1. point-by-point response to the reviews

Reply to Referee#1' comments:

Reviewer #1: In this manuscript, the authors are trying to quantify and investigate the impact of unknown daytime HONO sources on the HO_x budget in the eastern coast of China. The authors should address the following issues before the Manuscript can be considered for publication.

Major concerns:

1. Page 808, lines 20 to 23:

The authors concluded that HONO photolysis reaches a maximum of 10 ppb/h while that of HO₂+NO is 9.38 ppb/h, which is very unlikely. The total OH initiation sources (including that of HONO) may contribute between 15-25% of the total OH production rates. OH production rate from HO₂+NO makes typically between 60-85% of the total OH production. HONO photolysis is an initiation source of OH and does not exceed (as a net source, after subtracting OH+NO=HONO) ~3 ppb/h as maximum (e.g., Kleffmann et al.,2005; Elshorbany et al.,2009) and can reach as high as 80% of the total OH initiation sources but NOT the total OH production rate.

(i) The major reason is that we have not subtracted OH+NO=HONO. According

to your suggestions, we recalculated the net OH production rate from HONO

photolysis: $P(OH)_{HONOnet} = P(OH)_{HONO+hv} - L(OH)_{OH+NO}$, where P and L are the

production and loss rates, respectively (Figs. R1 and R2). As shown in Fig. R1, when the additional HONO sources were inserted into the WRF-Chem model, the diurnal peak of $P(OH)_{HONO+hv}$ was 10.01 ppb h⁻¹ in Beijing, 2.63 ppb h⁻¹ in Shanghai, and 2.60 ppb h⁻¹ in Guangzhou, while the diurnal peak of $L(OH)_{OH+NO}$ was 6.90 ppb h⁻¹ in Beijing, 1.73 ppb h⁻¹ in Shanghai, and 1.54 ppb h⁻¹ in Guangzhou. The net contribution of the HONO photolysis to OH (after subtracting OH+NO=HONO) reached a maximum of 3.72 ppb h⁻¹ in Beijing,

0.89 ppb h⁻¹ in Shanghai, and 0.97 ppb h⁻¹ in Guangzhou respectively (Fig. R3), consistent with the result (3 ppb h⁻¹) of Hofzumahaus et al. (2009) mentioned above.

(ii) The revised OH budgets are shown in Table R1. The contribution of the total OH initiation sources to the total OH production rates was 19.68% in Beijing,
23.28% in Shanghai, and 13.38% in Guangzhou, in the range of 15-25%

mentioned by Reviewer #1. The contribution of HO_2 +NO was 61.95-73.34% of the total OH production rates (Table R1), in the range of 60-85% mentioned by Reviewer #1. Additionally, among all the OH initiation sources, HONO photolysis contributed 39.85%-71.87% of the total OH initiation sources (NOT the total OH production rate), with the largest being close to the 80% mentioned above.

2. Hofzumahaus et al. (2009) investigated the OH budget in one of this study's domains (PRD) and measured maximum OH production rates of about 35 and 2 ppb/h from HO₂+NO and HONO photolysis, respectively. How the authors would explain these large differences between their model results and these measurements?

(i) The contribution of HONO photolysis was revised (see the response to question 1 of Reviewer #1).

(ii) The contribution of HO₂+NO in this study was not as high as ~35 ppb h⁻¹ (Hofzumahaus's results). The major reason is the underestimation of HO₂ in our study (Fig. R5). This underestimation was partially associated with the underestimation of anthropogenic VOCs (AVOCs) emissions (Wang et al., 2014), Wang et al. (2014) demonstrated that a 68% increase in the AVOCs emissions [the uncertainty of the AVOCs emissions could be $\pm 68\%$ (Zhang et al., 2009)] led to significant improvements in the HO₂. We added one case simulation (Case S in Fig. R4) by increasing the AVOCs emissions by 68%. When the AVOCs emissions were increased by 68%, the conversion rate of HO₂+NO was increased to 11.43 ppb h⁻¹ from 9.38 ppb h⁻¹ in Beijing, 3.34 ppb h⁻¹ from 2.63 ppb h⁻¹ in Shanghai, 5.78 ppb h⁻¹ from 4.88 ppb h⁻¹ in Guangzhou respectively (Fig. R4).

(iii) Although the anthropogenic VOCs emissions were increased by 68%, the simulated hourly HO₂ concentrations were still considerably underestimated by comparison with the observations in the period of July 5-25, 2006 (Fig. R5). So the contribution of HO₂+NO to OH was still lower than that (35 ppb h^{-1}) of

Hofzumahaus et al. (2009). Further studies are needed for HO₂ simulations.

3. Page 808, lines 24 to 28:

What is this OH production rate, daytime mean? Even then, HONO contribution is almost similar to HO_2 +NO (about 4 ppb/h). That is also very unlikely, see above. Further the loss terms due to CO is very high. If CO loss term is very high in the region, you would probably have also so much VOC loss and therefore also high HO_2 +NO to compensate, given the high NO_x levels in eastern China.

(i) We used "the daytime average OH production rate" instead of "the OH

production rate", and used "the daytime average OH loss rate" instead of "the OH

loss rate", and added necessary "daytime average" in the whole revised version.

(ii) After recalculating the net OH production rate from HONO photolysis (subtracting OH+NO=HONO), the contribution of HO₂+NO to the OH production rate was much higher than that of HONO photolysis (Fig. R3). The former reached a maximum of 9.38 ppb h⁻¹ in Beijing, 2.63 ppb h⁻¹ in Shanghai, and 4.88 ppb h⁻¹ in Guangzhou, respectively, while the maximum of the later was 3.72 ppb h⁻¹ in Beijing, 0.89 ppb h⁻¹ in Shanghai, and 0.97 ppb h⁻¹ in Guangzhou, respectively (Fig. R3).

(iii) The contribution of HO_2 +NO in this study was not high. The major reason is the underestimation of HO_2 in our study (see the response to question 2 of Reviewer#1).

4. Page 813, line 13: By referring to the mentioned study, it is HONO/NO_x and not HONO/NO₂. **We have revised our description in the Introduction section:** "*<u>This is the reason</u> why the recent CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change) study found a very strong positive correlation (R²= 0.985) between HONO flux and the product of NO*₂ *concentration and solar radiation at Bakersfield site (Ren et al., 2011).*"

5. Page 813, line 17:

The authors mentioned they used data from 13 field measurement campaigns around

the globe. Why data from around the globe if the study domain is located only on eastern coast of China?

We used the data from 13 field measurement campaigns around the globe. The reasons are below:

(i) We want to know whether the correlations of the $P_{unknown}$ with NO₂ mixing ratios and [NO₂] J(NO₂) are consistent around the globe.

(ii) The measurement campaigns of HONO are still limited around the world, especially in China, but a statistical result needs large samples.

(iii) Fig. R6 shows the correlations of the $P_{unknown}$ with $[NO_2]$ and $[NO_2] J(NO_2)$ in the coastal areas of China, the other countries, and the globe, respectively. Compared with that around the globe (Fig. R6ef), the correlation coefficient (R^2) between the $P_{unknown}$ and $[NO_2]$ was decreased to 0.38 from 0.75, while the correlation coefficient between the $P_{unknown}$ and $[NO_2] J(NO_2)$ was decreased to 0.48 from 0.80 (Fig. R6abef). However, the linear regression slope of the latter was 17.37 (Fig. R6b), very close to the 19.60 based on the data around the globe (Fig. R6f).

The correlation coefficients between the $P_{unknown}$ and $[NO_2]$ and between the $P_{unknown}$ and $[NO_2] \cdot J(NO_2)$ were 0.15 and 0.33, respectively (Fig. R6cd), much lower than those in the coastal areas of China (Fig. R6ab).

(iv) The description was added in section 2.2: <u>"For the coastal regions of China,</u> <u>the correlation between the $P_{unknown}$ and $NO_2 \cdot J(NO_2)$ was 0.48, with a linear</u> <u>regression slope of 17.37 (Fig. S2b in the Supplement), which is within the maximum</u> $P_{unknown}$ uncertainty range of 25% (Table S1)."

(v) The uncertainties in the observed data were added in the Table R2. In the study of Su et al. (2008, 2011), the uncertainty in the $P_{unknown}$ values calculated by the PSS (see the response to question 8 of Reviewer #1) is 10-25%. Sörgel et al.

(2011) suggested the uncertainty in the PSS mainly originated from OH measurements with an accuracy of ± 18 %. With the same method (PSS), Wong et al. (2012) also proposed an uncertainty of 10-20% in the P_{unknown} values. To assess the impacts of the uncertainty in the P_{unknown} parameterization on production and loss rates of HONO, two sensitivity cases (Case R_{inc} and Case R_{dec}) were performed. Case R_{inc} includes case R_p with an increase of 25% (the maximum uncertainty range according to the previous studies above) in the slope factor (19.60); Case R_{dec} is the same as case R_p with a decrease of 25% in the slope factor (19.60). The sensitivity results show that a 25% increase (25% decrease) in the slope factor (19.60) led to a 9.19-18.62% increase (12.69-14.32% decrease) in the maximum HONO production rate and a 0-17.64% increase (8.40-14.07% decrease) in the maximum HONO loss rate (Fig.R7) (section 3.2 in the revised version).

6. Page 815, line 1: Which studies? Please write the reference(s).
The references were added in section 2.2: "*Previous studies (Sörgel et al., 2011;*

Villena et al., 2011; Wong et al., 2012) have shown $P_{unknown} \propto [NO_2] J(NO_2)$."

7. Page 815, line 5:

Figure 2 is not clear at all; references are almost not readable. Which good correlation the authors mean? The slop and the correlation coefficient in these two plots are calculated based on the high NO₂ points! The low NO₂ points do not correlate at all and should have been plotted in another plot? And would have probably results in negative slope.

(i) The data and related references used in Figure 2 were added in Table R2

(were also added in the revised Supplement).

(ii) According to your suggestions, we calculated the correlations of the Punknown

with [NO₂] and [NO₂] J(NO₂) in China (corresponding to the high NO₂ points)

and in the other countries (corresponding to the low NO₂ points) as shown in Fig.

R6. Please see the response to question 5 of Reviewer #1, the correlation

coefficients calculated based on the high NO₂ points located mainly in China were higher than those based on the low NO₂ points located mainly in the other countries.

8. Also, How the authors define the data selection criteria (for Fig 2), e.g., did the authors used J-values near sunrise and sunset? What type of data (mean, median, max, min, ..etc.), measurements techniques, ..etc..? **Please see Table R2.**

(i) The $P_{unknown}$ in this study was calculated by the daytime HONO budget analysis below.

 $\frac{d[HONO]}{dt} = \left(P_{OH + NO} + P_{emission} + P_{transport} + P_{unknown}\right) - \left(L_{HONO + hv} + L_{OH + HONO} + L_{deposition} + L_{transport}\right)$

(Sörgel et al., 2011; Wong et al., 2012; Spataro et al., 2013)

where $\frac{d[HONO]}{dt}$ is the instantaneous rate of HONO, P_{OH+NO} is HONO production rate from R1, P_{transport} is HONO transport processes including horizontal and vertical transports, P_{emission} is direct emissions of HONO from vehicles, P_{unknown} is the additional unknown daytime HONO source(s). In the sink terms, L_{HONO+hv} is HONO photolysis rate, L_{HONO+OH} is HONO loss rate by HONO+OH, L_{deposition} is HONO deposition rate, and L_{transport} is dilution effects through transport processes. When the photolysis frequency of HONO (J_{HONO}) is greater than 1.0×10⁻³ s⁻¹, the lifetime of HONO is less than 17 minutes. Then the influences of transport and deposition on HONO (P_{transport}, L_{deposition} and L_{transport}) are weak, can be omitted from the equation above. Therefore, the equation could be expressed:

 $P_{unknown} + P_{OH + NO} + P_{emission} \approx L_{HONO + hv} + L_{OH + HONO}$

To obtain reasonable $P_{unknown}$ values, we must ensure that all of $J(NO_2)$ values we used are higher than 1.0×10^{-3} s⁻¹. The data used in this study were in the daytime (from 8:00 to 15: 30), and the $J(NO_2)$ values near sunrise and sunset were

eliminated (Table R2).

(ii) Mean values of the data were used, and related references as well as the measurement techniques were added in Table R2.

9. Since the study of the impact of the unknown HONO sources is limited to China, why do not you limit the analysis and the parameterization to these regions. This way, the authors would be able to better parameterize this unknown source, given the knowledge of all controlling factors, e.g., surface areas, topography, radiation and

dynamics. Limiting the parameterization to the measurement location would also help elucidate and shed some light on the sources and nature of this unknown source.(i) Although our studied areas are focused on the coastal areas of China, very

useful is a general parameterization of the $P_{unknown}$ used in different regions of the world. For the correlation between the $P_{unknown}$ and $[NO_2]$ $J(NO_2)$ the linear regression slope was 17.37 in China (Fig. R6b), very close to the value of 19.60 around the globe (Fig. R6f), indicating that the $P_{unknown}$ parameterization can be used in different regions of the world, where NO_x emissions are high.

(ii) Your suggestions are very important. However, some controlling factors, e.g., measured surface areas and radiation are not available from the references (Wu et al., 2013, Villena et al., 2011, N. Zhang et al., 2012,) (Table R2), except for Su et al. (2011) and Spataro et al. (2013); Your suggestions will be considered in the future.

10. The authors need to first determine the correct parameterization for this region before investigating the impacts on HO_x , which would also require reasonable estimation of HO_x budgets.

According to your suggestions, we have shown the details about the

parameterization for China and other countries (see above).

Reply to Referee#2' comments:

Reviewer #2: General comments:

The manuscript tried to quantify the impact of the unknown HONO source on the concentrations and budgets of HONO, HO_x radicals and RO_2 radicals in the eastern coast of China by utilizing a model simulation and parameterized unknown HONO source strength. To fulfill this meaningful aim, reasonable parameterization of HONO source and uncertainty analysis of the results are important. However, the uncertainty analysis is not found in the manuscript and the parameterization is not fully justified. Hence, this manuscript is recommended to be published in Atmos. Chem. Phys. unless both parameterization justification and uncertainty analysis are well addressed.

Specific comments:

1. parameterization justification:

A. HONO emission is considered. In page 812, line 6-7, you stated that an emission ratio of 2.3% for HONO/NO₂ used in other study is relatively high. However, in page 814, line 15, you choose to use the same ratio of 0.023 in your model. Please explain.

As shown in the Introduction section, Li et al. (2010) used the HONO/NO₂ ratio

of 2.3%. The ratio of 2.3% is only applicable for diesel vehicles, so we used the

formula ([0.023 × f_{DV} + 0.008 × (1 - f_{DV})] × f_{TS}) to calculate HONO emissions.

Where f_{DV} denotes the NO_x emission ratio of diesel vehicles to total vehicles, and

f_{TS} is the NO_x emission ratio of the traffic source to all anthropogenic sources (Li

et al., 2011; An et al., 2013; Tang et al., 2014). The final ratio for HONO/NO_x as

HONO emissions was 1.18% in the BTH.

B. You noticed that HONO chemistry is different near the surface and over the surface within 1000 m. Is this difference explained by the NO_2 , $J(NO_2)$ and aerosol surface density? Why NO_2 heterogeneous reactions on ground surface is not considered in your model?

(i) The differences of HONO concentrations near the surface and over the surface within 1000 m can be calculated from the formula $P_{unknown}\approx19.60$ [NO₂] J(NO₂) when those of NO₂ mixing ratios and J(NO₂) are known. However, the specific chemistry for HONO formation near the surface and over the surface within 1000 m is still unknown because this formula is a statistical result. The specific chemistry for HONO formation near the surface and over the surface within 1000 m is beyond the aim of this paper, and will be investigated in

the future.

(ii) Whether NO₂ heterogeneous reactions on ground surface is a source of HONO is still argued. Several model studies (e.g., Li et al., 2010; Wong et al., 2013) have suggested that the NO₂ heterogeneous reactions on ground surface were a possible source of daytime HONO, however, field experiments showed a good correlation between concentrations of particulate matter and HONO (An et al., 2009), or between aerosol surface area and HONO concentrations (Ziemba et al., 2010), suggesting that aerosol surface is the dominant reaction substrate and that stationary sources (e.g., buildings and soils) are likely insignificant (Ziemba et al., 2010). So more field experiments are needed to validate this mechanism, which could be discussed in the future.

C. In page 811, photo-enhanced heterogeneous reactions and photolysis of surface-adsorbed HNO₃ are summarized as HONO sources. Why these two sources are excluded in your model? (i) For photolysis of surface-adsorbed HNO₃, only one laboratory study about this reaction was conducted (Zhou et al., 2002b, 2003). A chamber study demonstrated that the photolysis of nitrate which was recently postulated for the observed photolytic HONO formation on snow, ground, and glass surfaces, can be excluded in the chamber (Rohrer et al., 2005). So more laboratory and field studies are required to validate this mechanism, which could be considered in our future work.

(ii) For photo-enhanced heterogeneous reactions, our formula
 P_{unknown}≈19.60[NO₂] J(NO₂) has some implications.

D. The unknown source strength $(19.60*NO_2*S/V)$ is fitted using HONO measurement globally. Is it good for China eastern coast? We used the data from 13 field measurement campaigns around the globe. The reasons are below:

(i) We want to know whether the correlations of the $P_{unknown}$ with NO₂ mixing ratios and [NO₂] J(NO₂) are consistent around the globe.

(ii) The measurement campaigns of HONO are still limited around the world,

especially in China, but a statistical result needs large samples.

(iii) Fig. R6 shows the correlations of the $P_{unknown}$ with $[NO_2]$ and $[NO_2] J(NO_2)$ in the coastal areas of China, the other countries, and the globe, respectively. Compared with that around the globe (Fig. R6ef), the correlation coefficient (R^2) between the $P_{unknown}$ and $[NO_2]$ was decreased to 0.38 from 0.75, while the correlation coefficient between the $P_{unknown}$ and $[NO_2] J(NO_2)$ was decreased to 0.48 from 0.80 (Fig. R6abef). However, the linear regression slope of the latter was 17.37 (Fig. R6b), very close to the 19.60 based on the data around the globe (Fig. R6f).

2. uncertainty analysis

A. How the uncertainty in parameterization on HONO source impact the model simulation? What kind of improvement have you made compared to previous model work?

(i) The P_{unknown} in this study was calculated by the daytime HONO budget analysis (Photo Stationary State (PSS) approach) below.

 $\frac{d[HONO]}{dt} = (P_{OH + NO} + P_{emission} + P_{transport} + P_{unknown}) - (L_{HONO + hv} + L_{OH + HONO} + L_{deposition} + L_{transport})$ (S örgel et al., 2011; Wong et al., 2012; Spataro et al., 2013)

where $\frac{d[HONO]}{dt}$ is the instantaneous rate of HONO, P_{OH+NO} is HONO production rate from R1, P_{transport} is HONO transport processes including horizontal and vertical transports, P_{emission} is direct emissions of HONO from vehicles, P_{unknown} is the additional unknown daytime HONO source(s). In the sink terms, L_{HONO+hv} is HONO photolysis rate, L_{HONO+OH} is HONO loss rate by HONO+OH, L_{deposition} is HONO deposition rate, and L_{transport} is dilution effects through transport processes. When the photolysis frequency of HONO (J_{HONO}) is greater than 1.0×10^{-3} s⁻¹, the lifetime of HONO is less than 17 minutes. Then the influences of transport and deposition on HONO ($P_{transport}$, $L_{deposition}$ and $L_{transport}$) are weak, can be omitted from the equation above. Therefore, the equation could be expressed:

$P_{unknown} + P_{OH + NO} + P_{emission} \approx L_{HONO + hv} + L_{OH + HONO}$

The uncertainties in the observed data were added in the Table R2. In the study of Su et al. (2008, 2011), the uncertainty in the $P_{unknown}$ values calculated by the PSS is 10-25%. Sörgel et al. (2011) suggested the uncertainty in the PSS mainly originated from OH measurements with an accuracy of ±18 %. With the same method (PSS), Wong et al. (2012) also proposed an uncertainty of 10-20% in the $P_{unknown}$ values. To assess the impacts of the uncertainty in the $P_{unknown}$ parameterization on production and loss rates of HONO, two sensitivity cases (Case R_{inc} and Case R_{dec}) were performed. Case R_{inc} includes case R_p with an increase of 25% (the maximum uncertainty range according to the previous studies above) in the slope factor (19.60); Case R_{dec} is the same as case R_p with a decrease of 25% in the slope factor (19.60). The sensitivity results show that a 25% increase (25% decrease) in the slope factor (19.60) led to a 9.19-18.62% increase (12.69-14.32% decrease) in the maximum HONO production rate and a 0-17.64% increase (8.40-14.07% decrease) in the maximum HONO loss rate (Fig.R7) (section 3.2 in the revised version).

