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Abstract 11 

Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a 12 

site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate 13 

Change) experiment from mid-May to June-end, 2010. Typical daily minimum mixing ratios of CH4 and 14 

N2O were higher than daily minima that were simultaneously observed at a mid-oceanic background 15 

station (NOAA, Mauna Loa) by approximately 70 ppb and 0.5 ppb, respectively. Substantial 16 

enhancements of CH4 and N2O (hourly averages > 500 ppb and > 7 ppb, respectively) were routinely 17 

observed suggesting the presence of large regional sources. Collocated measurements of carbon 18 

monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g. straight-chain and branched 19 

alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were 20 

used with a Positive Matrix Factorization (PMF) source apportionment method to estimate the 21 

contribution of regional sources to observed enhancements of CH4 and N2O.  22 

The PMF technique provided a “top-down” deconstruction of ambient gas-phase observations 23 

into broad source categories, yielding a 7-factor solution. We identified these source factors as 24 

emissions from evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil 25 

management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene 26 

biogenics and anthropogenics.  The dairy and livestock factor accounted for a majority of the CH4 (70 - 27 
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90%) enhancements during the duration of experiments. The dairy and livestock factor was also a 28 

principal contributor to the daily enhancements of N2O (60 – 70%). Agriculture and soil management 29 

accounted for ~ 20 - 25% of N2O enhancements over a 24-hour cycle, not surprisingly given that organic 30 

and synthetic fertilizers are known to be a major source of N2O. The N2O attribution to the agriculture 31 

and soil management factor had a high uncertainty in the conducted bootstrapping analysis. This is most 32 

likely due to an asynchronous pattern of soil-mediated N2O emissions from fertilizer usage and 33 

collocated biogenic emissions from crops from the surrounding agricultural operations that is difficult to 34 

apportion statistically when using PMF.  The evaporative / fugitive source profile, which resembled a mix 35 

of petroleum operation and non-tailpipe evaporative gasoline sources, did not include a PMF resolved-36 

CH4 contribution that was significant (< 2%) compared to the uncertainty in the livestock-associated CH4 37 

emissions. The uncertainty of the CH4 estimates in this source factor, derived from the bootstrapping 38 

analysis, is consistent with the ~ 3% contribution of fugitive oil and gas emissions to the statewide CH4 39 

inventory. The vehicle emission source factor broadly matched VOC profiles of  on-road exhaust sources. 40 

This source factor had no statistically significant detected contribution to the N 2O signals (confidence 41 

interval of 3% of livestock N2O enhancements) and negligible CH4 (confidence interval of 4% of livestock 42 

CH4 enhancements) in the presence of a dominant dairy and livestock factor. The CalNex PMF study 43 

provides a measurement-based assessment of the state CH4 and N2O inventories for the southern San 44 

Joaquin valley. The state inventory attributes ~ 18% of total N2O emissions to the transportation sector. 45 

Our PMF analysis directly contradicts the state inventory and demonstrates there were no discernible 46 

N2O emissions from the transportation sector in the southern SJV region. 47 

1.  Introduction 48 

Methane (CH4) and nitrous oxide (N2O) are the two most significant non-CO2 greenhouse gases 49 

(GHGs) contributing about 50% and 17% of the total direct non-CO2 GHG radiative forcing (~ 1 W m-2), 50 

respectively (Figure SPM.5; IPCC, 2013). CH4, with a  lifetime of ~ 10 years and Global Warming Potential 51 

(GWP) of 34 on a 100-year basis, accounting for climate-carbon feedbacks (Table 8.7, Myhre et al., 2013; 52 

Montzka et al., 2011), is emitted by both anthropogenic and natural sources (e.g. wetlands, oceans, 53 

termites etc.). Anthropogenic global CH4 emissions are due to agricultural activities (enteric 54 

fermentation in livestock, manure management and rice cultivation)(McMillan et al., 2007; Owen and 55 

Silver, 2014), energy sector (oil and gas operations and coal mining), waste management (landfills and 56 

waste water treatment), and biomass burning (some of which is natural) (Smith et al., 2007; NRC, 2010). 57 

N2O has a higher persistence in the atmosphere (lifetime of ~ 120 years) and stronger infrared radiat ion 58 
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absorption characteristics than CH4 giving it a GWP of 298 (Table 8.7, Myhre et al., 2013; Montzka et al., 59 

2011). Agriculture is the biggest source of anthropogenic N2O emissions since the use of synthetic 60 

fertilizers and manure leads to microbial N2O emissions from soil (Crutzen et al., 2007; Galloway et al., 61 

2008). Management of livestock and animal waste is another important biological source of N2O, while 62 

industrial processes including fossil fuel combustion have been estimated to account for ~10% of total 63 

global anthropogenic N2O emissions (Denman et al., 2007). 64 

In 2006, the state of California adopted Assembly Bill 32 (AB32) into a law known as the Global 65 

Warming Solutions Act, which committed the state to cap and reduce anthropogenic GHG emissions to 66 

1990 levels by 2020. A statewide GHG emission inventory (CARB, 2013) maintained by the Air Resources 67 

Board of California (CARB) is used to report, verify and regulate emissions from GHG sources. In 2011, 68 

CH4 accounted for 32.5 million metric tonnes (MMT) CO2-eq representing 6.2% of the statewide GHG 69 

emissions, while N2O emissions totaled 13.4 MMT CO2-eq representing about 3% of the GHG emissions 70 

inventory (Figure 1). CARB’s accurate knowledge of GHG sources and statewide emissions is a key 71 

component to the success of any climate change mitigation strategy under AB32. CARB’s GHG inventory 72 

is a ‘’bottom–up’’ summation of emissions derived from emission factors and activity data. The bottom-73 

up approach is reasonably accurate for estimation and verification of emissions from mobile and point 74 

sources (vehicle tailpipes, power plant stacks etc.) where the input variables are well-understood and 75 

well-quantified.  The main anthropogenic sources of CH4 in the CARB inventory are ruminant livestock 76 

and manure management, landfills, wastewater treatment, fugitive and process losses from oil and gas 77 

production and transmission, and rice cultivation while the major N2O sources are agricultural soil 78 

management, livestock manure management and vehicle fuel combustion (CARB, 2013). The emission 79 

factors for many of these sources have large uncertainties as they are biological in nature and their 80 

production and release mechanisms are inadequately understood thus making these sources unsuitable 81 

for direct measurements (e.g. emissions of N2O from farmlands). Many of these sources (e.g. CH4 from 82 

landfills) are susceptible to spatial heterogeneity and seasonal variability. Unfortunately, a more 83 

detailed understanding of source characteristics is made difficult because CH4 and N2O are often emitted 84 

from a mix of point and area sources within the same source facility (e.g. dairies in the agricultural 85 

sector) making bottom-up estimation uncertain. There is a lack of direct measurement data or “top-86 

down” measurement-based approaches to independently validate seasonal trends and inventory 87 

estimates of CH4 and N2O in California’s Central Valley, which has a mix of several agricultural sources 88 

and oil and gas operations, both of which are known major sources of GHGs.  89 
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In the recent past, regional emission estimates derived from measurements from a tall tower at 90 

Walnut Grove in Central California coupled with inverse dispersion techniques (Fischer et al., 2009) 91 

reported underestimation of CH4 and N2O emissions especially in the Central Valley. Comparison of 92 

regional surface footprints determined from WRF-STILT algorithm between Oct-Dec 2007 indicate 93 

posterior CH4 emissions to be higher than California-specific inventory estimates by 37 ± 21% (Zhao et 94 

al., 2009). Predicted livestock CH4 emissions are 63 ± 22% higher than a priori estimates. A study over a 95 

longer period (Dec 2007 - Nov 2008) at the same tower (Jeong et al., 2012a) generated posterior CH4 96 

estimates that were 55 - 84% larger than California-specific prior emissions for a region within 150 km 97 

from the tower. For N2O, inverse estimates for the same sub-regions (using either EDGAR32 and 98 

EDGAR42 a priori maps) were about twice as much as a priori EDGAR inventories (Jeong et al., 2012b). 99 

Recent studies have incorporated WRF-STILT inverse analysis on airborne observations across California 100 

(Santoni et al., 2012). The authors conclude that CARB CH4 budget is being underestimated by a factor of 101 

1.64 with aircraft-derived emissions from cattle and manure management, landfills, rice, and natural gas 102 

infrastructure being around 75%, 22%, 460%, and 430% more than CARB’s current estimates for these 103 

categories, respectively. Statistical source footprints of CH4 emissions generated using FLEXPART-WRF 104 

modeling and CalNex-Bakersfield CH4 concentration data are consistent with locations of dairies in the 105 

region (Gentner et al., 2014a). The authors conclude that the majority of CH4 emissions in the region 106 

originate from dairy operations. Scaled-up CH4 rice cultivation estimates derived from aircraft CH4/CO2 107 

flux ratio observations over rice paddies in the Sacramento valley during the growing season when 108 

emissions are at their strongest (Peischl et al., 2012) are around three times larger than inventory 109 

estimates.  CH4 budgets derived for the Los Angeles (LA) basin from aircraft observations (Peischl et al., 110 

