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Abstract

Simulated climate dynamics, initialized with observed conditions, is expected to be syn-
chronized, for several years, with the actual dynamics. However, the predictions of climate
models are not sufficiently accurate. Moreover, there is a large variance between simula-
tions initialized at different times and between different models. One way to improve climate5

predictions and to reduce the associated uncertainties is to use an ensemble of climate
model predictions, weighted according to their past performances. Here, we show that skill-
ful predictions, for a decadal time scale, of the 2 m-temperature can be achieved by applying
a sequential learning algorithm to an ensemble of decadal climate model simulations. The
predictions generated by the learning algorithm are shown to be better than those of each10

of the models in the ensemble, the better performing simple average and a reference cli-
matology. In addition, the uncertainties associated with the predictions are shown to be
reduced relative to those derived from an equally weighted ensemble of bias-corrected pre-
dictions. The results show that learning algorithms can help to better assess future climate
dynamics.15

1 Introduction

A new group of global climate simulations, referred to as the decadal experiments, was
introduced in the Coupled Model Intercomparison Project (CMIP5) multi-model ensemble
(Taylor et al., 2012; Meehl et al., 2009). The decadal climate predictions differ from the
long-term climate projections in their duration, aims and meaningful output. The idea behind20

the decadal experiments was to investigate the predictability of the climate by atmosphere
ocean general circulation models (AOGCMs) in time scales of up to 30 years whereas long-
term climate projections use the same type of models to predict the forced response of the
climate system to different future atmospheric compositions over the next century (Meehl
et al., 2009; Taylor et al., 2012).25
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The AOGCMs in the decadal experiments were initialized with interpolated observations
of the ocean, sea ice and atmospheric conditions, together with the atmospheric composi-
tion (Taylor and Meehl, 2011) (note that long-term projections are initialized with a quasi-
equilibrium pre-industrial state (Taylor et al., 2012)). Therefore, they were expected to re-
produce the monthly and annual averages of the climate variables and the response of the5

climate system to changes in the atmospheric composition (Warner, 2011; Collins, 2007;
Kim et al., 2012). Indeed, it was shown (Kim et al., 2012) that in some regions, the CMIP5
simulations have some prediction skill. It was also confirmed (Kim et al., 2012) that the
multi-model average provides better predictions than each of the models, similar to what
was found for other climate simulations (Doblas-Reyes et al., 2000; Palmer et al., 2004;10

Hagedorn et al., 2005; Feng et al., 2011). However, the simple multi-model average does
not take into account the quality differences between the models; therefore, it is expected
that a weighted average, with weights based on the past performances of the models, will
provide better predictions than the simple average. As expected, it was shown that the
weighted average of climate models can improve predictions when using ensembles of15

AGCMs (Rajagopalan et al., 2002; Robertson et al., 2004; Yun et al., 2003), AOGCMs
(YUN et al., 2005; Pavan and Doblas-Reyes, 2000; Chakraborty and Krishnamurti, 2009)
and regional climate models (Feng et al., 2011; Samuels et al., 2013).

The uncertainties in climate predictions can be attributed to three main sources: the inter-
nal variability of the model, inter-model variability and future forcing scenario uncertainties.20

The internal variability of the model stems from the sensitivity of the model to the initial con-
ditions, sensitivity to the values of the parameters and the discretization method used. The
inter-model variability is the result of different parameterization schemes and modeling ap-
proaches adopted in different models. The uncertainties due to different forcing scenarios
are mostly related to different scenarios assumed regarding future greenhouse gas emis-25

sions. On a decadal time scale, forcing scenario uncertainties and uncertainties due to the
internal variability of each model are considerably smaller than the inter-model uncertainties
(Meehl et al., 2009; Hawkins and Sutton, 2009) (we also verified that the internal variability
of each of the models we used is much smaller than the inter-model variability). Therefore,
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estimation of the uncertainties from an ensemble of climate models is expected to give
a meaningful estimation of the total climate prediction uncertainties.