(ii) Unexpected high HONO concentrations have been observed in recent years.
However, most current air quality models have underestimated HONO observations, particularly in the daytime (Czader et al., 2012; Gon çalves et al., 2012; Li et al., 2011). Although some of modeling studies have improved HONO

daytime simulations by incorporating the new HONO formation mechanisms, e.g., HNO₃ surface photolysis (Sarwar et al., 2008), the NO₂ heterogeneous reaction on aerosols and ground surface (Li et al., 2010; Wong et al., 2013) into air quality models, these HONO daytime formation mechanisms are still under discussion (see the responses to question 1B and 1C of Reviewer #2). Different from these modeling studies above. we derived a formula $(P_{unknown} \approx 19.60 [NO_2] \cdot J(NO_2))$ based on the observation data from 13 different field campaigns to quantify the unknown daytime HONO source, and then coupled the Punknown into the WRF-Chem model based on our previous studies (Li et al., 2011; An et al., 2013; Tang et al., 2014). We found that the Punknown significantly improved the daytime HONO simulations. We also assessed the impacts of the P_{unknown} on the concentrations and production and loss rates of HONO, OH, HO₂, and organic peroxy radicals (RO₂).

For modeling study, this is a new and simple method to help quantify the daytime HONO source if the detailed formation mechanism of HONO in the daytime is unknown. However, needed are more field and laboratory studies for the detailed formation mechanism of HONO in the future .

B. How the model itself and these inputs affect the model output?In general, the main influencing factors for model output are meteorological fields and the emissions inventory.

(i) Comparison of simulated and observed meteorological factors has been made in our previous study (Wang et al., 2014). The RMSE was 2.5°C for air temperature (TA), 16.3% for relative humidity (RH), 2.5 m s⁻¹ for wind speed (WS), and 99.3° for wind direction (WD), whereas the IOA was 0.90 for TA, 0.78 for RH, 0.56 for WS, and 0.65 for WD (Table R3). These statistical metrics indicated that the simulations of TA and RH were much better than those of WS and WD. The results were very similar to the studies of Wang et al. (2010) and Li et al. (2012) using the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5), and those of H. Zhang et al. (2012) using the WRF model (Table R3). The definitions of root-mean-square error (RMSE), mean bias (MB), normalized mean bias (NMB), correlation coefficient (RC), and index of agreement (IOA) are available in Simon et al. (2012).

(ii) As for the emissions inventory, monthly anthropogenic emissions of SO_2 , NO_x , CO, VOCs, PM_{10} , $PM_{2.5}$, BC, and OC in 2006/2007 were obtained from Zhang et al. (2009) and those of NH_3 from Streets et al. (2003) and monthly emissions of other species were derived from Zhang et al. (2009). The anthropogenic and biogenic emissions were the same as those used by An et al. (2011, 2013), Li et al. (2011, 2014), Tang et al. (2014), and Wang et al. (2014).

(iii) The uncertainty of anthropogenic VOCs (AVOCs) emissions in China is large (Wang et al., 2014). Wang et al. (2014) demonstrated that AVOCs emissions in 2006 from Zhang et al. (2009) were underestimated by ~68% in suburban areas and by more than 68% in urban areas. The substantial underestimation of AVOCs emissions is one of the main reasons for low simulations of HO_2 and low contributions of HO_2 +NO in this study. This will be improved in our future work.

C. The model-observation difference is quite considerable in Fig. 4-6. How to make sure your results is a trustful one? (i) The model performance for O_3 and NO_x in Beijing was good and comparable with other applications of the CMAQ model by Li et al. (2012). However, the model performance in Guangzhou of the PRD region was not as good as that in Beijing. The model-observation difference in Guangzhou is mainly caused by the underestimation of the emissions inventory. If the emissions are improved, the WRF-Chem model will well simulate the mixing ratios of considered chemical species. Take Beijing as an example, we added the comparison of simulated and observed O_3 at six sites in the BTH (Fig. R8), with an RC of 0.84, NMB of -4.0%, NME of 35.0%, and IOA of 0.91, better than the results of Li et al. (2012) and Wang et al. (2010).

(ii) Although there are some differences in HONO simulations, we have significantly improved the HONO simulations in both daytime and nighttime.

(iii) The model performance for OH in Guangzhou was good; whereas, that for HO₂ was underestimated. This underestimation was mainly associated with the underestimation of the AVOCs emissions (Wang et al., 2014).

3. In page 809, line 15-17: other OH primary sources, such as HCHO photolysis, is widely accepted. Add them!

According to the previous studies (Alicke et al., 2003; Ren et al., 2003; Lu et al., 2012), the HCHO photolysis is not the direct source of OH. The reaction product of HCHO photolysis is HO_2 , which contributes to the OH formation via the reaction of HO_2 with NO. The photochemistry of HCHO is below (Meller and Moortgart, 2000),

HCHO+hv \rightarrow H+HCO (1) HCHO+hv \rightarrow H₂+CO (2) H+O₂ \rightarrow HO₂ (3) HCO+O₂ \rightarrow HO₂+CO (4) HO₂+NO \rightarrow OH+NO₂ (5)

So we have added "the HO₂ to OH conversion process (HO₂+NO)"in the Introduction section: "<u>OH is formed primarily through the photolysis of O₃, nitrous</u> acid (HONO), hydrogen peroxide (H₂O₂), the reactions of O₃ with alkenes, and the HO₂ to OH conversion process (HO₂+NO) (Platt et al., 1980; Crutzen and Zimmermann, 1991; Atkinson and Aschmann, 1993; Fried et al., 1997; Paulson et al.,

<u>1997).</u>"

4. In page 809, line 27: if daytime HONO could reach ppb level, it is within the detect limit of most HONO measurement instruments. Do you mean specific instrument here?

According to your suggestions, we have revised them in the Introduction section:

"After sunrise, HONO mixing ratios are usually in low concentrations due to the

strong photolysis of HONO."

5. In page 813, line 10-14: ambient HONO is correlated with NO_2 as a result of secondary HONO formation instead of HONO direct emission since HONO photolysis lifetime is only about 15 min in the noontime. So why the correlation is the reason for that HONO/NO_x ratio is used as a HONO emission factor?

According to your suggestions, we have revised them in the Introduction section:

"This is the reason why the recent CalNex 2010 (California Research at the Nexus of

<u>Air Quality and Climate Change) study found a very strong positive correlation (R^2 =</u>

0.985) between HONO flux and the product of NO₂ concentration and solar radiation

at Bakersfield site (Ren et al., 2011)."

6. In page 814, line 4-7: an annular denuder and an absorption photometer were used for HONO measurement. How are their results comparing to, such as DOAS? How are they compared to each other?

As described in Section 2.1: "<u>HONO observations were conducted using two</u> annular denuders at the campus of Peking University (PKU) (39°59'N, 116°18'E) in Beijing on 17–20 August 2007 (Spataro et al., 2013) and a long path absorption photometer at the Backgarden (BG) supersite (23°30'N, 113°10'E), about 60 km northwest of Guangzhou on 3–31 July 2006 (X. Li et al., 2012)."

(i) HONO can be measured by various techniques, e.g., spectroscopic techniques and wet chemical techniques Differential optical absorption spectroscopy (DOAS) detects HONO by its specific UV absorption ranges with detection limits in the order of 100 ppt (Platt et al., 1980). Wet chemical techniques, which operate HONO sampling on humid/aqueous surfaces, include rotated wet annular denuders and the long path absorption photometer (LOPAP). The techniques have detection limits in the order of few ppt, but suffer from chemical interferences caused by, e.g., NO₂ and phenol reaction or by NO₂ and SO₂ (Gutzwiller et al., 2002; Spindler et al., 2003). However, since the LOPAP instrument collects HONO even at low pH, these chemical interferences are minimized (Kleffmann et al., 2002, 2006). That means the HONO measured by the wet chemical techniques (e.g., annular denuder and LOPAP) could be compared to that by the DOAS.

(ii) Both being the wet chemical techniques, the annular denuder and the LOPAP could be comparable.

the net OH production rate by HONO photolysis ((1-2)) for case R_p in (a) Beijing, (b) Shanghai, and (c) Guangzhou in August 2007.

Fig. R2 Averaged reaction rates of HONO+hv \rightarrow OH+NO (①), and OH+NO \rightarrow HONO (②), and the net OH production rate by HONO photolysis (①-②) for case R in (a) Beijing, (b) Shanghai, and (c) Guangzhou in August 2007.

Fig. R3. Averaged production [P(OH)] and loss [L(OH)] rates of OH for case R_p in (a, b) Beijing, (c, d) Shanghai, and (e, f) Guangzhou in August 2007. (HONO+hv)_{net} means the net OH production rate from HONO photolysis (subtracting OH + NO = HONO).

Fig. R4. Comparison of averaged conversion rates of HO_2 to OH between case R_p and case S (increasing the anthropogenic VOCs emissions by 68%) in (a) Beijing, (b) Shanghai, and (c) Guangzhou in August 2007.

Fig. R5. Comparison of simulated and observed hourly-mean mixing ratios of HO₂ (molecules cm⁻³) at the Backgarden site in Guangzhou in July 2006 (Lu et al., 2012). (Case S: a 68% increase in the anthropogenic emissions of VOCs for Case R_p).

Fig. R6. Correlations of the unknown daytime HONO source $(P_{unknown})$ (ppb h⁻¹) with NO₂ mixing ratios (ppb) and [NO₂] $J(NO_2)$ (ppb s⁻¹) in (a), (b) the coastal regions of China, (c), (d) the other countries, and (e), (f) the globe, respectively, based on the field experiment data shown in Fig. 1 in the revised version.

1

Fig. R7. Production [P(HONO)] and loss [L(HONO)] rates of HONO for cases R (dashed lines),
R_p(solid lines) and sensitivity ranges (based on R_{inc} and R_{dec}) in (a), (b) Beijing, (c), (d) Shanghai,
and (e), (f) Guangzhou in August 2007. Case R_{inc} includes case R_p with an increase of 25% (the
maximum uncertainty range according to the previous studies above) in the slope factor (19.60);
Case R_{dec} is the same as case R_p with a decrease of 25% in the slope factor (19.60).

Fig. R8. Comparison of simulated and observed hourly-mean mixing ratios of O₃ (ppb) at six sites

in the Beijing-Tianjin-Hebei region (BTH) in August 14-22 of 2007.

20

	Case	R	Case R	wop	Case R _p		
Reaction	Rate (ppb h^{-1})	Contribution (%)	Rate (ppb h^{-1})	Contribution (%)	Rate (ppb h^{-1})	Contribution (%)	
			OH production				
HO ₂ +NO	2.778/0.732/1.748	81.73/67.09/71.54	3.242/0.760/1.871	83.74/68.00/72.02	7.101/1.402/2.553	73.34/61.95/67.55	
*(HONO+hv) _{net}	//	//	//0.017	//0.66	1.855/0.497/0.489	19.16/21.98/12.93	
O^1D+H_2O	0.465/0.307/0.617	13.68/28.17/25.27	0.479/0.306/0.630	12.36/27.38/24.24	0.568/0.312/0.651	5.86/13.80/17.23	
O ₃ +OLET/OLEI	0.101/0.024/0.027	2.98/2.16/1.11	0.095/0.023/0.027	2.45/2.08/1.03	0.080/0.021/0.025	0.83/0.91/0.65	
$(H_2O_2+hv)_{net}$	0.035/0.023/0.029	1.02/2.07/1.17	0.035/0.023/0.030	0.91/2.03/1.16	0.037/0.022/0.032	0.38/0.97/0.19	
HO_2+O_3	0.009/0.001/0.014	0.28/0.07/0.59	0.010/0.001/0.015	0.26/0.06/0.58	0.026/0.001/0.019	0.27/0.05/0.51	
*(HNO ₃ +hv) _{net}	0.005/0.001/0.002	0.15/0.06/0.10	0.005/0.001/0.002	0.13/0.06/0.09	0.007/0.001/0.003	0.07/0.04/0.07	
ROOH+hv	0.003/0.004/0.005	0.09/0.36/0.19	0.003/0.004/0.005	0.09/0.38/0.19	0.007/0.007/0.007	0.07/0.29/0.19	
O ₃ +ETH	0.002/<0.001/<0.001	0.05/0.02/0.01	0.002/<0.001/<0.001	0.04/0.02/0.01	0.001/<0.001/<0.001	0.02/0.01/0.01	
HO ₂ +NO ₃	<0.001/<0.001/<0.001	<0.01/<0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	
O ₃ +ISOP	<0.001/<0.001/<0.001	0.01/<0.01/<0.01	<0.001/<0.001/<0.001	0.01 / < 0.01 / < 0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	
Total	3.399/1.091/2.443	100/100/100	3.873/1.118/2.598	100/100/100	9.683/2.263/3.779	100/100/100	
			OH loss				
OH+NO ₂	1.116/0.474/0.770	39.31/46.63/38.33	1.225/0.501/0.844	38.11/45.86/38.86	3.146/1.045/1.424	38.08/44.29/40.76	
OH+CO	0.785/0.203/0.576	27.65/19.97/28.67	0.932/0.227/0.637	29.00/20.78/29.33	2.573/0.506/1.001	31.14/21.45/28.65	
OH+OLET/OLEI	0.192/0.054/0.059	6.76/5.31/2.94	0.264/0.065/0.077	8.21/5.95/3.55	0.537/0.206/0.095	6.50/8.73/2.72	
OH+HCHO	0.150/0.050/0.146	5.28/4.92/7.27	0.166/0.053/0.156	5.16/4.85/7.18	0.544/0.096/0.242	6.59/4.07/6.93	
OH+CH ₄	0.103/0.057/0.135	3.63/5.61/6.72	0.109/0.059/0.142	3.39/5.40/6.54	0.260/0.115/0.223	3.15/4.87/6.38	
OH+ALD2/MGLY/AN OE	0.092/0.018/0.045	3.24/1.77/2.24	0.109/0.020/0.049	3.39/1.83/2.26	0.323/0.047/0.081	3.91/1.99/2.32	
$OH+SO_2$	0.054/0.030/0.035	1.90/2.95/1.74	0.064/0.034/0.041	1.99/3.11/1.89	0.172/0.116/0.072	2.08/4.92/2.06	

Table R1. Daytime (06:00–18:00 LST) average OH budgets in Beijing/Shanghai/Guangzhou in August 2007.

OH+XYL	0.052/0.022/0.023	1.83/2.16/1.14	0.066/0.026/0.029	2.05/2.38/1.34	0.141/0.078/0.045	1.71/3.31/1.29
OH+H ₂	0.038/0.021/0.050	1.34/2.07/2.49	0.040/0.022/0.052	1.24/2.01/2.39	0.095/0.027/0.075	1.15/1.14/2.15
OH+TOL	0.027/0.007/0.011	0.95/0.69/0.55	0.034/0.008/0.014	1.06/0.73/0.64	0.086/0.025/0.024	1.04/1.06/0.69
OH+HONO	0.003/0.003/0.005	0.11/0.30/0.25	0.006/0.004/0.007	0.19/0.37/0.32	0.069/0.023/0.032	0.84/0.97/0.92
OH+HNO _x	0.005/0.001/0.005	0.18/0.10/0.25	0.005/0.001/0.005	0.16/0.09/0.23	0.015/0.002/0.008	0.18/0.08/0.23
OH+O ₃	0.028/0.006/0.035	0.99/0.59/1.70	0.029/0.006/0.036	0.90/0.55/1.66	0.072/0.005/0.046	0.87/0.21/1.32
OH+H ₂ O ₂	0.015/0.008/0.027	0.53/0.79/1.34	0.016/0.008/0.029	0.50/0.73/1.34	0.040/0.010/0.043	0.48/0.42/1.23
OH+ETH/OPEN	0.007/0.002/0.004	0.25/0.20/0.20	0.008/0.002/0.005	0.25/0.18/0.23	0.036/0.009/0.011	0.44/0.38/0.31
OH+CH ₃ OOH/ROOH	0.010/0.011/0.014	0.35/1.08/0.70	0.011/0.012/0.014	0.34/1.10/0.64	0.022/0.020/0.022	0.27/0.85/0.63
OH+ISOP	0.019/0.004/0.002	0.67/0.39/0.10	0.020/0.004/0.003	0.62/0.37/0.14	0.017/0.007/0.003	0.21/0.30/0.09
OH+PAR	0.005/0.002/0.004	0.18/0.20/0.20	0.007/0.003/0.005	0.22/0.27/0.23	0.015/0.005/0.007	0.18/0.21/0.20
OH+ONIT/ISOPRD	0.028/0.005/0.016	0.99/0.49/0.80	0.030/0.005/0.018	0.93/0.46/0.83	0.077/0.013/0.025	0.93/0.55/0.72
$OH+C_2H_6$	0.002/0.001/0.002	0.07/0.10/0.10	0.003/0.001/0.002	0.09/0.09/0.09	0.008/0.002/0.004	0.10/0.08/0.11
OH+CH3OH/ANOL/C RES	0.002/0.001/0.002	0.07/0.10/0.10	0.002/0.001/0.002	0.06/0.09/0.09	0.007/0.002/0.003	0.08/0.08/0.09
OH+HO ₂	0.001/<0.001/0.004	0.04/0.05/0.20	0.002/<0.001/0.005	0.06/0.05/0.23	0.006/<0.001/0.008	0.07/0.02/0.23
OH+NO	0.105/0.036/0.039	3.70/3.54/1.94	0.066/0.030/	2.05/2.75/	//	//
Total	2.839/1.017/2.009	100/100/100	3.214/1.093/2.172	100/100/100	8.261/2.360/3.495	100/100/100

OLET: internal olefin carbons (C=C); OLEI: terminal olefin carbons (C=C); ROOH: higher organic peroxide; ETH: ethene; ISOP: isoprene; ALD2: acetaldehyde;

MGLY: methylglyoxal; ANOE: acetone; XYL: xylene; TOL: toluene; HNO_x: HNO₃ + HNO₄; OPEN: aromatic fragments; PAR: paraffin carbon –C–; ONIT: organic

nitrate; ISOPRD: lumped intermediate species; ANOL: ethanol; CRES: cresol and higher molar weight phenols.

