regional emissions sources. The increased uncertainty at Tacolneston is reflected

in the emissions uncertainties shown in panel c of Fig. 4; uncertainties in the regions surrounding

Tacolneston are greater than in the regions surrounding other stations. This feature also highlights

that the uncertainties in the various components of the inversion are passed systematically through425

the inversion to emissions and emission uncertainties. Uncertainties derived for N2O are similar for

both Tacolneston and Ridge Hill, likely due to both sites generally measuring agricultural emissions,

and further suggests that the increased CH4 error at Tacolneston is due to unresolved emissions

processes rather than model error at that site. NAME has previously been validated against tracer

release experiments, surface and balloon measurements but parametric and structural uncertainties430

are not well known (Morrison and Webster, 2005; Ryall and Maryon, 1998). Further, validation

exercises have not been conducted over the period of this study. While the results of this study

cannot discern specific sources of error in the model, this is a subject of great interest and future

work.
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Spatial and temporal correlation scales were also derived for the two gases. The correlation scales435

are related to a number of factors: errors in the model transport (e.g., a misplaced weather front

at one time will likely be misplaced a short time later) as well as unresolved emissions processes

(e.g., errors in the assumption of constant emissions). The two sources of correlated errors cannot

be disentangled but the time and length scales derived in the inversion are a measure of the scales

of the missing or erroneous processes. Average correlation scales of 1.0 (0.72–1.43) days and 133440

(15–317) km were derived over the period for the CH4 study and 2.6 (1.9–3.9) days and 228 (25–

450) km for the N2O study. The scales are more tightly constrained for CH4 than for N2O, likely due

to the higher signal-to-noise of the observations. The spatial correlation scale is not well-constrained

for N2O and reflects the prior distribution, indicating that there is not enough information in the net-

work to constrain this parameter. The correlation timescale is smaller for CH4 than for N2O. Though445

there are differences in the two networks (i.e., N2O is not measured at Angus), a CH4 inversion in

which Angus was excluded was also performed and similar correlation scales were derived (Supple-

ment), suggesting that the network differences are not the source of differences in correlation scales.

Furthermore, because the same transport model was used for the two studies, model errors were ex-

pected to be similar for the two gases so the differences are likely due to unresolved emissions in the450

prior. We noted the increased variances at Tacolneston and speculated that this was due to sporadic

emissions from landfills and offshore gas that were not modeled by the constant prior emissions

field and not resolved in the inversion. The longer timescale for N2O suggests that unresolved emis-

sion characteristics from fertilizers acts on a slightly longer timescale (several days). The correlation

length scale of 133 km for CH4 suggests that the current network, with the nearest two stations455

being ∼ 250 km apart, could benefit from additional stations to further constrain CH4 emissions.

Given the typical correlation scales that were derived along with knowledge of source distributions,

a network can be intelligently designed (or improved) to maximize source information, as we have

shown in this study. As measurement networks around the world grow and as countries move toward

using top-down methods to infer high resolution emissions, the accurate simulation of covariance460

parameters will become critical for realistically representing concentrations in the atmosphere and

the underlying processes driving them.

6 Conclusions

We present an estimate of the UK and Ireland’s CH4 and N2O emissions from 2012–2014 using

a network of four high-frequency and high-precision monitoring stations. We inferred average CH4465

emissions of 2.09 (1.65–2.67) Tg yr−1 and N2O emissions of 0.101 (0.068–0.150) Tg yr−1 from the

UK and 0.62 (0.50–0.74) Tg yr−1 CH4 and 0.025 (0.019–0.033) Tg yr−1 N2O from Ireland over the

two years of this study. Our top-down results were used to highlight areas where the bottom-up in-

ventory might be improved. We found that the prior (largely from anthropogenic sources) was higher
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than our estimates of CH4 emissions and likely overestimated from the agriculture sector. The small470

natural sources in the UK are not likely large enough to account for the full discrepancy between the

prior and posterior emissions. Our designation of natural sources is based on land cover statistics.

There are additional considerations to be made when classifying land as natural or anthropogenic

(e.g., anthropogenic N deposition on natural land), which were not accounted for here. Average pos-

terior N2O emissions were consistent with the prior and the anthropogenic inventory but an enhanced475

seasonal cycle was found and likely due to seasonality in fertilizer application and in environmental

drivers, which are not reflected in the annual resolution anthropogenic inventories.