2013) and studies involving comparison with CO enhancements and inventory at Mt. Wilson (Hsu et al., 111 

2010; Wunch et al., 2009) indicate higher atmospheric CH4  emissions in the LA basin than expected from 112 

bottom-up accounting.  113 

Recent literature seems to suggest that the CARB bottom-up inventory is underestimating CH4 114 

and N2O sources, especially from the livestock sector and perhaps from the oil and gas industry as well. 115 

Source apportionment studies of non-CO2 GHGs over the Central Valley can provide critical information 116 

about under-inventoried or unknown sources that seek to bridge the gap between ‘bottom-up’ and ‘top-117 

down’ methods. GHG emission inventories can potentially be constrained through simultaneous 118 

measurements of GHGs and multiple gas species (VOCs) that are tracers of various source categories. 119 

This study provides CH4 and N2O source attribution during a six-week study involving a complete suite of 120 

continuous GHG and VOC tracer measurements during the CalNex 2010 campaign in Bakersfield which is 121 
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located in the southern part of the Central Valley (May - June 2010). The objective of this study is to 122 

partition the measured CH4, N2O and VOC enhancements into statistically unique combinations using 123 

Positive Matrix Factorization (PMF) apportionment technique. We classify these combinations as 124 

plausible source factors based on our prior knowledge of the chemical origin of mutually co-varying 125 

groups of VOC tracers found in each statistical combination. We examine the source categorization 126 

using observations from source-specific, ground site and airborne measurements and results from other 127 

source apportionment studies. We also compare the relative abundance of CH4 and N2O enhancements 128 

in each source factor with the CARB inventory estimates in order to assess the accuracy of the inventory. 129 

We hypothesize that the PMF analysis will be able to parse the atmospheric observations into unique 130 

statistical source combinations that, as analysts, we would be able to distinguish from each other on the 131 

basis of unique VOC source markers. We should, thus, be able to appropriately attribute the CH4 and 132 

N2O apportioned to each of these factor profiles to a major source category. We then proceed to answer 133 

the scientific question if our top down assessment of the CH4 and N2O inventory can improve our 134 

understanding of the bottom-up CARB inventory in the region. 135 

2.  Experimental Setup 136 

2.1. Field Site and Meteorology 137 

Measurements were conducted from 19 May to 25 June 2010 at the Bakersfield CalNex 138 

supersite (35.3463°N, 118.9654°W) (Figure 2) in the southern San Joaquin Valley (SJV) (Ryerson et al., 139 

2013).  The SJV represents the southern half of California’s Central Valley. It is 60 to 100 km wide, 140 

surrounded on three sides by mountains, with the Coastal Ranges to the west, the Sierra Nevada 141 

Mountains to the east, and the Tehachapi Mountains to the southeast.  142 

The measurement site was located to the southeast of the Bakersfield urban core in Kern 143 

County (Figure 2). The east-west Highway 58 is located ~ 0.8 km  north; the north-south Highway 99 is ~ 144 

7 km west.  The city’s main waste water treatment plant (WWTP) and its settling ponds are located east 145 

and south  (< 2.5 km), respectively. Numerous dairy and livestock operations are located south-146 

southwest at 10 km distance and onwards. The metropolitan region has three major oil refineries 147 

located within 10 km (two to the northwest; one to the southeast). A majority of Kern County’s high-148 

production active oil fields (> 10000 barrels (bbl) per day) (CDC, 2013) are located to the west/northwest 149 

and are distant (~ 40 - 100 km). Kern River oilfield (~ 60000 bbl day-1), one of the largest in the country, 150 

and Kern Front (~ 11000 bbl day-1) are located about 10 - 15 km to the north. There are several other oil 151 
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fields dotted within the urban core (5 - 20 km) which are less productive (< 2000 bbl day -1) or not active 152 

(< 100 bbl day-1). The whole region is covered with agricultural farmlands with almonds, grapes, citrus, 153 

carrots and pistachios amongst the top commodities by value and acreage (KernAg, 2010).  154 

The meteorology and transport of air masses in the southern SJV is complex and has been 155 

addressed previously (Bao et al., 2007; Beaver and Palazoglu, 2009). The wind rose plots (Figure 3) 156 

shown here present a simplified distribution of microscale wind speed and direction at the site for the 157 

campaign duration, the latter often being non-linear over larger spatial scales. The plots depict broad 158 

differences in meteorology during daytime and nighttime. A mesoscale representation of the site 159 

meteorology during this study period was evaluated through back-trajectory footprints generated from 160 

each hourly sample using FLEXPART Lagrangian transport model with WRF meteorological modeling 161 

(Gentner et al., 2014a). The 6-h and 12-h back trajectory footprints are generated on a 4 × 4 km 162 

resolution with simulations originating from top of the 18-m tall tower. The site experiences persistent 163 

up-valley flows from the north and northwest during afternoons and evenings, usually at high wind 164 

speeds.  The direction and speed of the flow during nights is quite variable (Figure 3). On some nights, 165 

the up-valley flows diminish as night-time inversion forms a stable layer near the ground, and eventually 166 

downslope flows off the nearby mountain ranges bring winds from the east and south during late night 167 

and early morning periods. On other nights, fast moving northwesterly flows extend in to middle of the 168 

night leading to unstable conditions through the night. The daytime flows bring plumes from the up wind 169 

metropolitan region (Figure 3), and regional emissions from sources like dairies and farmlands located 170 

further upwind. The slow nighttime flows and stagnant conditions cause local source contributions to be 171 

more significant than during daytime, including those from nearby petroleum operations and dairies 172 

(Gentner et al., 2014a), and agriculture (Gentner et al., 2014b). 173 

3.  Methods 174 

3.1. Trace gas measurements and instrumentation 175 

Ambient air was sampled from the top of a tower (18.7 m a.g.l) through Teflon inlet sampling 176 

lines with Teflon filters to remove particulate matter from the gas stream. CH4, CO2 and H2O were 177 

measured using a Los Gatos Research (LGR Inc., Mountain View, CA) Fast Greenhouse Gas Analyzer 178 

(FGGA, Model 907-0010). N2O and CO were measured by another LGR analyzer (Model 907-0015) with 179 

time response of ~ 0.1 to 0.2 Hz. These instruments use off-axis Integrated Cavity Output Spectroscopy 180 

(ICOS) (O’Keefe, 1998; Paul et al., 2002; Hendriks et al., 2008; Parameswaran et al. , 2009). The FGGA 181 

http://en.wikipedia.org/wiki/Wind
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instrument internally calculates and automatically applies a water vapor correction to counter the 182 

dilution effect of water on a target molecule and calculates CH4 and CO2 on a dry (and wet) mole 183 

fraction basis. We report dry mole fraction mixing ratios in this study. The FGGA instrument had a 1σ-184 

precision of 1 ppb (for CH4) and 0.15 ppm (for CO2) while the N2O/CO instrument had a 1σ-precision of 185 

0.3 ppb, respectively over short time periods (< 10 s). Prior to the campaign, the precision of 186 

measurements of each instrument used in this study were determined as the 1-sigma standard 187 

deviation of a data set over a given length of time measuring a fixed standard (scuba tank) and found to 188 

conform to the manufacturer specifications. The instruments were housed at ground level in a thermally 189 

insulated temperature controlled 7-foot wide cargo wagon trailer developed by the instrument 190 

manufacturers (Los Gatos Research Inc.). CO was coincidentally measured using another instrument 191 

(Teledyne API, USA, Model # M300EU2) with a precision of 0.5% of reading and output as 1-minute 192 

averages. The mixing ratios from the two collocated CO instruments correlated well (r ~ 0.99) and 193 

provided a good stability check for the LGR instrumentation. Scaled Teledyne CO data was used to gap-194 

fill the LGR CO data. The coincident gas-phase VOC measurements were made using a gas 195 

chromatograph (GC) with a quadrapole mass selective detector and a flame ionization detector (Gentner 196 

et al., 2012). 197 

Hourly calibration checks of the three GHGs and CO were performed using near-ambient level 198 

scuba tank standards through the entire campaign. The scuba tanks were secondary references and 199 

were calibrated before and after the experiments using primary standards conforming to the WMO 200 

mole fraction scale obtained from the Global Monitoring Division (GMD) at the NOAA Earth System 201 

Research Lab. The calibration tests confirmed that there was no issue in short term stability of these 202 

species. During data processing, final concentrations were generated from the raw data values using 203 

scaling factors obtained from comparison of measured and target concentrations during secondary 204 

calibration checks. Diurnal plots of measured species are generated from 1-min averages. PMF analyses 205 

in the following sections are based on 30-minute averages to match the time resolution of VOC 206 

measurements. The meteorological data measured at the top of the tower included relative humidity 207 