Site	Date	Time	P _{unknown} (ppb h ⁻¹)	[NO ₂] (ppb)	$J(NO_2)$ (×10 ⁻³ s ⁻¹)	Measurement techniques /Uncertainties	Reference	
		09:30	2.36	29.65	2.31	HONO: WD/IC;		
		10:30	3.57	36.46	4.09	NO ₂ : estimated from NO and NO _y	Su et al. (2008) Su et al. (2011)	
Xinken	2004.10.23-	11:30	4.39	39.51	5.46	(measured by the NO-O ₃		
(22.6 N,	2004.10.30	12:30	4.90	33.33	5.83	chemiluminescence detector (Kondo et		
113.6 E)		13:30	3.96	33.54	5.93	al., 1997))/22%;		
		14:30	2.93	32.43	4.92	J(NO ₂): TUV/18%;		
		15:30	2.46	26.94	3.85	P _{unknown} : 10~30%.		
		8:00	2.59	22.66	6.29			
	2007 09 17	10:00	1.66	22.67	8.16			
	2007.08.17	12:00	1.00	24.09	8.35			
		14:00	3.12	19.39	6.82	HONO: Annular denuders;		
Beijing		8:00	1.39	27.96	6.29	NO ₂ : means of commercial ECOTECH		
(39.99 N,	2007.09.19	10:00	3.52	21.37	8.16	Ltd. (Australia analyzer)/ 1%;	Spataro et al. (2013)	
116.30 E)	2007.08.18	12:00	4.12	16.66	8.35	J(NO ₂): calculated by J(HONO);		
		14:00	2.06	12.90	6.82			
		8:00	4.38	29.50	6.29			
	2007.08.19	10:00	5.91	37.53	8.16			
		12:00	2.26	18.67	8.35			

Table R2. The calculated unknown daytime HONO source (P_{unknown}), NO₂ mixing ratios and photolysis frequency of NO₂ [J(NO₂)] from field experiments in Figure 1.

		14:00	0.73	12.54	6.82			
		8:00	5.51	36.69	6.29			
	2007 08 20	10:00	6.57	40.94	8.16			
	2007.08.20	12:00	2.59	18.78	8.35			
		14:00	4.18	18.79	6.82			
		10:00	2.87	27.62	5.45			
T CI		11:00	3.82	32.62	6.59	HONO: LOPAP;		
Tung Chung	2011.08.25-	12:00	5.34	31.31	7.41	NO ₂ : TEI;	W. (2012)	
(22.30 N,	2011.08.31	13:00	4.90	27.86	7.92	J(NO ₂): Optical actinometer.	wu et al. (2013)	
113.95 E)		14:00	4.80	24.40	7.17			
		15:00	4.12	23.33	6.02			
		10:30	0.03	-	4.73			
		11:00	0.03	-	6.03	HONO: LOPAP;		
		11:30	0.06	4.23	8.16	NO ₂ : estimated from NO and NO _y		
Alaska	2000 02 12	12:00	0.09	-	8.81	(measured by the NO-O ₃		
(71.32 N,	2009.03.13-	12:30	0.05	-	9.46	chemiluminescence detector;	Villena et al. (2011)	
156.65 W)	2009.04.14	13:00	0.08	-	8.69	J(NO ₂): estimated as a function of solar		
		13:30	0.07	17.31	7.63	zenith angle using the TUV radiative		
		14:00	0.05	12.24	6.33	transfer model.		
		14:30	0.03	8.85	4.79			
Michigan	2008.07.17-		0.25	1.00	0.40	HONO: LOPAP;		
(45.50 N,	2008.08.07	noon	0.35	1.00	8.48	NO ₂ : Custom-built analyzer using the	N. Zhang et al. (2012)	

84.70 W)						chemiluminescence technique;		
						J(NO ₂): estimated as a function of UV		
						measured by the TUV radiative transfer		
						model/10%.		
Michigan						HONO: Two-channel measurement		
(45.50 °N,	2000.07.27	noon	1.60	0.13	8.48	system (Zhou et al., 1999);	Zhou et al. (2002a)	
84.70 W)						NO ₂ : TEI Model.		
		10:00	0.11	2.15	5.39			
с ·	2000 07 17	11:00	0.10	1.38	6.26	HONO: LOPAP/12%;		
Spain	2008.07.17-	12:00	0.08	0.95	6.76	NO ₂ : Droplet Measurement Technologies	0 1 (1 (2011)	
(37.10 N,	2008.08.07	13:00	0.09	0.84	6.68	(Hosaynan-Beygi et al., 2011)/8%;	5 uger et al. (2011)	
6.74 W)	(cloud-free)	14:00	0.08	0.79	6.03	J(NO ₂): Filter radiometers/5%;		
		15:00	0.05	0.66	4.62	P _{unknown} : 18%.		
New York	1008 06 26					HONO: Two-channel measurement		
(42.09 N,	1998.00.20-	noon	0.22	1.00	8.48	system (Zhou et al., 1999);	Zhou et al. (2002b)	
77.21 W)	1998.07.14					NO ₂ : TEI Model.		
Santiago	2005 03 08-					HONO: LOPAP;	Elshorbany et al	
(33.45 °S,	2005.03.08-	noon	1.70	10.00	8.00	NO ₂ : DOAS-OPSIS optical system;	(2000)	
70.67 W)	2005.05.20					$J(NO_2)$: Filter radiometers.	(2009)	
Houston		10:00	0.40	7.50	7.29	HONO: LP-DOAS/5%;		
(29.76 °N,	2009.04.21	11:00	0.59	6.02	7.77	NO ₂ : LP-DOAS /3%;	Wong et al. (2012)	
95.37 W)		12:00	0.74	5.45	8.03	J(NO ₂): SAFS;		

		13:00	0.66	4.89	8.03	$P_{unknown}$: 10~20%.	
		14:00	0.51	5.45	7.76		
		15:00	0.57	5.91	7.18		
		10:00	0.05	6.04	5.84		
Colorado		11:00	0.08	5.49	6.39	HONO: NI-PT-CIMS;	
	2011.02.19-	12:00	0.46	2.39	6.64	NO2: a cavity ring-down spectrometer	VandenBoer et al.
(40.03 N, 105.00 W)	2011.02.25	13:00	0.37	1.55	6.39	(Wagner et al., 2011)/5%;	(2013)
105.00 W)		14:00	0.28	1.27	6.02	J(NO ₂): Filter radiometers.	
		15:00	0.22	1.47	5.22		
						HONO: LOPAP;	
						NO ₂ : Chemiluminescence analyzer	
J ülich						equipped with a photolytic converter for	
(50.92 N,	2003.07.29	noon	0.50	0.35	6.63	NO ₂ to NO conversion;	Kleffmann et al. (2005)
6.36 E)						J(NO ₂): derived from actinic flux spectra	
						measured by a scanning	
						spectroradiometer.	
		10:00	0.42	3.91	6.31	HONO: Wet chemical derivatization	
Dorig		11:00	0.38	3.42	7.76	(SA/NED), HPLC detection	
(40.72 %)	2009.07.09-	12:00	0.52	3.14	8.08	(NitroMAC)/12%;	Misboud at al. (2014)
(40.72 N, 2.21 G)	2009.07.27	13:00	0.67	3.00	8.24	NO ₂ : Luminol chemiluminescence/5%;	Michoud et al. (2014)
2.21 E)		14;00	0.38	3.00	7.29	J(NO ₂): filter radiometer/ 20–25%.	
		15:00	0.35	3.11	7.88		

	10:00	0.08	10.49	1.16
	11:00	0.11	10.49	1.80
2010.01.15-	12:00	0.18	9.44	2.60
2010.02.15	13:00	0.21	8.76	2.20
	14;00	0.20	9.12	2.34
	15:00	0.22	9.07	1.99

WD/IC: Wet Denuder sampling/Ion Chromatograph analysis system; TUV: Ultraviolet-Visible Model; TEI: Thermo Environmental Instruments; LOPAP: Long path absorption photometer; LP-DOAS: Long path Differential Optical Absorption Spectroscopy instrument; SAFS: scanning actinic flux spectroradiometer; NI-PT-CIMS: Negative-Ion Proton-Transfer Mass Spectrometer; SA/NED: an aqueous sulphanilamide/ N-(1-naphthyl)-ethylenediamine solution; NitroMAC: an instrument developed at the laboratory (Afif et al., 2014); HPLC: High Performance Liquid Chromatography.

Note that: Since $J(NO_2)$ data of Wu et al. (2012), N. Zhang et al. (2012), Zhou et al. (2002b), VandenBoer et al. (2013), Kleffmann et al. (2005) were not measured, they were calculated from the J(HONO) measurement data (J(NO₂) = 5.3J(HONO)) (Kraus and Hofzumahaus, 1998); J(NO₂) data of Zhou et al. (2002ab) were derived from the campaign of N. Zhang et al. (2012) (The experiments were conducted in summer and the studied sites were close to each other). J(NO2) data of Spataro et al. (2013) were also calculated from the J(HONO) at noon (J(NO₂) = 5.3J(HONO)), then we computed the hourly J(NO₂) (8:00~14:00 LST) through multiplying by the cosine of solar zenith angle. The NO₂ mixing ratios of N. Zhang et al. (2012) and Zhou et al. (2002b) were not shown and derived from NO_x mixing ratios. Similarly, NO₂ mixing ratios of Kleffmann et al. (2005) were inferred from NO mixing ratios.

Tempera	ture(℃)		Relative	Humidit	y(%)	Wind Sp	eed(m/s)		Wind direction(deg)		leg)	Reference
RMSE	MB	IOA	RMSE	MB	IOA	RMSE	MB	IOA	RMSE	MB	IOA	-
2.54	0.23	0.90	16.30	-5.46	0.78	2.46	1.61	0.56	99.25	2.59	0.65	This work
	-0.88	0.90		-1.30	0.78	2.06	0.89	0.65		2.47		(Wang et al., 2010b)
	0.53	0.88		-1.06	0.86	1.47	0.64	0.62		2.59		(Li et al., 2012)
3.1	0.8		17.4	-5.7		2.2	1.1		60.9	8.2		(H. Zhang et al., 2012)

Table R3. Performance metrics of WRF-Chem meteorology simulations in August 2007 (Wang et al., 2014)

References

- Afif, C., Jambert, C., Colomb, A., Eyglunent, G., Borbon, A., Da de, V., Doussin, J.F., and Perros, P. E.: NitroMAC: an instrument for the measurement of HONO. Intercomparison with LOPAP, Water Air Soil Poll., in preparation, 2014.
- An, J., Zhang, W., Qu Y.: Impacts of a strong cold front on concentrations of HONO, HCHO, O₃, and NO₂ in the heavy traffic urban area of Beijing, Atmospheric Environment, 43, 3454–3459, 2009.
- An, J., Li, Y., Wang, F., and Xie, P.: Impacts of photoexcited NO₂ chemistry and heterogeneous reactions on concentrations of O₃ and NO_y in Beijing, Tianjin and Hebei province of China, Air Quality-Models and Applications, Prof. Dragana Popovic (Ed.), InTech, ISBN: 978-953-307-307-1, doi: 10.5772/16858, 2011.
- An, J., Li, Y., Chen, Y., Li, J., Qu, Y., Tang, Y.: Enhancements of major aerosol components due to additional HONO sources in the North China Plain and implications for visibility and haze, Advances in Atmospheric Science, 30, 57-66, 2013.
- Alicke, B., Geyer, A., Hofzumahaus, A., Holland, F., Konrad, S., Pätz, H. W., Schäfer, J., Stutz, J., Volz-Thomas, A., Platt, U.: OH formation by HONO photolysis during the BERLIOZ experiment, Journal of Geophysical Research, 108, D4, 8247, doi:10.1029/2001JD000579, 2003.
- Czader, B. H., Rappenglück, B., Percell, P., Byun, D. W., Ngan, F., and Kim, S.: Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006, Atmos. Chem. Phys., 12, 6939–6951, doi:10.5194/acp-12-6939-2012, 2012.
- Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 9(6), 2257-2273, 2009.
- Gonçalves, M., Dabdub, D., Chang, W. L., Jorba, O., and Baldasano, J. M.: Impact of HONO sources on the performance of mesoscale air quality models, Atmos. Environ., 54, 168–176, 2012.
- Gutzwiller L, Arens F, Baltensperger U, Gäggeler HW, Ammann M. Significance of semivolatile diesel exhaust organics for secondary HONO formation, Environ Sci Technol, 36, 677-682, 2002.

- Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.C.: Amplified trace gas removal in the troposphere, Science, 324, 1702-1704, 2009.
- Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., and Lelieveld, J.: Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state, Atmos. Chem. Phys., 11, 8497–8513, doi:10.5194/acp-11-8497-2011, 2011.
- Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J., Wiesen, P.: A new instrument for the detection of nitrous acid (HONO), Environ Sci Pollut Res, 4(Special Issue 4), 48–54. 2002.
- Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L.,Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: a major source of OH radicals in a forest, J. Geophys. Res. Lett., 32(5), doi: 10.1029/2005GL022524, 2005.
- Kleffmann, J., Lorzer, J. C., Wiesen, P., Kern, C., Trick, S., Volkamer, R.: Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO), Atmos Environ, 40, 3640-3652, 2006.
- Kondo, Y., S. Kawakami, M. Koike, D. Fahey, H. Nakajima, Y. Zhao, N. Toriyama, M. Kanada, G. Sachse, and G. Gregory.: The performance of an aircraft instrument for the measurement of NO_y. J. Geophys. Res., 102, 28,663–28,671, 1997.
- Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., Molina, L.T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys. 10, 6551-6567, 2010.
- Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Fu, J. S., Streets, D. G., Jang, C. J.: Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system, Atmospheric Chemistry and Physics, 12, 10971-10987, 2012.
- Li, Y., An, J., Min, M., Zhang, W., Wang, F., Xie, P.: Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China, Atmospheric Environment, 45(27), 4735-4744, 2011.
- Li, Y., An, J., Gultepe I.: Effects of additional HONO sources on visibility over the North China Plain, Adv. Atmos. Sci., 31(5), 1221–1232, doi: 10.1007/s00376-014-4019-1, 2014.

- Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Haseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmospheric Chemistry and Physics, 12(3), 1541-1569, 2012.
- Meller, R. and Moortgat, G. K.: Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 k in the wavelength range 225–375 nm, J. Geophys. Res.-Atmos., 105, 7089–7101, 2000.
- Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C., Haeffelin, M., Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns. Atmospheric Chemistry and Physics, 14(6), 2805-2822, 2014.
- Platt, U., Perner, D., Harris, G. W., Winer, A. M., Pitts, J. N.: Observations of nitrous acid in an urban atmosphere by differential optical absorption, Nature 285, 312-314 (29 May 1980); doi: 10.1038/285312a0, 1980.
- Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brunea, W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., Gao, H.: OH and HO₂ Chemistry in the urban atmosphere of New York City, Atmospheric Environment, 37(26), 3639-3651, 2003.
- Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F. J., Wahner, A., Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmospheric Chemistry and Physics, 5(8), 2189-2201, 2005.
- Sörgel, M., Regelin, E., Bozem, H., Diesch, J. M., Drewnick, F., Fischer, H., Harder, H., Held, A., Hosaynali-Beygi, Z., Martinez, M., Zetzsch, C.: Quantification of the unknown HONO daytime source and its relation to NO₂, Atmospheric Chemistry and Physics, 11(20), 10433-10447, 2011.
- Sarwar, G., Roselle, S. J., Mathur, R., Appel, W., Dennis, R. L., Vogel, B.: A comparison of CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study, Atmospheric Environment, 42(23), 5760-5770, 2008.

Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., Hu, M.: Occurrence of

atmospheric nitrous acid in the urban area of Beijing (China), Science of the Total Environment, 447, 210-224, 2013.

- Simon, H., Baker, K. R., Phillips, S.: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012, Atmos. Environ., 61, 124-139, 2012.
- Spindler, G., Hesper, J., Brüggemann, E., Dubois, R., Müller, Th., Herrmann, H.: Wet annular denuder measurements of nitrous acid: laboratory study of the artifact reaction of NO2 with S(IV) in aqueous solutions and comparison with field measurements, Atmos Environ, 37, 2643-2662, 2003.
- Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Journal of Geophysical Research, Atmospheres 108, 8809, 2003.
- Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., Andreae, M. O., Cheng, P., Zhang, Y., Pöschl, U.: Soil nitrite as a source of atmospheric HONO and OH radicals, Science, 333(6049), 1616-1618, 2011.
- Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang, Y. H., Wiedensohler, A.: Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China, Journal of Geophysical Research: Atmospheres (1984–2012), 113(D14), 2008.
- Tang, Y., An, J., Li, Y., Wang, F.: Uncertainty in the uptake coefficient for HONO formation on soot and its impacts on concentrations of major chemical components in the Beijing–Tianjin–Hebei region, Atmospheric Environment, 84, 163-171, 2014.
- VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J., Pszenny, A. A. P., Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R., Wagner, N. L., Riedel, T. P., Thornton, J. A., Wolfe, D. E., Dub é, W. P., Özt ürk, F., Brock, C. A., Grossberg, N., Lefer, B., Lerner, B. Middlebrook, A. M., Roberts, J. M.: Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT-11. Journal of Geophysical Research: Atmospheres, 118, 10,155–10,171, doi:10.1002/jgrd.50721, 2013.
- Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Hornbrook, R. S., Knapp, D., Kosciuch, E., Mauldin, R. L., McGrath, J. A., Montzka, D., Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R. M., Liao, J., Huey, L. G., and Kleffmann, J.: Nitrous acid (HONO) during polar spring in Barrow, Alaska: a net source of OH radicals?, J. Geophys. Res.

-Atmos., 116(D14), doi: 10.1029/2011JD016643, 2011.

- Wagner, N. L., Dubé, W. P., Washenfelder, R. A., Young, C. J., Pollack, I. B., Ryerson, T. B., Brown S. S.: Diode laser-based cavity ring-down instrument for NO₃, N₂O₅, NO, NO₂ and O₃ from aircraft, Atmos. Meas. Technol., 4, 1227–1240, 2011.
- Wang, F., An, J., Li, Y., Tang, Y., Lin, J., Qu, Y., Cheng, Y., Zhang, B., Zhai, J.: Impacts of Uncertainty in AVOC Emissions on the Summer RO_x Budget and Ozone Production Rate in the Three Most Rapidly-Developing Economic Growth Regions of China, Advances in Atmospheric Sciences, 31, 1331–1342, 2014.
- Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu, M., Russell, A. G.: Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system, Atmospheric Chemistry and Physics, 10(9), 4423-4437, 2010.
- Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren, X., Luke, W., Stutz, J.: Daytime HONO vertical gradients during SHARP 2009 in Houston, TX, Atmospheric Chemistry and Physics, 12(2), 635-652, 2012.
- Wong, K. W., Tsai, C., Lefer, B., Grossberg, N., Stutz, J.: Modeling of daytime HONO vertical gradients during SHARP 2009, Atmospheric Chemistry and Physics, 13(7), 3587-3601, 2013.
- Wu, J., Xu, Z., Xue, L., and Wang, T.: Daytime nitrous acid at a polluted suburban site in Hong Kong: indication of heterogeneous production on aerosol, in: Proceedings of 12th international conference on atmospheric sciences and applications to air quality, Seoul, Korea, 3–5 June 2013, 52, 2013.
- Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., Klimont, Z., Park, I., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L., Yao, Z.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmospheric Chemistry and Physics, 9, 5131-5153, 2009.
- Zhang, H., Li, J., Ying, Q., Yu, J. Z., Wu, D., Cheng, Y., Kebin Hed, Jiang, J.: Source apportionment of PM_{2.5} nitrate and sulfate in China using a source-oriented chemical transport model. Atmospheric Environment, 62, 228-242, 2012.
- Zhang, N., Zhou, X., Bertman, S., Tang, D., Alaghmand, M., Shepson, P. B., Carroll,M. A.: Measurements of ambient HONO concentrations and vertical HONO

flux above a northern Michigan forest canopy. Atmospheric Chemistry and Physics, 12(17), 8285-8296, 2012.