Different methods were used to improve climate predictions using an ensemble of mod-
els. A common approach is the simple regression (Krishnamurti et al., 2000; Krishnamurti,
1999). The regression does not assign a weight to each member of the ensemble but rather5

attempts to find the set of coefficients yielding the minimal square error for a linear com-
bination of the ensemble model predictions. Bayesian methods have also been used for
weighting ensembles of climate model projections (Rajagopalan et al., 2002; Robertson
et al., 2004; Tebaldi and Knutti, 2007; Smith et al., 2009; Buser et al., 2009, 2010). The
weighting scheme of these methods relies on a certain distribution of the errors and other10

prior assumptions regarding the models; these assumptions are not necessarily valid for
climate dynamics and predictions. Many variations of the Bayesian methods were applied
to weather forecasting in order to establish the ensemble of models (Kalnay et al., 2006);
these methods are less useful for climate predictions in which the variability between differ-
ent models is larger than the internal variability of each model (Meehl et al., 2009; Hawkins15

and Sutton, 2009).
Recently, sequential learning algorithms (SLAs) (Cesa-Bianchi and Lugosi, 2006) were

applied to ensembles of climate models in order to improve the predictions (Mallet et al.,
2009; Mallet, 2010; Monteleoni et al., 2010, 2011). Mallet et al. (2009); Mallet (2010) com-
bined data assimilation and SLAs in order to improve seasonal to annual ozone concentra-20

tion forecasts. Monteleoni et al. (2010, 2011) applied an improved version (Monteleoni and
Jaakkola, 2003) of a method for learning non-stationary sequences (Herbster and Warmuth,
1998) to long-term climate predictions.

Here, we use several SLAs to weight climate models in the CMIP5 decadal experiments
(Taylor and Meehl, 2011) and thereby to improve both global and regional predictions. In25

addition, we show that the uncertainties associated with these improved predictions are
smaller than those of the unweighted ensemble. The first algorithm is the Exponentiated
Weighted Average (EWA) (Littlestone, 1994) and the second is the Exponentiated Gradient
Average (EGA) (Kivinen, 1997). The two original algorithms were modified and adjusted to
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improve decadal climate predictions. A more recent algorithm, the learn-α algorithm (LAA),
which is more suitable for the study of nonstationary sequences, was also used (Monteleoni
and Jaakkola, 2003). The decadal climate predictions allow us to have a learning period
and a validation period for testing the SLAs’ performances. In addition, the use of methods
for nonstationary sequences helps to assess the stationarity of the climate predictions in5

decadal time scales.
It is important to note that the SLA method assigns real weights (taking values between

zero and one) to the ensemble models rather than to future climate paths (it is straightfor-
ward to use the weights of the models to get the probabilities of future climate paths, which
are the common products of the Bayesian approaches); this characteristic makes the SLA10

method appropriate for model evaluation. The SLA method has several advantages com-
pared with other weighting schemes: (i) it makes no assumptions regarding the distribution
of the climate variables and the model parameters. Therefore, it can be used for all climate
variables and all types of predictions; (ii) there is an upper bound for the deviation of the
weighted ensemble average from the best model. For a sufficiently lengthy learning period15

(the duration of this period depends on the variable, the learning rate (which is described
later) and the number of models in the ensemble), the SLA prediction is at least as good
as the prediction of the best model in the ensemble; (iii) the weights can be dynamically
updated, when new measurements are introduced, with no significant computational cost.

2 The sequential learning algorithms20

A sequential learning algorithm (SLA)(also known as online learning) assigns weights to
the climate models (the experts) in the ensemble based on their past performance. In this
work, the output of the models was divided into two periods: a learning period during which
the weights were updated and a prediction period during which the weights remained fixed
and equal to the weights assigned by the SLA in the last step of the learning process.25

In order to capture the spatial variability in model performance, the weights were spatially
distributed and the weight of each model in each grid cell was determined by the local
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past performance of the model. For the sake of clarity, the algorithm is described below
without spatial indexes although the calculations were done for each grid cell separately.
The prediction of the SLA forecasters is the weighted average of the ensemble (Cesa-
Bianchi and Lugosi, 2006). The weights are assigned to minimize the cumulative regret with
respect to each one of the climate models. The cumulative regret of expert E is defined as:5

RE,n ≡
n∑
t=1

(l(pt,yt)− l(fE,t,yt))≡ Ln−LE,n. (1)

t is a discrete time, l denotes some loss function that is a measure of the difference be-
tween the predicted (pt by the forecaster and fE,t by expert E) and the true (yt) values.
In this work, we defined the loss function to be the square of the difference between the
forecaster prediction and the “real” value, namely, l(pt,yt)≡ (pt−yt)2. Ln ≡

