
ACPD Detailed response to referees

We thank the reviewers for their comments. These comments helped us to relate our work to previous 
works in the field and to consider an additional learning algorithm that was designed for non-
stationarity sequences. Please find below our detailed response to the referees’ comments along with a 
summary of the changes made in the revised version.

Anonymous Referee #1

We thank reviewer #1 for a very detailed and informative review.

Strong similarities to past work
It appears the authors were unaware of prior work, but unfortunately this submission cannot be 
published without major revision, because both the proposed problem (using learning algorithms to 
compute weightings to improve the predictions of the multi-model ensemble of AOGCMs) and the type
of machine learning approach ("sequential learning algorithms”) were already presented in previous 
work.
• C. Monteleoni, G. Schmidt, and S. Saroha. Tracking Climate Models. In NASA Conference on 
Intelligent Data Understanding (CIDU), pages 1–15, 2010.
• C. Monteleoni, G. Schmidt, S. Saroha, and E. Asplund. Tracking Climate Models. In Journal of 
Statistical Analysis and Data Mining: Special Issue: Best of CIDU 2010. Volume 4, Issue 4, pages 72–
392, August 2011.
• S. McQuade and C. Monteleoni. MRF-Based Spatial Expert Tracking of the Multi-Model Ensemble. 
In New Approaches for Pattern Recognition and Change Detection, session at American Geophysical 
Union (AGU) Fall Meeting, 2013.
The first 2 are the most similar to the present submission; the 3rd is also highly related and was 
presented at AGU.

We thank the referee for pointing out these important works.

In the revised version, we cite and discuss these works (the published works that we could read and 
refer to) and the differences between them and our work.

Moreover, while the stated task is identical to the first two works listed above, i.e. to use "sequential 
learning algorithms" (also known as "online learning with expert advice"), to combine the temperature 
projections of a CMIP ensemble (CMIP3 was used in the 2010 paper), the machine learning methods 
from the 2010 paper are more recent than the ones in the present submission and essentially subsume 
the methods used here.
To see this, note that while the authors cite a textbook to refer to the algorithms (Cesa-Bianchi and 
Lugosi 2006, which we will refer to as CB06), the actual algorithms used are from the 1990’s and 
earlier.
The algorithm denoted as EWA in the submission is originally due to:
• N. Littlestone and M. K. Warmuth. The weighted majority algorithm. In IEEE Symposium on 
Foundations of Computer Science, pages 256–261, 1989.
• V. Vovk. Aggregating strategies. In Proc. 3rd Annu. Workshop on Comput. Learning Theory, pages 
371–383. Morgan Kaufmann, 1990.
The algorithm denoted as EGA in the submission is originally due to:
• Jyrki Kivinen and Manfred K. Warmuth: Exponentiated gradient versus gradient descent for linear 
predictors. Information and Computation 132(1):1-63, 1997.



In contrast, the algorithm in the 2010 paper (which we will hereby refer to as M10) is from the early 
2000’s:
• C. Monteleoni and T. Jaakkola. Online Learning of Non-stationary Sequences. In Advances in Neural 
Information Processing Systems 16. pages 1093–1100, 2003.
In the intervening time, the field of learning algorithms had advanced significantly (and subsequently it
has advanced even further). In particular, relevant to the study of climate change and the problem in 
question, online learning algorithms were designed expressly for non-stationary data. The algorithms 
applied in the present submission were not designed to handle non-stationary data. Their performance 
guarantees (regret bounds) are with respect to the best fixed expert. However many climate scientists
have shown that in any CMIP ensemble, some climate models perform better at some times and others 
at other times. An influential paper on online learning algorithms (extending algorithms with 
exponentiated weight updates for a variety of prediction loss functions) provided modified weight 
updates that allow for “switching” among "best" experts:
• M. Herbster and M. K. Warmuth, Tracking the best expert, Mach Learn 32 (1998), 151 – 178.
The algorithm used in M10 was a further extension from that work which actually learns the switching 
rate online (sequentially), simultaneous to updating the weights over the experts. It can still track the 
best fixed-expert as a special case, and in that sense it is significantly more flexible than the algorithms 
used in the present submission.

In our field, it is common to cite a book (or a review article) that summarizes previous results.
Note that the application of the EWA and EGA in our work involves optimization of the learning rate.
In order to compare the results of these algorithms to the more recent LAA, we considered the LAA in 
the revised version, and we present the results of all the learning schemes for an easy comparison of 
their performances.

In the revised version, we added citations of the original works related to the EWA, EGA, fixed-share, 
and LAA . In addition, we added the results of the LAA to Figures 3 and 5 and changed the Results and
Discussion sections to reflect these changes and additions.

More recently, there have been several more machine learning approaches to the multi-model ensemble
prediction problem proposed in the present submission. Note that the present submission treats 
geospatial locations separately. This was also the case in M10, but subsequently, they did an extension 
to explicitly model geospatial neighborhood influence in the online learning weight updates. This is 
another highly related work to the present submission.
• S. McQuade and C. Monteleoni. Global Climate Model Tracking using Geospatial Neighborhoods. In
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Special Track on 
Computational Sustainability and AI, pp. 335–341, 2012.
The above was on a regular grid over latitude and longitude. However there has also been some recent 
work on learning the geospatial structure (need not be a grid) from the data such that regional features 
such as mountain ranges may cause some geospatially neighboring regions to have lesser spatial 
influence on one another.
• A. R. Goncalves, P. Das, S. Chatterjee, V. Sivakumar, and A. Banerjee. Global climate models 
combination using Multitask Sparse Structure Learning. Fourth Workshop on Understanding Climate 
Change Through Data, At National Center for Atmospheric Research (NCAR), Boulder, Colorado, 
USA, 2014.
The above is not a “sequential learning” technique. Additionally, there have been other kinds of 
machine learning algorithms applied to the problem, e.g.
• M. Ghafarianzadeh and C. Monteleoni. Climate Prediction via Matrix Completion. In Proceedings of 
the Twenty-Seventh AAAI Conference on Artificial Intelligence, Late-Breaking Papers Track, 2013.



Geospatial correlations do exist in the climate system and accounting for these correlations have the 
potential to improve future climate predictions as discussed by the referee. However, this is beyond the 
scope of the current work. Moreover, the results show a relatively smooth spatial distribution of the 
RMSE and uncertainty, which suggests that the geospatial correlations are well captured by the models 
in the ensemble.

Note, when the authors discuss using methods that predict “according to the best model,” they should 
see the related literature on learning algorithms. (In CB06, see Follow the Leader and Follow the 
Perturbed Leader).

The meaning of the “best” model is explicitly explained in the text. It is important to note that we only 
used this type of prediction to show that the predictions of the SLAs outperform those of the models 
that obtain the highest weights.

In summary, the main problem with the present submission is its very strong similarity to previous 
work, along with a significant gap in the discussion of related work on using learning algorithms in 
climate predictions, in particular for the problem in question.

The works mentioned by the referee analyzed long-term climate predictions, most of them based on the
CMIP3. In our work, we focused only on decadal climate predictions. These are different simulations 
initialized with real observed conditions unlike the long-term climate predictions. These experiments 
were first introduced in the CMIP5. The introduction of the paper elaborates on the differences between
the two types of predictions.

Our results show that for decadal climate predictions, adding the climatology as an additional expert in 
the ensemble significantly improves the predictions. For obvious reasons, adding the climatology to 
long-term climate projections is not expected to have the same effect.

The revised versions of Figures 3 and 5 (and the globally averaged results provided in the text) show 
that the LAA performs similarly to the EWA. However, the EGA outperforms both the EWA and the 
LAA. The similar performance of the EWA and the LAA suggests that for decadal climate predictions, 
the non-stationarity nature of the dynamics is not significant. None of the previous works presented 
such a comparison between different SLAs. All these details are discussed in the revised version.