- Zhou, X., Qiao, H., Deng, G., Civerolo, K.: A method for the measurement of atmospheric HONO based on DNPH derivatization and HPLC analysis. Environ. Sci. Technol., 33, 3672–3679, 1999
- Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., Demerjian, K. Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State, Journal of Geophysical Research: Atmospheres (1984–2012), 107(D21), ACH-13, 2002a.
- Zhou, X., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman, S. B.: Photochemical production of nitrous acid on glass sample manifold surface, Geophys. Res. Lett., 29, 26-1 – 26-4, doi: 10.1029/2002GL015080, 2002b.
- Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S. B., Civerolo, K., Schwab, J.: Nitric acid photolysis on surfaces in low-NO_x environments.: Significant atmospheric implications, Geophysical Research Letters, 30(23), 2003.
- Ziemba, L. D., Dibb, J. E., Griffin, R. J., Anderson, C. H., Whitlow, S. I., Lefer, B. L., Rappenglück, B., Flynn, J.: Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere, Atmos. Environ. 44, 4081-4089, 2010
2. The list of all relevant changes made in the manuscript

A. Changes for "Abstract"

1) We have revised our description in the Abstract section: "<u>When the additional</u> <u>HONO sources were included, the photolysis of HONO was the second source in the</u> <u>OH production rate in Beijing, Shanghai and Guangzhou before 10:00 LST with a</u> <u>maximum of 3.72 [3.06 due to the P_{unknown}] ppb h⁻¹ in Beijing, whereas the reaction</u> <u>of HO₂ + NO (nitric oxide) was dominated after 10:00 LST with a maximum of 9.38</u> [7.23] ppb h⁻¹ in Beijing,"

2) We have revised our description in the Abstract section: <u>"The daytime average</u> OH production rate was enhanced by 0.67 [0.64] to 4.32 [3.86] ppb h^{-1} via the reaction of HO₂ + NO, and by 0.49 [0.47] to 1.86 [1.86] ppb h^{-1} via the photolysis of HONO, and the OH daytime average loss rate was enhanced by 0.58 [0.55] to 2.03 [1.92] ppb h^{-1} via the reaction of OH + NO₂ and by 0.31 [0.28] to 1.78 [1.64] ppb h^{-1} via the reaction of OH + CO (carbon monoxide) in Beijing, Shanghai and Guangzhou."

3) We have added "daytime average" in the Abstract section: <u>"Similarly, the</u> <u>additional HONO sources produced an increase of 0.31 [0.28] to 1.78 [1.64] ppb</u> h^{-1} via the reaction of OH + CO and 0.10 [0.09] to 0.63 [0.59] ppb h^{-1} via the <u>reaction of CH₃O₂ [methylperoxy radical] + NO in the daytime average HO₂</u> <u>production rate, and 0.67 [0.61] to 4.32 [4.27] ppb h^{-1} via the reaction of HO₂ +</u> NO in the daytime average HO₂ loss rate in Beijing, Shanghai and Guangzhou." **B.** Changes for "1. Introduction"

1) We have added "the HO₂ to OH conversion process (HO₂+NO)"in the Introduction section: "*OH is formed primarily through the photolysis of O₃, nitrous acid (HONO), hydrogen peroxide (H₂O₂), the reactions of O₃ with alkenes, and the HO₂ to OH conversion process (HO₂+NO) (Platt et al., 1980; Crutzen and Zimmermann, 1991; Atkinson and Aschmann, 1993; Fried et al., 1997; Paulson et al., 1997).*"

2) We used "<u>After sunrise, HONO mixing ratios are usually in low concentrations</u> <u>due to the strong photolysis of HONO.</u>" instead of <u>"After sunrise, HONO mixing</u> <u>ratios are usually below the detection limit due to the strong photolysis of HONO.</u>"
3) We used "<u>This is the reason why the recent CalNex 2010 (California Research at</u> <u>the Nexus of Air Quality and Climate Change) study found a very strong positive</u>

correlation ($R^2 = 0.985$) between HONO flux and the product of NO₂ concentration

and solar radiation at Bakersfield site (Ren et al., 2011)." instead of <u>"This is the</u> reason why some researchers have adopted the HONO/NO₂ ratio as a HONO emission factor to assess its implications (Elshorbany et al., 2012)."

C. Changes for "2.2 Parameterization of HONO sources"

1) We have added references in the section 2.2: "<u>Previous studies (Sörgel et al.,</u> 2011; Villena et al., 2011; Wong et al., 2012) have shown $P_{unknown} \propto [NO_2] \cdot J(NO_2)$."

2) We have added the description in the section 2.2: <u>"For the coastal regions of</u> <u>China, the correlation between the $P_{unknown}$ and $NO_2 \cdot J(NO_2)$ was 0.48, with a</u> <u>linear regression slope of 17.37 (Fig. S2b in the Supplement), which is within the</u> maximum P_{unknown} uncertainty range of 25% (Table S1)."

D. Changes for "3.2 $P_{unknown}$ simulations and its impacts on production and loss rates of HONO"

1) We have added uncertainty analysis in the section 3.2: <u>"The maximum P_{unknown}</u> uncertainty range of 25% (Table S1), a 25% increase (decrease) in the slope factor (19.60) led to a 9.19–18.62% increase (12.69–14.32% decrease) in the maximum HONO production rate and a 0–17.64% increase (8.40–14.07% decrease) in the maximum HONO loss rate (Fig. S3 in the Supplement)."

E. Changes for "3.4 $P_{unknown}$ impacts on the budgets of OH, HO₂ and RO₂" 1) We have revised our description in the section 3.4: <u>"OH radicals are produced</u> <u>mainly through the reaction of HO₂ + NO, the photolysis of O₃ and HONO, and the</u> <u>reactions between O₃ and alkenes (Fig. 11)."</u>

2) We have revised our results in the section 3.4: <u>"The photolysis of O_3 was the</u> second most important sources of OH, which was dominant (0.91 ppb h⁻¹ in Beijing, 0.52 ppb h⁻¹ in Shanghai, and 1.20 ppb h⁻¹ in Guangzhou) at noon (Fig. S1a, c, e). Compared with the two OH sources above, the contributions of the reactions of O_3 + alkenes, HONO photolysis and others were small, lower than 0.15 ppb h⁻¹ (Fig. S1a, c, e). When the additional HONO sources were added, the most important source was the reaction of HO_2 + NO, with a diurnal maximum conversion rate reaching 9.38 [7.23 due to the $P_{unknown}$] ppb h⁻¹ in Beijing, 2.63 [1.15] ppb h⁻¹ in Shanghai, and 4.88 [1.43] ppb h⁻¹ in Guangzhou near noon (Fig. 11a, c, e). The photolysis of HONO became the second important source of OH in Beijing and Guangzhou before 10:00 LST, and in Shanghai before 12:00 LST; the diurnal peaks were 3.72 [3.06] ppb h^{-1} in Beijing at 09:00 LST, 0.89 [0.62] ppb h^{-1} in Shanghai at 11:00 LST, and 0.97 [0.78] ppb h^{-1} in Guangzhou at 09:00 LST (Fig. 11a, c, e), which were comparable to or lower than the 3.10 ppb h^{-1} reported by Elshorbany et al. (2009)." 3) We have revised our results in the section 3.4: "For case R, the reaction of HO₂ + NO was the major source of OH [2.78 ppb h^{-1} (81.73% of the total daytime average production rate of OH) in Beijing, 0.73 ppb h^{-1} (67.09%) in Shanghai, and 1.75 ppb h^{-1} (71.54%) in Guangzhou] (Fig. 12a and Table 4). The second largest source of OH was the photolysis of O₃ [0.47 ppb h^{-1} (13.68%) in Beijing, 0.31 ppb h^{-1} (28.17%) in Shanghai, and 0.62 ppb h^{-1} (25.27%) in Guangzhou] (Table 4)."

4) We have revised our results in the section 3.4: "When the additional HONO sources were inserted into the WRF-Chem model (case R_p), the daytime average OH production rate was enhanced by 4.32 (= 7.10 – 2.78) [3.86 due to the $P_{unknown}$] ppb h^{-1} in Beijing, 0.67 (= 1.40 – 0.73) [0.64] ppb h^{-1} in Shanghai, and 0.80 (= 2.55 – 1.75) [0.68] ppb h^{-1} in Guangzhou via the reaction of HO₂ + NO, and by 1.86 (= 1.86 – 0) [1.86] ppb h^{-1} in Beijing, 0.50 (= 0.50 – 0) [0.50] ppb h^{-1} in Shanghai, and 0.49 (= 0.49 – 0) [0.47] ppb h^{-1} in Guangzhou via the photolysis of HONO, respectively (Table 4). The enhancements of the daytime average OH production rate due to the photolysis of HONO were comparable to or lower than the 2.20 ppb h^{-1} obtained by Liu et al. (2012)."

5) We have revised our results in the section 3.4: "Overall, the net daytime production rate of RO_x was increased to 3.48 (= 2.56 + 0.71 + 0.21) [2.06 due to the *Punknown*] from 1.20 (= 0.60 + 0.43 + 0.17) ppb h^{-1} in Beijing, 1.09 (= 0.86 + 0.19 + 0.04) [0.45] from 0.54 (= 0.36 + 0.14 + 0.04) ppb h^{-1} in Shanghai, and 1.52 (= 1.21 + 0.26 + 0.05) [0.58] from 0.92 (= 0.68 + 0.20 + 0.04) ppb h^{-1} in Guangzhou (Fig. 12) due to the additional HONO sources, indicating that the RO_x source was mainly from OH production, especially via the photolysis of HONO (Tables 4, S2 and S3). This result is different from the conclusion of Liu et al. (2012) that the photolysis of HONO and oxygenated VOCs is the largest RO_x source. One of the primary reasons for this is the underestimation of anthropogenic VOCs (Wang et al., 2014). For Beijing, the net production rate of RO_x was 3.48 ppb h^{-1} , lower than the 6.60 ppb h^{-1} from the field studies of Liu et al. (2012)."

6) We have added "daytime average" in the necessary positions of the section3.4 in the revised Manuscript.

F. Changes for "4. Conclusions"

1)We have revised our conclusion in the Conclusion section: <u>"(6)</u> When the additional HONO sources were added, the photolysis of HONO became the second important source of OH in Beijing and Guangzhou before 10:00 LST, and in Shanghai before 12:00 LST, with a maximum of 3.72 [3.06 due to the P_{umknown}] ppb h^{-1} in Beijing, 0.89 [0.62] ppb h^{-1} in Shanghai, and 0.97 [0.78] ppb h^{-1} in Guangzhou; whereas, the reaction of HO₂ + NO was the most important source of OH, dominated in Beijing and Guangzhou after 10:00 LST and in Shanghai after 12:00 LST, with a maximum of 9.38 [7.23] ppb h^{-1} in Beijing, 2.63 [1.15] ppb h^{-1} in Shanghai, and 4.88 [1.43] ppb h^{-1} in Guangzhou. "

2) We have revised our conclusion in the Conclusion section: "(7) The additional HONO sources, especially the $P_{unknown}$, accelerated the whole RO_x cycle. The daytime average OH production rates were enhanced by 4.32 [3.86 due to the $P_{unknown}$] ppb h⁻¹ in Beijing, 0.67 [0.64] ppb h⁻¹ in Shanghai, and 0.80 [0.68] ppb h⁻¹ in Guangzhou via the reaction of HO_2 + NO, and by 1.86 [1.86] ppb h⁻¹ in Beijing, 0.50 [0.50] ppb h⁻¹ in Shanghai, and 0.49 [0.47] ppb h⁻¹ in Guangzhou via the photolysis of HONO. The daytime average OH loss rates were increased by 2.03 [1.92 due to the $P_{unknown}$] ppb h⁻¹ in Beijing, 0.58 [0.55] ppb h⁻¹ in Shanghai, and 0.65 [0.58] ppb h⁻¹ in Guangzhou via the reaction of OH + NO₂, and by 1.78 [1.64] ppb h⁻¹ in Beijing, 0.31 [0.28] ppb h⁻¹ in Shanghai, and 0.42 [0.36] ppb h⁻¹ in Guangzhou via the reaction of OH + CO."

6) We have added "daytime average" in the necessary positions of the conclusion in the revised Manuscript.

G. Changes for "References"

1) We have added the reference: <u>"Ren, X., Sanders, J. E., Rajendran, A., Weber, R.</u> J., Goldstein, A.H., Pusede, S. E., Browne, E. C., Min, K.-E., and Cohen, R.C.: A <u>relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid,</u> <u>Atmos. Meas. Tech., 4, 2093–2103, doi:10.5194/amt-4-2093-2011, 2011."</u>

H. Changes for Tables and Figures

We have revised the Figs. 11 and 12 and Table 4 in the revised Manuscript.

- **3.** The marked-up manuscript version (Changes are in red font)
- 2

3	Impacts of an unknown daytime nitrous acid source on its daytime concentration
4	and budget, as well as those of hydroxyl, hydroperoxyl, and organic peroxy
5	radicals, in the coastal regions of China
6	Yujia Tang ^{1,2} , Junling An ^{1*} , Feng Wang ^{1,2,3} , Ying Li ¹ , Yu Qu ¹ , Yong Chen ¹ , Jian Lin ^{1,2}
7	¹ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric
8	Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of
9	Sciences, Beijing 100029, China
10	² University of the Chinese Academy of Sciences, Beijing 100049, China
11	³ Anhui Meteorological Bureau, Hefei 230061, China
12	*Corresponding author: anjl@mail.iap.ac.cn
13	
14	Abstract
15	Many field experiments have found high nitrous acid (HONO) mixing ratios in both
16	urban and rural areas during daytime, but these high daytime HONO mixing ratios
17	cannot be explained well by gas-phase production, suggesting that an unknown
18	daytime HONO source (P _{unknown}) could exist. The formula
19	$P_{unknown} \approx 19.60[NO_2] \cdot J(NO_2)$ was obtained using observed data from 13 field
20	experiments across the globe. The additional HONO sources [i.e. the $P_{\text{unknown}}, \label{eq:product}$
21	HONO emissions, and nighttime hydrolysis conversion of nitrogen dioxide (NO ₂) on
22	aerosols] were coupled into the WRF-Chem model (Weather Research and
23	Forecasting model coupled with Chemistry) to assess the P_{unknown} impacts on the

24	concentrations and budgets of HONO and peroxy (hydroxyl, hydroperoxyl, and
25	organic peroxy) radicals (RO_x) (= $OH + HO_2 + RO_2$) in the coastal regions of China.
26	Results indicated that the additional HONO sources produced a significant
27	improvement in HONO and OH simulations, particularly in the daytime. Elevated
28	daytime average $P_{unknown}$ values were found in the coastal regions of China, with a
29	maximum of 2.5 ppb h^{-1} in the Beijing–Tianjin–Hebei region. The $P_{unknown}$ produced
30	a 60%–250% increase of OH, HO_2 and RO_2 near the ground in the major cities of the
31	coastal regions of China, and a 5–48% increase of OH, HO_2 and RO_2 in the daytime
32	meridional-mean mixing ratios within 1000 m above the ground. When the
33	additional HONO sources were included, the photolysis of HONO was the second
34	source in the OH production rate in Beijing, Shanghai and Guangzhou before 10:00
35	LST with a maximum of 3.72 [3.06 due to the $P_{unknown}$] ppb h^{-1} in Beijing, whereas
36	the reaction of HO_2 + NO (nitric oxide) was dominated after 10:00 LST with a
37	maximum of 9.38 [7.23] ppb h^{-1} in Beijing. The whole RO _x cycle was accelerated by
38	the additional HONO sources, especially the $P_{unknown}$. The daytime average OH
39	production rate was enhanced by 0.67 [0.64] to 4.32 [3.86] ppb h^{-1} via the reaction
40	of HO ₂ + NO, and by 0.49 [0.47] to 1.86 [1.86] ppb h^{-1} via the photolysis of HONO,
41	and the OH daytime average loss rate was enhanced by 0.58 [0.55] to 2.03 [1.92]
42	ppb h^{-1} via the reaction of OH + NO ₂ and by 0.31 [0.28] to 1.78 [1.64] ppb h^{-1} via
43	the reaction of OH + CO (carbon monoxide) in Beijing, Shanghai and Guangzhou.
44	Similarly, the additional HONO sources produced an increase of 0.31 [0.28] to 1.78
45	[1.64] ppb h^{-1} via the reaction of OH + CO and 0.10 [0.09] to 0.63 [0.59] ppb h^{-1} via

the reaction of CH_3O_2 [methylperoxy radical] + NO in the daytime average HO_2 production rate, and 0.67 [0.61] to 4.32 [4.27] ppb h⁻¹ via the reaction of HO_2 + NO in the daytime average HO_2 loss rate in Beijing, Shanghai and Guangzhou. The above results suggest that the P_{unknown} considerably enhanced the RO_x concentrations and accelerated RO_x cycles in the coastal regions of China, and could produce significant increases in concentrations of inorganic aerosols and secondary organic aerosols and further aggravate haze events in these regions.

53

54 **1. Introduction**

The hydroxyl radical (OH) is the dominant oxidant in the troposphere, initiating 55 daytime photochemistry, removing the majority of reactive gases, and leading to the 56 57 formation of secondary products [e.g. ozone (O_3) , peroxyacyl nitrates (PANs) and aerosols] that can affect air quality, climate, and human health (Stone et al., 2012). 58 OH is formed primarily through the photolysis of O₃, nitrous acid (HONO), 59 hydrogen peroxide (H₂O₂), the reactions of O₃ with alkenes, and the HO₂ to OH 60 conversion process (HO₂+NO) (Platt et al., 1980; Crutzen and Zimmermann, 1991; 61 Atkinson and Aschmann, 1993; Fried et al., 1997; Paulson et al., 1997). Recent field 62 63 experiments have found the contribution of the photolysis of HONO to daytime OH production can reach up to 56, 42, and 33% in urban, rural and forest areas, 64 respectively (Ren et al., 2003; Kleffmann et al., 2005; Acker et al., 2006), more than 65 66 that of the photolysis of O₃. However, most current air quality models fail to predict observed HONO concentrations, underestimating daytime HONO in particular 67

68 (Czader et al., 2012; Gon çalves et al., 2012; Li et al., 2011), due to the incomplete
69 knowledge of HONO sources.

It is generally accepted that the photolysis of HONO (Reaction R2) in the early 70 morning could be a major source of OH. After sunrise, HONO mixing ratios are 71 usually in low concentrations due to the strong photolysis of HONO. However, 72 many field experiments have found daytime HONO mixing ratios that are 73 unexpectedly higher than the theoretical steady value (~10 ppt), in both urban and 74 rural areas: e.g. 0.15-1.50 ppb higher in Asia (Su et al., 2008; Wu et al., 2013; 75 76 Spataro et al., 2013), 0.01–0.43 ppb higher in Europe (Kleffmann et al., 2005; Acker et al., 2007; Sörgel et al., 2011; Michoud et al., 2014), 0.02–0.81 ppb higher in North 77 America (Zhou et al., 2002a,b; Ren et al., 2010; Villena et al., 2011; N. Zhang et al., 78 79 2012; Wong et al., 2012; VanderBoer et al., 2013), 2.00 ppb higher (maximum) in South America (Elshorbany et al., 2009), and 0.015–0.02 ppb higher in Antarctica 80 (Kerbrat et al., 2012) (Fig. 1). These high HONO mixing ratios, particularly in the 81 daytime, cannot be explained well by gas-phase production (Reaction R1), 82 suggesting that an unknown daytime HONO source (Punknown) could exist. 83

84
$$OH + NO \rightarrow HONO$$
 (R1)

85
$$HONO + hv \rightarrow OH + NO$$
 (R2)

86
$$HONO + OH \rightarrow NO_2 + H_2O$$
 (R3)

The $P_{unknown}$ was calculated by Su et al. (2008) at Xinken (Guangzhou, China), with a maximum of 4.90 ppb h⁻¹. Spataro et al. (2013) proposed a $P_{unknown}$ value of 2.58 ppb h⁻¹ in Beijing. In fact, $P_{unknown}$ values, ranging from 0.06 to 4.90 ppb h⁻¹ have been obtained from many field studies across the globe, as shown in Fig. 1, suggesting $P_{unknown}$ could contribute greatly to the daytime production of OH and hydroperoxyl radical (HO₂).