∑n
t=1 l(pt,yt),10

LE,n ≡
∑n

t=1 l(fE,t,yt) are the cumulative loss functions of the forecaster and expert E,
respectively. The outcome of the forecaster , after n− 1 steps of learning, is weights as-
signed to the climate models in the ensemble to be used for forecasting the value at t= n.
The forecast for t= n is the weighted average of the climate models, that is:

pn ≡
N∑
E=1

wE,n−1 · fE,n. (2)15

Here, N is the number of models (experts) and wE,n−1 is the weight of expert E, which is
determined by the regret up to time n−1. We used two forecasters (weighting schemes): the
Exponentiated Weighted Average (EWA) and the Exponentiated Gradient Average (EGA).
The EWA weight is defined as:

wE,n ≡
e−η·LE,n∑N
E=1 e

−η·LE,n
(3)20

and its prediction at time n is:

pn =

∑N
E=1 e

−ηLE,n−1fE,n∑N
E=1 e

−ηLE,n−1
. (4)
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The EGA is similar to the EWA but with the cumulative loss calculated from the summation
of the loss gradients. The cumulative loss for the EGA forecaster is defined as:

LGE,n ≡
n∑
t=1

l′E(pt,yt) (5)

where,

l′E(pt,yt)≡
∂lE(pt,yt)

∂wE,t−1
= 2 · (pt− yt) · fE,t. (6)5

For both forecasters, η > 0 is a parameter representing the learning rate.
The deviation between the forecast and the “real” trajectory was quantified using the root

mean square error (RMSE). The RMSE of a grid cell with coordinates (i, j), over a period
of n time steps (months in our case), is defined as:

RMSE(i, j)≡

√√√√(1/n)
n∑
t=1

(pt(i, j)− yt(i, j))2, (7)10

where pt(i, j) is the value predicted by the forecaster and yt(i, j) is the “real” value. The
global, area-weighted RMSE is defined as:

GRMSE ≡ (1/AEarth)
∑
i,j

Ai,jRMSE(i, j), (8)

where AEarth is the earth’s surface area and Ai,j is the area of the (i, j) grid cell.
The learning rate, η, was chosen to minimize the metric M ≡ RMSE · (1 +15

floor(max(∆w/∆t)/(1/N))) during the learning period. This metric provides a minimal
deviation of the forecast climate trajectory from the observed one and also ensures sta-
ble weights of the models (a significant change in the weight of a model was considered

7



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

the weight a model would be assigned in the absence of learning). We also tested the op-
timization of η using only a fraction of the learning period and found that as long as the
optimization period was of the same order of the prediction period, there was no significant
change in the outcome. The optimal value of η was found using a recursive search. We
scanned the range η ∈ [0,700] in which the lower limit represents no learning and the up-5

per limit was set by the machine precision. However, our search never reached the upper
limit and, in most grid cells, was found to be at least an order of magnitude smaller. In the
first scan, we used a coarse resolution of ∆η = 10 and recursively narrowed the range to
reach a resolution of ∆η = 0.01. Other methods to search for the optimal value of η pro-
vided similar results but were less efficient. An important difference between the EWA and10

EGA methods is that after a long enough learning period under ideal conditions (station-
ary time series), the former converges to the best model while the latter converges to the
“real” value assuming that the real value is known. Figure 1 illustrates this difference using
a simple case.

This difference between the forecasters implies that for a long enough learning period,15

using an ensemble that includes one model that performs better throughout the learning
period, the weights will be distributed such that the prediction of the EWA will be deter-
mined by this best model and the uncertainty will be very small (due to the small weights of
the other models). Under the same conditions, the EGA would still assign more significant
weights to the other models in order to extract the information they contain regarding the20

dynamics of the “real” value, leading to larger uncertainty (and often better predictions).
The learn-α algorithm (Monteleoni and Jaakkola, 2003) is based on the fixed-share algo-

rithm developed by (Herbster and Warmuth, 1998). The fixed-share algorithm is designed
to switch between experts (or between climate models in our case) in response to changes
in their performances. It is done by adding a switching probability parameter, α, that en-25

sures that all experts are considered at all times. Monteleoni and Jaakkola (2003) improved
this algorithm by learning the optimal switching rate between experts. This algorithm was
already tested for long-term climate projections using the CMIP3 long-term experiments

8
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(Monteleoni et al., 2010, 2011), and here we also test its performance in decadal climate
predictions for comparison with the EWA and EGA methods.