Previous works focused on improving the predictions using ensembles of models and learning 
algorithms. Here, we show that SLAs not only improve the predictions but they also reduce the 
associated uncertainties. The uncertainties in future climate predictions are crucial for evaluating the 
predictions and, clearly, for any practical use of the results.

In the revised manuscript, we attempt to better emphasize these differences from previous works.

Technical corrections
There’s a mistake in the equations. While it is more standard to state the weights in terms of the losses, 
L, than the regret, R, the authors chose to use R, and in the process a mistake was introduced into the 



equation for weights. When using L, there’s a negative sign before the learning rate η in the exponent. 
However since R is defined as the loss of the expert subtracted from the loss of the learning algorithm, 
when using R in the exponent, there should not be negative sign. Intuitively, experts’ weights should be
decreased not increased, proportionally to their prediction losses. So the authors should either switch to
L or else delete the negative in the exponent of Equation (3). (See pages 14, 72, and 304 of CB06).

We thank the referee for pointing out this typo.

In the revised version, we use the loss rather than the regret in order to maintain consistency with 
previous works.

Differences from past work, and positive aspects of the submission
On the positive side, the paper is very thoughtful and well-written. Moreover, there are also some novel
experiments and ways of looking at the results, along with interesting insights from climate science. 
These should be emphasized in a revision.
• The input ensemble is from CMIP5 and has other differences from the ensembles used in several of 
the past works.
• Learning is done at a much higher spatial granularity than in M10 and some of the past works.
• The visualizations are different than M10 (although not all are different than all the past work on the 
problem, cf. Goncalves).
• There are some interesting findings, e.g. they point out that their results show that there is more model
disagreement at polar regions.
• The authors use a variety of different metrics to evaluate their results instead of just prediction loss, 
e.g. RMSE (which however is closely related to the chosen prediction loss, also used in M10), as well 
as global, area-weighted uncertainty, and some interesting significance tests.
• The algorithm used in M10 has a per-time-iteration complexity that’s on the order of a factor of T 
times that of the algorithm used in the present submission, where T is the desired number of temporal 
epochs (e.g. number of months for the whole experiment). This is for the optimized version of the 
algorithm in M10; one can also use lower complexity for slightly degraded results. This increased
complexity is used in handling non-stationary data.
This is a difference, although not necessarily an advantage, from M10: The evaluations are done using 
a training and a test period. However this might not be the best technique, given that the observations 
and climate models exhibit non-stationarity. In such a setting, online learning algorithms are typically 
evaluated using progressive validation error and/or cumulative prediction loss (see M10).

We thank the referee for the positive comments.

Recommendations and suggested resources
It is very encouraging to see climate scientists using machine learning in their research. However this 
reviewer recommends resubmission, taking these major concerns into account. Given that there is 
already significant prior work in this area, the authors are strongly advised to re-think the framing of 
their submission, discussing past work, emphasizing the differences, and focusing much more on what 
is novel in their submission. Perhaps given the strong overlaps with past work, the authors will decide 
to run additional experiments with other learning algorithms with different properties, and compare 
them.

We followed the referee's advice and revised the paper to include a better review of previous works in 
the field, and in particular, we added the most recent learning algorithm and compared its performance 
to the older algorithms used in the original submission. We also now emphasize the difference between 



decadal climate predictions and long-term predictions, as well as the finding that on decadal time 
scales, the non-stationarity of the climate predictions do not seem to be crucial.

There is a field of interdisciplinary research using learning algorithms in climate science called 
“climate informatics” (see http://climateinformatics.org for a variety of links and a recent video tutorial 
surveying work in the field). There is an annual international climate informatics workshop (since 
2011; the next workshop will be held be at NCAR in Colorado, in September 2015). These authors are 
doing work in this area and might benefit from this growing research community.

We thank the referee for informing us of this important workshop.

Anonymous Referee #2

We thank the reviewer for the helpful report.

This paper presents a machine learning-based approach for improving model-generated projections of 
past and future climate. The work is well motivated citing appropriate literature, and the technical 
approach is presented in sufficient detail.

We thank the referee for the positive comments.

Unfortunately, the authors appear to have missed some important literature in this area, most notably 
work by C. Monteleoni and colleagues over the past several years, see e.g.,:
C. Monteleoni, G. Schmidt, and S. Saroha. Tracking Climate Models. In NASA CIDU, 2010. S. 
McQuade and C. Monteleoni. Global Climate Model Tracking using Geospatial Neighborhoods. In The
2nd Int’l Workshop on Climate Informatics, 2012. C. Monteleoni, G. Schmidt, and S. McQuade, 
Climate Informatics: Accelerating Discovery in Climate Science with Machine Learning. IEEE 
Computing in Science and Engineering (CISE) Magazine, Special Issue on Machine Learning. 15(5), 
32–40, 2013.

Indeed, in the previous version of the manuscript, we missed these important works. Please see our 
detailed response to reviewer #1 for a thorough discussion of the differences between our work and 
previous ones.

In the revised manuscript, the learn-α algorithm was considered and compared with the other learning 
algorithms.

After much deliberation, this omission demands rejection of the manuscript. In order to be 
reconsidered, the authors should thoroughly familiarize themselves with this and any other prior work 
(in both climate / Earth science and machine learning as it is an interdisciplinary contribution), re-frame
the presentation of their approach in the context of the literature, and qualitatively and/or quantitatively 
compare their approach to existing methods where appropriate.

In the revised manuscript, we discuss previous works and the differences between them and our work. 
In addition, we consider the algorithm previously used and compare its performance to the other 
sequential learning algorithms.



List of changes:
1. We added a brief discussion of the differences between decadal climate predictions and long-
term climate projection to the Introduction.
2. We added paragraphs to the Introduction discussing previous works in which SLAs were applied to 
an ensemble of climate models.
3. In the description of the SLAs, we now use the loss rather than the regret, and we fixed the typo 
pointed out by reviewer #1.
4. In the SLA section, we introduced the learn-α algorithm (LAA).
5. In sections 3-5, we added the results of the LAA for the CMIP5 ensemble that we considered. The 
results are compared with the results of the other SLAs.
6. Figures 3 and 5 were modified to include the results of the LAA. Their captions were changed 
accordingly.
7. The Discussion and Summary section was modified to include a discussion of the differences 
between the LAA and the other SLAs considered. In addition, we now discuss the implications of the 
results found for decadal climate predictions.
8. We added references to:
Herbster, M. and Warmuth, M. K.: Tracking the best expert, Mach Learn, 32, 151–178, 1998.
Kivinen, J. and Warmuth, M.: Exponentiated gradient versus gradient descent for linear predictors. 
Information and Computation, 132(1):1–63, 1997.
Littlestone, N. and Warmuth, M.: The weighted majority algorithm. Information and Computation, 
108:212–261, 1994.
Monteleoni, C. and Jaakkola, T.: Online Learning of Non-stationary Sequences, in Advances in
Neural Information Processing Systems, 16, 1093–1100, 2003.
Monteleoni, C., Saroha, S., and Schmidt, G.: Tracking Climate Models, in NASA Conference on
Intelligent Data Understanding (CIDU), pages 1–15, 2010.
Monteleoni, C., Saroha, S., Schmidt, G., and Asplund, E.: Tracking Climate Models, in Journal of
Statistical Analysis and Data Mining: Special Issue: Best of CIDU 2010, Volume 4, Issue 4, pages
72–392, 2011.
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Abstract

Simulated climate dynamics, initialized with observed conditions
:
, is expected to be synchro-

nized, for several years, with the actual dynamics. However, the predictions of climate mod-
els are not sufficiently accurate. Moreover, there is a large variance between simulations
initialized at different times and between different models. One way to improve climate pre-
dictions and to reduce the associated uncertainties is to use an ensemble of climate model
predictions, weighted according to their past performance

::::::::::::
performances. Here, we show

that skillful predictions, for a decadal time scale, of the 2 m-temperature can be achieved
by applying a sequential learning algorithm to an ensemble of decadal climate model sim-
ulations. The predictions generated by the learning algorithm are shown to be better than
those of each of the models in the ensemble, the better performing simple average and
a reference climatology. In addition, the uncertainties associated with the predictions are
shown to be reduced relative to those derived from

::
an

:
equally weighted ensemble of bias

corrected
:::::::::::::
bias-corrected

:
predictions. The results show that learning algorithms can help to

better assess future climate dynamics.