(RH), temperature (T), and wind speed (WS) and direction (WD).  208 

3.2. Positive Matrix Factorization (PMF) 209 

Source apportionment techniques like PMF have been used in the past to apportion ambient 210 

concentration datasets into mutually co-varying groups of species. PMF is especially suitable for studies 211 

where a priori knowledge of contributing number of sources impacting the measurements, chemical 212 
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nature of source profiles and relative contribution of each source to the concentration time series of a 213 

measured compound are unknown or cannot be assumed. PMF has been applied to ambient particulate 214 

matter studies (Lee et al., 1999; Kim et al., 2004); in determining sources of atmospheric organic 215 

aerosols (OA) (Ulbrich et al., 2009; Slowik et al., 2010; Williams et al., 2010); and in gas phase 216 

measurements of VOCs in major metropolitan cities (Brown et al., 2007; Bon et al., 2011). PMF is a 217 

receptor-only unmixing model which breaks down a measured data set containing time series of a 218 

number of compounds into a mass balance of an arbitrary number of constant source factor profiles (FP) 219 

with varying concentrations over the time of the data set (time series or TS) (Ulbrich et al., 2009).  220 

In real world ambient scenarios, emissions sources are often not known or well-understood. 221 

PMF technique requires no a priori information about the number or composition of factor profiles or 222 

time trends of those profiles. The constraint of non-negativity in PMF ensures that all values in the 223 

derived factor profiles and their contributions are constrained to be positive leading to physically 224 

meaningful solutions. PMF requires the user to attribute a measure of experimental uncertainty (or 225 

weight) to each input measurement. Data point weights allow the level  of influence to be related to the 226 

level of confidence the analyst has in the measured data (Hopke, 2000). In this way, problematic data 227 

such as outliers, below-detection-limit (BDL), or altogether missing data can still be substituted into the 228 

model with appropriated weight adjustment (Comero et al., 2009) allowing for a larger input data set, 229 

and hence a more robust analysis. PMF results are quantitative; it is possible to obtain chemical 230 

composition of sources determined by the model (Comero et al., 2009). PMF is not data-sensitive and 231 

can be applied to data sets that are not homogenous and/or require normalization without introducing 232 

artifacts. 233 

3.3. Mathematical Framework of PMF 234 

The PMF model is described in greater detail elsewhere (Paatero and Tapper, 1994; Paatero 235 

1997; Comero et al., 2009; Ulbrich et al., 2009) and we will briefly mention some concepts relevant to 236 

the understanding of the analysis carried out in this study.  The PMF input parameters involve a m × n 237 

data matrix X with i rows containing mixing ratios at sampling time ti and j columns containing time 238 

series of each tracerj. A corresponding uncertainty matrix S reports measurement precision (uncertainty) 239 

of the signal of each tracerj  at every ti (sij). The PMF model can then be resolved as: 240 

𝑿𝑖𝑗 =  ∑ 𝑔𝑖𝑝𝑓𝑝𝑗

𝑝

+  𝑒𝑖𝑗 (1) 
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where p refers to the number of contributing factors in the solution as determined by the analyst 241 

(discussed below), gij (mass concentration) are elements of a m × p matrix G whose columns represent 242 

the factor time series while fij (mass fraction) are elements of a p × n matrix F whose rows represent the 243 

factor chemical profiles. eij are the elements of a m × n matrix E containing residuals not fit by the model 244 

matrix at each data point. 245 

The PMF algorithm uses a least-squares algorithm to iteratively fit the values of G and F by 246 

minimizing a “quality of fit” parameter Q (Bon et al., 2011), defined as: 247 

𝑄 =  ∑ ∑(𝑒𝑖𝑗 𝑠𝑖𝑗⁄ )
2

𝑛

𝑗=1

𝑚

𝑖=1

 
(2) 

In this way, PMF minimizes the sum of squares of error-weighted model-measurement deviations. The 248 

theoretical value of Q, denoted by Q-expected (Qexp) can be estimated as: 249 

𝑄𝑒𝑥𝑝 ≡ (𝑚 × 𝑛) − 𝑝 × (𝑚 + 𝑛) (3) 

If all the errors have been estimated within the uncertainty of the data points (i.e. eij  sij
-1 ~ 1) and the 250 

model fits the data perfectly, then Q should be approximately equal to Qexp.  251 

3.4. Data preparation for PMF analysis 252 

For this study, measurements from the FGGA, LGR N2O/CO analyzer and the GC were combined 253 

into a unified data set to create matrices X and S. Only VOCs that are a part of broad chemical 254 

composition of nearby sources (like dairies and vehicle emissions) or could potentially serve as source 255 

specific tracers (e.g. iso-octane as a tailpipe emissions tracer; isoprene as a biogenic tracer) were 256 

included. Isomers were limited (e.g. 2,3-Dimethylbutane over 2,2-Dimethylbutane) and VOCs with large 257 

number of missing values were not included. The input data set represented major chemical families like 258 

straight-chain and branched alkanes, cycloalkanes, alkenes, aromatics, alcohols, aldehydes, ketones and 259 

chlorinated as well as organosulfur compounds. In spite of best efforts by the authors, it was not 260 

possible to quantify the magnitude of observed concentrations of benzene relative to the positive 261 

artifacts coming from the Tenax TA adsorbent (previously documented elsewhere). Hence, benzene was 262 

not included in the PMF analysis. In all, there were a total of 653 half-hour samples of data collected 263 

from 22 May to 25 June. In the days prior to and after this period, there was no N2O and/or VOC data 264 

collected and hence the PMF analysis is limited to this period. Table 1 lists all the compounds included in 265 

the PMF analysis along with a spectrum of observed and background concentrations.  266 
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PMF analysis resolves the covariance of mixing ratio enhancements and thus characterizes the 267 

chemical composition of emissions from various sources. Hence, for this analysis, only enhancements 268 

representing local emissions were included in the data set after subtracting local background 269 

concentrations from the original signals. Background concentrations were derived as the minima in the 270 

time series (0th percentile) for each of the 50 tracers included in the PMF analysis (CH4, N2O, CO and 46 271 

VOCs).  For VOCs, tracers with a minimum value less than two times the limit of detection (LOD, in ppt) 272 

and a maximum value larger than hundred times the LOD were assumed to have a negligible 273 

background (0 ppt) (Table 1). The 99th percentile for each tracer was treated as the effective-maximum 274 

mixing ratio and the upper limit of the range for the “normalization” of time series. Enhancements 275 

above the 99th percentile are often extreme values.  Such outliers, even if true enhancements, 276 

represent isolated and short-duration footprints of high-emission events that are difficult for PMF to 277 

reconstruct. In order to maintain the robustness of PMF analysis, outliers were selectively down-278 

weighted by increasing their uncertainty in proportion to the uncertainty of other data points (described 279 

below). Finally, the enhancements in each time series were “normalized” by dividing every sample by 280 

the difference in the 99th percentile and background (the range) as seen in Equation 4. This process 281 

scaled the enhancements in each time series (final data points in  X) within a range of 0 to 1. This allowed 282 

for a consistent scheme to represent tracers with vastly different concentrations (e.g. ppm level of CH4 283 

vs ppt level of propene) and improve the visual attributes of PMF output plots to follow. Data points 284 

denoting zero enhancement (lower limit) were replaced by a very small positive number (i.e. exp(-5)) to 285 

avoid ‘zeros’ in the data matrix X. 286 

𝑥𝑖𝑗 =   
(𝑀𝑖𝑥𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜𝑖𝑗 − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑗)

( 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑖𝑥𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜𝑗 −  𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑗)
⁄  

(4) 

For the VOCs, guidelines set forth by Williams et al., (2010) were adopted to calculate the 287 

uncertainty estimates.  An analytical uncertainty (AU) of 10% was used; a limit of detection (LOD) of 1 288 

ppt and a limit of quantification (LOQ) of 2 ppt (Gentner et al., 2012) was used to calculate the total 289 

uncertainty for each xij: 290 

 𝑠𝑖𝑗  ≡  2 × 𝐿𝑂𝐷,                                           if xij ≤ LOD, (5a) 

 𝑠𝑖𝑗   ≡  𝐿𝑂𝑄,                                                   if LOD < xij ≤ LOQ, (5b) 

 𝑠𝑖𝑗   ≡  ((𝐴𝑈 × 𝑥𝑖𝑗)
2

+  (𝐿𝑂𝐷)2)
0.5

,     if xij > LOQ 
(5c) 
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Using this approach, detection limit dictates the errors for low enhancements (near LOD) while errors 291 

for larger enhancements of VOCs are tied more to the magnitude of the data value ( xij) itself.  292 

The GHG and CO measurements have high precision and significantly lower detection limits than 293 

ambient levels. The relatively low values of GHGs in the uncertainty matrix, compared to VOCs, is 294 

substituted with those calculated using a custom approach. The GHG and CO uncertainties are assumed 295 

to be proportional to the square root of the data value and an arbitrary scaling factor determined 296 

through trial and error in order to produce lower values of Q Qexp
-1: 297 

𝑠𝑖𝑗  ≡   𝐴 × (𝑥𝑖𝑗)
0.5

, where A = 1 (for CH4), 0.25 (for CO2), 0.5 (for CO), 0.1 (for N2O) (6) 