The learn-α algorithm assigns weights for each expert and for each value of the switch-
ing rate αj ∈ [0,1]; the discrete index, j ∈ 1, ...,m represents the performance-optimized
discretization of α (Monteleoni and Jaakkola, 2003). The weight of each expert for a5

given value of α, wE,t=1 (αj) ,is set initially to 1/Ne (Ne is the number of experts in
the ensemble), and the weight of each αj , wt=1 (αj) is set initially to 1/Nα (Nα is the
number of discrete values of α ∈ [0,1] that are considered). The weights are updated
as follows. (i) At each time step, the loss of each model, E, is calculated in a similar
manner to the EWA, lE,t ≡ (fE,t− yt)2. (ii) For each αj , the loss per α is calculated,10

lt (αj)≡− log
(∑Ne

E=1wE,t (αj)e
−lE,t

)
, and the weight of αj is updated according to

wt+1 (αj) =
1

Zt
wt (αj)e

−lt(αj), (9)

where Zt normalizes the weights. (iii) For each model, E, and switching rate, αj , the weight
wE,t (αj) is updated according to

wE,t+1 (αj) =
1

Zt (αj)

Ne∑
E∗=1

wE∗,t (αj)e
−lE∗,tS (E,E∗;αj) , (10)15

where,

S (E,E∗;αj)≡ (1−αj)δ (E,E∗) +
αj

Ne− 1
(1− δ (E,E∗)) . (11)

δ(·, ·) is the Kronecker delta and Zt(αj) normalizes the weights per alpha.
The prediction at t= n is a weighted average of the experts and the different values of α:

pn =
Ne∑
E=1

Nα∑
j=1

wn−1 (αj) ·wE,n−1 (αj) · fE,n. (12)20
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One can see that in the LAA, the learning rate, η = 1, and the switching rate, α, is sequen-
tially optimized, while for the EWA and EGA, the learning rate, η, was set to achieve the
best performance during the learning period. The LAA is designed to switch between mod-
els faster than the EWA, which is important when the sequences learned are nonstationary.

3 Improved predictions5

We consider an ensemble of eight global climate models for the period of 1981–2011,
whose results are part of the CMIP5 decadal experiments (Taylor and Meehl, 2011). Ta-
ble 1 describes the eight models that we used in this study. These models were first lin-
early interpolated to the spatial resolution of the NCEP/NCAR reanalysis data using the
NCAR command language (NCL) (NCL, 2011). We focus on the model predictions of the10

2m-temperature. The decadal experiments of the CMIP5 project include a set of runs for
each of the models, representing different initial conditions. In agreement with the common
knowledge (Meehl et al., 2009), we found that on decadal time scales, the internal variabil-
ity of each model is smaller than the variability between the models. Therefore, we chose,
arbitrarily, the first run for each of the ensemble models. The results presented here are15

based on a learning period of 20 years (1981–2001), followed by predictions for a 10 year
(2001–2011) validation period.

The learning period served for both learning (i.e., weight assignment) and correcting
the bias of the models. This was simply done by subtracting the average of each of the
models during the learning period and adding the average of the NCEP/NCAR reanalysis20

data (Kalnay et al., 1996) (considered here as reality). This bias correction was applied to
each grid cell separately and was done to ensure that the improvement achieved by the
forecasters was beyond the impact of a simple bias correction. In addition, we chose a long
enough learning period to ensure that our results were not affected by the drift of the models
from the initial condition toward their climate dynamics (Meehl et al., 2009).25

The performance of the models was determined by comparing the model predictions
to the NCEP/NCAR reanalysis data (Kalnay et al., 1996). We are aware of the spurious

10
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variability and trends in the NCEP data and of other reanalysis projects (Uppala et al.,
2005; Onogi et al., 2007); however, in order to demonstrate the capability of the SLA to
improve global and regional climate predictions, the reanalysis data is the best dataset to
use.

Using the predictions of the climate models only 20 years after they were initialized can5

cast doubt on their ability to generate skillful predictions since it is believed that climate
models’ skill tends to vanish after that long a period. However, we found that, for most of the
models we used, this is not the case. This fact is illustrated in Fig. 2, which shows that the
globally averaged RMSE of most of the climate models did not increase considerably dur-
ing the 30 year-long simulations. Another noticeable and important feature of the CMIP5’s10

climate models of the is the fact that, globally, climatology performs much better than each
of the models. In Sect. 5, we show that, despite this fact, the SLA can use the models and
the climatology to provide a forecast that is better than the climatology.