1 Introduction

A
::::
new

:
group of global climate simulations, referred to as the decadal experiments, was

introduced in the Coupled Model Intercomparison Project (CMIP5) multi-model ensemble
(Taylor et al., 2012; Meehl et al., 2009). The idea behind these

:::::::
decadal

:::::::
climate

:::::::::::
predictions

:::::
differ

::::
from

::::
the

:::::::::
long-term

::::::::
climate

::::::::::
projections

:::
in

::::
their

:::::::::
duration,

:::::
aims

::::
and

:::::::::::
meaningful

:::::::
output.

::::
The

::::
idea

:::::::
behind

:::
the

::::::::
decadal

:
experiments was to investigate the predictability of the climate

by atmosphere ocean general circulation models (AOGCMs) in time scales of up to 30 years

::::::::
whereas

:::::::::
long-term

::::::::
climate

:::::::::::
projections

::::
use

:::
the

::::::
same

:::::
type

::
of

::::::::
models

::
to

:::::::
predict

::::
the

::::::
forced

:::::::::
response

::
of

::::
the

:::::::
climate

:::::::
system

::
to

:::::::::
different

::::::
future

::::::::::::
atmospheric

::::::::::::
compositions

:::::
over

::::
the

::::
next

:::::::
century

::::::::::::::::::::::::::::::::::::
(Meehl et al., 2009; Taylor et al., 2012) .

2
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The AOGCMs
:
in

::::
the

::::::::
decadal

::::::::::::
experiments were initialized with interpolated observations

of the ocean, sea ice and atmospheric conditions, together with the atmospheric com-
position (Taylor and Meehl, 2011)

:::::
(note

::::
that

::::::::::
long-term

:::::::::::
projections

::::
are

:::::::::
initialized

:::::
with

::
a

::::::::::::::::
quasi-equilibrium

:::::::::::::
pre-industrial

:::::
state

:::::::::::::::::::
(Taylor et al., 2012) ). Therefore, they were expected

to reproduce the monthly and annual averages of the climate variables and the response
of the climate system to changes in the atmospheric composition (Warner, 2011; Collins,
2007; Kim et al., 2012). Indeed, it was shown (Kim et al., 2012) that in some regions, the
CMIP5 simulations have some prediction skill. It was also confirmed (Kim et al., 2012)
that the multi-model average provides better predictions than each of the models, similar
to what was found for other climate simulations (Doblas-Reyes et al., 2000; Palmer et al.,
2004; Hagedorn et al., 2005; Feng et al., 2011). However, the simple multi-model average
does not take into account the quality differences between the models; therefore, it is ex-
pected that a weighted average, with weights based on the past performances of the mod-
els, will provide better predictions than the simple average. As expected, it was shown that
the weighted average of climate models can improve predictions when using ensembles
of AGCMs (Rajagopalan et al., 2002; Robertson et al., 2004; Yun et al., 2003), AOGCMs
(YUN et al., 2005; Pavan and Doblas-Reyes, 2000; Chakraborty and Krishnamurti, 2009)
and regional climate models (Feng et al., 2011; Samuels et al., 2013).

The uncertainties in climate predictions can be attributed to three main sources– :
::::

the
internal variability of the model, inter-model variability and future forcing scenario uncer-
tainties. The internal variability of the model stems from the sensitivity of the model to the
initial conditions, sensitivity to the values of the parameters and the discretization method
used. The inter-model variability is the result of different parameterization schemes and
modeling approaches adopted in different models. The uncertainties due to different forcing
scenarios are mostly related to different scenarios assumed regarding future greenhouse
gas emissions. On a decadal time scale, forcing scenario uncertainties and uncertainties
due to the internal variability of each model are considerably smaller than the inter-model
uncertainties (Meehl et al., 2009; Hawkins and Sutton, 2009) (we also verified that the
internal variability of each of the models we used is much smaller than the inter-model vari-

3
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ability). Therefore, estimation of the uncertainties from
::
an

:
ensemble of climate models is

expected to give a meaningful estimation of the total climate prediction uncertainties.
Different methods were used to improve climate predictions using an ensemble of mod-

els. A common approach is the simple regression (Krishnamurti et al., 2000; Krishnamurti,
1999). The regression does not assign a weight to each member of the ensemble but rather
attempts to find the set of coefficients yielding the minimal square error for a linear com-
bination of the ensemble model predictions. Bayesian methods have also been used for
weighting ensembles of climate model projections (Rajagopalan et al., 2002; Robertson
et al., 2004; Tebaldi and Knutti, 2007; Smith et al., 2009; Buser et al., 2009, 2010). The
weighting scheme of these methods relies on a certain distribution of the errors and other
prior assumptions regarding the models; these assumptions are not necessarily valid for
climate dynamics and predictions. Many variations of the Bayesian methods were applied
to weather forecasting in order to establish the ensemble of models (Kalnay et al., 2006);
these methods are less useful for climate predictions in which the variability between differ-
ent models is larger than the internal variability of each model (Meehl et al., 2009; Hawkins
and Sutton, 2009).

:::::::::
Recently,

::::::::::
sequential

::::::::
learning

:::::::::::
algorithms

:::::::
(SLAs)

::::::::::::::::::::::::::::::::::::
(Cesa-Bianchi and Lugosi, 2006) were

:::::::
applied

:::::
to

:::::::::::::
ensembles

:::::
of

:::::::::
climate

::::::::::
models

:::::
in

::::::::
order

:::::
to

::::::::::
improve

::::::
the

::::::::::
predictions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mallet et al., 2009; Mallet, 2010; Monteleoni et al., 2010, 2011) .

::::::::::::::::::::::::::::::::::::::::
Mallet et al. (2009); Mallet (2010) combined

:::::
data

:::::::::::
assimilation

::::
and

::::::
SLAs

::
in

:::::
order

::
to

::::::::
improve

::::::::
seasonal

:::
to

:::::::
annual

::::::
ozone

::::::::::::::
concentration

:::::::::
forecasts.

::::::::::::::::::::::::::::::::::::
Monteleoni et al. (2010, 2011) applied

::
an

:::::::::::
improved

:::::::::
version

::::::::::::::::::::::::::::::::::
(Monteleoni and Jaakkola, 2003) of

::::
a

:::::::::
method

::::
for

::::::::::
learning

:::::::::::::
non-stationary

:::::::::::
sequences

:::::::::::::::::::::::::::::::
(Herbster and Warmuth, 1998) to

:::::::::
long-term

:::::::
climate

::::::::::::
predictions.

Here, we use a sequential learning algorithm (SLA)method
:::::::
several

:::::
SLAs

:::
to

::::::
weight

:::::::
climate

:::::::
models

::
in

:::
the

:::::::
CMIP5

::::::::
decadal

:::::::::::
experiments

::::::::::::::::::::::::::::
(Taylor and Meehl, 2011) and

:::::::
thereby

::
to

::::::::
improve

::::
both

::::::
global

::::
and

::::::::
regional

:::::::::::
predictions.

:::
In

::::::::
addition,

:::
we

::::::
show

::::
that

:::
the

:::::::::::::
uncertainties

::::::::::
associated

::::
with

::::::
these

:::::::::
improved

::::::::::::
predictions

::::
are

::::::::
smaller

:::::
than

::::::
those

:::
of

::::
the

:::::::::::
unweighted

:::::::::::
ensemble.