93 The most important formation pathway for nocturnal HONO could be the
94 hydrolysis reaction of nitrogen dioxide (NO₂) on humid surfaces (Reaction R4)
95 (Kleffmann et al., 1999; Alicke et al., 2002; Finlayson-Pitts et al., 2003):

96
$$2NO_2 + H_2O \rightarrow HONO + HNO_3$$
 (R4)

Ammann et al. (1998) found HONO formation via the heterogeneous reduction of
NO₂ on the surface of soot (Reaction R5), and Reaction (R5) can be enhanced by
irradiation (Monge et al., 2010):

100
$$NO_2 + red_{ads} \rightarrow HONO + ox_{ads}$$
 (R5)

George et al. (2005) and Stemmler et al. (2006, 2007) showed the heterogeneous reduction of NO₂ on organic surfaces (Reaction R6) (e.g. humic acid) to produce HONO:

104
$$NO_2 + HC_{red} \rightarrow HONO + HC_{ox}$$
 (R6)

Li et al. (2008) proposed a homogeneous reaction of photolytically excited NO_2 with H₂O (Reaction R7), but this reaction has been proven to be unimportant in the real atmosphere (Carr et al., 2009; Wong et al., 2011; Amedro et al., 2011). Zhang and Tao (2010) suggested the homogeneous nucleation of NO_2 , H₂O and ammonia (NH₃) for the production of HONO (Reaction R8), but Reaction (R8) has not yet been tested in laboratory studies, nor observed in field experiments:

111 $\text{NO}_2 + \text{hu} (\lambda > 420 \text{ nm}) \rightarrow \text{NO}_2^*$

112
$$NO_2^* + H_2O \rightarrow HONO + OH$$
 (R7)

113
$$NO_2^* + M \rightarrow NO_2 + M$$

114
$$2NO_2 + H_2O(g) + NH_3 \rightarrow HONO + NH_4NO_3(s)$$
 (R8)

Zhou et al. (2002b, 2003, 2011) demonstrated that the photolysis of adsorbed nitric
acid (HNO₃) and nitrate (NO₃⁻) at ultraviolet wavelengths (~300 nm) (Reaction R9)
can produce HONO:

118
$$HNO_3/NO_3^- + hv \rightarrow HONO/NO_2^- + O$$
 (R9)

Additionally, HONO could be emitted from soils (Su et al., 2011; Oswald et al.,
2013), and may be important in farmland and forest areas.

Based on these mechanisms outlined above, some modeling studies have been 121 carried out to simulate HONO concentrations (e.g. An et al., 2011; Czader et al., 122 123 2012; Gon calves et al., 2012). Sarwar et al. (2008) incorporated Reactions (R4), (R9) and HONO emissions into the Community Multiscale Air Quality (CMAQ) model, 124 but still underestimated HONO mixing ratios during daytime. Li et al. (2010) 125 126 considered both aerosol and ground surface reactions, and HONO emissions in the WRF-Chem model (Weather Research and Forecasting model coupled with 127 Chemistry), and found that HONO simulations were significantly improved. 128 However, Li et al. (2010) used a relatively high emission ratio of 2.3% for 129 HONO/NO₂ to compute the direct emissions of HONO, which could have 130 overestimated the HONO concentrations in the air (An et al., 2013). Czader et al. 131 132 (2012) added Reactions (R6), (R7) and HONO emissions into the CMAQ model. The HONO simulations matched well with observations at night, but were 133

significantly lower than observations at noon. Wong et al. (2013) reported good 134 agreement between simulated and observed daytime HONO when HONO emissions, 135 photolytically enhanced daytime formation mechanisms on both aerosols and the 136 ground, and Reaction R7 were included. However, according to our recent studies 137 (Tang et al., 2014), this result depended heavily on the selection of uptake 138 coefficients of NO₂ heterogeneous chemistry. Overall, the topic of HONO sources 139 remains under discussion today, and so it is a challenge for modelers to decide which 140 mechanism(s) to be coupled into an air quality model. 141

142 To investigate the importance of the mechanisms described above, correlation tests between the Punknown and NO₂, HNO₃, irradiation or the photolysis frequency of 143 NO₂ [J(NO₂)] were conducted in field experiments (Acker et al., 2007; Sörgel et al., 144 145 2011; Villena et al., 2011; Wong et al., 2012). Many of these studies demonstrated that there is a clear dependency of the P_{unknown} on irradiation/J(NO₂) during daytime, 146 particularly at noon. Rohrer et al. (2005) proposed that the photolytic HONO source 147 148 at the surface of the chamber strongly depended on light intensity. Acker et al. (2007) summarized field experiments in several European countries and showed a strong 149 correlation (R^2 =0.81) between the P_{unknown} and J(NO₂). Wong et al. (2012) also 150 indicated that the Punknown showed a clear symmetrical diurnal variation with a 151 maximum around noontime, closely correlated with actinic flux (NO₂ photolysis 152 frequency) and solar irradiance; the correlation coefficient was over 0.70. 153

Besides irradiation/J(NO₂), good correlations between the P_{unknown} and NO₂ mixing ratios have been found from both field and laboratory studies, supporting the

viewpoint that NO₂ is the primary precursor of HONO. Through estimating the 156 Punknown, Acker et al. (2007) speculated that the daytime HONO levels might be 157 explained by a fast electron transfer onto adsorbed NO₂. Sörgel et al. (2011) 158 indicated that the conversion of NO2 most likely accounted for light-induced HONO 159 formation, about an order of magnitude stronger than HONO formation during 160 nighttime. High correlations between the Punknown and NO2 mixing ratios have also 161 been found [e.g. $R^2 = 0.77$ in Qin et al. (2006), $R^2 = 0.80$ in Villena et al. (2011), and 162 $R^2 = 0.62$ in Elshorbany et al. (2009)], indicating that the photosensitized conversion 163 of NO₂ is more likely to be the daytime HONO source. This is the reason why the 164 recent CalNex 2010 (California Research at the Nexus of Air Quality and Climate 165 Change) study found a very strong positive correlation ($R^2 = 0.985$) between HONO 166 flux and the product of NO₂ concentration and solar radiation at the Bakersfield site 167 (Ren et al., 2011). 168

Based on the studies introduced above, the P_{unknown} calculated from field experiments may be a practical method to help quantify the daytime HONO source. In this study, field experiment data from 13 different field campaigns across the globe were used to express the P_{unknown} as a function of NO₂ mixing ratios and J(NO₂) (see Sect. 2.2). We then added the P_{unknown} into the WRF-Chem model to assess the impacts of the P_{unknown} on the concentrations and production and loss rates of HONO, OH, HO₂, and organic peroxy radicals (RO₂). 176

177 **2. Data and methods**

178 **2.1 Observed data**

Observed air temperature (TA), relative humidity (RH), wind speed (WS) and 179 direction (WD) near the ground were obtained from the National Climatic Data 180 Center, China Meteorological Administration (H. Zhang et al., 2012). Surface 181 mixing ratios of O₃ and NO₂ in Beijing were obtained from the Beijing Atmospheric 182 Environmental Monitoring Action carried out by the Chinese Academy of Sciences 183 (Li et al., 2011; Wang et al., 2014), except those in Guangzhou, which were sourced 184 from Qin et al. (2009). HONO observations were conducted using two annular 185 denuders at the campus of Peking University (PKU) (39°59'N, 116°18'E) in Beijing 186 on 17-20 August 2007 (Spataro et al., 2013) and a long path absorption photometer 187 at the Backgarden (BG) supersite (23°30'N, 113°10'E), about 60 km northwest of 188 Guangzhou on 3-31 July 2006 (X. Li et al., 2012). The measurement systems are 189 described in detail in Spataro et al. (2013) and X. Li et al. (2012). OH and HO₂ were 190 measured by laser induced fluorescence at the BG supersite on 3-30 July 2006 (Lu et 191 al., 2012). 192

193 2.2 Parameterization of HONO sources

Besides HONO gas-phase production from Reaction (R1), three additional HONO sources [HONO emissions, Reaction (R4) (nighttime), and the P_{unknown}] were coupled into the WRF-Chem model in this work.

HONO emissions were calculated using $[0.023 \times f_{\text{DV}} + 0.008 \times (1 - f_{\text{DV}})] \times f_{\text{TS}}$,

where f_{DV} denotes the nitrogen oxides (NO_x) emission ratio of diesel vehicles to total 198 vehicles, and f_{TS} is the NO_x emission ratio of the traffic source to all anthropogenic 199 200 sources (Li et al., 2011; An et al., 2013; Tang et al., 2014). Reaction (R4) was inserted into the Carbon-Bond Mechanism Z (CBM-Z) during nighttime only. The 201 heterogeneous reaction rate was parameterized by $k = \left(\frac{a}{D_a} + \frac{4}{v\gamma}\right)^{-1} A_s$ (Jacob, 2000), 202 where a is the radius of aerosols, v is the mean molecular speed of NO₂, D_g is a 203 gas-phase molecular diffusion coefficient taken as 10^{-5} m² s⁻¹(Dentener and Crutzen, 204 1993), and A_s is the aerosol surface area per unit volume of air, calculated from 205 aerosol mass concentrations and number density in each bin set by the Model for 206 Simulating Aerosol Interactions and Chemistry (MOSAIC). Hygroscopic growth of 207 aerosols was considered (Li et al., 2011). 208

Previous studies (Sörgel et al., 2011; Villena et al., 2011; Wong et al., 2012) 209 have shown $P_{unknown} \propto [NO_2] \cdot J(NO_2)$. To quantify the relationship between the 210 P_{unknown} and NO₂ mixing ratios and irradiation, daytime P_{unknown}, NO₂ mixing ratios 211 and $J(NO_2)$, based on all the available data sets from 13 different field campaigns 212 across the globe (Table S1), were plotted in Fig. 2. As expected, good correlation (R^2) 213 = 0.75) between the $P_{unknown}$ and NO₂ mixing ratios was obtained (Fig. 2a). 214 Furthermore, the correlation between the $P_{unknown}$ and $NO_2 \cdot J(NO_2)$ was increased 215 to 0.80, with a linear regression slope of 19.60 (Fig. 2b). For the coastal regions of 216 China, the correlation between the $P_{unknown}$ and $NO_2 \cdot J(NO_2)$ was 0.48, with a 217 218 linear regression slope of 17.37 (Fig. S2b in the Supplement), which is within the maximum Punknown uncertainty range of 25% (Table S1). The Punknown cloud be 219

ratios function NO_2 mixing 220 expressed as of and $J(NO_2),$ а i.e., 221 $P_{unknown} \approx 19.60[NO_2] \cdot J(NO_2)$ This formula is similar very to $P_{unknown} \approx \alpha \cdot J(NO_2) \cdot [NO_2] \cdot [H_2O] \cdot (S/V_g + S/V_a)$ proposed by Su et al. (2008), and 222 $P_{unknown} \approx 3.3 \times 10^{-8} [NO_2] \cdot Q_s$ suggested by Wong et al. (2012) as an additional 223 daytime source of HONO through analysis of observed data, where S/V_a is the 224 aerosol surface area-to-volume ratio, S/V_g is the ground surface area-to-volume 225 ratio, α is a fitting parameter, and Q_s is solar visible irradiance. 226

227 **2.3 Model setup**

228 Used in this study was the WRF-Chem model version 3.2.1 (Grell et al., 2005; Fast et al., 2006), with the CBM-Z (Zaveri and Peters, 1999) and the MOSAIC 229 (Zaveri et al., 2008). The detailed physical and chemical schemes for the simulations 230 231 can be found in Tang et al. (2014). Two domains with a horizontal resolution of 27 km were employed in this study: domain 1 covered East Asia, whereas domain 2 232 covered the coastal regions of China, including the Beijing-Tianjin-Hebei region 233 234 (BTH), the Yangtze River delta (YRD), and the Pearl River delta (PRD) (Fig. 3). 235 There were 28 vertical model layers from the ground to 50 hPa, and the first model layer was ~28 m above the ground. Meteorological initial and boundary conditions 236 were obtained from the National Centers for Environmental Prediction (NCEP) 1 °×1 ° 237 reanalysis dataset. Chemical initial and boundary conditions were constrained with 238 the output of the Model for Ozone and Related chemical Tracers, version 4 239 240 (MOZART-4) (Emmons et al., 2010) every 6 h. Monthly anthropogenic emissions in 2006/2007 and biogenic emissions were the same as those used by Li et al. (2011) 241

and An et al. (2013).

Six simulations (cases R, R_{wop}, and R_p performed for the entire months of August 243 244 2007 and July 2006) with a spin-up period of seven days were conducted in this study to assess the P_{unknown} effects on the concentrations and budgets of HONO, OH, HO₂, 245 and RO₂. Case R only considered Reaction (R1) as a reference; Case R_{wop} included 246 case R with HONO emissions, and Reaction (R4) only at night; case R_p contained 247 case R_{wop} with the $P_{unknown}$ [$\approx 19.60[NO_2] \cdot J(NO_2)$]. The $P_{unknown}$ and Reaction (R4) 248 were added to the CBM-Z, and diagnostic variables (i.e. production and loss rates of 249 250 HONO, OH, HO₂, RO₂, O₃, and other species) were inserted into the CBM-Z to quantify the Punknown impacts on the budgets of HONO, OH, HO₂, and RO₂ (Wang et 251 al., 2014). 252

253 **3. Results and discussion**

3.1 Comparison of simulations and observations

Simulations of TA, RH, WS and WD were compared with observations, as 255 shown in Wang et al. (2014). The statistical metrics, i.e. mean bias (MB), mean error 256 (ME), root-mean-square error (RMSE), normalized mean bias (NMB), normalized 257 mean error (NME), index of agreement (IOA), and correlation coefficient (CC), 258 were comparable with those of Wang et al. (2010) and L. Li et al. (2012) using the 259 fifth-generation Pennsylvania State University/National Center for Atmospheric 260 Research Mesoscale Model (MM5) and H. Zhang et al. (2012) using the WRF model. 261 For O₃ in Beijing of the BTH region and Guangzhou of the PRD region, the NMB, 262 NME and IOA were -22.80%, 58.70% and 0.79, respectively (Table 1 for case R), 263

264	comparable to the values of 30.2% for NMB, 55.8% for NME and 0.91 for IOA
265	reported in L. Li et al. (2012) using the CMAQ model. When HONO emissions,
266	Reaction (R4) and the P _{unknown} were included, the NMB, NME and IOA increased to
267	-2.20% , 66.10% and 0.80, respectively (Table 1 for case R_p). The NO ₂ fluctuations
268	were generally captured (Fig. 4) but the simulated amplitude of NO_2 was
269	underestimated in some cases (Fig. 4). This underestimation could be related with
270	the uncertainty of NO_{x} emissions. For case R, the NMB, NME and IOA for NO_{2}
271	were -13.50%, 42.10% and 0.57, respectively (Table 1), similar to the results of
272	Wang et al. (2010) using the CMAQ model (NMB of -33.0%, NME of 50.0%, and
273	IOA of 0.61). Compared with case R, NO ₂ simulations were further underestimated
274	for case R_p (Table 1 for case R_p) due to the underestimation of NO_x emissions in
275	Guangzhou.

HONO simulations with the gas-phase production only (case R) were always 276 substantially underestimated compared with observations (Fig. 5), similar to the 277 results of Sarwar et al. (2008), Li et al. (2011) and An et al. (2013). When HONO 278 emissions and Reaction (R4) were included, HONO simulations were significantly 279 improved, especially at night (Fig. 5 and Table 2 for case R_{wop}). For Beijing, the 280 nighttime RMSE and NME were reduced by 0.90×10^6 molecules cm⁻³ and 44.70%, 281 whereas the NMB and IOA were increased by 50.00% and 0.29, respectively (Table 282 2). For Guangzhou, the nighttime RMSE and NME were reduced by 0.44×10^6 283 molecules cm⁻³ and 32.90%, and the NMB and IOA were enhanced by 58.80% and 284 0.18, respectively. When the Punknown was included, daytime HONO simulations were 285

considerably improved (Fig. 5 and Table 2 for case R_p). Compared with case R_{wop} , the daytime NME in Beijing was reduced by 19.60%, and the NMB and IOA in Beijing were increased to -24.30% from -62.00% and 0.73 from 0.64, respectively (Table 2); the daytime NME in Guangzhou was reduced by 8.10%, and the NMB in Guangzhou was increased to -61.20% from -76.50% (Table 2).

Simulated diurnal variations of OH and HO₂ showed consistent patterns with 291 the observed data (Fig. 6). When HONO emissions and Reaction (R4) were 292 considered (case R_{wop}), OH and HO₂ enhancements were minor in most cases 293 294 compared with case R (Fig. 6 and Table 3), but the Punknown led to noticeable improvements in OH simulations on 5-12 July 2006 (Fig. 6). Substantial 295 overestimation of OH mixing ratios on 20-25 July 2006 (Fig. 6) needs further 296 297 investigation. Compared with case R, the NME was reduced by 79.60%, whereas the NMB was increased by 105.40%, and the IOA was improved to 0.84 from 0.79 298 (Table 3). When the Punknown was considered, HO₂ simulations were substantially 299 improved (Fig. 6), the IOA was improved to 0.61 from 0.54 and the CC was 300 improved to 0.66 from 0.57 (Table 3). However, HO₂ simulations were still 301 substantially underestimated (Fig. 6). One of the major reasons for the HO_2 302 underestimation could be related to the considerable underestimation of 303 anthropogenic volatile organic compounds (VOCs) (Wang et al., 2014). 304

305

3.2 Punknown simulations and its impacts on production and loss rates of HONO

High $P_{unknown}$ values were found in the coastal regions of China (Fig. 7), especially in the BTH, YRD and PRD regions due to elevated emissions of NO_x

57

308 (Zhang et al., 2009). For the BTH region, the largest daytime average $P_{unknown}$ values 309 reached 2.5 ppb h⁻¹ in Tianjin (Fig. 7a). Elevated daytime average $P_{unknown}$ values 310 were found in the YRD region, with a maximum of 2.0 ppb h⁻¹ in Shanghai (Fig. 7b). 311 Daytime average $P_{unknown}$ values reached 1.2 ppb h⁻¹ in Guangzhou and Shenzhen of 312 the PRD (Fig. 7c). The simulated $P_{unknown}$ values in the PRD region were lower than 313 those in the BTH and YRD regions. One major reason is the underestimation of 314 daytime NO₂ mixing ratios in the PRD (Fig. 4b).