Four forecasting methods (forecasters) were tested: the EWA, the EGA, the LAA and
a simple average. The simple average represents no learning and is presented to illustrate15

the superior performance of the SLAs. The performance of the forecasters is measured
by the root mean square error (RMSE), during the validation period, which quantifies the
deviation of the predicted climate trajectory from the observed one.

Figure 3 shows the RMSE in the 2m-temperature monthly average prediction, during the
10 year validation period, for each grid cell. Panels a, b, c and d correspond to the RMSE of20

the EWA, EGA, LAA and simple average weighting schemes, respectively. The EWA, EGA
and LAA forecasters give better predictions than the simple average. The improvement
achieved by the three forecasters, compared with the simple average, is more apparent
close to the poles and in South America. In these regions, the models deviate more from
each other, and the weighting schemes favor those that perform better. Over the oceans25

and low to mid-latitudes, the models showed better agreement, and therefore, the weighting
schemes did not yield a large improvement.

The global, area-weighted RMSE can be used to quantify the improvement achieved by
the SLA forecasters, that is, 1.316◦C for the EWA, 1.297◦C for the EGA, 1.372◦C for the

11
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LAA and 1.390◦C for the simple average. Since the EWA has the tendency to converge to
the best model (if the ensemble includes a model that is always better than the others in
certain regions), we also compared the performance of the EWA and EGA forecasters with
two forecasting methods that predict according to the best model (defined as the model
that was assigned the highest weight according to either the EWA or the EGA) in each grid5

cell. The global, area-weighted RMSE was found to be 1.568◦C for the best model based
on the EWA and 1.633◦C for the best model based on the EGA. These results show that
the SLA forecasters outperform the best models in the ensemble. In general, we found that
a longer learning period improves the predictions of the forecasters. Figure 4 shows that the
area-weighted RMSE of the forecasters (during the validation period) is reduced when the10

learning period is extended. By increasing the learning rate, we found that shorter learning
periods can be selected with no significant increase in error; however, we chose a learning
period that is of the order of the prediction period in order to capture the climate dynamics
in all the time scales that are relevant to the prediction period.

4 Reduced uncertainties15

The weights obtained from the SLA method can be used to better estimate the uncertainties
of the predictions. The uncertainties are quantified by the square root of the time average
of the weighted variance of the ensemble. This quantity (for a period of n time steps) in the
(i, j) grid cell is defined as:

STD(i, j)≡

√√√√(1/n)
n∑
t=1

N∑
E=1

wE(i, j)(fE,t(i, j)− pt(i, j))2. (13)20

Here, fE,t(i, j) is the prediction of model E for grid cell (i, j), at time t; pt(i, j) is the pre-
diction of the forecaster for grid cell (i, j), at time t (i.e., the weighted average of all the
models); and wE(i, j) is the weight assigned to model E at grid cell (i, j) (the weights re-
main constant during the validation period for which the STD is calculated). The global,

12



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

area-weighted uncertainty is defined as:

GSTD ≡ (1/AEarth)
∑
i,j

Ai,jSTD(i, j). (14)

Figure 5 shows the uncertainty of the 2m-temperature during the validation period for the
three forecasting methods; panels a, b, c and d correspond to the EWA, EGA, LAA and
simple average forecasters, respectively. It is important to note that this uncertainty is only5

due to the different predictions of the ensemble models; other sources of uncertainty are not
affected by our forecasting schemes. The three learning algorithms, EWA, EGA and LAA
forecasters, yield smaller uncertainties than does the simple average. The improvement is
significant in regions where the uncertainties are larger, such as toward the poles and over
South America and Africa. The global, area-weighted uncertainties are: 1.242◦C, 1.381◦C,10

1.078◦C and 1.593◦C for the EWA, EGA, LAA and simple average forecasters, respectively.
These values show that in addition to improving the predictions, the SLA forecasters also
reduce the uncertainties of these predictions. Note that the smaller uncertainty of the EWA
and the LAA forecasters is simply due to the fact that these forecasters converge to the
best model in each grid cell (if the ensemble includes a model that is always the best). The15

uncertainty of the EGA provides a better estimate of the predictions’ uncertainty because
its predictions converge to the observations.