::::
The

::::
first

:::::::::
algorithm

::
is

::::
the

::::::::::::::
Exponentiated

:::::::::
Weighted

:::::::::
Average

:::::::
(EWA)

:::::::::::::::::::::
(Littlestone, 1994) and

:::
the

::::::::
second

:::
is

::::
the

::::::::::::::
Exponentiated

::::::::::
Gradient

::::::::
Average

:::::::
(EGA)

:::::::::::::::::
(Kivinen, 1997) .

:::::
The

::::
two

4
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:::::::
original

::::::::::
algorithms

::::::
were

:::::::::
modified

::::
and

:::::::::
adjusted

::
to

:::::::::
improve

::::::::
decadal

::::::::
climate

:::::::::::
predictions.

:
A
::::::

more
::::::::

recent
::::::::::
algorithm,

::::
the

:::::::::
learn-α

::::::::::
algorithm

::::::
(LAA), which is adopted from the

field of game theory (Cesa-Bianchi and Lugosi, 2006; Mallet et al., 2009; Mallet, 2010) , to
weight ensemble members of global climate models.

:::::
more

::::::::
suitable

::::
for

::::
the

::::::
study

:::
of

:::::::::::::
nonstationary

:::::::::::
sequences,

::::
was

:::::
also

:::::
used

:::::::::::::::::::::::::::::::::
(Monteleoni and Jaakkola, 2003) .

::::
The

::::::::
decadal

:::::::
climate

::::::::::
predictions

:::::
allow

:::
us

:::
to

:::::
have

:
a
::::::::
learning

:::::::
period

::::
and

:
a
::::::::::
validation

::::::
period

:::
for

:::::::
testing

:::
the

:::::
SLAs’

::::::::::::::
performances.

:::
In

::::::::
addition,

::::
the

::::
use

::
of

::::::::
methods

:::
for

::::::::::::::
nonstationary

::::::::::
sequences

::::::
helps

::
to

::::::
assess

::::
the

:::::::::::
stationarity

::
of

:::
the

::::::::
climate

::::::::::
predictions

::
in

::::::::
decadal

:::::
time

:::::::
scales.

It is important to note that the SLA method assigns real weights (taking values between
zero and one) to the ensemble models rather than to future climate paths (it is straightfor-
ward to use the weights of the models to get the probabilities of future climate pathswhich
are common in ,

::::::
which

::::
are

:::
the

:::::::::
common

:::::::::
products

::
of

:
the Bayesian approaches); this char-

acteristic makes the SLA method appropriate for model evaluation. The SLA method has
several advantages compared with other weighting schemes: (i) it makes no assumptions
regarding the distribution of the climate variables and the model parameters. Therefore,
it can be used for all climate variables and all types of predictions; (ii) there is an upper
bound for the deviation of the weighted ensemble average from the best model. For a suf-
ficiently lengthy learning period (the duration of this period depends on the variable, the
learning rate (which is described later) and the number of models in the ensemble), the
SLA prediction is at least as good as the prediction of the best model in the ensemble; (iii)
the weights can be dynamically updated, when new measurements are introduced, with no
significant computational cost. The original method (Cesa-Bianchi and Lugosi, 2006) was
modified and adjusted to improve decadal climate predictions.

2 The sequential learning algorithm
::::::::::
algorithms

The
::
A sequential learning algorithm (SLA) assigns weights to the climate models (the ex-

perts) in the ensemble based on their past performance. In this work, the output of the
models was divided into two periods–

:
:
:
a learning period during which the weights were

5
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updated and a prediction period during which the weights remained fixed and equal to the
weights assigned by the SLA in the last step of the learning process. In order to capture
the spatial variability in model performance, the weights were spatially distributed and the
weight of each model in each grid cell was determined by the local past performance of
the model. For the sake of clarity, the algorithm is described below without spatial indexes
although the calculations were done for each grid cell separately. The prediction of the SLA
forecasters is the weighted average of the ensemble (Cesa-Bianchi and Lugosi, 2006). The
weights are assigned to minimize the cumulative regret with respect to each one of the
climate models. The cumulative regret of expert E is defined as:

RE,n ≡
n∑
t=1

(l(pt,yt)− l(fE,t,yt))≡ Ln−LE,n. (1)

t is a discrete time, l denotes some loss function that is a measure of the difference be-
tween the predicted (pt by the forecaster and fE,t by expert E) and the true (yt) values.
In this work, we defined the loss function to be the square of the difference between the
forecaster prediction and the “real” value, namely, l(pt,yt)≡ (pt−yt)2. Ln ≡

∑n
t=1 l(pt,yt),

LE,n ≡
∑n

t=1 l(fE,t,yt) are the cumulative loss functions of the forecaster and expert E,
respectively. The outcome of the forecaster , after n− 1 steps of learning, is weights as-
signed to the climate models in the ensemble to be used for forecasting the value at t= n.
The forecast for t= n is the weighted average of the climate models, that is:

pn ≡
N∑
E=1

wE,n−1(RE,n−1) · fE,n. (2)

Here, N is the number of models (experts) and wE,n−1 is the weight of expert E, which is
determined by the regret up to time n−1. We used two forecasters (weighting schemes): the
Exponentiated Weighted Average (EWA) and the Exponentiated Gradient Average (EGA).

6
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The EWA weight is defined as:

wE,n ≡
e−η·RE,n∑N
E=1 e

−η·RE,n

e−η·LE,n∑N
E=1 e

−η·LE,n
::::::::::::::

(3)

and its prediction at time n is:

pn =

∑N
E=1 e

−ηLE,n−1fE,n∑N
E=1 e

−ηLE,n−1
. (4)

The EGA is similar to the EWA but with the cumulative regret
::::
loss calculated from the sum-

mation of the loss gradients. The cumulative regret
::::
loss for the EGA forecaster is defined

as:

RL:
G
E,n ≡

n∑
t=1

lE:
′(pt,yt)−

n∑
t=1

l′(fE,t,yt)≡ LGn −LGE,n (5)

where,

lE:
′(pt,yt)≡

∂l(pt,yt)

∂wE,t−1

∂lE(pt,yt)

∂wE,t−1
::::::::::

= 2 · (pt− yt) · fE,t. (6)

For both forecasters, η > 0 is a parameter representing the learning rate.
The deviation between the forecast and the “real” trajectory was quantified using the root

mean square error (RMSE). The RMSE of a grid cell with coordinates (i, j), over a period
of n time steps (months in our case), is defined as:

RMSE(i, j)≡

√√√√(1/n)
n∑
t=1

(pt(i, j)− yt(i, j))2, (7)

7
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where pt(i, j) is the value predicted by the forecaster and yt(i, j) is the “real” value. The
global, area-weighted RMSE is defined as:

GRMSE ≡ (1/AEarth)
∑
i,j

Ai,jRMSE(i, j), (8)

where AEarth is the earth’s surface area and Ai,j is the area of the (i, j) grid cell.
The learning rate, η, was chosen to minimize the metric M ≡ RMSE · (1 +

floor(max(∆w/∆t)/(1/N))) during the learning period. This metric provides a minimal
deviation of the forecast climate trajectory from the observed one and also ensures sta-
ble weights of the models (a significant change in the weight of a model was considered
the weight a model would be assigned in the absence of learning). We also tested

::
the

:
op-

timization of η using only a fraction of the learning period and found that as long as the
optimization period was of the same order of the prediction period, there was no significant
change in the outcome. An important difference between the EWA and EGA methods is
that after a long enough learning period under ideal conditions (stationary time series), the
former converges to the best model while the latter converges to the “real” value assuming
that the real value is known. Figure 1 illustrates this difference using a simple case.

This difference between the forecasters implies that for
:
a
:

long enough learning period,
using an ensemble that includes one model that perform

:::::::::
performs better throughout the

learning period, the weights will be distributed such that the prediction of the EWA will be
determined by this best model and the uncertainty will be very small (due to the small
weights of the other models). Under the same conditions, the EGA would still assign more
significant weights to the other models in order to extract the information they contain re-
garding the dynamics of the “real” valueand this will lead ,

::::::::
leading to larger uncertainty (and

often better predictions).