For case R, daytime HONO production was primarily from the reaction of OH 315 and NO (Reaction R1), with a maximum production rate of 0.69 ppb h^{-1} in Beijing, 316 1.20 ppb h^{-1} in Shanghai, and 0.72 ppb h^{-1} in Guangzhou near noon due to high OH 317 mixing ratios (Fig. 8a, c, e). The loss rate of HONO was 0.62 ppb h^{-1} in Beijing, 318 1.09 ppb h^{-1} in Shanghai, and 0.65 ppb h^{-1} in Guangzhou via Reaction (R2), much 319 higher than the 0.01-0.02 ppb h⁻¹ in Beijing, Shanghai and Guangzhou via Reaction 320 (R3) (Fig. 8b, d, f), indicating that Reaction (R2) accounted for approximately 99% 321 of the total loss rate of HONO. 322

When the additional HONO sources [HONO emissions, Reaction (R4), and the P_{unknown}] were coupled into the WRF-Chem model, nighttime HONO was formed mainly via Reaction (R4) (0.30–1.42 ppb h⁻¹ in Beijing, 0.20–0.45 ppb h⁻¹ in Shanghai, and 0.25–0.84 ppb h⁻¹ in Guangzhou) (Fig. 8a, c, e). HONO emissions contributed 0.04–0.62 ppb h⁻¹ to HONO production (Fig. 8a, c, e). Simulated P_{unknown} values ranged from 0.42 to 2.98 ppb h⁻¹ in Beijing, from 0.18 to 2.58 ppb h⁻¹ in Shanghai, and from 0.06 to 1.66 ppb h⁻¹ in Guangzhou (Fig. 8a, c, e). The

330	simulated $P_{unknown}$ values in Beijing (Fig. 8a) were in good agreement with the
331	results of Spataro et al. (2013), with an average unknown daytime HONO production
332	rate of 2.58 ppb h^{-1} in the studied summer period. However, the simulated $P_{unknown}$
333	values in Guangzhou (Fig. 8e) were lower than the 2.36–4.90 ppb h^{-1} reported by Su
334	et al (2008), due mainly to the underestimation of the daytime NO ₂ mixing ratios in
335	the PRD region. The additional HONO sources produce more HONO, which
336	subsequently photolyzes to yield more OH. Therefore, the formation of HONO
337	through Reaction (R1) was greatly enhanced, with a maximum of 4.70 [1.44 due to
338	the $P_{unknown}$] ppb h^{-1} in Beijing, 4.25 [3.13] ppb h^{-1} in Shanghai, and 1.58 [0.40] ppb
339	h^{-1} in Guangzhou in the morning (Fig. 8a, c, e), much higher than the 0.69 ppb h^{-1} in
340	Beijing, 1.20 ppb h^{-1} in Shanghai, and 0.72 ppb h^{-1} in Guangzhou, respectively, for
341	case R (Fig. 8a, c, e). Meanwhile, the loss rate of HONO via Reaction (R2) was
342	significantly enhanced, with a maximum enhancement of $5.20 (= 5.82 - 0.62) [1.97]$
343	due to the $P_{unknown}$] ppb h^{-1} in Beijing, 4.31 (= 5.40 - 1.09) [1.44] ppb h^{-1} in
344	Shanghai, and 1.96 (= $2.61 - 0.65$) [1.18] ppb h ⁻¹ in Guangzhou (Fig. 8b, d, f). The
345	HONO loss rate via dry deposition ranged from 0.28 to 0.45 ppb h^{-1} (not shown),
346	roughly equivalent to the contribution of HONO emissions, suggesting that dry
347	deposition of HONO cannot be neglected in high NO _x emission areas. The maximum
348	P _{unknown} uncertainty range of 25% (Table S1), a 25% increase (decrease) in the slope
349	factor (19.60) led to a 9.19-18.62% increase (12.69-14.32% decrease) in the
350	maximum HONO production rate and a 0-17.64% increase (8.40-14.07% decrease)
351	in the maximum HONO loss rate (Fig. S3 in the Supplement).

352

3.3 Punknown impacts on concentrations of OH, HO2 and RO2

Incorporation of the Punknown into the WRF-Chem model led to substantial 353 354 enhancements in the daytime average mixing ratios of OH in the coastal regions of China, e.g. 60-190% in the BTH region, 60-210% in the YRD region, and 60-200% 355 in the PRD region (Fig. 9a). The maximum enhancement of HO₂ reached 250% in 356 the BTH region, 200% in the YRD region, and 140% in the PRD region (Fig. 9b). 357 Similarly, a maximum increase of 180, 150 and 80% in RO_2 [= CH_3O_2 358 (methylperoxy radical) + ETHP (ethylperoxy radical) + C_2O_3 (peroxyacyl radical) + 359 360 others] were found in the BTH, YRD and PRD regions, respectively (Fig. 9c). Vertically, the Punknown enhanced the monthly meridional-mean daytime 361

362 (06:00–18:00 LST) mixing ratios of OH, HO₂ and RO₂ by 5–38, 5–47 and 5–48%, 363 respectively, within 1000 m above the ground in the coastal regions of China (Fig. 364 10). The vertical enhancements of OH, HO₂ and RO₂ at the same latitude were 365 roughly uniform within the 1000 m (Fig. 10) due to strong vertical mixing in the 366 daytime. Different P_{unknown} distributions led to distinct differences in the 367 enhancements of OH, HO₂ and RO₂, with a maximum located near 35 N (Fig. 10).

368 3.4 P_{unknown} impacts on the budgets of OH, HO₂ and RO₂

OH radicals are produced mainly through the reaction of $HO_2 + NO$, the photolysis of O_3 and HONO, and the reactions between O_3 and alkenes (Fig. 11). For case R, the predominant contribution to P(OH) [production rate of OH] was the reaction of $HO_2 + NO$, with a diurnal peak of 4.04 ppb h⁻¹ in Beijing, 1.52 ppb h⁻¹ in Shanghai, and 3.91 ppb h⁻¹ in Guangzhou at noon (Fig. S1a, c, e in the Supplement).

374	The photolysis of O_3 was the second most important sources of OH, which was
375	dominant (0.91 ppb h^{-1} in Beijing, 0.52 ppb h^{-1} in Shanghai, and 1.20 ppb h^{-1} in
376	Guangzhou) at noon (Fig. S1a, c, e). Compared with the two OH sources above, the
377	contributions of the reactions of O_3 + alkenes, HONO photolysis and others were
378	small, lower than 0.15 ppb h^{-1} (Fig. S1a, c, e). When the additional HONO sources
379	were added, the most important source was the reaction of $HO_2 + NO$, with a diurnal
380	maximum conversion rate reaching 9.38 [7.23 due to the $P_{unknown}$] ppb h ⁻¹ in Beijing,
381	2.63 [1.15] ppb h^{-1} in Shanghai, and 4.88 [1.43] ppb h^{-1} in Guangzhou near noon
382	(Fig. 11a, c, e). The photolysis of HONO became the second important source of OH
383	in Beijing and Guangzhou before 10:00 LST, and in Shanghai before 12:00 LST; the
384	diurnal peaks were 3.72 [3.06] ppb h^{-1} in Beijing at 09:00 LST, 0.89 [0.62] ppb h^{-1}
385	in Shanghai at 11:00 LST, and 0.97 [0.78] ppb h^{-1} in Guangzhou at 09:00 LST (Fig.
386	11a, c, e), which were comparable to or lower than the 3.10 ppb h^{-1} reported by
387	Elshorbany et al. (2009). The contributions of the photolysis of O_3 , the reactions of
388	O_3 + alkenes and others to P(OH) showed minor changes in comparison with case R
389	(Figs. 11a, c, e and S1a, c, e). Kanaya et al. (2009), who also conducted similar
390	studies at Mount Tai (located in a rural area) of China, suggested that the reaction of
391	$HO_2 + NO$ was the predominant OH source, with a daytime average of 3.72 ppb h^{-1} ,
392	more than the 1.38 ppb h^{-1} of the photolysis of O ₃ . Hens et al. (2014) reported
393	similar results in a boreal forest, in which the dominant contributor to OH was the
394	reaction of HO ₂ + NO, ranging from 0.23 to 1.02 ppb h^{-1} during daytime. The
395	production rates of OH in our study were higher than in Kanaya et al. (2009) and

Hens et al. (2014) due to higher NO_x emissions in urban areas than in rural areas.

The dominant loss rate of OH was the reaction of $OH + NO_2$ for both cases R 397 and R_p (Figs. 11b, d, f and S1b, d, f). The diurnal maximum loss rates were 1.98 ppb 398 h^{-1} in Beijing, 1.12 ppb h^{-1} in Shanghai, and 1.70 ppb h^{-1} in Guangzhou for case R 399 (Fig. S1b, d, f), whereas these values were 5.61 [4.38 due to the $P_{unknown}$] ppb h⁻¹ in 400 Beijing, 2.00 [1.00] ppb h^{-1} in Shanghai, and 2.65 [1.02] ppb h^{-1} in Guangzhou for 401 case R_p (Fig. 11b, d, f). The reactions of OH + VOCs to form HO₂ and RO₂ were the 402 second most important loss path of OH, with a diurnal maximum of 0.75-1.73 ppb 403 h^{-1} for case R (Fig. S1b, d, f) and 1.57 [0.82 due to the $P_{unknown}]$ to 5.37 [4.05] ppb 404 h^{-1} for case R_p in Beijing, Shanghai and Guangzhou (Fig. 11b, d, f). The third most 405 important OH loss path was the reaction of OH + CO to form HO_2 ; the diurnal 406 maximum rates were 0.46–1.47 ppb h^{-1} for case R (Fig. S1b, d, f) and 0.93 [0.49 due 407 to the $P_{unknown}$] to 3.58 [2.86] ppb h^{-1} for case R_p in Beijing, Shanghai and 408 Guangzhou (Fig. 11b, d, f). 409

410 The averaged radical conversion rates in the daytime (06:00-18:00 LST) are illustrated in Fig. 12. OH radicals are produced mainly via the photolysis of O_3 , 411 HONO and hydrogen peroxide (H_2O_2), and the reactions between O_3 and alkenes, 412 after which OH radicals enter the RO_x (= OH + HO₂ + RO₂) cycle (Fig. 12 and 413 Tables 4, S2 and S3 in the Supplement). In the cycle, the transfer among OH, HO₂ 414 and RO₂ radicals oxidizes VOCs and converts NO to NO₂, accomplishing major 415 oxidation processes. The OH, HO2 and RO2 radicals are eliminated by the 416 termination reactions, ultimately leading to the formation and deposition of reservoir 417

418 species (e.g. HNO_3 , organic acid, PANs, and H_2O_2).

For case R, the reaction of HO₂ + NO was the major source of OH [2.78 ppb h^{-1} 419 (81.73% of the total daytime average production rate of OH) in Beijing, 0.73 ppb h^{-1} 420 (67.09%) in Shanghai, and 1.75 ppb h⁻¹ (71.54\%) in Guangzhoul (Fig. 12a and Table 421 4). The second largest source of OH was the photolysis of O_3 [0.47 ppb h⁻¹ (13.68%) 422 in Beijing, 0.31 ppb h^{-1} (28.17%) in Shanghai, and 0.62 ppb h^{-1} (25.27%) in 423 Guangzhou] (Table 4). OH radicals were removed mainly through the reaction of 424 $OH + NO_2$ [1.12 ppb h⁻¹ (39.31% of the total daytime average loss rate of OH) in 425 Beijing, 0.47 ppb h^{-1} (46.63%) in Shanghai, and 0.77 ppb h^{-1} (38.33%) in 426 Guangzhou] (Table 4), whereas those were converted to HO₂ mainly via the reaction 427 of OH + CO [0.79 ppb h^{-1} (27.65%) in Beijing, 0.20 ppb h^{-1} (19.97%) in Shanghai, 428 and 0.58 ppb h^{-1} (28.67%) in Guangzhou] (Table 4). The total daytime average 429 conversion rate of OH to HO₂ was 0.40–1.35 ppb h^{-1} , and that of OH to RO₂ was 430 0.21–0.69 ppb h^{-1} in Beijing, Shanghai and Guangzhou (Fig. 12a). For HO₂, the 431 predominant production pathways were the reactions of $OH + CO [0.79 \text{ ppb } \text{h}^{-1}]$ 432 (33.42%) in Beijing, 0.20 ppb h⁻¹ (28.27\%) in Shanghai, and 0.58 ppb h⁻¹ (38.26\%) 433 in Guangzhou] and CH₃O₂ + NO [0.54 ppb h^{-1} (23.12%) in Beijing, 0.16 ppb h^{-1} 434 (22.53%) in Shanghai, and 0.33 ppb h^{-1} (21.75%) in Guangzhou] and the photolysis 435 of formaldehyde (HCHO) [0.24 ppb h^{-1} (10.34%) in Beijing, 0.09 ppb h^{-1} (11.97%) 436 in Shanghai, and 0.11 ppb h^{-1} (7.42%) in Guangzhou] (Table S2). HO₂ radicals were 437 consumed primarily via the reaction of HO₂ + NO [2.78 ppb h^{-1} (99.34%) in Beijing, 438 0.73 ppb h^{-1} (99.61%) in Shanghai, and 1.75 ppb h $^{-1}$ (98.29%) in Guangzhoul (Table 439

S2). RO_2 radicals were formed mainly from the reactions of OH + OLET (terminal 440 olefin carbons)/OLEI (internal olefin carbons) [0.19 ppb h^{-1} (22.45%) in Beijing, 441 0.05 ppb h^{-1} (21.07%) in Shanghai, and 0.06 ppb h^{-1} (14.88%) in Guangzhou], OH + 442 ETH (ethene) [0.16 ppb h^{-1} (18.36%) in Beijing, 0.03 ppb h^{-1} (11.91%) in Shanghai, 443 and 0.04 ppb h^{-1} (10.24%) in Guangzhou], OH + methane (CH₄) [0.10 ppb h^{-1} 444 (12.09%) in Beijing, 0.06 ppb h^{-1} (22.44%) in Shanghai, and 0.14 ppb h^{-1} (33.97%) 445 in Guangzhou], and OH + AONE (acetone) [0.09 ppb h^{-1} (10.76%) in Beijing, 0.02 446 ppb h^{-1} (7.09%) in Shanghai, and 0.05 ppb h^{-1} (11.24%) in Guangzhou]. RO₂ 447 radicals were consumed primarily via the reaction of $CH_3O_2 + NO [0.54 \text{ ppb h}^{-1}]$ 448 (94.56%) in Beijing, 0.16 ppb h^{-1} (95.28%) in Shanghai, and 0.33 ppb h^{-1} (96.07%) 449 in Guangzhou] (Table S3). 450

451 When the additional HONO sources were inserted into the WRF-Chem model (case R_p), the daytime average OH production rate was enhanced by 4.32 (= 7.10 -452 2.78) [3.86 due to the P_{unknown}] ppb h^{-1} in Beijing, 0.67 (= 1.40 - 0.73) [0.64] ppb h^{-1} 453 in Shanghai, and 0.80 (= 2.55 - 1.75) [0.68] ppb h⁻¹ in Guangzhou via the reaction 454 of HO₂ + NO, and by 1.86 (= 1.86 - 0) [1.86] ppb h⁻¹ in Beijing, 0.50 (= 0.50 - 0) 455 [0.50] ppb h⁻¹ in Shanghai, and 0.49 (= 0.49 - 0) [0.47] ppb h⁻¹ in Guangzhou via 456 the photolysis of HONO, respectively (Table 4). The enhancements of the daytime 457 average OH production rate due to the photolysis of HONO were comparable to or 458 lower than the 2.20 ppb h^{-1} obtained by Liu et al. (2012). The daytime average OH 459 loss rate was increased by 2.03 (= 3.15 - 1.12) [1.92 due to the P_{unknown}] ppb h⁻¹ in 460 Beijing, 0.58 (= 1.05 - 0.47) [0.55] ppb h⁻¹ in Shanghai, and 0.65 (= 1.42 - 0.77) 461

462	[0.58] ppb h^{-1} in Guangzhou via the reaction of OH + NO ₂ , and by 1.78 (= 2.57 -
463	0.79) [1.64] ppb h^{-1} in Beijing, 0.31 (= 0.51 - 0.20) [0.28] ppb h^{-1} in Shanghai, and
464	0.42 (= $1.00 - 0.58$) [0.36] ppb h ⁻¹ in Guangzhou via the reaction of OH + CO,
465	respectively (Table 4). Similarly, the daytime average HO ₂ production rate was
466	increased by 0.31 [0.28 due to the $P_{unknown}$] to 1.78 [1.64] ppb h^{-1} in Beijing,
467	Shanghai and Guangzhou via the reaction of $OH + CO$, and by 0.63 (= 1.17 - 0.54)
468	[0.59] ppb h ⁻¹ in Beijing, 0.10 (= 0.26 - 0.16) [0.09] ppb h ⁻¹ in Shanghai, and 0.19
469	(= 0.52 - 0.33) [0.17] ppb h^{-1} in Guangzhou via the reaction of CH ₃ O ₂ + NO;
470	whereas, the daytime average HO_2 loss rate was enhanced by 0.67 [0.61 due to the
471	$P_{unknown}$] to 4.32 [4.27] ppb h^{-1} in Beijing, Shanghai and Guangzhou via the reaction
472	of $HO_2 + NO$ (Table S2). The additional HONO sources also led to an increase of
473	0.06 = 0.11 - 0.05 [0.04 due to the P _{unknown}] to 0.35 (= 0.54 - 0.19) [0.28] ppb h ⁻¹
474	via the reaction of OH + OLET/OLEI, 0.04 (= 0.07 - 0.03) [0.03] to 0.32 (= 0.48 -
475	0.16) [0.28] ppb h^{-1} via the reaction of OH + ETH, 0.06 (= 0.12 - 0.06) [0.06] to
476	$0.16 (= 0.26 - 0.10) [0.15] \text{ ppb h}^{-1}$ via the reaction of OH + CH ₄ , and 0.03 (= 0.05 -
477	0.02) [0.03] to 0.23 (= $0.32 - 0.09$) [0.21] ppb h ⁻¹ via the reaction of OH + AONE in
478	the daytime average RO_2 production rate, and 0.10 [0.09 due to the $P_{unknown}$] to 0.63
479	[0.59] ppb h^{-1} via the reaction of CH ₃ O ₂ + NO in the daytime average RO ₂ loss rate
480	in Beijing, Shanghai and Guangzhou (Table <mark>S3</mark>).
481	Overall, the net daytime production rate of RO_x was increased to 3.48 (= 2.56 +

0.71 + 0.21 [2.06 due to the P_{unknown}] from 1.20 (= 0.60 + 0.43 + 0.17) ppb h⁻¹ in

in Shanghai, and 1.52 = (1.21 + 0.26 + 0.05) = [0.58] from 0.92 = (0.68 + 0.20 + 0.04)484 ppb h^{-1} in Guangzhou (Fig. 12) due to the additional HONO sources, indicating that 485 the RO_x source was mainly from OH production, especially via the photolysis of 486 HONO (Tables 4, S2 and S3). This result is different from the conclusion of Liu et al. 487 (2012) that the photolysis of HONO and oxygenated VOCs is the largest RO_x source. 488 One of the primary reasons for this is the underestimation of anthropogenic VOCs 489 (Wang et al., 2014). For Beijing, the net production rate of RO_x was 3.48 ppb h⁻¹, 490 lower than the 6.60 ppb h^{-1} from the field studies of Liu et al. (2012). Our results 491 reconfirmed the view of Ma et al. (2012) that the North China Plain acts as an 492 oxidation pool. The additional HONO sources produced an increase in the net loss 493 rate of RO_x from 1.25 (= 1.23 + 0.01 + 0.01) to 3.28 (3.24+0.03+0.01) [1.96 due to 494 the P_{unknown}] ppb h^{-1} in Beijing, 0.53 (= 0.51 + 0.01 + 0.01) to 1.09 (= 1.07 + 0.01 + 0.01) 495 0.01) [0.54] ppb h^{-1} in Shanghai, and 0.85 (= 0.82 + 0.02 + 0.01) to 1.51 (= 1.47 + 496 0.03 + 0.01) [0.59] ppb h⁻¹ in Guangzhou (Fig. 12). 497

498 **4. Conclusions**

The relationship between the $P_{unknown}$, NO₂ mixing ratios and J(NO₂) was investigated using available data from 13 field studies across the globe. The formula $P_{unknown} \approx 19.60[NO_2] \cdot J(NO_2)$ was obtained, and then the additional HONO sources (i.e., the $P_{unknown}$, HONO emissions and nighttime hydrolysis conversion of NO₂ on aerosols) were inserted into the WRF-Chem model, to assess the $P_{unknown}$ impacts on the concentrations and budgets of HONO and RO_x in the coastal regions of China. The results showed that: 506 (1) The additional HONO sources led to significant improvements in the507 simulations of HONO and OH, especially in the daytime.