This method attributes larger percentage uncertainties to smaller enhancements and hence lesser 298 

weight in the final solution and vice versa. This approach leads to an uncertainty matrix that attributes 299 

relatively similar percentage errors to both GHGs and VOCs, which should lead to a better fitting of the 300 

data through PMF. 301 

Missing values are replaced by geometric mean of the tracer time series and their accompanying 302 

uncertainties are set at four times this geometric mean (Polissar et al., 1998) to decrease their weight in 303 

the solution. Based on the a priori treatment of the entire input data (scaling) and the corresponding 304 

outputs of the PMF analysis, a weighting -approach (for measurements from different instruments) as 305 

used in (Slowik et al., 2010) is not found to be necessary.  306 

3.5. PMF source analysis 307 

We use the customized software tool (PMF Evaluation Tool v2.04, PET) developed by Ulbrich et 308 

al. (2009) in Igor Pro (Wavemetrics Inc., Portland, Oregon) to run PMF, evaluate the outputs and 309 

generate statistics. The PET calls the PMF2 algorithm (described in detail in Ulbrich et al., 2009) to solve 310 

the bilinear model for a given set of matrices X and S for different numbers of factors p and for different 311 

values of FPEAK or SEED (defined and described later). The tool also stores the results for each of these 312 

combinations in a user friendly interface that allows simultaneous display of factor profiles (FP) and time 313 

series (TS) of a chosen solution along with residual plots for individual tracers. A detailed explanation of 314 

PMF analysis performed in this study is provided in the Supplement (see Section S). The supplement 315 

describes the PMF methodology of how the final number of user-defined factors was chosen (Section 316 

S1), the outcomes of linear transformations (rotations) of various PMF solutions (Section S2) and how 317 

uncertainties in the chosen solution were derived (Section S3). The standard deviations in the mass 318 
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fractions of individual tracers in each factor profile and time series of each factor mass is evaluated using 319 

a bootstrapping analysis (Norris et al., 2008; Ulbrich et al., 2009) and described in Section S3. The 320 

uncertainty of a tracer contribution to a source factor is derived from the 1-sigma deviation of the 321 

averaged mass fraction of that tracer to that factor from 100 bootstrapping runs. This is the quantity we 322 

report and refer to as ‘uncertainty’ throughout the text in Section 4. The percentage ranges reported in 323 

the abstract and in Section 4 are derived from the relative apportionment of CH4 and N2O to different 324 

source factors over the 653 half-hourly samples collected during the experiment period. This range 325 

represents the mean diurnal range observed and as seen in Figure 7.  This diurnal range combined with 326 

bootstrapping based uncertainty estimates is used to understand better the contribution of each source 327 

factor to the observed enhancements of a target GHG and the analyst’s confidence in those estimates. 328 

4.  Results and Discussion 329 

In Bakersfield, there are a multitude of pollutant sources, ranging from local to regional, from 330 

biogenic to anthropogenic, and from primary to secondary. We recognize that PMF analysis is not 331 

capable of precise separation of all sources. In PMF analysis, the analyst chooses the number of factor 332 

profiles to include in the solution and assigns a source category interpretation for each identified factor. 333 

The PMF factors are not unique sources but really statistical combinations of coincident sources. The 334 

chemical profile of each factor may contain some contributions from multiple sources that are 335 

collocated, or have a similar diurnal pattern of emissions. The cycle of daytime dilution of the boundary 336 

layer and nighttime inversion can also result in a covariance that can lead to emissions from unrelated 337 

sources being apportioned to a single source factor. Such limitations have been observed previously by 338 

Williams et al. (2010) while applying PMF in an urban-industrial setting like Riverside, California. The 339 

user must infer the dominant source contributions to these individual factors. Our factor profile (FP) 340 

nomenclature is based on the closest explanation of the nature and distribution of emission sources in 341 

the region. The source factor names should be treated with caution bearing in mind the physical 342 

constraints of the solution and not used to over-explain our interpretation of the region’s CH4 and N2O 343 

inventories.  344 

 A seven factor solution has been chosen to optimally explain the variability of the included 345 

trace gases. The factors have been named based on our interpretation of the emission “source” 346 

categories they represent, with corresponding colors which remain consistent in the discussion across 347 

the rest of the paper: evaporative and fugitive (black), dairy and livestock (orange), motor vehicles (red), 348 

agricultural + soil management (purple), daytime biogenics + secondary organics (light blue), non-349 
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vehicular urban (green) and nighttime anthropogenic + terpene biogenics (navy blue). Figure 4 presents 350 

the Factor Profile (FP) plots of each factor. The sum of the normalized contributions of the 50 species in 351 

each “source” is equal to 1 in the FP plots. Figures 5a through 5g present the diurnal profiles based on 352 

mean hourly concentrations (in normalized units) of each PMF factor with standard deviations 353 

explaining the variability. The interpretation of the individual FPs is discussed below (in Section 4.2-4.8). 354 

Molar emission factor (EF) of tracers with respect to (w.r.t) one another can be derived for each FP. 355 

These EFs can then be compared to those from previous source-specific and apportionment studies 356 

(Table 2 through 5).  The ratio of PMF-derived total CH4 enhancement to the input measured CH4 357 

enhancement ranges from 0.90 to 0.95 (mol mol-1) through the whole time series except outliers with 358 

really high values (> 500 ppb). For N2O, the ratio is somewhat lower (0.82-0.92 mol mol-1) and this is 359 

reflected in the higher PMF-derived uncertainties. The apportionment of some N2O mass into a 360 

statistically weak and time-varying factor is discussed in Section 4.5.   The general assessment is that 361 

PMF analysis is able to reconstruct a majority of the measured enhancements for both CH4 and N2O. 362 

4.1. Time trends of measured CH4, CO2, CO, and N2O 363 

The time series of CH4, CO2, CO, and N2O mixing ratios have been plotted in Figures 6a through 364 

6d while the diurnal variations have been plotted in Figures 6e-6h, respectively. The color markers in 365 

each plot indicate the median wind direction. The daily minima for the three GHGs and CO occur during 366 

the late afternoon period when daytime heating, mixing and subsequent dilution occurs rapidly. The 367 

daily minimum values of CH4 and N2O were larger than that observed at National Oceanic and 368 

Atmospheric Administration’s (NOAA) Mauna Loa station at 19.48°N latitude in Hawaii (Dlugokencky et 369 

al., 2014) by at least 70 ppb and 0.5 ppb, respectively, for this period. We also compare Bakersfield (at 370 

35.36°N latitude) observations to that from NOAA’s Trinidad Head station which is located on the coast 371 

in Northern California and is more representative of mid-latitudes at 40.97°N latitude. Although there 372 

was no N2O data collected at Trinidad Head, the CH4 concentrations observed in discrete flask samples 373 

collected every few days during summer of 2010 (not necessarily a daily low background) were 374 

consistently lower than the daily minimum CH4 concentration curve at Bakersfield by 10 - 15 ppb. This 375 

indicates that there are significant GHG emissions from regional sources around Bakersfield that get 376 

added to the already higher local background concentrations, thus keep the local mixing ratio levels 377 

quite high. Winds during the highest temperature period between noon and evening (12:00 - 20:00 hour 378 

local time) almost always arrive through the urban core in the northwest. Any PMF factor whose 379 

dominant source direction is northwest is likely to contain contributions from VOCs emitted from urban 380 
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sources, regional sources further upwind or contain contributions from secondary tracers generated 381 

from photochemical processing during the day. The three GHGs show a sharp increase during nighttime 382 

when the inversion layer builds up and traps primary emissions close to the ground. For CO, measured 383 

concentrations show two distinct peaks in the diurnal plot (Figure 6g). The observed early morning peak 384 

in the concentration is a combination of decreased dilution and fresh emissions from the morning motor 385 

vehicle traffic. The late evening peak in CO concentrations is not coincident with rush hour and is a 386 

result of build-up of evening emissions in the boundary layer that is getting shallower as the night 387 

progresses. Figure 6a indicates CH4 enhancements of 500 ppb or more on almost every night with peak 388 

mixing ratios exceeding 3000 ppb on several occasions indicating an active methane source(s) in the 389 

region. Figure 6d shows that peak N2O mixing ratios rise above 330 ppb on almost every night 390 

suggesting large sources in the region. Huge enhancements of CH4, CO2 and N2O (on DOY 157,164, and 391 

165) (in Figures 6a, 6b and 6d, respectively) may appear well -correlated to each other due to regional 392 

sources emitting into the inversion layer. However, the shapes of the diurnal cycles differ indicating 393 

different emission distributions, with the early morning maximum in CH4 occurring before the maxima 394 

for CO2 and N2O, and the morning maximum for CO occurring slightly later. These differences in timing 395 

allow PMF analysis to differentiate their contributions into separate factors.  396 

4.2. Factor 1: Evaporative and fugitive emissions 397 

Factor 1 has a chemical signature indicative of evaporative and fugitive losses of VOCs. The FP of 398 

this source is dominated by C3 to C6 straight-chain and branched alkanes and some cycloalkanes (Figure 399 