One limitation of this study is that source processes could only be identified based on differences

in spatial distribution. For regions without this separation, such as Ireland, additional measurements

would be necessary for source apportionment. The inclusion of CH4 isotopologue measurements480

at these sites could provide an additional constraint into the gas, landfill and agricultural source

partitioning, as has been shown in Rigby et al. (2012).

This study highlights the benefits of using a network for estimating emissions at high-resolution

and discusses the considerations that need to be made when using data from these types of networks.

Through this study we show the importance of appropriately quantifying uncertainty and covari-485

ance parameters. With growing demand for top-down verification of emissions at the country-level,

methods need to be employed that account for these important parameters. Through this hierarchical

inversion framework, we inferred model errors and uncertainty correlation scales and propagated

these uncertainties into the emissions estimates. Model errors for the two studies were on average

approximately 20 and 0.4 ppb, respectively, but showed variations from site to site and for differ-490

ent times depending on the meteorology. We derived the largest CH4 model errors at Tacolneston,

likely due to its proximity to gas extraction in the North Sea and landfills in east England, sources

which have sporadic emissions characteristics that are not simulated. We inferred temporal and spa-

tial correlation scales of 1.0 (0.72–1.43) days and 133 (15–317) km for the CH4 network and 2.6

(1.9–3.9) days and 228 (25–450) km for the N2O network, with differences in the two studies likely495

being due to differences in unresolved emissions processes.
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Table 1. Sources of a priori emissions used in the CH4 study. Superscript µ denotes that these are the median

values of the distribution.

Parameter Category Prior

xµ Anthropogenic NAEI or 2008 EDGAR 4.2 scaled to UNFCCC country totals (JRC/PBL, 2011);

Wetlands and rice 2008 emissions from Bloom et al. (2012) scaled to percent natural soil (Morton et al., 2011; EEA, 2007);

Biomass burning 2008 emissions from GFED v 3.1 (van der Werf et al., 2010);

Other natural Fung et al. (1991);

Soil sink Bousquet et al. (2006);

xµ Polynomial baseline Fit to statistically observed baseline at Mace Head over 2012–2013;

Offsets Median fraction-weighted difference between upper air influenced observations and baseline / zero for horizontal directions;

σx
µ Emissions Lognormal SD corresponding to national scale emissions uncertainty of 50%

σx
µ Polynomial baseline Uncertainties from fit calculation;

Offsets 10 ppb;

σyt
µ SD of observations at all sites in 2day period;

σys
µ SD of observations at each site over the month;

τµ 2days (typical duration of pollution events);

νµ 0.5 (exponential);

lµ 250 km (smallest distance between the four measurement sites)

Table 2. Same as Table 1 but for N2O.

Parameter Category Prior

xµ Anthropogenic NAEI or 2008 EDGAR 4.2 scaled to UNFCCC country totals (JRC/PBL, 2011);

Natural soils 2008 emissions from Saikawa et al. (2013) scaled to percent natural soil (Morton et al., 2011; EEA, 2007);

Biomass burning 2008 emissions from GFED v 3.1 (van der Werf et al., 2010);

Ocean Manizza et al. (2012);

xµ Polynomial baseline Fit to statistically observed baseline at Mace Head over 2012–2013;

Offsets Median fraction-weighted difference between upper air influenced observations and baseline / zero for horizontal directions;

σx
µ Emissions Lognormal SD corresponding to national scale emissions uncertainty of 100%

σx
µ Polynomial baseline Uncertainties from fit calculation;

Offsets 2ppb;

σyt
µ SD of observations at all sites in 2day period;

σys
µ SD of observations at each site over the month;

τ 2days (typical duration of pollution events);

ν 0.5 (exponential function);

l 250 km (smallest distance between the four measurement sites)
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Table 3. A priori emissions of major source sectors in Tg yr−1 and percent contribution to UK emissions

Species Prior January emissions (% of total) July emissions (% of total)

CH4 Anthropogenic, agriculture 1.06 (40) 1.06 (39)

Anthropogenic, waste 0.97 (36) 0.97 (35)

Anthropogenic, energy 0.29 (11) 0.29 (11)

Wetlands and rice 0.19 (7) 0.26 (9)

Other 0.17 (6) 0.17 (6)

N2O Anthropogenic, agriculture 0.087 (72) 0.087 (68)

Anthropogenic, fuel combustion 0.013 (11) 0.013 (11)

Anthropogenic, animal waste management 0.009 (8) 0.009 (7)

Natural soils 0.006 (5) 0.013 (10)