::::
The

::::::::
learn-α

::::::::::
algorithm

:::::::::::::::::::::::::::::::::
(Monteleoni and Jaakkola, 2003) is

:::::::
based

:::
on

:::::
the

:::::::::::
fixed-share

:::::::::
algorithm

::::::::::
developed

:::
by

:::::::::::::::::::::::::::::::
(Herbster and Warmuth, 1998) .

::::
The

::::::::::::
fixed-share

:::::::::
algorithm

:::
is

::
a

:::::::::::::
generalization

::
of

::::
the

:::::
EWA

:::::::::
algorithm

::::
that

:::::::::
increases

::::
the

::::::
ability

::
to

::::::
switch

:::::::::
between

:::::::
experts

::
(or

::::::::
between

:::::::
climate

:::::::
models

::
in

::::
our

:::::
case)

::
in

:::::::::
response

:::
to

::::::::
changes

::
in

:::::
their

::::::::::::
performance.

::
It
::
is

:::::
done

8
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::
by

:::::::
adding

::
a

:::::::::
switching

::::::::::
probability

::::::::::
parameter,

:::
α,

::::
that

::::::::
ensures

::::
that

::
all

::::::::
experts

:::
are

:::::::::::
considered

::
at

::
all

::::::
times.

:::::::::::::::::::::::::::::::::::::::
Monteleoni and Jaakkola (2003) improved

::::
this

:::::::::
algorithm

:::
by

::::::::
learning

:::
the

:::::::
optimal

::::::::
switching

:::::
rate

:::::::::
between

:::::::
experts

:
.
:::::
This

:::::::::
algorithm

:::::
was

:::::::
already

:::::::
tested

:::
for

::::::::::
long-term

:::::::
climate

::::::::::
projections

::::::
using

::::
the

:::::::
CMIP3

:::::::::
long-term

:::::::::::::
experiments

::::::::::::::::::::::::::::::
(Monteleoni et al., 2010, 2011) ,

::::
and

::::
here

::::
we

::::
also

::::
test

:::
its

:::::::::::::
performance

::
in

::::::::
decadal

:::::::
climate

:::::::::::
predictions

:::
for

::::::::::::
comparison

::::
with

::::
the

:::::
EWA

::::
and

:::::
EGA

:::::::::
methods.

::::
The

:::::::
learn-α

:::::::::
algorithm

::::::::
assigns

:::::::
weights

:::
for

:::::
each

::::::
expert

::::
and

:::
for

:::::
each

::::::
value

::
of

:::
the

:::::::::
switching

::::
rate

::::::::::
αj ∈ [0,1];

::::
the

:::::::::
discrete

::::::
index,

:::::::::::
j ∈ 1, ...,m

:::::::::::
represents

::::
the

::::::::
optimal

:::::::::::::
discretization

:::
of

:
α
:::::::::::::::::::::::::::::::::

(Monteleoni and Jaakkola, 2003) .
::::
The

:::::::
weight

:::
of

:::::
each

:::::::
expert

:::
for

:::
a

::::::
given

:::::
value

:::
of

:::
α,

::::::::::
wE,t=1 (αj):::

,is
::::

set
:::::::
initially

:::
to

::::::
1/Ne ::::

(Ne ::
is

::::
the

::::::::
number

:::
of

:::::::
experts

:::
in

::::
the

:::::::::::
ensemble),

::::
and

:::
the

::::::
weight

:::
of

:::::
each

:::
αj ,:::::::::

wt=1 (αj)::
is
::::
set

::::::
initially

:::
to

:::::
1/Nα::::

(Nα:::
is

:::
the

:::::::
number

:::
of

::::::::
discrete

::::::
values

::
of

::::::::
α ∈ [0,1]

::::
that

::::
are

::::::::::::
considered).

::::
The

::::::::
weights

:::
are

::::::::
updated

:::
as

::::::::
follows.

::
(i)

:::
At

:::::
each

::::
time

:::::
step,

:::
the

::::
loss

::
of

:::::
each

:::::::
model,

:::
E,

::
is

::::::::::
calculated

::
in

::
a
:::::::
similar

:::::::
manner

::
to

::::
the

::::::
EWA,

:::::::::::::::::
lE,t ≡ (fE,t− yt)2.

::
(ii)

::::
For

:::::
each

::::
αj ,::::

the
::::
loss

::::
per

::
α

::
is

:::::::::::
calculated,

:::::::::::::::::::::::::::::::::::::
lt (αj)≡− log

(∑Ne
E=1wE,t (αj)e

−lE,t
)

,
::::
and

:::
the

::::::
weight

:::
of

:::
αj ::

is
::::::::
updated

:::::::::
according

:::
to

wt+1 (αj) =
1

Zt
wt (αj)e

−lt(αj),
::::::::::::::::::::::::::::

(9)

::::::
where

::
Zt:::::::::::

normalizes
:::
the

:::::::::
weights.

:::
(iii)

:::
For

:::::
each

:::::::
model,

:::
E,

::::
and

:::::::::
switching

:::::
rate,

:::
αj ,::::

the
::::::
weight

::::::::
wE,t (αj)::

is
::::::::
updated

::::::::::
according

::
to

:

wE,t+1 (αj) =
1

Zt (αj)

Ne∑
E∗=1

wE∗,t (αj)e
−lE∗,tS (E,E∗;αj) ,

:::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

::::::
where,

:

S (E,E∗;αj)≡ (1−αj)δ (E,E∗) +
αj

Ne− 1
(1− δ (E,E∗)) .

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(11)

9
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:::::
δ(·, ·)

::
is

:::
the

::::::::::
Kronecker

:::::
delta

::::
and

:::::::
Zt(αj):::::::::::

normalizes
:::
the

::::::::
weights

::::
per

::::::
alpha.

::::
The

:::::::::
prediction

:::
at

:::::
t= n

:::
is

:
a
:::::::::
weighted

:::::::::
average

::
of

::::
the

:::::::
experts

::::
and

::::
the

::::::::
different

:::::::
values

::
of

::
α:

:

pn =
Ne∑
E=1

Nα∑
j=1

wn−1 (αj) ·wE,n−1 (αj) · fE,n.
:::::::::::::::::::::::::::::::::::::::

(12)

::::
One

::::
can

:::::
see

::::
that

:::
in

::::
the

::::::
LAA,

::::
the

::::::::
learning

:::::
rate,

:::::::
η = 1,

:::::
and

::::
the

:::::::::
switching

:::::
rate,

:::
α,

:::
is

:::::::::::
sequentially

::::::::::
optimized,

:::::
while

:::
for

::::
the

:::::
EWA

::::
and

:::::
EGA,

::::
the

::::::::
learning

::::
rate,

:::
η,

::::
was

:::
set

::
to

::::::::
achieve

:::
the

::::
best

:::::::::::::
performance

::::::
during

:::
the

:::::::::
learning

::::::
period.

:::
As

::
a
::::::::::
successor

::
of

::::
the

::::::
EWA,

:::
the

:::::
LAA

::::
also

:::::
tends

::
to

::::::::::
converge

::
to

::::
the

::::
best

:::::::
model.

:::::::::
However,

:::
as

:::::::::::
mentioned,

::
it

::::
can

::::
shift

:::::::::
between

:::::::
models

:::::
faster

:::::
than

:::
the

::::::
EWA,

::::::
which

::
is

:::::::::
important

::::::
when

:::
the

:::::::::::
sequences

::::::::
learned

:::
are

::::::::::::::
nonstationary.