4). The average diurnal cycle of Factor 1 (Figure 5a) shows a broad peak during late night and early 400 

morning hours after which the concentrations begin to decrease as the day proceeds reaching a 401 

minimum at sunset before beginning to rise again. This is strong indication of a source containing 402 

primary emissions that build up in the shallow pronounced nighttime inversions of southern SJV. The 403 

subsequent dilution of primary emissions as the mixed layer expands leads to low concentrations during 404 

the daytime.  405 

Most of the propane, n-butane and pentanes signal is apportioned to this factor, but not the 406 

typical vehicle emission tracers like isooctane or CO or any of the alkenes or aromatics. Absence of these 407 

tracers in the FP suggests this factor is not related to vehicular exhaust and is a combination of non -408 

tailpipe emissions and fugitive losses from petroleum operations. None of the CH4 signal at the SJV site 409 

is apportioned to this factor, but almost all of the small straight-chain alkanes, exclusively apportion to 410 

this factor. This is in agreement with Gentner et al. (2014a) where the authors show  that VOC emissions 411 
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from petroleum operations are due to fugitive losses of associated gas from condensate tanks following 412 

separation from CH4. Table 2 compares EFs derived from this PMF study for the non-tailpipe 413 

(evaporative) and fugitive petroleum operation source factor with those from the Gentner et al. (2014a) 414 

study done on the same CalNex dataset using an independent source receptor model with chemical 415 

mass balancing and effective variance weighting method, and also to, reports of fugitive emissions from 416 

the oil and natural gas sources (Pétron et al., 2012; Gilman et al., 2013) and similar factors produced by 417 

other PMF studies (Buzcu and Fraser, 2006; Leuchner and Rappenglück, 2010; Bon et al., 2011).  Good 418 

agreement of Factor 1 VOC EFs with those from the mentioned studies confirms petroleum operations 419 

in Kern County as the major source contributing to this factor. The PMF apportionment indicates that 420 

this source factor does not contribute to CH4 enhancements observed at the SJV site (Figure 7a) and thus 421 

most of the ‘associated’ CH4 is likely separated from the condensate prior to emission. As mentioned 422 

before, a tiny fraction (~ 5%; Section 4) of the total input CH4 enhancement is not resolved into source-423 

apportioned contributions. There could be a minor contribution to CH4 signal from this source, which is 424 

unresolved within the framework of uncertainties in the PMF analysis.   425 

4.3. Factor 2: Motor vehicle emissions 426 

Factor 2 has a chemical signature consistent with the tailpipe exhausts of gasoline and diesel 427 

motor vehicles. This source factor includes the combustion tracer CO, and other vehicular emissions 428 

tracers, such as isooctane (Figure 4). Alkenes are a product of incomplete fuel combustion in motor 429 

vehicles, and almost all of the propene and a significant portion of the isobutene signal are attributed to 430 

this source factor. The diurnal variation of Factor 2 shows two distinctive peaks (Figure 5b). The first 431 

peak occurs in the morning between 06:00 and 07:00 local time and is influenced by morning rush hour 432 

traffic, with suppressed mixing allowing vehicle emissions to build up. As the day proceeds, accelerated 433 

mixing and dilution (and perhaps chemical processing of reactive VOCs) reduce the enhancements to a 434 

minimum by late afternoon. The evening peak mainly occurs as the dilution process  slows down after 435 

sunset and emissions build up. The increased motor vehicle traffic in the evening adds more emissions 436 

to the shrinking boundary layer.  This build-up reaches a peak around 22:00.  The occasional high wind 437 

events from the northwest (unstable conditions) and fewer vehicles operating on the roads during late 438 

nighttime hours contribute to the relatively lower levels of enhancements as compared to the peaks on 439 

either side of this nighttime period.   440 

Table 3 compares selective PMF derived EFs from vehicle emissions  with the measured gasoline 441 

composition collected during CalNex in Bakersfield (Gentner et al., 2012), analysis of gasoline samples 442 
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from Riverside in Los Angeles basin (Gentner et al., 2009) and ambient VOC emission ratios measured 443 

during CalNex at the Pasadena supersite (Borbon et al., 2013).  Although, the two Bakersfield studies 444 

employ different source apportionment techniques (and so do the studies conducted in the Los Angeles 445 

basin), we observe a broad agreement of relative emission rates of vehicular emission tracers.  This 446 

agreement validates our assertion that Factor 2 represents a broad suite of vehicular tailpipe emissions. 447 

The PMF derived CH4/CO EF in Factor 2 is 0.58 (mol mol -1) and is significantly higher than the 448 

range of 0.03 - 0.08 (mol mol-1) calculated from results of a vehicle dynamometer study of 30 different 449 

cars and trucks (Nam et al., 2004) and an EF of 0.014 (mol mol -1) calculated for SJV district during 450 

summer of 2010 using EMFAC, which is CARB’s model for estimating emissions from on-road vehicles 451 

operating in California (EMFAC, 2011). While it is certainly a possibility that current in-use CH4 emission 452 

factor in the inventory may be an underestimation, it seems more logical that the relatively high 453 

proportion of CH4 signal in the vehicle source factor profile is due to contributions from coincident urban 454 

sources (e.g. natural gas leaks) mixed into the vehicle gasoline exhausts resulting in a ‘mixing’ 455 

phenomena as discussed in the supplement. In spite of the non-negligible proportion of CH4 in the 456 

Factor 2 source profile, the contribution of the factor to CH4 enhancements (Figure 7a) at Bakersfield is 457 

negligible relative to the dairy and livestock factor. 458 

The state GHG inventory attributes about 18% of the 2010 statewide N2O emissions to the on-459 

road transportation sector (CARB 2012).  Our PMF analysis shows essentially a negligible enhancement 460 

of N2O associated with the vehicle emission Factor 2 with a PMF derived N 2O/CO EF of 0.00015 (mol 461 

mol-1). The EMFAC generated N2O/CO EF in SJV during summer of 2010 is more than 20 times higher at 462 

0.0034 (mol mol-1). The PMF derived ‘vehicle emissions’ contribution to N2O is in stark contrast to the 463 

inventory and is an important outcome suggesting a significant error in EFs used to derive the statewide 464 

inventory for N2O.  465 

4.4. Factor 3: Dairy and livestock emissions  466 

Factor 3 has a chemical signature indicative of emissions from dairy operations. This source 467 

factor is the largest contributor to CH4 enhancements (Figure 7a) and a significant portion of the N2O 468 

signal (Figure 7c). The FP also has major contributions from methanol (MeOH) and ethanol (EtOH), with 469 

minor contributions from aldehydes and ketones (Figure 4). A separate PMF analysis with a broader set 470 

of VOC measurements at the same site showed that most of the acetic acid (CH3COOH) and some 471 

formaldehyde (HCHO) signal attributed to this factor as well (Allen Goldstein, personal communication, 472 
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2014). All the above-mentioned VOCs are emitted in significant quantities from dairy operations and 473 

cattle feedlots (Filipy et al., 2006; Shaw et al., 2007; Ngwabie et al., 2008; Chung et al., 2010). About 70-474 

90% of the diurnal CH4 signal is attributed to this factor (Figure 7a) depending on the time of day. The 475 

CH4 dairy and livestock mass fraction which is used to calculate this diurnal range has an uncertainty of 476 

29% derived using the bootstrapping method. This source factor contributes about 60 - 70% of the total 477 

N2O daily enhancements as seen in Figure 7c. The bootstrapping uncertainty  in the N2O dairy and 478 

livestock mass fraction is 33%. 479 

Comparing the Factor 3 profile to dairy source profiles from various studies is challenging. A 480 

dairy is, in essence, a collection of area sources with distinct emission pathways and chemical 481 

characteristics. Hence, a lot of dairy studies do not look at facility-wide emissions instead focusing on 482 

specific area sources within the facility. In contrast, PMF captures the covariance of CH4, N2O, and VOCs 483 

emitted from the ensemble source as downwind plumes from dairies arrive at the site. Table 4 484 

compares the PMF derived EFs of CH4 w.r.t MeOH and EtOH with those from other studies. Previously, 485 

cow chamber experiments (Shaw et al., 2007; Sun et al., 2008) have measured emissions from 486 

ruminants and their fresh manure; emissions have also been studied in a German cowshed (Ngwabie et 487 

al., 2008) and EFs have been derived from SJV dairy plumes sampled from aircraft (Gentner et al., 2014a; 488 

Guha et al., in prep). Since enteric fermentation and waste manure is the predominant CH4 source in 489 

dairies, CH4 emission rates calculated by Shaw et al. (2007) are representative of a whole facility. 490 

However, their MeOH/CH4 ratios are lower than those determined by PMF and aircraft studies. Animal 491 

feed and silage are the dominant sources of many VOCs including MeOH and EtOH (Alanis et al., 2010; 492 

Howard et al., 2010) and the ratios in (Shaw et al., 2007) do not reflect these emissions.  In Ngwabie et 493 

al. (2008),  experiments were performed in cold winter conditions ( -2 to 8°C) when temperature 494 

dependent VOC emissions from silage and feed are at a minimum. The authors comment that MeOH 495 

emissions from California dairies are likely higher, as the alfalfa-based feed is a big source of MeOH 496 

owing to its high pectin content (Galbally and Kirstine, 2002). These observations explain why 497 