5 Skillful forecast

The skill of a forecaster may be defined as its ability to provide better predictions than the
reference climatology. In our study, the natural choice is the climatology of the learning20

period, that is:

Cm ≡
1

L

L∑
i=1

yi,m, (15)
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where, yi,m is the value of the variable (in this study, it is the 2m-temperature as reported
in the reanalysis data) in the calendar month m of the year i; the learning period dura-
tion is L years; and the climatology, Cm, is just the average of that variable during the L
years. A prediction that is based on climatology assumes that for each month of the predic-
tion period, the value of the variable will be equal to the climatology of the corresponding5

calendar month. Therefore, it is reasonable to expect that a skillful model should provide
more information on the variability of the climate than the average of previous years (the
climatology).

Figure 6a shows the differences between the 10 year RMSE of the 2m-temperature
monthly mean, of the climatology and of the EGA forecaster . Positive values represent10

locations where the EGA forecaster has a smaller RMSE and is, therefore, considered as
a skillful forecaster . In most regions, the climatology performs better than the EGA fore-
caster (and, obviously, better than the best model!); however, some regions indicate the
EGA’s advantage, such as eastern North America up to Greenland. We found that the re-
gions in which the EGA forecaster performs better are characterized by larger variability15

(which increases the deviations from the climatology). The global, area-weighted RMSE is
1.188◦C for the climatology and 1.373◦C for the EGA. One could conclude that the EGA
forecaster is not skillful.

To circumvent this problem, we decided to add the climatology of the learning period as
an additional model to our ensemble. In Fig. 6b, we show the difference between the RMSE20

of the EGA forecaster , for the model ensemble that includes the climatology, and the RMSE
of the climatology itself. In this figure, one can see that the EGA forecaster , for the model
ensemble that includes the climatology, provides predictions that are at least as good as
the climatology over most of the globe. Adding the climatology to the ensemble reduced the
global, area-weighted RMSE of the EGA forecaster to 1.156◦C–a small improvement (a re-25

duction of about 2.7%) over the climatology. The global, area-weighted RMSE of the EWA,
LAA and simple average with climatology are 1.187◦C, 1.180◦C and 1.337◦C, respectively.
The global, area-weighted uncertainties of the 10 year validation period, in this case, are
0.118◦C, 0.953◦C, 0.836◦C, and 1.552◦C for the EWA, EGA, LAA and simple average fore-
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casters, respectively. Note that as we mentioned earlier, the small uncertainty associated
with the EWA forecaster is not representative of the climate prediction uncertainty. In what
follows, we focus on the significance of the results of the EGA forecaster .

6 Significance tests

There is more than one test that can be done to demonstrate the significance of the results.5

We focus on testing whether the EGA forecaster improves the predictions beyond clima-
tology (as shown earlier, each of the models performs worse than the climatology) and
whether it reduces the uncertainties below those of an equally weighted ensemble. Both
tests were done globally and regionally. We start by defining two properties. The first is the
difference between the absolute error of the climatology and the absolute error of the EGA10

forecaster at a given grid cell and time point, that is, |(Ct(i, j)−yt(i, j))|−|(pt(i, j)−yt(i, j))|.
The second is the difference between the uncertainties of the equally weighted ensemble
and the ensemble weighted according to the EGA forecaster at a given grid cell and time

point, that is,
√

1
N

∑N
E=1(fE,t(i, j)− f·,t(i, j))2−

√∑N
E=1wE(i, j) · (fE,t(i, j)− pt(i, j))2

(the dot replacing the E index represents averaging over that index). For both quantities,15

positive values represent a better performance of the EGA forecaster . The 10 year valida-
tion period yields, for each of these quantities, a time series with 120 points in each grid cell.
The fraction of the time series (the number of points out of the total 120) showing positive
values can be used to test the significance of the improvement. We define a significant im-
provement by the EGA forecaster to be when the number of successes are above 66 (i.e.,20

when the null hypothesis that the quantities defined above are symmetrically distributed
around zero is rejected with ∼ 90% confidence).

Figure 7 shows the spatial distributions of the number of positive values (out of the total
120 time points) for the two quantities. The upper panel corresponds to the difference be-
tween the absolute error of the climatology and the EGA forecaster , and the lower panel25

corresponds to the difference between the uncertainties of the equally weighted and EGA
weighted ensembles.