Other 0.005 (4) 0.005 (4)

Table 4. A priori emissions of major source sectors in Tg yr−1 and percent contribution to Ireland emissions

Species Prior % of Ireland emissions (January) % of Ireland emissions (July)

CH4 Anthropogenic, agriculture 0.45 (70) 0.45 (68)

Anthropogenic, fugitive emissions 0.07 (11) 0.07 (10)

Anthropogenic, waste 0.05 (7) 0.05 (7)

Wetlands and rice 0.05 (8) 0.08 (12)

Other 0.03 (4) 0.02 (3)

N2O Anthropogenic, agriculture 0.020 (80) 0.020 (75)

Anthropogenic, chemical production 0.002 (6) 0.002 (6)

Natural soils 0.001 (5) 0.003 (10)

Other 0.002 (9) 0.002 (9)

Table 5. Ancillary measurement information for the data used this study.

Site Lat, Lon, Height (m.a.s.l) Species Instrument Calibration scale Sampling heights (m.a.g.l) Measurement availability

MHD 53.33N, 9.90W, 25 CH4 GC-FID Tohoku University 10 Jan 1987-Aug 2014

N2O GC-ECD SIO-98 Jul 1978-Aug 2014

RGL 52.00N, 2.54W, 204 CH4 Picarro G2301 CRDS NOAA-2004 45, 90 Mar 2012-Aug 2014

N2O GC-ECD SIO-98 90

TAC 52.52N, 1.14E, 56 CH4 Picarro G2301 CRDS NOAA-2004 54, 100 Jul 2012-Aug 2014

N2O GC-ECD SIO-98 100

TTA 56.56N, 2.99W, 400 CH4 Picarro G1301 CRDS NOAA-2004 220 Mar 2011-Jan 2013

Picarro G2301 CRDS NOAA-2004 May 2013 -Aug 2014
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Fig. 1. A priori emissions of of CH4 and N2O in log10(g gridcell−1 s−1). (Left) Major UK anthropogenic source

sectors from the National Atmospheric Emissions Inventory. (Right) Annual average of total a priori emissions,

including natural and anthropogenic sources for all countries. Colored circles show the measurement stations

(MHD, yellow; RGL, magenta; TAC, cyan; TTA, green
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Fig. 2. Schematic of boundary conditions estimated as part of the inversion. The inversion domain is represented

by the inner white box. The map shows combined air histories for all four sites at a given instance and illustrates

that the stations can sample different ‘baselines’ at the same time due to differences in their meteorology. PDF

parameters to seventeen BCs were estimated in total; eight defining the polynomial that governs the WSW

boundary and offsets for seven other horizontal boundaries and two upper atmosphere boundaries (arrows in

grey correspond to the BC governing air entering the 3-9 km box and the arrow in black corresponds to the BC

governing air from above 9 km).
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Fig. 3. Median posterior (a) CH4 and (b) N2O emissions in Tg yr−1 for the UK (blue) and Ireland (red).

Solid lines correspond to top-down estimates, dashed lines to the total prior emissions and dotted lines to the

anthropogenic component of the prior. Shading on emissions corresponds to the 5th to 95th percentile range of

the posterior distribution. The grey shading corresponds to times where data from a station was largely missing

(TTA for CH4 and RGL for N2O).
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Fig. 4. (a) Median posterior CH4 emissions shown on a logarithmic scale. Emissions have been disaggregated

from the larger regions estimated in the inversion using the prior distribution. (b) Difference between the median

posterior emissions and the prior, relative to the prior. Dots show statistically significant differences, where the

prior emissions lie outside of the 5th to 95th percentile range of the posterior emissions. (c) Posterior emissions

uncertainty. This corresponds to the average difference between the median and the 5th and 95th percentiles,

relative to the median. (d) Uncertainty reduction from the prior, relative to the prior. Colored circles show the

measurement stations (MHD, yellow; RGL, magenta; TAC, cyan; TTA, green).
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Fig. 5. Same as Figure 4 but for N2O
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Fig. 6. N2O emissions by season, shown on a logarithmic scale. Emissions have been disaggregated from the

larger regions estimated in the inversion using the prior distribution. Regions with hashing correspond to sink

regions and are plotted as their absolute value. Colored circles show the measurement stations (MHD, yellow;

RGL, magenta; TAC, cyan).
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Fig. 7. Median (a) CH4 and (b) N2O model uncertainties derived for each site. Errorbars show the 5th to 95th

percentile range.
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