MeOH/CH4 ratios in these studies are lower than PMF derived ratios. The PMF range for EtOH /CH4 EF 498 

for Factor 3 agrees with the slope derived from ground-site data (Gentner et al., 2014a) and is similar, 499 

but somewhat larger than the German dairy study (Ngwabie et al., 2008) . Miller and Varel (2001) and 500 

Filipy et al. (2006) did not measure CH4 emission rates so a direct derivation of EF w.r.t CH4 is not 501 

possible. These studies, however, reported EtOH emission rates (from dairies and feedlots in United 502 

States) which are used to derive EFs w.r.t to CH4 using an averaged CH4 emission rate from (Shaw et al., 503 

2007).  Using this method, we get EFs that are comparable to PMF derived EF of CH4/EtOH (Table 4). 504 
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Hence, we demonstrate within reasonable terms that the relative fractions of masses in Factor 3 are 505 

consistent with CH4 and VOC emissions from dairies.  506 

Enteric fermentation is a part of the normal digestive process of livestock such as cows, and is a 507 

large source of CH4 while the storage and management of animal manure in lagoons or holding tanks is 508 

also a major source of CH4. According to the state GHG inventory (CARB, 2013), ~ 58% of the statewide 509 

CH4 emissions results from a combination of these two processes. N 2O is also emitted during the 510 

breakdown of nitrogen in livestock manure and urine and accounts for about 10% of the statewide N 2O 511 

emission inventory. Kern County has a big dairy industry with about 160,000 milk cows representing 512 

10% of the dairy livestock of the state in 2012 and another 330,000 heads of cattle for beef (KernAg, 513 

2011; CASR, 2013). The dominant contributions to CH4 and N2O signal and the general agreement of 514 

dairy EFs with PMF EFs from Factor 3 indicate that the extensive cattle operations in the county are a big 515 

source of these emissions. We do observe that the proportion of regional N2O enhancements attributed 516 

to this sector is a significantly larger proportion of the total N2O emissions as compared to the state 517 

inventory. 518 

4.5. Factor 4:  Agricultural and soil management emissions 519 

The chemical profile of Factor 4 is a mix of emissions from agricultural activities around the site.  520 

Factor 4 includes a major portion of the N2O signal along with a number of VOCs that have crop/plant 521 

signatures like methacrolein, methyl ethyl ketone (Jordan et al., 2009; McKinney et al., 2011), methanol 522 

and acetone (Goldstein and Schade, 2000; Hu et al., 2013; Gentner et al., 2014b) (Figure 4). While many 523 

of these oxygenated VOCs have several prominent sources, studies have reported substantial 524 

simultaneous emissions from natural vegetation and agricultural crops. At a rural site in the Northeast, 525 

Jordan et al. (2009) reported high concentrations of oxygenated VOCs and correlations between the 526 

diurnal concentrations of acetone, methanol, and methyl ethyl ketone. Kern County is one of the most 527 

prolific agricultural counties in California. The four main crops grown (by value as well as acreage) in 528 

2010 were almonds, grapes, citrus and pistachios (KernAg, 2011). Table 5 compares the PMF derived EFs 529 

for acetone/MeOH from Factor 4 with ratios of basal emission factors (BEFs) from crop-specific 530 

greenhouse and field measurements (Fares et al., 2011, 2012; Gentner et al., 2014b). The good 531 

agreement of the ratios confirms that the FP of Factor 4 is an aggregate of biogenic VOC emissions from 532 

the agricultural sector. Nitrous oxide is emitted when nitrogen is added to soil through use of synthetic 533 

fertilizers and animal manure, while crops and plants are responsible for the VOC emissions. Hence this 534 

source factor is a combination of collocated sources (soils and crops). The PMF solution to this factor has 535 
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uncertainties greater than those for other factors (Figure S4). This is potentially because not all crops 536 

emit the same combination of VOCs nor are all agricultural fields fertilized at the same time. The 537 

existence of this statistically weak factor is confirmed by bootstrapping runs (Section S3) and numerous 538 

PMF trials all of which produce a distinct factor with N2O as a dominant contributor along with certain 539 

biogenic VOCs, though often in varying proportions. CO2 is not included in the PMF analysis reported in 540 

the paper, most importantly because negative CO2 fluxes during daytime can introduce artifacts in PMF 541 

analysis and result in erroneous apportionment. But PMF runs involving CO2 indicate that most of the 542 

CO2 is apportioned to this factor. Plant and soil respiration (especially during the night) is a major source 543 

of CO2 and the apportionment of CO2 to Factor 4 confirms the nature of this source. The temporal 544 

correlation between CO2 and N2O is also evident in their average diurnal cycles (Figures 6f and 6h), 545 

which have a coincident early morning peak. The absence of monoterpenes from the FP of this factor 546 

can be explained by their shorter atmospheric lifetimes compared to VOCs like acetone and MeOH and 547 

the rapid daytime mixing which dilutes the terpenoid emissions arriving at the site during the day.  At 548 

night, when atmospheric dilution is low, monoterpenes emissions from agriculture are more likely to get 549 

apportioned into a separate source factor dominant during nighttime, when temperature -sensitive 550 

biogenic emissions of MeOH and acetone can be expected to be a minor constituent in the FP (see 551 

Section 4.8). 552 

Factor 4 is a significant source of GHGs contributing about 20 - 25% of the total N2O 553 

enhancements in the diurnal cycle (Fig. 7c) but with a relatively large 1σ confidence interval of 70% in 554 

the agriculture and soil N2O mass fraction. Kern County is one of the premier agricultural counties of 555 

California accounting for $4.2 billion (about 18%) of the total agricultural revenue from fruits and nuts, 556 

vegetables and field crops (KernAg, 2011; CASR, 2013) and is also the biggest consumer of synthetic 557 

fertilizers. Agricultural soil management accounts for about 60% of the statewide N 2O emission 558 

inventory (CARB, 2013). Our assessment of diurnal source distribution of N 2O emissions from the 559 

agriculture source factor (Figure 7c) in presence of another dominating source (dairy and livestock) is 560 

consistent with the inventory estimates from agricultural and soil management sector.  561 

4.6. Factor 5: Daytime biogenics and secondary organics 562 

The chemical composition and diurnal profile of Factor 5 points to a source whose emissions are 563 

either primary biogenic VOCs with temperature-dependent emissions (e.g. isoprene), or products of 564 

photochemical oxidation of primary VOCs (e.g. acetone) (Figure 4).  Isoprene is a dominant component 565 

of the source FP and is mostly apportioned to Factor 5. Figure 5e shows a steady increase in the PMF 566 
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factor mass concentration during the daytime hours that hits a peak during afternoons indicating that 567 

this source is dependent on sunlight and temperature. Potential source contributions come from oak 568 

forests on the foothills of the western edge of the SJV or scattered isoprene producing plants in the SJV 569 

(note that most crops do not emit significant amounts of isoprene). Factor 5 includes contribution from 570 

VOCs that have primary light and temperature driven (crops), as well as secondary sources in the Central 571 

Valley e.g. acetone (Goldstein and Schade, 2000), methanol (Gentner et al., 2014b) and aldehydes. A 572 

similar PMF analysis with a different objective (Goldstein et al., in prep) shows that secondary organics 573 

like glyoxal, formaldehyde and formic acid mostly apportion to Factor 5. The CO apportioned to this 574 

factor could potentially be a product of mobile and/or stationary combustion co-located or 575 

up/downwind of the biogenic VOC source. CO can also come from coincident isoprene oxidation 576 

(Hudman et al., 2008). This daytime source is not responsible for any of the observed CH4 and N2O 577 

enhancements. 578 

4.7. Factor 6: Non-vehicular/miscellaneous urban emissions 579 

The chemical signature of Factor 6 is composed of VOCs associated with an array of applications 580 

and processes, including solvents, fumigants, industrial-byproducts, etc. The diurnal profile of Factor 6 581 

(Figure 5f) is somewhat different from that of evaporative and fugitive source (Figure 5a) and dairies 582 

(Figure 5c) in that even during the middle of the day when vertical mixing is at its strongest, the 583 

enhancements contributing to the factor are substantial. This suggests that the source(s) is in close 584 

proximity to the site and hence most likely located within the urban core. The FP has CO as an important 585 

component but relative absence of fugitive source markers (e.g. light alkanes) and vehicle emissions 586 

tracers (e.g. isooctane, cycloalkanes etc.) indicate that the origin of this source factor is potentially non-587 

mobile combustion. Also present in a major proportion is carbon disulfide (CS 2), chlorinated alkanes like 588 

1,2-dichloroethane and 1,2-dichlorpropane, isobutene (product of incomplete combustion), and minor 589 

contributions from aromatics and aldehydes (Figure 4). There are a myriad of potential sources that 590 

could be contributing to this factor, and we don't have specific tracers or other information to ascribe it 591 

to a single source or group of sources. Hence we call Factor 6 an ‘urban emissions source’. There is a 592 

very minor CH4 contribution from this factor which results in a tiny and negligible contribution to the 593 