15
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The upper panel in Fig. 7 shows that there are large regions of improvement, which is
more apparent over land, close to the poles and to the equator. The lower panel shows
that in regions in which the EGA reduces the uncertainty, it does so for almost all time
points and vice versa. No correlation between significant improvement of the predictions
and significant reduction of the uncertainties was identified.5

The global test we performed was done by calculating the area weighted average of the
two quantities defined above and plotting the histograms of their time series. These are
shown in Fig. 8. The upper panel shows the globally averaged absolute error difference
between the climatology and the EGA forecaster , and the lower panel shows the globally
averaged difference between the uncertainties of the equally weighted and EGA weighted10

ensembles. The x axis is in units of ◦C and is zero centered to emphasize the nonsym-
metrical distribution of the data. The upper panel shows that there are only 11 negative
values out of 120 and a positive peak at around 0.03 ◦C. The probability of more than 108
positive values out of 120 in a symmetrical distribution with a zero mean is practically zero;
therefore, we conclude that, globally, the EGA forecaster predicts better than climatology.15

The difference in uncertainties shows that the EGA forecaster has lower uncertainty than
the equally weighted ensemble for all the time points, and therefore, we can also conclude
that the reduction of the globally averaged uncertainties is significant.

7 Summary and discussion

The SLA method does not rely on any assumptions regarding the distributions of the climate20

variables; therefore, it is robust and can be used for any climate variable. The updating
scheme of the weights does not require a considerable computational cost and allows for
a fast and easy update of the weights when new measurements become available. In the
results presented here, we used the deviation from the trajectory of the climate variable as
the metric for the weighting, but other weighting methods can also be applied. For example,25

one can use a measure of the statistical distance, such as the Kullback–Leibler divergence
(Kullback and Leibler, 1951) or the Jensen–Shannon divergence (Manning and Schütze,

16
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1999); a model that yields a probability density function (PDF) that is closer to the measured
PDF of a variable will get a higher weight.

One disadvantage of the SLA method (which may also be considered as an advantage for
some applications) is the fact that the weights are between zero and one. This means that if
the measurements are not spanned by the predictions of the models, the SLA algorithm will5

not be able to track the measurements but would converge to the best model since, by def-
inition, the SLA predictions are bounded by the predictions of the models of the ensemble.
In this case, other methods, such as the regression that can yield any linear combination of
the model predictions, may achieve better predictions than the SLA forecasters but will not
be able to reduce the ensemble uncertainties.10

We showed that climate predictions (on a decadal time scale) of the 2m-temperature
monthly average can be improved and that the associated uncertainties can be reduced
using the SLA algorithms. The largest improvement was found using the EGA forecaster .
We believe that the small improvement achieved by the EWA and LAA, when the climatology
was added as an expert to the ensemble, stems from the fact that over most of the globe,15

the climatology dominated the predictions of these SLAs.
The improvement, relative to the climatology and the equally weighted ensemble,

achieved by the LAA and the EWA, although small, was found to be statistically signifi-
cant. The better performance of the EGA, compared with the LAA, suggests that in decadal
climate predictions, the nonstationary nature of the climate system does not play a ma-20

jor role. The more significant improvement is achieved when focusing on tracking the best
prediction rather than the best model (Cesa-Bianchi and Lugosi, 2006).

The improved predictions and reduced uncertainties considered here are only those aris-
ing from the variability between different models. This is because the ensemble used in this
study consists of only one run (corresponding to one initial condition) of each of the models.25

The uncertainties due to the internal variability of each of the models remained unaffected.
In principle, the SLA method can be used to quantify the quality of different initialization
methods. However, there is no justification for weighting initial conditions generated by the
same method at times that are of the same order of magnitude before the prediction pe-

17



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

riod. Therefore, the SLA method cannot reduce uncertainties associated with the internal
variability of the models.

The SLA method provided better predictions than each one of the models and their sim-
ple average. All the models, including the simple average, considered in this study showed
no global skill; namely, in averaging over the globe, the climatology provided a better pre-5

diction than each of the models. The SLA forecasters do not resolve this issue unless the
climatology is added as an additional model to the ensemble. When the model ensemble in-
cludes the climatology, the SLA forecasters can yield better predictions than the climatology
itself by assigning high weight to the climatology in the regions where the models fail and
high weight to the best models in regions where they perform better than the climatology10

(namely, regions where the best models are skillful).
The method and the results presented here provide performance-based, spatially dis-

tributed weights of climate models, which lead to improved climate predictions and reduced
uncertainties. These can be relevant for many applications in agriculture and ecology, and
for decision makers and other stakeholders. The spatially distributed weights may also be15

used for testing new parameterization and physics schemes in global circulation models.
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Table 1. Model Availabilities.