3 Improved predictions

We consider an ensemble of eight global climate models for the period of 1981–2011,
whose results are part of the CMIP5 decadal experiments (Taylor and Meehl, 2011). Ta-
ble 1 describes the eight models that we used in this study. These models were first lin-
early interpolated to the spatial resolution of the NCEP/NCAR reanalysis data using the
NCAR command language (NCL) (NCL, 2011). We focus on the model predictions of the
2m-temperature. The decadal experiments of the CMIP5 project include a set of runs for
each of the models, representing different initial conditions. In agreement with the common
knowledge (Meehl et al., 2009), we found that on decadal time scales, the internal variabil-
ity of each model is smaller than the variability between the models. Therefore, we chose,
arbitrarily, the first run for each of the ensemble models. The results presented here are
based on a learning period of 20 years (1981–2001), followed by predictions for

:
a
:
10 year

(2001–2011) validation period.
The learning period served for both learning (i.e., weight assignment) and also to correct

:::::::::
correcting

:
the bias of the models. This was simply done by subtracting the average of

10
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each of the models during the learning period and adding the average of the NCEP/NCAR
reanalysis data (Kalnay et al., 1996) (considered here as reality). This bias correction was
applied to each grid cell separately . The bias correction

::::
and

:
was done to assure

::::::
ensure

that the improvement achieved by the forecasters is
::::
was

:
beyond the impact of a simple bias

correction. In addition, we chose a long enough learning period to ensure that our results
are

::::
were

:
not affected by the drift of the models from the intial

::::
initial

:
condition toward their

climate dynamics (Meehl et al., 2009).
The performance of the models was determined by comparing the model predictions

to the NCEP/NCAR reanalysis data (Kalnay et al., 1996). We are aware of the spurious
variability and trends in the NCEP data and of other reanalysis projects (Uppala et al.,
2005; Onogi et al., 2007); however, in order to demonstrate the capability of the SLA to
improve global and regional climate predictions, the reanalysis data is the best dataset

::
to

:::
use.

Using the predictions of the climate models only 20 years after they were initialized can
debate

::::
cast

::::::
doubt

:::
on

:
their ability to generate skillful predictions since it is believed that

climate models’ skill tends to vanish after that long a period. However, we found that, for
most of the models we used, this is not the case. This fact is illustrated in Fig. 2, which
shows that the globally averaged RMSE of most of the climate models did not increase
considerably during the 30 year-long simulations. Another noticeable and important feature
of the

::::::::
CMIP5’s climate models of the CMIP5 is the fact that, globally, climatology performs

much better than each of the models. In Sect. 5,
:
we show that, despite this fact, the SLA

can use the models and the climatology to provide a forecast which
::::
that is better than the

climatology.
Three

::::
Four

:
forecasting methods (forecasters) were tested: the Exponentiated Weighted

Average (EWA), the Exponentiated Gradient Average (EGA)
::::::
EWA,

:::
the

::::::
EGA,

:::
the

:::::
LAA

:
and

a simple average. The simple average represents no learning and is presented to illustrate
the superior performance of the SLA

:::::
SLAs. The performance of the forecasters is measured

by the root mean square error (RMSE), during the validation period, which quantifies the
deviation of the predicted climate trajectory from the observed one.

11
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Figure 3 shows the RMSE in the 2m-temperature monthly average prediction, during the
10 year validation period, for each grid cell. Panels a, band c

:
,
::
c

::::
and

::
d

:
correspond to the

RMSE of the EWA, EGA
:
,
::::
LAA

:
and simple average weighting schemes, respectively. Both

the EWAand the EGA
:::
The

::::::
EWA,

:::::
EGA

::::
and

::::
LAA

:
forecasters give better predictions than the

simple average. The improvement achieved by the two
:::::
three

:
forecasters, compared with

the simple average, is more apparent close to the poles and in western South America.
In these regions, the models deviate more from each other,

:
and the weighting schemes

favor those that perform better. Over the oceans and low to mid latitudes
:::::::::::::
mid-latitudes, the

models showed better agreementand therefore ,
::::
and

::::::::::
therefore,

:
the weighting schemes did

not yield a large improvement.
The global, area-weighted RMSE can be used to quantify the improvement achieved by

the SLA forecasters, that is, 1.316◦C for the EWA, 1.297◦C for the EGA
:
,
::::::::
1.372◦C

:::
for

::::
the

::::
LAA

:
and 1.390◦C for the simple average. Since the EWA has the tendency to converge

to the best model (if the ensemble includes a model that is always better than the others
in certain regions), we also compare

:::::::::
compared

:
the performance of the EWA and EGA

forecasters with two forecasting methods that predict according to the best model (defined
as the model that was assigned the highest weight according to

:::::
either

:
the EWA or the EGA)

in each grid cell. The global, area-weighted RMSE was found to be 1.568◦C for the best
model based on the EWA and 1.633◦C for the best model based on the EGA. These results
show that the SLA forecasters outperform the best models in the ensemble. In general, we
found that a longer learning period improves the predictions of the forecasters. Figure 4
shows that the area-weighted RMSE of the forecasters (during the validation period) is
reduced when the learning period is extended. By increasing the learning rate

:
,
:
we found

that shorter learning periods can be selected with no significant increase in error; however,
we chose a learning period which

:::
that

:
is of the order of the prediction period in order to

capture the climate dynamics in all the time scales that are relevant to the prediction period.

12
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4 Reduced uncertainties

The weights obtained from the SLA method can be used to better estimate the uncertainties
of the predictions. The uncertainties are quantified by the square root of the time average
of the weighted variance of the ensemble. This quantity (for a period of n time steps) in the
(i, j) grid cell is defined as:

STD(i, j)≡

√√√√(1/n)
n∑
t=1

N∑
E=1

wE(i, j)(fE,t(i, j)− pt(i, j))2. (13)

Here, fE,t(i, j) is the prediction of model E for grid cell (i, j), at time t; pt(i, j) is the pre-
diction of the forecaster for grid cell (i, j), at time t (i.e., the weighted average of all the
models); and wE(i, j) is the weight assigned to model E at grid cell (i, j) (the weights re-
main constant during the validation period for which the STD is calculated). The global,
area-weighted uncertainty is defined as:

GSTD ≡ (1/AEarth)
∑
i,j

Ai,jSTD(i, j). (14)

Figure 5 shows the uncertainty of the 2m-temperature during the validation period for the
three forecasting methods; panels a, band c ,

::
c
::::
and

::
d

:
correspond to the EWA, EGA,

:::::
LAA

and simple average forecasters, respectively. It is important to note that this uncertainty is
only due to the different predictions of the ensemble models; other sources of uncertainty
are not affected by our forecasting schemes. Both the EWAand EGA

:::
The

::::::
three

::::::::
learning

::::::::::
algorithms,

::::::
EWA,

:::::
EGA

::::
and

::::
LAA

:
forecasters

:
, yield smaller uncertainties than does the sim-

ple average. The improvement is significant in regions where the uncertainties are larger,
such as toward the poles and over South America and Africa. The global, area-weighted
, uncertainties are: 1.242, 1.381,

::::::::
1.242◦C,

:::::::::
1.381◦C,

::::::::
1.078◦C

:
and 1.593◦C for the EWA,

EGA
:
,
::::
LAA

:
and simple average forecasters, respectively. These values show that in addition

to improving the predictions, the SLA forecasters also reduce the uncertainties of these pre-
dictions. Note that the smaller uncertainty of the EWA

:::
and

::::
the

::::
LAA

:
forecaster

::::::::::
forecasters is

13
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simply due to the fact that this
:::::
these

:
forecaster

::::::::::
forecasters converges

:::::::::
converge to the best

model in each grid cell (if the ensemble includes a model that is always the best). The uncer-
tainty of the EGA provides a better estimate of the predictions

:::::::::::::::
predictions1000uncertainty

because its predictions converges
::::::::
converge

:
to the observations.