PMF source apportionment of CH4 (Figure 7a). The source factor does not contribute to the N2O 594 

enhancements. 595 

4.8. Factor 7: Nighttime anthropogenic and terpene biogenic emissions 596 
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Factor 7 is primarily composed of biogenic compounds belonging to the terpene family and p-597 

cymene (Figure 4). Factor 7 mostly influences the site during late night and early morning hours (Figure 598 

5g) when nighttime downslope flows usually dominate bringing winds from the east and south to the 599 

site. The entire flow path from the base of the foothills to the site is covered with agri cultural crops 600 

emitting into a shallow nighttime boundary layer. These crops include grapes, almonds, citrus and 601 

pistachios, which are the top four agricultural commodities grown in the county (KernAg, 2011; CASR, 602 

2013), and these produce considerable monoterpenoid emissions (Fares et al., 2012; Gentner et al., 603 

2014b). The spatial distribution of terpenoid compounds from statistical source footprint derived from 604 

FLEXPART back-trajectories is consistent with the location of croplands in southern SJV (Gentner et al., 605 

2014b). Biogenic VOCs emitted from forests in the foothills are likely minor contributors to the 606 

downslope flows arriving at the site owing to their lifetime and distance (> 50 km) (Tanner and Zielinska, 607 

1994). 608 

Following the rapid rise in enhancements in the early morning hours, contributions of Factor 7 609 

to total signal decrease rapidly when the flow moves to more typical daytime wind directions (Figure 610 

5g). A nearby source (e.g. the WWTP), that is upwind of the site for only a certain part of the diurnal 611 

cycle, is expected to be more directionally constrained and emissions profile from such a source will look 612 

similar to the diurnal profile of Factor 7. Among source factors which contain non-negligible fractional 613 

contribution of both CH4 and N2O (i.e. dairies, agriculture and soil management, and Factor 7), the PMF 614 

derived CH4/N2O EF of 42 ± 20 (gC gN-1) from Factor 7 is most similar to the bottom-up inventory EF of 615 

56 (gC gN-1)  for waste water treatment in Kern County (KernGHG, 2012). Given the proximity of the 616 

WWTP and previous observations of GHGs from them, it is possible that there is a minor but noticeable 617 

contribution (~ 5%) to CH4 and N2O enhancements from this nighttime source (Figures 7a and 7c). 618 

5.  Implications 619 

This study demonstrates the potential of PMF technique to apportion atmospheric gas-phase 620 

observations of CH4 and N2O into source categories using a broad array of tracers. PMF is not commonly 621 

employed to perform for source attribution of these GHGs because studies generally lack simultaneous 622 

measurements of specific source-markers.  Applying this statistical technique on a GHG-VOC unified 623 

data set, well-represented by a broad suite of VOC classes, allows a set of compounds acting as source 624 

markers to be partitioned into separate profiles leading to easier identification of their sources.  625 
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We provide clear analysis that dairy and livestock operations are the largest sources of 626 

emissions in the Bakersfield region accounting for a majority of the CH4 (70 - 90%) and N2O ( 60 -70%) 627 

emissions. As per the CARB inventory (Figure 1), dairy operations are the dominant source of non-CO2 628 

GHGs in the state and our analysis agrees with that broad trend. However, in the recent past, a number 629 

of top-down CH4 and N2O emission studies in the Central Valley have reported underestimation of the 630 

non-CO2 GHG inventory (Zhao et al., 2009; Santoni et al., 2012; Jeong et al., 2012a, 2012b; Miller et al., 631 

2013). These studies attribute a majority of this underestimation to the dairy sector. Our results 632 

emphasize the significance of this sector in the SJV although we do not derive total emission estimates 633 

to compare directly with the inventory.  634 

The contribution of fugitive emissions from the oil and gas industry in Bakersfield to CH4 635 

emissions is found to be negligible especially in the presence of the much larger dairy source. The PMF 636 

analysis, though, clearly establishes an evaporative and fugitive source that contributes to emissions of 637 

lighter hydrocarbons. This supports the conclusion that the majority of the CH4 is being separated at the 638 

point of extraction from the ‘associated gas’ and is not released with fugitive emissions (Gentner et al., 639 

2014a). Kern County produces 75% of all the oil produced in California (~ 6% of US production) and has 640 

81% of the state’s 60000+ active oil wells (CDC, 2013). There is, however, a surprising scarcity of 641 

measured data to quantify the estimates of fugitive CH4 from the prolific oil fields in the county and 642 

validate the bottom-up, activity data-based inventory. Currently, fugitive emissions from fossil fuel 643 

extraction and distribution contribute ~ 5% to the county’s CH4 emissions inventory (KernGHG, 2012). 644 

Nationwide, a number of recent studies have reported significantly higher emissions of fugitive CH4 from 645 

oil and gas production operations in other regions (Pétron et al., 2012; Karion et al., 2013; Miller et al., 646 

2013; Kort et al., 2014) . The PMF apportionment in this study (~ 2%) is consistent with the fraction of 647 

fugitive CH4 emissions in the regional and state inventories  but the PMF method, by itself, cannot 648 

accurately constrain emissions from minor sources owing to the uncertainties in the dominant sources.  649 

We find that the vehicle emissions source factor identified in this study makes no detectable 650 

contribution to observed N2O enhancements. Our findings do not agree with the significant contribution 651 

(~ 18%) of the transportation sector to the state’s N2O emission inventory (CARB, 2013).  Vehicle 652 

dynamometer studies have indicated rapidly declining N2O EFs with advancement in catalyst 653 

technologies, declining sulfur content in fuel and newer technology vehicles (Huai et al., 2004). N2O 654 

emissions from California vehicles, required to meet progressively stringent emission standards, are 655 

expected to decline and should have a minimal contribution to the CARB inventory in this decade. 656 
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However, it seems the updates to the mobile N2O emissions inventory is not keeping in pace with the 657 

improvements in vehicle catalyst technologies and corresponding decline in tailpipe N 2O emissions. 658 

Bakersfield is a fairly large population urban region (~ 500,000) and the essentially non-existent 659 

contribution of the PMF vehicle emissions source to the N2O apportionment and large divergence of the 660 

PMF derived N2O/CO EF from the state inventory EF for motor vehicles is a significant outcome pointing 661 

to overestimation of N2O from motor vehicles in the inventory. 662 
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Table 1. PMF dataset with total samples (N) and mixing ratio range (in ppt).  938 

Class Compound N 1st percentile 99th percentile Background 

GHG 

CH4
a,c

 619 1855.0 3400.8 1813.6 

CO2
b,c

 619 390.8 468.3 390.0 

N2O
a,d

 490 323.3 339.5 323.2 

combustion tracer CO
a,d

 653 118.9 330.6 102.1 

straight chain 

alkanes 

propane 592 580.8 30839.0 455.5 

n-butane 587 96.4 12649.0 73.6 

n-pentane 647 93.2 3805.4 64.4 

n-hexane 647 23.1 960.5 17.2 

dodecane 643 1.56 54.3 0 

branched alkanes 

isopentane 646 165.4 7490.5 100.4 

2,3-dimethylbutane 650 52.5 1747.7 41.1 

2,5-dimethylhexane 651 2.37 145.8 0 

isooctane 647 16.6 476.9 12.3 

4-ethylheptane 651 1.45 52.6 0 

dimethyl undecane 643 0.46 24.9 0 

cyclo alkanes 

methylcyclopentane 647 23.3 1329.6 20.3 

methylcyclohexane 649 8.10 813.9 0 

ethylcyclohexane 651 1.78 169.1 0 

alkenes 
propene 592 34.7 3299.9 28.6 

isobutene 595 16.7 422.1 10.7 

aromatics 

toluene 647 48.8 1749.5 33.1 

ethylbenzene 647 5.83 282.0 0 

m,p-xylene 647 21.8 1127.1 21.8 

o-xylene 647 4.31 405.0 0 

cumene 640 0.55 22.8 0 

1-ethyl-3,4-methylbenzene 651 2.22 358.6 0 

p-cymene 649 0.84 93.9 0 

indane 647 0.45 27.9 0 

1,3-dimethyl-4-ethylbenzene 635 0.46 23.9 0 

naphthalene 654 0.44 19.9 0 

unsaturated 

aldehyde 
methacrolein 

573 14.2 337.0 0 

alchohol 

methanol 429 2636.81 88691.8 1085.2 

ethanol 598 1021.93 65759.8 1021.9 

isopropyl alcohol 583 25.7 2001.0 25.7 

ketone 

acetone 663 142.9 3505.8 142.9 

methyl ethyl ketone 605 8.55 1111.2 0 

methyl isobutyl ketone 629 2.03 71.9 0 

aldehyde 
propanal 636 3.68 140.8 0 

butanal 589 1.72 35.1 0 

biogenics 

isoprene 651 9.70 310.0 0 

alpha-pinene 740 1.67 525.8 0 

d-limonene 641 1.10 357.1 0 

nopinone 614 0.78 89.5 0 

alpha-thujene 591 0.52 23.8 0 

camphene 645 0.72 100.3 0 

chloroalkanes 

chloroform 647 34.1 209.3 31.6 

tetrachloroethylene 641 3.41 120.9 0 

1,2-dichloroethane 640 20.6 103.8 20.6 

1,2-dichloropropane 627 2.40 28.4 0 

sulfides carbon disulfide 610 7.84 133.7 0 

thiol ethanethiol 491 4.54 685.8 0 

a parts per billion volume (ppb) 
b parts per million (ppm) 
c measured using LGR Fast Green House Gas Analyzer 
d measured using LGR N2O/CO analyzer 
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Table 2. Comparison of light alkane ratios to propane (gC gC
-1