Institute ID Model Name Modeling Center (or Group) Grid (lat× lon)

BCC BCC-CSM1.1 Beijing Climate Center, China Meteoro-
logical Administration

64× 128

CCCma CanCM4 Canadian Centre for Climate Modelling
and Analysis

64× 128

CNRM-CERFACS CNRM-CM5 Centre National de Recherches Me-
teorologiques/Centre Europeen de
Recherche et Formation Avancees en
Calcul Scientifique

128× 256

LASG-IAP FGOALS-s2 LASG, Institute of Atmospheric Physics,
Chinese Academy of Sciences

108× 128

IPSL IPSL-CM5A-LR Institut Pierre-Simon Laplace 96× 96

MIROC MIROC5
MIROC4h

Atmosphere and Ocean Research Insti-
tute (The University of Tokyo), National
Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science
and Technology

128× 256
320× 640

MRI MRI-CGCM3 Meteorological Research Institute 160× 320
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EWA to EGA Comparison

EGA

EWA

expert 1

expert 2

measurements

Figure 1. An ideal experiment with two experts. The first always predicts zero and the second
always predicts one. The true value is always 0.7. The EWA forecaster converges to the best model
(predicting one) while the EGA forecaster converges to the true value.
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Figure 2. Temporal evolution of the global and annual average of the 2m-temperature RMSE for the
eight climate models (after bias correction) and the climatology. During the 30 years of the simula-
tions, the skill of most of the models did not decline. In fact, a simple linear fit to the models indicates
that some of them increased their skill with time.
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Figure 3. 10 year RMSE of the 2m-temperature for three forecasting methods, (a) EWA, (b) EGA,
and (c) LAA, and (d) the simple average. The colors represent the RMSE of each grid cell. All the
SLA forecasters yield a smaller global RMSE than the simple average. The improvements achieved
by the forecasters, compared with the simple average, are more apparent close to the poles and in
southwestern America.
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Figure 4. Global, area-weighted RMSE of the 2m-temperature, during the 10 year validation period,
as a function of the learning time. The presented RMSE was calculated for the EGA forecaster;
however, a similar trend was obtained for the EWA and LAA. In general, a longer learning period
improves the forecaster predictions.
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Figure 5. The 2m-temperature uncertainty during the 10 year validation period for three forecasting
methods, (a) EWA, (b) EGA, and (c) LAA, and (d) the simple average. The uncertainties of the
EWA and LAA are smaller than those of the EGA; however, the predictions of the EGA are better
(see the text for a more detailed explanation). All the forecasters yield smaller uncertainties than the
simple average. The uncertainties, corresponding to the SLA forecasting schemes, are significantly
reduced in regions where the uncertainties are larger, such as toward the poles and over South
America and Africa.
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Figure 6. The difference between the 10 year validation period average 2m-temperature RMSE of
the climatology and the EGA forecaster, (a) EGA with an ensemble that includes eight models,
(b) EGA with an ensemble that includes the same eight models and also the climatology of the
learning period as an additional model. The results demonstrate that when the ensemble includes
the climatology, the EGA forecaster is skillful.

28



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 7. The number of time points in which the EGA forecaster performs better. The upper panel
shows the spatial distribution of the number of time points in which the absolute error of the EGA
forecaster is smaller than that of the climatology. The lower panel shows the spatial distribution of
the number of time points in which the uncertainty of the EGA weighted ensemble is smaller than
that of the equally weighted ensemble. White circles represent significant improvement by the EGA
forecaster and black circles represent its significantly poorer performance. Both quantities show
better performance of the EGA forecaster over most of the globe.
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Figure 8. The histograms of the globally averaged differences of absolute error and uncertainty.
The upper panel shows the histogram of the globally averaged difference between the absolute
error of the climatology and that of the EGA forecaster . The lower panel shows the histogram of
the difference between the uncertainties of equally weighted and EGA weighted ensembles. Both
quantities show significantly improved performance of the EGA forecaster .
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