5 Skillful forecast

The skill of a forecaster may be defined as its ability to provide better predictions than the
reference climatology. In our study,

:
the natural choice is the climatology of the learning

period, that is:

Cm ≡
1

L

L∑
i=1

yi,m, (15)

where, yi,m is the value of the variable (in this study
:
, it is the 2m-temperature as reported

in the reanalysis data) in the calendar month m of the year i; the learning period duration
is L years; and the climatology, Cm,

:
is just the average of that variable during the L years.

Prediction
:
A

::::::::::
prediction that is based on climatology assumes that for each month of the pre-

diction period, the value of the variable will be equal to the climatology of the corresponding
calendar month. Therefore, it is reasonable to expect that a skillful model should provide
more information on the variability of the climate than the average of previous years (the
climatology).

Figure 6a shows the differences between the 10 year RMSE of the 2m-temperature
monthly mean, of the climatology and of the EGA forecaster . Positive values represent
locations where the EGA forecaster has a smaller RMSE and is, therefore, considered as
a skillful forecaster . In most regions, the climatology performs better than the EGA fore-
caster (and, obviously, better than the best model!); however, some regions indicate the
EGA’s advantage, such as eastern North America up to Greenland. We found that the re-
gions in which the EGA forecaster performs better are characterized by larger variability
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(which increases the deviations from the climatology). The global, area-weighted RMSE is
1.188◦C for the climatology and 1.373◦C for the EGA. One could conclude that the EGA
forecaster is not skillful.

To circumvent this problem, we decided to add the climatology of the learning period as
an additional model to our ensemble. In Fig. 6b, we show the difference between the RMSE
of the EGA forecaster , for the model ensemble that includes the climatology, and the RMSE
of the climatology itself. In this figure, one can see that the EGA forecaster , for the model
ensemble that includes the climatology, provides predictions that are at least as good as
the climatology over most of the globe. Adding the climatology to the ensemble reduced
the global, area-weighted RMSE of the EGA forecaster to 1.156◦C– a

:::
–a small improve-

ment (a reduction of about 2.7%) over the climatology. The global, area-weighted
::::::
RMSE

::
of

:::
the

::::::
EWA,

:::::
LAA

::::
and

::::::
simple

::::::::
average

:::::
with

:::::::::::
climatology

:::
are

::::::::
1.187◦C,

:::::::
1.180◦C

::::
and

:::::::::
1.337◦C,

:::::::::::
respectively.

::::
The

:::::::
global,

::::::::::::::
area-weighted uncertainties of the 10 year validation period,

:
in this

caseare: 0.118, 0.953,
::::
are

:::::::::
0.118◦C,

:::::::::
0.953◦C,

::::::::
0.836◦C, and 1.552◦C for the EWA, EGA,

::::
LAA

:
and simple average forecasters, respectively. Note , that as we mentioned earlier, the

small uncertainty associated with the EWA forecaster is not representative of the climate
prediction uncertainty. In what follows

:
,
:
we focus on

:::
the

:
significance of the results of the

EGA forecaster .

6 Significance tests

There is more than one test that can be done to demonstrate the significance of the re-
sults. We focus on testing whether the EGA forecaster improves the predictions beyond
climatology (as shown earlier, each of the models performs poorer

::::::
worse

:
than the cli-

matology) and whether it reduces the uncertainties below those of
::
an

:
equally weighted

ensemble. Both tests were done globally and regionally. We start by defining two prop-
erties. The first , is the difference between the absolute error of the climatology and
the absolute error of the EGA forecaster at a given grid cell and time point, that is– ,
|(Ct(i, j)−yt(i, j))|− |(pt(i, j)−yt(i, j))|. The second is the difference between the uncer-
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tainties of the equally weighted ensemble and the ensemble weighted according to
:::
the

:
EGA

forecaster at a given grid cell and time point, that is–
:
,
:

√
1
N

∑N
E=1(fE,t(i, j)− f·,t(i, j))2−√∑N

E=1wE(i, j) · (fE,t(i, j)− pt(i, j))2 (the dot replacing the E index , represents averag-
ing over that index). For both quantities, positive values represent

:
a
:
better performance of

the EGA forecaster . The 10 year validation period yields,
:
for each of these quantities

:
,
::
a time

series with 120 points in each grid cell. The fraction of the time series (
:::
the

:
number of points

out of the total 120) showing positive values can be used to test the significance of the
improvement. We define a significant improvement by the EGA forecaster to be when the
number of successes are above 66 (i.e., when the null hypothesis that the quantities defined
above are symmetrically distributed around zero is rejected with ∼ 90% confidence).

Figure 7 shows the spatial distributions of the number of positive values (out of the total
120 time points) for the two quantities. The upper panel corresponds to the difference be-
tween the absolute error of the climatology and the EGA forecaster

:
,
:
and the lower panel

corresponds to the difference between the uncertainties of the equally weighted and EGA
weighted ensembles.

The upper panel in Fig. 7 shows that there are large regions of improvement
:
,
:
which is

more apparent over land, close to the poles and to the equator. The lower panel shows
that in regions in which the EGA reduces the uncertainty, it does so for almost all time
points and vice versa. No correlation between significant improvement of the predictions
and significant reduction of the uncertainties was identified.

The global test we performed was done by calculating the area weighted average of
the two quantities defined above and to plot

::::::
plotting

:
the histograms of their time series.

These are shown in Fig. 8. The upper panel shows the global average
:::::::
globally

:::::::::
averaged

absolute error difference between the climatology and the EGA forecaster
:
, and the lower

panel shows the global average
:::::::
globally

:::::::::
averaged

:
difference between the uncertainties of

the equally weighted and EGA weighted ensembles. The x axis is in units of ◦C and is
zero centered to emphasize the non symmetric

::::::::::::::
nonsymmetrical

:
distribution of the data.

The upper panel shows that there are only 11 negative values out of 120 and a positive

16



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

peak at around 0.03 ◦C. The probability of more than 108 positive values out of 120 in
a symmetric distribution with

:::::::::::
symmetrical

:::::::::::
distribution

::::
with

::
a
:
zero mean is practically zero;

therefore, we conclude that, globally, the EGA forecaster predicts better than climatology.
The uncertainties difference

:::::::::
difference

:::
in

::::::::::::
uncertainties

:
shows that the EGA forecaster has

lower uncertainty than
:::
the

:
equally weighted ensemble for all the time pointsand therefore ,

:::
and

::::::::::
therefore,

:
we can also conclude that the reduction of the globally averaged uncertain-

ties is significant.

7 Summary and discussion

The SLA method does not rely on any assumptions regarding the distributions of the climate
variables; therefore, it is robust and can be used for any climate variable. The updating
scheme of the weights does not require a considerable computational cost and allows for
a fast and easy update of the weights when new measurements become available. In the
results presented here, we used the deviation from the trajectory of the climate variable as
the metric for the weighting, but other weighting methods can also be applied. For example,
one can use a measure of the statistical distance

:
, such as the Kullback–Leibler divergence

(Kullback and Leibler, 1951) or the Jensen–Shannon divergence (Manning and Schütze,
1999); a model that yields a probability density function (PDF) which

:::
that

:
is closer to the

measured PDF of a variable will get a higher weight.
One disadvantage of the SLA method (which may also be considered as an advantage for

some applications) is the fact that the weights are between zero and one. This means that
if the measurements are not spanned by the predictions of the models, the SLA algorithm
will not be able to track the measurements but would converge to the best model sinceby
definition

:
,
::
by

::::::::::
definition, the SLA predictions are bounded by the predictions of the models

of the ensemble. In this case, other methods, such as the regression that can yield any
linear combination of the model predictions, may achieve better predictions than the SLA
forecasters but will not be able to reduce the ensemble uncertainties.
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We showed that climate predictions (on a decadal time scale) of the 2m-temperature
monthly average can be improved and that the associated uncertainties can be reduced
using the

::::
SLA

:::::::::::
algorithms.

::::
The

:::::::
largest

:::::::::::::
improvement

::::
was

::::::
found

::::::
using

:::
the

:
EGA forecaster .