508 (2) Elevated daytime average $P_{unknown}$ values were found in the coastal regions 509 of China, reaching 2.5 ppb h⁻¹ in the BTH region, 2.0 ppb h⁻¹ in the YRD region, 510 and 1.2 ppb h⁻¹ in the PRD region.

(3) When the additional HONO sources were considered, nighttime HONO was produced primarily via Reaction (R4) (0.20–1.42 ppb h^{-1} in Beijing, Shanghai and Guangzhou). Simulated P_{unknown} values lay between 0.42 and 2.98 ppb h^{-1} in Beijing, between 0.18 and 2.58 ppb h^{-1} in Shanghai, and between 0.06 and 1.66 ppb h^{-1} in Guangzhou. HONO emissions contributed 0.04–0.62 ppb h^{-1} to HONO production.

(4) The additional HONO sources substantially enhanced the production and 516 517 loss rates of HONO. The maximum production rate of HONO was increased to 4.70 [1.44 due to the $P_{unknown}$] from 0.69 ppb h⁻¹ in Beijing, 4.25 [3.13] from 1.20 ppb h⁻¹ 518 in Shanghai, and 1.58 [0.40] from 0.72 ppb h^{-1} in Guangzhou via the reaction of OH 519 and NO in the morning; whereas, the maximum loss rate of HONO was increased to 520 5.82 [1.97] from 0.62 ppb h^{-1} in Beijing, 5.40 [1.44] from 1.09 ppb h^{-1} in Shanghai, 521 and 2.61 [1.18] from 0.65 ppb h^{-1} in Guangzhou via the photolysis of HONO. Dry 522 deposition of HONO contributed 0.28-0.45 ppb h⁻¹ to the loss rate of HONO, 523 approximately equivalent to the contribution of HONO emissions, emphasizing the 524 importance of dry deposition of HONO in high NO_x emission areas. 525

(5) The P_{unknown} produced a 60–210% enhancement of OH, a 60–250%
enhancement of HO₂, and a 60–180% enhancement of RO₂ near the ground in the

67

major cities of the coastal regions of China. Vertically, the $P_{unknown}$ enhanced the daytime meridional-mean mixing ratios of OH, HO₂ and RO₂ by 5–38, 5–47 and 5–48%, respectively, within 1000 m above the ground.

(6) When the additional HONO sources were added, the photolysis of HONO 531 became the second important source of OH in Beijing and Guangzhou before 10:00 532 LST, and in Shanghai before 12:00 LST, with a maximum of 3.72 [3.06 due to the 533 $P_{unknown}$] ppb h⁻¹ in Beijing, 0.89 [0.62] ppb h⁻¹ in Shanghai, and 0.97 [0.78] ppb h⁻¹ 534 in Guangzhou; whereas, the reaction of $HO_2 + NO$ was the most important source of 535 OH, dominated in Beijing and Guangzhou after 10:00 LST and in Shanghai after 536 12:00 LST, with a maximum of 9.38 [7.23] ppb h^{-1} in Beijing, 2.63 [1.15] ppb h^{-1} in 537 Shanghai, and 4.88 [1.43] ppb h^{-1} in Guangzhou. 538

539 (7) The additional HONO sources, especially the Punknown, accelerated the whole RO_x cycle. The daytime average OH production rates were enhanced by 4.32 [3.86 540 due to the $P_{unknown}$] ppb h⁻¹ in Beijing, 0.67 [0.64] ppb h⁻¹ in Shanghai, and 0.80 541 [0.68] ppb h⁻¹ in Guangzhou via the reaction of HO₂ + NO, and by 1.86 [1.86] ppb 542 h^{-1} in Beijing, 0.50 [0.50] ppb h^{-1} in Shanghai, and 0.49 [0.47] ppb h^{-1} in 543 Guangzhou via the photolysis of HONO. The daytime average OH loss rates were 544 increased by 2.03 [1.92 due to the $P_{unknown}$] ppb h⁻¹ in Beijing, 0.58 [0.55] ppb h⁻¹ in 545 Shanghai, and 0.65 [0.58] ppb h^{-1} in Guangzhou via the reaction of OH + NO₂, and 546 by 1.78 [1.64] ppb h^{-1} in Beijing, 0.31 [0.28] ppb h^{-1} in Shanghai, and 0.42 [0.36] 547 ppb h^{-1} in Guangzhou via the reaction of OH + CO. 548

549 (8) The additional HONO sources produced an increase of 0.31 [0.28 due to the

 $P_{unknown}$] to 1.78 [1.64] ppb h⁻¹ via the reaction of OH + CO and 0.10 [0.09] to 0.63 550 [0.59] ppb h^{-1} via the reaction of CH₃O₂ + NO in the daytime average HO₂ 551 production rate, and 0.67 [0.61] to 4.32 [4.27] ppb h^{-1} via the reaction of HO₂ + NO 552 in the daytime average HO₂ loss rate in Beijing, Shanghai and Guangzhou. Similarly, 553 the additional HONO sources led to an enhancement of 0.06 [0.04] to 0.35 [0.28] 554 ppb h^{-1} via the reaction of OH + OLET/OLEI, 0.04 [0.03] to 0.32 [0.28] ppb h^{-1} via 555 the reaction of OH + ETH, 0.06 [0.06] to 0.16 [0.15] ppb h^{-1} via the reaction of OH 556 + CH₄, and 0.03 [0.03] to 0.23 [0.21] ppb h^{-1} via the reaction of OH + AONE in the 557 daytime average RO₂ production rate, and 0.10 [0.09] to 0.63 [0.59] ppb h^{-1} via the 558 reaction of CH_3O_2 + NO in the daytime average RO_2 loss rate in Beijing, Shanghai 559 and Guangzhou. 560

Overall, the above results suggest that the $P_{unknown}$ significantly enhances the atmospheric oxidation capacity in the coastal regions of China by increasing RO_x concentrations and accelerating RO_x cycles, and could lead to considerable increases in concentrations of inorganic aerosols and secondary organic aerosols and further aggravate haze events in these regions.

566

567 Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (41175105, 41405121), a Key Project of the Chinese Academy of Sciences (XDB05030301), and the Carbon and Nitrogen Cycle Project of the Institute of Atmospheric Physics, Chinese Academy of Sciences, and the Beijing Municipal 572 Natural Science Foundation (8144054).

573

578

574 **References**

Acker, K., Möller, D.: Corrigendum to: Atmospheric variation of nitrous acid at different sites in Europe. Environmental Chemistry, 4(5), 364-364, 2007.

577 Acker, K., Möller, D., Wieprecht, W., Meixner, F. X., Bohn, B., Gilge, S.,

Plass-Dülmer, C., and Berresheim, H.: Strong daytime production of OH from

- 579 HNO₂ at a rural mountain site, Geophys. Res. Lett., 33(2), doi:
 580 10.1029/2005GL024643, 2006.
- Alicke, B., Platt, U., and Stutz, J.: Impact of nitrous acid photolysis on the total
 hydroxyl radical budget during the limitation of oxidant production/Pianura
 padana produzione di ozono study in Milan, J. Geophys. Res. –Atmos.,
 107(D22): LOP9-1 LOP9-17, doi: 10.1029/2000JD000075, 2002.
- 585 Amedro, D., Parker, A. E., Schoemaecker, C., Fittschen, C.: Direct observation of
- 586 OH radicals after 565nm multi-photon excitation of NO_2 in the presence of H_2O .
- 587 Chemical Physics Letters, 513(1), 12-16, 2011.
- Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet, D., Gäggeler,
- 589 H., Baltensperger, U.: Heterogeneous production of nitrous acid on soot in
 590 polluted air masses. Nature, 395(6698), 157-160, 1998.
- 591 An, J., Li, Y., Wang, F., and Xie, P.: Impacts of photoexcited NO_2 chemistry and 592 heterogeneous reactions on concentrations of O_3 and NO_y in Beijing, Tianjin 593 and Hebei province of China, Air Quality-Models and Applications, Prof.

- 594 Dragana Popovic (Ed.), InTech, ISBN: 978-953-307-307-1, doi: 10.5772/16858,
 595 2011.
- An, J., Li, Y., Chen, Y., Li, J., Qu, Y., Tang, Y.: Enhancements of major aerosol
 components due to additional HONO sources in the North China Plain and
 implications for visibility and haze. Advances in Atmospheric Science, 30,
 57-66, 2013.
- Atkinson, R., Aschmann, S. M.: Hydroxyl radical production from the gas-phase
 reactions of ozone with a series of alkenes under atmospheric
 conditions. Environmental science & technology, 27(7), 1357-1363, 1993.
- Carr, S., Heard, D., Blitz, M.: Comment on "Atmospheric Hydroxyl Radical
 Production from Electronically Excited NO₂ and H₂O". Science, 324, 5925,
 doi:10.1126/science.1166669, 2009.
- 606 Crutzen, P. J., Zimmermann, P. H.: The changing photochemistry of the 607 troposphere. Tellus B, 43(4), 136-151, 1991.
- 608 Czader, B. H., Rappenglück, B., Percell, P., Byun, D. W., Ngan, F., Kim, S.:
- Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006. Atmospheric Chemistry and Physics, 12(15), 611 6939-6951, 2012.
- Dentener, F. J., Crutzen, P. J.: Reaction of N₂O₅ on tropospheric aerosols: Impact on
- the global distributions of NO_x , O_3 , and OH. Journal of Geophysical Research:
- 614 Atmospheres (1984–2012), 98(D4), 7149-7163, 1993.
- Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G.,

616	Gramsch, E., Rickard, A. R., Pilling, M. J., Kleffmann, J.: Oxidation capacity
617	of the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 9(6),
618	2257-2273, 2009.
619	Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D.,
620	Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X.,
621	Tyndall, G., Wiedinmyer, C., Baughcum, S. L., Kloster, S.: Description and
622	evaluation of the Model for Ozone and Related chemical Tracers, version 4
623	(MOZART-4). Geoscientific Model Development, 3(1), 43-67, 2010.
624	Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E.
625	G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and
626	aerosol direct radiative forcing in the vicinity of Houston using a fully coupled
627	meteorology chemistry aerosol model, J. Geophys. ResAtmos., 111(D21), doi:
628	10.1029/2005JD006721, 2006.
629	Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., Ramazan, K. A.:
630	The heterogeneous hydrolysis of NO_2 in laboratory systems and in outdoor and
631	indoor atmospheres: An integrated mechanism. Physical Chemistry Chemical
632	Physics, 5(2), 223-242, 2003.
633	Fried, A., McKeen, S., Sewell, S., Harder, J., Henry, B., Goldan, P., Kuster, W.,
634	William, E., Baumann, K., Shett, R., Cantrell, C.: Photochemistry of
635	formaldehyde during the 1993 Tropospheric OH Photochemistry
636	Experiment. Journal of Geophysical Research: Atmospheres

(1984–2012), 102(D5), 6283-6296, 1997. 637

72
638	George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., Ammann, M.:
639	Photoenhanced uptake of gaseous NO2 on solid organic compounds: a
640	photochemical source of HONO?. Faraday discussions, 130, 195-210, 2005.
641	Gonçalves, M., Dabdub, D., Chang, W. L., Jorba, O., Baldasano, J. M.: Impact of
642	HONO sources on the performance of mesoscale air quality models.
643	Atmospheric Environment, 54, 168-176, 2012.
644	Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W.
645	C., Eder, B.: Fully coupled "online" chemistry within the WRF model.
646	Atmospheric Environment, 39(37), 6957-6975, 2005.
647	Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., Fischer, H.,
648	Keronen, P., Kubistin, D., Nölscher, A. C., Oswald, R., Paasonen, P., Petäjä, T.,
649	Regelin, E., Sander, R., Sinha, V., Sipilä, M., Taraborrelli, D., Tatum Ernest, C.,
650	Williams, J., Lelieveld, J., Harder, H.: Observation and modeling of HO_x
651	radicals in a boreal forest. Atmospheric Chemistry and Physics, 14, 8723-8747,
652	2014.
653	Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone. Atmospheric

654 Environment, 34(12), 2131-2159, 2000.

655 Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Tanimoto, H., Kato, S., Suthawaree. J.,

- Inomata, S., Taketani, F., Okuzawa, K., Kawamura, K., Akimoto, H., Wang, Z.
- 657 F.: Rates and regimes of photochemical ozone production over Central East
- 658 China in June 2006: a box model analysis using comprehensive measurements
- of ozone precursors. Atmospheric Chemistry and Physics, 9, 7711–7723, 2009.

660	Kerbrat, M., Legrand, M., Preunkert, S., Gall é, H., and Kleffmann, J.: Nitrous acid
661	at Concordia (inland site) and Dumont d'Urville (coastal site), East Antarctica,
662	J. Geophys. Res Atmos., 117(D8), doi: 10.1029/2011JD017149, 2012.
663	Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp,
664	L., Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid:
665	a major source of OH radicals in a forest, J. Geophys. Res. Lett., 32(5), doi:
666	10.1029/2005GL022524, 2005.
667	Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp,
668	L., Schlosser, E., Siese, M., Wahner, A.: Daytime formation of nitrous acid: A
669	major source of OH radicals in a forest. Geophysical Research Letters, 32(5),
670	2005.
671	Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., Molina1, L. T.:
672	Impacts of HONO sources on the photochemistry in Mexico City during the
673	MCMA-2006/MILAGO Campaign. Atmospheric Chemistry and Physics, 10,
674	6551–6567, 2010.

- Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang,
 H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Fu,
 J. S., Streets, D. G., Jang, C. J.: Process analysis of regional ozone formation
 over the Yangtze River Delta, China using the Community Multi-scale Air
 Quality modeling system. Atmospheric Chemistry and Physics, 12,
 10971-10987, 2012.
- 681 Li, S., J. Matthews, and A. Sinha.: Atmospheric hydroxyl radical production from

682	electronically excited NO ₂ and H ₂ O. Science, 319, 1657–1660, 2008.
683	Li, X., Brauers, T., Häeler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F.,
684	Lou, S., Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R.
685	M., Su, H., Nowak, A., Wiedensohler, A., Takegawa, N., Shao, M., Wahner, A.:
686	Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in
687	Southern China. Atmospheric Chemistry and Physics, 12(3), 1497-1513, 2012.
688	Li, Y., An, J., Min, M., Zhang, W., Wang, F., Xie, P.: Impacts of HONO sources on
689	the air quality in Beijing, Tianjin and Hebei Province of China. Atmospheric
690	Environment, 45(27), 4735-4744, 2011.
691	Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Sticke, R., Liao, J., Shao, M., Zhu,
692	T., Zeng, L., Amoroso, A., Costabile, F., Chang, CC., Liu, SC.: Summertime
693	photochemistry during CARE Beijing-2007: RO_x budgets and O_3 formation.
694	Atmospheric Chemistry and Physics, 12, 7737–7752, 2012.
695	Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C.,
696	Haseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M.,
697	Zeng, L. M., Wahner, A., Zhang, Y. H., Hofzumahaus, A.: Observation and
698	modelling of OH and HO_2 concentrations in the Pearl River Delta 2006: a
699	missing OH source in a VOC rich atmosphere. Atmospheric Chemistry and
700	Physics, 12(3), 1541-1569, 2012.
701	Ma, J. Z., Wang, W., Chen, Y., Liu, H. J., Yan, P., Ding, G. A., Wang, M. L., Sun, J.,

the lower atmosphere over Huabei, China. Atmospheric Chemistry and Physics, 703

702

75

Lelieveld, J.: The IPAC-NC field campaign: a pollution and oxidization pool in

704 12, 3883–3908, 2012.

708

C - 1 - --- 1-

705	Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M.,
706	Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A.,
707	Furger, M., Dupont, J. C., Haeffelin, M., Doussin, J. F.: Study of the unknown

п.

summer and winter field campaigns. Atmospheric Chemistry and Physics, 14(6),
2805-2822, 2014.

HONO daytime source at a European suburban site during the MEGAPOLI

711 Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson,

- D. J., George, C.: Light changes the atmospheric reactivity of soot. Proceedings
 of the National Academy of Sciences, 107(15), 6605-6609, 2010.
- Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C.,
- 715 Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser, A.,
- Sörgel, M., Pöschl, U., Hoffmann, T., Andreae, M.O., Meixner, F.X., Trebs, I.:
- HONO emissions from soil bacteria as a major source of atmospheric reactive
 nitrogen. Science 341, 1233-1235, 2013.
- Paulson, S. E., Sen, A. D., Liu, P., Fenske, J. D., Fox, M. J.: Evidence for formation
 of OH radicals from the reaction of O₃ with alkenes in the gas
 phase. Geophysical research letters, 24(24), 3193-3196, 1997.
- 722 Platt, U., Perner, D., Harris, G. W., Winer, A. M., Pitts, J. N.: Observations of
- nitrous acid in an urban atmosphere by differential optical absorption.
 Nature 285, 312-314 (29 May 1980); doi: 10.1038/285312a0, 1980.
- 725 Qin, M., Xie, P. H., Liu, W. Q., Li, A., Dou, K., Fang, W., Liu, J., Zhang, W. J.:

Observation of atmospheric nitrous acid with DOAS in Beijing, China. Journal
of Environmental Sciences, 18(1), 69-75, 2006.
Qin, M., Xie, P., Su, H., Gu, J., Peng, F., Li, S., Zengb, L., Liua, J., Liua W., Zhang,
Y.: An observational study of the HONO–NO₂ coupling at an urban site in
Guangzhou City, South China. Atmospheric Environment, 43(36), 5731-5742,

731 2009.

- Ren, X., Gao, H., Zhou, X., Crounse, J. D., Wennberg, P. O., Browne, E. C.,
 LaFranchi, B. W., Cohen, R. C., McKay, M., Goldstein, A. H., Mao, J.:
 Measurement of atmospheric nitrous acid at Bodgett Forest during
 BEARPEX2007. Atmospheric Chemistry and Physics, 10(13), 6283-6294,
 2010.
- 737 Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brunea,
- W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., Gao, H.: OH and HO₂
- Chemistry in the urban atmosphere of New York City. AtmosphericEnvironment, 37(26), 3639-3651, 2003.
- 741 Ren, X., Sanders, J. E., Rajendran, A., Weber, R. J., Goldstein, A.H., Pusede, S. E.,
- 742 Browne, E. C., Min, K.-E., and Cohen, R.C.: A relaxed eddy accumulation
- system for measuring vertical fluxes of nitrous acid, Atmos. Meas. Tech., 4,
- 744 2093–2103, doi:10.5194/amt-4-2093-2011, 2011.
- Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F. J., Wahner, A., Kleffmann,
 J.: Characterisation of the photolytic HONO-source in the atmosphere
 simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 5(8),

748 2189-2201, 2005.

- 749 Sörgel, M., Regelin, E., Bozem, H., Diesch, J. M., Drewnick, F., Fischer, H., Harder,
- H., Held, A., Hosaynali-Beygi, Z., Martinez, M., Zetzsch, C.: Quantification of
- the unknown HONO daytime source and its relation to NO_2 . Atmospheric
- 752 Chemistry and Physics, 11(20), 10433-10447, 2011.
- Sarwar, G., Roselle, S. J., Mathur, R., Appel, W., Dennis, R. L., Vogel, B.: A
 comparison of CMAQ HONO predictions with observations from the Northeast
 Oxidant and Particle Study. Atmospheric Environment, 42(23), 5760-5770,
 2008.
- Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., Hu, M.: Occurrence of
 atmospheric nitrous acid in the urban area of Beijing (China).Science of the
 Total Environment, 447, 210-224, 2013.
- Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., George, C.:
 Photosensitized reduction of nitrogen dioxide on humic acid as a source of
 nitrous acid. Nature, 440(7081), 195-198, 2006.
- Stemmler, K., Ndour, M., Elshorbany, Y., Kleffmann, J., D'anna, B., George,
 C., Bohn, B., Ammann, M.: Light induced conversion of nitrogen dioxide into
 nitrous acid on submicron humic acid aerosol. Atmospheric Chemistry and
 Physics, 7(16), 4237-4248, 2007.
- Stone, D., Whalley, L. K., Heard, D. E.: Tropospheric OH and HO₂ radicals: field
 measurements and model comparisons. Chemical Society Reviews, 41,
 6348-6404, 2012.