The
:::::
small

::::::::::::
improvement

:::::::::
achieved

:::
by

:::
the

:::::
EWA

::::
and

:::::
LAA,

::::::
when

:::
the

:::::::::::
climatology

::::
was

::::::
added

:::
as

::
an

:::::::
expert

::
to

:::
the

::::::::::
ensemble,

:::
is

::::
only

::::::::::
associated

:::::
with

:::
the

::::
fact

::::
that

::::
they

::::::::
tracked

:::
the

:::::::::::
climatology

::
in

:::::::
regions

::::::
where

::
it

:::::::::
performed

::::
the

:::::
best.

::::::::::
Therefore,

:::
the

:::::
EWA

::::
and

:::::
LAA

:::
did

:::
not

:::::
show

::::::::::
significant

::::::::::::
improvement

::::::::::
compared

::
to

:::::::::::
climatology.

:

::::
The

:::::::::::::
improvement

::
of

::::
the

:::::
LAA

:::::
over

:::
the

::::::
EWA

::
is

::::
too

::::::
small

::
to

:::
be

:::::::::::
considered

:::::::::::
significant.

:::::::::
Moreover,

:::::
both

::::
the

::::::
EWA

::::
and

::::
the

:::::
LAA

:::::::::::
performed

::::::
worse

:::::
than

::::
the

::::::
EGA.

:::::::
These

:::::::
results

:::::::
suggest

::::
that

:::
in

::::::::
decadal

:::::::
climate

::::::::::
prediction,

::::
the

:::::::::::::
nonstationary

:::::::
nature

::
of

::::
the

:::::::
climate

:::::::
system

:::::
does

:::
not

::::
play

::
a

::::::
major

::::
role.

::::
The

::::::
more

:::::::::
significant

:::::::::::::
improvement

::
is

:::::::::
achieved

:::::
when

::::::::
focusing

:::
on

:::::::
tracking

::::
the

::::
best

::::::::::
prediction

::::::
rather

::::
than

::::
the

::::
best

:::::::
model

::::::::::::::::::::::::::::::::
(Cesa-Bianchi and Lugosi, 2006) .

::::
The improved predictions and reduced uncertainties considered here are only those aris-

ing from the variability between different models. This is because the ensemble used in this
study consists of only one run (corresponding to one initial condition) of each of the models.
The uncertainties due to the internal variability of each of the models remained unaffected.
In principle, the SLA method can be used to quantify the quality of different initialization
methods. However, there is no justification for weighting initial conditions generated by the
same method at times that are of the same order of magnitude before the prediction pe-
riod. Therefore, the SLA method cannot reduce uncertainties associated with the internal
variability of the models.

The SLA method provided better predictions than each one of the models and their sim-
ple average. All the models, including the simple average, considered in this study showed
no global skill; namely, in averaging over the globe, the climatology provided a better pre-
diction than each of the models. The SLA forecasters do not resolve this issue unless the
climatology is added as an additional model to the ensemble. When the model ensemble in-
cludes the climatology, the SLA forecasters can yield better predictions than the climatology
itself by assigning high weight to the climatology in the regions where the models fail and
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high weight to the best models in regions where they perform better than the climatology
(namely, regions where the best models are skillful).

The method and the results presented here provide performance-based,
spatially-distributed

:::::::
spatially

:::::::::::
distributed

:
weights of climate models, which lead to im-

proved climate predictions and reduced uncertainties. These can be relevant for many
applications in agriculture and ecology, and for decision makers and other stakeholders.
The spatially-distributed

::::::::
spatially

::::::::::
distributed

:
weights may also be used for testing new

parameterization and physics schemes in global circulation models.
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Table 1. Models Availability
::::::
Model

::::::::::
Availabilities.

Institute ID Model Name Modeling Center (or Group) Grid (lat× lon)

BCC BCC-CSM1.1 Beijing Climate Center, China Meteoro-
logical Administration

64× 128

CCCma CanCM4 Canadian Centre for Climate Modelling
and Analysis

64× 128

CNRM-CERFACS CNRM-CM5 Centre National de Recherches Me-
teorologiques/Centre Europeen de
Recherche et Formation Avancees en
Calcul Scientifique

128× 256

LASG-IAP FGOALS-s2 LASG, Institute of Atmospheric Physics,
Chinese Academy of Sciences

108× 128

IPSL IPSL-CM5A-LR Institut Pierre-Simon Laplace 96× 96

MIROC MIROC5
MIROC4h

Atmosphere and Ocean Research Insti-
tute (The University of Tokyo), National
Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science
and Technology

128× 256
320× 640

MRI MRI-CGCM3 Meteorological Research Institute 160× 320
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EWA to EGA Comparison

EGA

EWA

expert 1

expert 2

measurements

Figure 1. An ideal experiment with two experts. The first always predicts zero and the second
always predicts one. The true value is always 0.7. The EWA forecaster converges to the best model
(predicting one) while the EGA forecaster converges to the true value.
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Figure 2. Temporal evolution of the global and annual average of the 2m-temperature RMSE for the
eight climate models (after bias correction) and the climatology. During the 30 years of the simula-
tions, the skill of most of the models did not decline. In fact, a simple linear fit to the models indicates
that some of them increased their skill with time.
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Figure 3. 10 year RMSE of the 2m-temperature for three forecasting methods:
:
, (a) EWA, (b) EGA,

and (c)
::::
LAA,

::::
and

:::
(d)

::
the

:
simple average. The colors represent the RMSE of each grid cell. Both

::
All

:::
the

:
SLA forecasters yield a smaller global RMSE than the simple average. The improvements

achieved by the EWA and EGA forecasters, compared with the simple average, are more apparent
close to the poles and in southwestern America.
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Figure 4. Global, area-weighted RMSE of the 2m-temperature, during the 10 year validation period,
as a function of the learning time. The presented RMSE was calculated for the EGA forecaster;
however, a similar trend was obtained for the EWA

:::
and

:::::
LAA. In general, a longer learning period

improves the forecaster predictions.

27



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 5. The 2m-temperature uncertainty during the 10 year validation period for three forecasting
methods: ,

:
(a) EWA, (b) EGA, and (c)

:::::
LAA,

:::
and

::::
(d)

:::
the

:
simple average. The uncertainties of the

EWA
:::
and

::::
LAA

:
are smaller than those of the EGA; however, the predictions of the EGA are bet-

ter (see the text for a more detailed explanation). Both the EGA and
::
All

:
the EWA forecasters yield

smaller uncertainties than the simple average. The uncertainties, corresponding to the SLA fore-
casting schemes, are significantly reduced in regions where the uncertainties are larger, such as
toward the poles and over South America and Africa.
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Figure 6. The difference between the 10 year validation period average 2m-temperature RMSE of
the climatology and the EGA forecaster, (a) EGA with an ensemble that includes eight models,
(b) EGA with an ensemble that includes the same eight models and also the climatology of the
learning period as an additional model. The results demonstrate that when the ensemble includes
the climatology, the EGA forecaster is skillful.
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Figure 7. The number of time points in which the EGA forecaster performs better. The upper panel
shows the spatial distribution of the number of time points in which the absolute error of the EGA
forecaster is smaller than that of the climatology. The lower panel shows the spatial distribution of
the number of time points in which the uncertainty of the EGA weighted ensemble is smaller than
that of the equally weighted ensemble. White circles represent significant improvement by the EGA
forecaster and black circles represent its significantly poorer performance. Both quantities show
better performance of the EGA forecaster over most of the glob

:::::
globe.
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Figure 8. The histograms of the globally averaged differences of absolute error and uncertainty.
The upper panel shows the histogram of the globally averaged difference between the absolute
error of the climatology and that of the EGA forecaster . The lower panel shows the histogram of
the difference between the uncertainties of equally weighted and EGA weighted ensembles. Both
quantities show significantly improved performance of the EGA forecaster .
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