770	Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., Andreae, M.
771	O., Cheng, P., Zhang, Y., Pöschl, U.: Soil nitrite as a source of atmospheric
772	HONO and OH radicals. Science, 333(6049), 1616-1618, 2011.
773	Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang,
774	Y. H., and Wiedensohler, A.: Nitrous acid (HONO) and its daytime sources at a
775	rural site during the 2004 PRIDE-PRD experiment in China, J. Geophys. Res.
776	-Atmos., 113(D14), doi: 10.1029/2007JD009060, 2008.
777	Tang, Y., An, J., Li, Y., Wang, F.: Uncertainty in the uptake coefficient for HONO
778	formation on soot and its impacts on concentrations of major chemical
779	components in the Beijing-Tianjin-Hebei region. Atmospheric Environment,
780	84, 163-171, 2014.
781	VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J.,
782	Pszenny, A. A. P., Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R., Wagner,
783	N. L., Riedel, T. P., Thornton, J. A., Wolfe, D. E., Dubé, W. P., Öztürk, F.,
784	Brock, C. A., Grossberg, N., Lefer, B., Lerner, B. Middlebrook, A. M., Roberts,
785	J. M.: Understanding the role of the ground surface in HONO vertical structure:
786	High resolution vertical profiles during NACHTT-11. Journal of Geophysical
787	Research: Atmospheres, 118, 10,155–10,171, doi:10.1002/jgrd.50721, 2013.
788	Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Hornbrook,
789	R. S., Knapp, D., Kosciuch, E., Mauldin, R. L., McGrath, J. A., Montzka, D.,
790	Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R.
791	M., Liao, J., Huey, L. G., and Kleffmann, J.: Nitrous acid (HONO) during polar

792	spring in Barrow, Alaska: a net source of OH radicals?, J. Geophys. Res.
793	-Atmos., 116(D14), doi: 10.1029/2011JD016643, 2011.
794	Wang, F., An, J., Li, Y., Tang, Y., Lin, J., Qu, Y., Cheng, Y., Zhang, B., Zhai, J.:
795	Impacts of Uncertainty in AVOC Emissions on the Summer RO _x Budget and
796	Ozone Production Rate in the Three Most Rapidly-Developing Economic
797	Growth Regions of China. Advances in Atmospheric Sciences, 31, 1331–1342,
798	2014.
799	Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu,
800	M., Russell, A. G.: Process analysis and sensitivity study of regional ozone
801	formation over the Pearl River Delta, China, during the PRIDE-PRD2004
802	campaign using the Community Multiscale Air Quality modeling
803	system. Atmospheric Chemistry and Physics, 10(9), 4423-4437, 2010.
804	Wong, K. W., Oh, H. J., Lefer, B. L., Rappenglück, B., Stutz, J.: Vertical profiles of
805	nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmospheric
806	Chemistry and Physics, 11(8), 3595-3609, 2011.
807	Wong, K. W., Tsai, C., Lefer, B., Grossberg, N., Stutz, J.: Modeling of daytime
808	HONO vertical gradients during SHARP 2009. Atmospheric Chemistry and
809	Physics, 13(7), 3587-3601, 2013.

- 810 Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren,
- 811 X., Luke, W., Stutz, J.: Daytime HONO vertical gradients during SHARP 2009
- in Houston, TX. Atmospheric Chemistry and Physics, 12(2), 635-652, 2012.
- 813 Wu, J., Xu, Z., Xue, L., Wang, T.: Daytime nitrous acid at a polluted suburban site

- in Hong Kong: Indication of heterogeneous production on aerosol. Proceedings
- of 12th international conference on atmospheric sciences and applications to air
 quality, Seoul, Korea, June 3-5, 2013, p. 52, 2013.
- Zaveri, R. A., Peters, L. K.: A new lumped structure photochemical mechanism for
 large scale applications. Journal of Geophysical Research: Atmospheres
 (1984–2012), 104(D23), 30387-30415, 1999.
- Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for simulating
 aerosol interactions and chemistry (MOSAIC), J. Geophys. Res. –Atmos.,
 113(D13), doi: 10.1029/2007JD008782, 2008.
- Zhang, B., Tao, F.: Direct homogeneous nucleation of NO₂, H₂O, and NH₃ for the
 production of ammonium nitrate particles and HONO gas. Chemical Physics
 Letters, 489, 4-6, 143, 2010.
- Zhang, H., Li, J., Ying, Q., Yu, J. Z., Wu, D., Cheng, Y., Kebin Hed, Jiang, J.:
 Source apportionment of PM_{2.5} nitrate and sulfate in China using a
 source-oriented chemical transport model. Atmospheric Environment, 62,
 228-242, 2012.
- Zhang, N., Zhou, X., Bertman, S., Tang, D., Alaghmand, M., Shepson, P. B., Carroll,
- M. A.: Measurements of ambient HONO concentrations and vertical HONO
 flux above a northern Michigan forest canopy. Atmospheric Chemistry and
 Physics, 12(17), 8285-8296, 2012.
- Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., Klimont,
- 835 Z., Park, I., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L., Yao, Z.:

- Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric
 Chemistry and Physics, 9, 5131-5153, 2009.
- Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., and Demerjian, K:
 Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural
 site in New York State, J. Geophys. Res. –Atmos., 107(D21), ACH13-1 –
- ACH13-11, doi: 10.1029/2001JD001539, 2002a.
- Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and Schwab, J.:
 Nitric acid photolysis on surfaces in low-NO_x environments: significant
 atmospheric implications, Geophys. Res. Lett., 30(23), doi:
- 845 10.1029/2003GL018620, 2003.
- Zhou, X., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman, S. B.:
- Photochemical production of nitrous acid on glass sample manifold surface,
 Geophys. Res. Lett., 29, 26-1 26-4, doi: 10.1029/2002GL015080, 2002b.
- Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M.,
- 850 Shepson, P. B. Carroll, M. A. Griffith, S., Dusanter, S., Stevens, P. S.: Nitric
- acid photolysis on forest canopy surface as a source for tropospheric nitrousacid. Nature Geoscience, 4(7), 440-443, 2011.

Species	Case	MB (ppb)	ME (ppb)	RMSE (ppb)	NMB (%)	NME (%)	IOA
O ₃	R _p	-0.65	19.40	25.44	-2.20	66.10	0.80
	R	-6.69	17.21	25.24	-22.80	58.70	0.79
NO ₂	R _p	-9.50	17.31	21.40	-29.10	53.00	0.51
	R	-4.40	13.75	17.61	-13.50	42.10	0.57

Table 1. Model performance statistics for O₃ and NO₂ in Beijing in August 2007 and Guangzhou in July 2006.

MB: mean bias; ME: mean error; RMSE: root-mean-square error; NMB: normalized mean bias; NME: normalized mean error; IOA: index of

agreement.

Table 2. Model performance statistics for daytime (06:00–18:00 LST) and nighttime (19:00–05:00 LST) HONO in Beijing in August 2007 and

65 Guangzhou in July 2006.

Species	Case	MB (10 ⁶ molec cm ⁻³)	ME (10 ⁶ molec cm ⁻³)	RMSE (10 ⁶ molec cm ⁻³)	NMB (%)	NME (%)	IOA	CC
	R _p	-0.54	0.98	1.41	-24.30	44.50	0.73	0.57
HONO _{daytime}	$\mathbf{R}_{\mathrm{wop}}$	-1.37	1.41	1.83	-62.00	64.10	0.64	0.63
(Deijing)	R	-2.07	2.07	2.58	-93.80	93.80	0.46	0.31
-	R _p	-0.73	0.84	1.09	-42.20	49.10	0.77	0.74
HONO _{nighttime} (Beijing)	$\mathbf{R}_{\mathrm{wop}}$	-0.82	0.91	1.16	-47.90	53.20	0.75	0.75
× 5 C/	R	-1.68	1.68	2.06	-97.90	97.90	0.46	0.76
	R _p	-0.38	0.43	0.58	-61.20	69.60	0.58	0.56
HONO _{daytime} (Guangzhou)	$\mathbf{R}_{\mathrm{wop}}$	-0.48	0.49	0.65	-76.50	77.70	0.55	0.56
	R	-0.60	0.60	0.80	-95.60	96.20	0.43	-0.30
-	R _p	-0.42	0.75	1.05	-32.90	58.50	0.66	0.43
HONO _{nighttime} (Guangzhou)	$\mathbf{R}_{\mathrm{wop}}$	-0.49	0.83	1.15	-38.40	64.30	0.63	0.38
	R	-1.25	1.25	1.59	-97.20	97.20	0.45	-0.01

866 CC: correlation coefficient.

Species	Case	MB (10 ⁶ molec cm ⁻³)	ME (10 ⁶ molec cm ⁻³)	RMSE $(10^6 \text{ molec cm}^{-3})$	NMB (%)	NME (%)	IOA	CC
	R_p	-1.35	4.37	6.22	-17.60	57.00	0.84	0.75
OH	R_{wop}	-3.00	4.58	6.25	-112.20	126.50	0.81	0.72
	R	-3.36	4.85	6.55	-123.00	136.60	0.79	0.70
	R _p	-3.80	3.81	5.59	-78.50	78.60	0.61	0.66
HO_2	R_{wop}	-4.19	4.20	6.14	-86.60	86.70	0.54	0.59
	R	-4.22	4.23	6.16	-87.20	87.30	0.54	0.57

Table 3. Model performance statistics for OH and HO_2 in Guangzhou in July 2006.

Table 4. Daytime (06:00–18:00 LST) average OH budgets in Beijing/Shanghai/Guangzhou in August 2007.

	Case	R	Case I	R _{wop}	Case	e R _p
Reaction	Rate (ppb h^{-1})	Contribution (%)	Rate (ppb h^{-1})	Contribution (%)	Rate (ppb h^{-1})	Contribution (%)
			OH production			
HO ₂ +NO	2.778/0.732/1.748	81.73/67.09/71.54	3.242/0.760/1.871	83.74/68.00/72.02	7.101/1.402/2.553	73.34/61.95/67.55
*(HONO+hv) _{net}	//	//	//0.017	//0.66	1.855/0.497/0.489	19.16/21.98/12.93
O^1D+H_2O	0.465/0.307/0.617	13.68/28.17/25.27	0.479/0.306/0.630	12.36/27.38/24.24	0.568/0.312/0.651	5.86/13.80/17.23
O ₃ +OLET/OLEI	0.101/0.024/0.027	2.98/2.16/1.11	0.095/0.023/0.027	2.45/2.08/1.03	0.080/0.021/0.025	0.83/0.91/0.65
$(H_2O_2+hv)_{net}$	0.035/0.023/0.029	1.02/2.07/1.17	0.035/0.023/0.030	0.91/2.03/1.16	0.037/0.022/0.032	0.38/0.97/0.19
HO_2+O_3	0.009/0.001/0.014	0.28/0.07/0.59	0.010/0.001/0.015	0.26/0.06/0.58	0.026/0.001/0.019	0.27/0.05/0.51
*(HNO ₃ +hv) _{net}	0.005/0.001/0.002	0.15/0.06/0.10	0.005/0.001/0.002	0.13/0.06/0.09	0.007/0.001/0.003	0.07/0.04/0.07
ROOH+hv	0.003/0.004/0.005	0.09/0.36/0.19	0.003/0.004/0.005	0.09/0.38/0.19	0.007/0.007/0.007	0.07/0.29/0.19
O ₃ +ETH	0.002/<0.001/<0.001	0.05/0.02/0.01	0.002/<0.001/<0.001	0.04/0.02/0.01	0.001/<0.001/<0.001	0.02/0.01/0.01
HO ₂ +NO ₃	<0.001/<0.001/<0.001	<0.01/<0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
O ₃ +ISOP	<0.001/<0.001/<0.001	0.01/<0.01/<0.01	<0.001/<0.001/<0.001	0.01 / < 0.01 / < 0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
Total	3.399/1.091/2.443	100/100/100	3.873/1.118/2.598	100/100/100	9.683/2.263/3.779	100/100/100
			OH loss			
OH+NO ₂	1.116/0.474/0.770	39.31/46.63/38.33	1.225/0.501/0.844	38.11/45.86/38.86	3.146/1.045/1.424	38.08/44.29/40.76
OH+CO	0.785/0.203/0.576	27.65/19.97/28.67	0.932/0.227/0.637	29.00/20.78/29.33	2.573/0.506/1.001	31.14/21.45/28.65
OH+OLET/OLEI	0.192/0.054/0.059	6.76/5.31/2.94	0.264/0.065/0.077	8.21/5.95/3.55	0.537/0.206/0.095	6.50/8.73/2.72
OH+HCHO	0.150/0.050/0.146	5.28/4.92/7.27	0.166/0.053/0.156	5.16/4.85/7.18	0.544/0.096/0.242	6.59/4.07/6.93
OH+CH ₄	0.103/0.057/0.135	3.63/5.61/6.72	0.109/0.059/0.142	3.39/5.40/6.54	0.260/0.115/0.223	3.15/4.87/6.38
OH+ALD2/MGLY/AN OE	0.092/0.018/0.045	3.24/1.77/2.24	0.109/0.020/0.049	3.39/1.83/2.26	0.323/0.047/0.081	3.91/1.99/2.32
$OH+SO_2$	0.054/0.030/0.035	1.90/2.95/1.74	0.064/0.034/0.041	1.99/3.11/1.89	0.172/0.116/0.072	2.08/4.92/2.06

OH+XYL	0.052/0.022/0.023	1.83/2.16/1.14	0.066/0.026/0.029	2.05/2.38/1.34	0.141/0.078/0.045	1.71/3.31/1.29
OH+H ₂	0.038/0.021/0.050	1.34/2.07/2.49	0.040/0.022/0.052	1.24/2.01/2.39	0.095/0.027/0.075	1.15/1.14/2.15
OH+TOL	0.027/0.007/0.011	0.95/0.69/0.55	0.034/0.008/0.014	1.06/0.73/0.64	0.086/0.025/0.024	1.04/1.06/0.69
OH+HONO	0.003/0.003/0.005	0.11/0.30/0.25	0.006/0.004/0.007	0.19/0.37/0.32	0.069/0.023/0.032	0.84/0.97/0.92
OH+HNO _x	0.005/0.001/0.005	0.18/0.10/0.25	0.005/0.001/0.005	0.16/0.09/0.23	0.015/0.002/0.008	0.18/0.08/0.23
OH+O ₃	0.028/0.006/0.035	0.99/0.59/1.70	0.029/0.006/0.036	0.90/0.55/1.66	0.072/0.005/0.046	0.87/0.21/1.32
OH+H ₂ O ₂	0.015/0.008/0.027	0.53/0.79/1.34	0.016/0.008/0.029	0.50/0.73/1.34	0.040/0.010/0.043	0.48/0.42/1.23
OH+ETH/OPEN	0.007/0.002/0.004	0.25/0.20/0.20	0.008/0.002/0.005	0.25/0.18/0.23	0.036/0.009/0.011	0.44/0.38/0.31
OH+CH ₃ OOH/ROOH	0.010/0.011/0.014	0.35/1.08/0.70	0.011/0.012/0.014	0.34/1.10/0.64	0.022/0.020/0.022	0.27/0.85/0.63
OH+ISOP	0.019/0.004/0.002	0.67/0.39/0.10	0.020/0.004/0.003	0.62/0.37/0.14	0.017/0.007/0.003	0.21/0.30/0.09
OH+PAR	0.005/0.002/0.004	0.18/0.20/0.20	0.007/0.003/0.005	0.22/0.27/0.23	0.015/0.005/0.007	0.18/0.21/0.20
OH+ONIT/ISOPRD	0.028/0.005/0.016	0.99/0.49/0.80	0.030/0.005/0.018	0.93/0.46/0.83	0.077/0.013/0.025	0.93/0.55/0.72
$OH+C_2H_6$	0.002/0.001/0.002	0.07/0.10/0.10	0.003/0.001/0.002	0.09/0.09/0.09	0.008/0.002/0.004	0.10/0.08/0.11
OH+CH3OH/ANOL/C RES	0.002/0.001/0.002	0.07/0.10/0.10	0.002/0.001/0.002	0.06/0.09/0.09	0.007/0.002/0.003	0.08/0.08/0.09
OH+HO ₂	0.001/<0.001/0.004	0.04/0.05/0.20	0.002/<0.001/0.005	0.06/0.05/0.23	0.006/<0.001/0.008	0.07/0.02/0.23
OH+NO	0.105/0.036/0.039	3.70/3.54/1.94	0.066/0.030/	2.05/2.75/	//	//
Total	2.839/1.017/2.009	100/100/100	3.214/1.093/2.172	100/100/100	8.261/2.360/3.495	100/100/100

877 OLET: internal olefin carbons (C=C); OLEI: terminal olefin carbons (C=C); ROOH: higher organic peroxide; ETH: ethene; ISOP: isoprene;

ALD2: acetaldehyde; MGLY: methylglyoxal; ANOE: acetone; XYL: xylene; TOL: toluene; HNO_x: HNO₃ + HNO₄; OPEN: aromatic fragments;

879 PAR: paraffin carbon –C–; ONIT: organic nitrate; ISOPRD: lumped intermediate species; ANOL: ethanol; CRES: cresol and higher molar

880 weight phenols.

*The reactions of HONO+hv, H_2O_2 +hv and HNO₃+hv are reversible, "net" in the subscript means subtracting the corresponding reverse

reactions.

Fig. 2. Correlation of the unknown daytime HONO source $(P_{unknown})$ (ppb h⁻¹) with (a) NO₂ (ppb) and (b) NO₂ × J(NO₂) (ppb s⁻¹), based on the field experiment data shown in Fig. 1.

Fig. 3. Model domains used in this study. Domain 2 covers the Beijing–Tianjin–Hebei
(BTH), Yangtze River delta (YRD), and Pearl River delta (PRD) regions.

926 Fig. 4. Comparison of simulated and observed hourly-mean mixing ratios of NO₂ and

953 Fig. 6. Comparison of simulated and observed hourly-mean mixing ratios of OH and HO₂ at the Backgarden site in Guangzhou in July 2006 (Lu

954	et al., 2012).			
955				
956				
957				
958				
959				
960				
961				
962				
963				
964				
965				
966				
967				
968				

970 Fig. 7. Simulated unknown daytime HONO source (ppb h^{-1}) in the (a) BTH, (b) YRD,

and (c) PRD regions in August 2007 (BJ, Beijing; TJ, Tianjin; SJZ, Shijiazhuang; SH,

972 Shanghai; NJ, Nanjing; HZ, Hangzhou; GZ, Guangzhou; ZH, Zhuhai; SZ, Shenzhen).

Fig. 9. Daytime (06:00–18:00 LST) percentage enhancements of (a) OH, (b) HO₂, and (c) RO₂ due to the unknown daytime HONO source (case R_p – case R_{wop}) in the coastal regions of China in August 2007.

1015 Fig. 10. Daytime (06:00–18:00 LST) meridional-mean percentage enhancements of (a)

1016 OH, (b) HO₂, and (c) RO₂ due to the unknown daytime HONO source (case R_p – case

 R_{wop}) in the coastal regions of China in August 2007.

Fig. 12. Daytime (06:00–18:00 LST) average budgets of OH, HO₂ and RO₂ radicals (reaction rates, ppb h^{-1}) for cases (a) R and (b) R_p in Beijing/Shanghai/Guangzhou in August 2007.