) from PMF fugitive and evaporative 940 

factor with those from other PMF studies and oil and gas operations.  941 

 942 

Study Source propane n-butane n-pentane n-hexane isopentane 

Bakersfield  
PMF evaporative 

and fugitive factor
a
 

This study 1 
0.52 ± 
0.02 

0.18 ± 0.01 0.06 ± 0.003 0.33 ± 0.02 

Bakersfield  
petroleum 

operations source 
profile

b
 

Gentner et al. 
(2014a) 

1 0.53 ± 0.1 0.09 ± 0.02 0.04 ± 0.01 0.08 ± 0.02 

Mexico city PMF  
LPG factor

c
 

Bon et al. 
(2011) 

1 
0.5  

(0.4 - 0.7) 
0.05  

(0.04 - 0.07) 
0.02  

(0.02 - 0.03) 
0.07  

(0.06 - 0.1) 

Wattenberg field 
BAO, Colorado

d
 

Gilman et al. 
(2013) 

1 
0.75 ± 
1.37 

0.32 ± 0.6 0.08 ± 0.13 0.28 ± 0.52 

Wattenberg field 
BAO, Colorado

e
 

Petron et al. 
(2012) 

1 
0.58 - 
0.65 

0.22 - 0.31 NA 0.22 - 0.31 

PMF natural gas 
and evaporation 
factor, Houston 
Ship Channel

g
 

Leuchner and 
Rappengluck 

(2010) 
1 0.33 0.27 0.12 0.37 

PMF natural gas 
factor, Houston 
Ship Channel

h
 

Buzcu and 
Fraser (2006) 

1 
0.67 ± 
0.16 

0.07 ± 0.18 NA NA 

a 
Uncertainties calculated from propagation of errors (standard deviations) over FPEAK range of -1.6 to 0.4.  

b 
Ratios calculated from Table 4, Gentner et al., 2014a; uncertainties defined as ±20% to account for variability in oil well   data.  

c 
Uncertainties calculated from propagation of uncertainties over FPEAK range of -3 to 3. 

d 
Emission ratios derived from multivariate regression analysis; error bars derived from propagation of uncertainty using mean and standard deviation 

of samples. 
e
 Range over 5 regressions conducted over data collected in different seasons and from mobile lab samples.  

f
 Ratios derived from mean and standard deviations, with propagation of uncertainty. 

g  
Estimated from Figure 2, Leuchner and Rappengluck, 2010. 

h 
Estimated from Figure 2, Buzcu and Frazer, 2006. 
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Table 3. Comparison of hydrocarbon ratios to toluene (gC gC
-1

) from PMF vehicle emission factor with 944 

similar ratios from other California specific studies.  945 

 946 

Study 

Bakersfield 
PMF vehicle 

emissions 
factor

a
 

Bakersfield 
gasoline source 

profile
b,c

 

Riverside liquid 
gasoline profile

e
 

CalNex Los 
Angeles ambient 
emission ratios

g
 

Source This study 
Gentner et al. 

(2012) 
Gentner et al. 

(2009) 
Borbon et al. 

(2013) 

CH4 8.1 ± 2.1 NA NA NA 

CO 14.0 ± 0.4 NA NA 45 

toluene 1 1 1 1 

isopentane 0.69 ± 0.01 0.77 ± 0.04 0.64-0.84 1.95 

isooctane 0.29 ± 0.03 0.34 ± 0.02 0.64-0.80 NA 

n-dodecane 0.03 ± 0.001 (0.02 ± 0.007)
d
 NA NA 

methylcyclopentane 0.24 ± 0.01 0.32 ± 0.02 NA NA 

ethyl benzene 0.17 ± 0.01 0.14 ± 0.01 NA 0.2 

m/p - xylene 0.65 ± 0.01 0.65 ± 0.03 (0.45-0.52)
f
 0.64 

o - xylene 0.22 ± 0.01 0.23 ± 0.01 NA 0.24 

a 
errors are standard deviation of 12 unique PMF solutions  between FPEAK =-1.6 to +0.4; see section S2.  

b
 derived from liquid gasoline fuel speciation profile (Table S9; Gentner et al., 2012). 

c
 errors bars derived from propagation of uncertainties. 

d
 derived by combining diesel fuel and gasoline speciation profile (Table S9 and S10; Gentner et al., 2012) and gasoline and  

  diesel fuel sale data in Kern County (Table S1, Gentner et al., 2012). 
e
 summer data. 

f 
only m-xylene. 

g
 derived from Linear Regression Fit slope of scatterplot from CalNex Pasadena supersite samples. 
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Table 4. Comparison of PMF dairy and livestock emission factors (mmol mol
-1

) with previous studies.  948 

 949 

Study Source 
Cow/manure 

type (if 
applicable) 

methanol / 
methane EF avg. 

(range) 

ethanol / 
methane EF 
avg. (range) 

PMF analysis of 
regional measurements 

This study   15 - 47 9 - 32.2 

Environmental chamber 
with cows and/or 

manure 

Shaw et al. 
(2008) 

Dry 3.2 (0.6 - 7.4) NA 

Lactating 1.9 (0.8 - 3.6) NA 

Environmental chamber 
with cows and/or 

manure 

Sun et al. 
(2008) 

Dry 13.4 (4 - 25) 14.4 (11 - 19) 

Lactating 19.2 (15 - 25) 24.2 (18 - 32)  

Cowshed with regular 
dairy operations 

(winter) 

Ngwabie et al. 
(2008) 

  2.0 (1.6 - 2.4) 9.3 (4 - 16) 

Cow stall area with 
regular dairy operations 

(summer) 

Filipy et al. 
(2006) 

  NA (42 - 127)
a
 

Manure from cattle 
feedlot 

Miller and 
Varel (2001) 

Fresh (< 24 
hr) 

NA 

14
b
 

Aged (> 24 
hr) 

118
b
 

Measured slope of 
regression (CalNex 

2010) 

Gentner et al. 
(2014a) 

  7.4 (7 - 16)
c
 18

d
 

Sampling of dairy 
plumes from aircraft 
(CABERNET 2011) 

Guha et al. (in 
prep) 

  9.6 (9 - 30)
c
 NA 

a
 calculated based on CH4 emission rate of 4160 µg cow

-1
 s

-1 
for mid-lactating cows (Shaw et al., 2007). 

b
 calculated based on CH4 emission rate of 4160 µg cow-1 s-1 for mid-lactating cows (Shaw et al., 2007) and ethanol emission rate for 

fresh and  aged manure of 175 and 1223 µg cow-1 s-1, respectively, derived by Filipy et al. (2006).                                                                                                                       
c  

slope of regression with range of measured slopes (in parentheses) from sampling of dairy plumes by aircraft.                                                                                                                                                        
d
 ground site data; lower limit of slope of non-vehicular ethanol versus methane 
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Table 5. Comparison of PMF agricultural and soil management emission factor for acetone versus 951 

methanol (gC gC
-1

) with ratios of basal emission factors generated for major crops grown in the Kern 952 

County. Errors denote standard deviations computed by propagation of uncertainty. 953 

Bakersfield PMF 
agricultural and 

soil management 
factor 

Almond 
greenhouse 

summer 2008   

Table grape 
greenhouse 

summer 2008  

Pistachio 
greenhouse 

summer 2008 

Navel oranges 
greenhouse 

summer 2008
a
  

Valencia oranges 
greenhouse 

summer 2008  

This study 
Gentner et al. 

(2014b) 
Gentner et al. 

(2014b) 
Gentner et al. 

(2014b) 
Fares et al. 

(2011) 
Fares et al. 

(2012) 

0.58 ± 0.37 0.14 ± 0.2 0.04 ± 0.02 0.5 ± 0.6 0.57 ± 0.1 0.5 ± 0.3 

a
 branch with flowers not removed. 
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Figures  955 

 Figure 1 956 

 957 

Figure 1.  2011 California emission inventory for (a) methane (CH4) -  32.5 million ton CO2eq at GWP = 958 

25; and (b) nitrous oxide (N2O) - 13.4 million ton CO2eq at GWP = 298. (Source: CARB GHG Inventory 959 

Tool, Aug 2013)  960 
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Figure 2961 

 962 

Figure 2.  Map of potential sources of methane and nitrous oxide in/around the city of Bakersfield and 963 

the surrounding parts of the valley. The inset map is a zoomed out image of the southern part of San 964 

Joaquin Valley (SJV) with location of Kern County superimposed. The light blue lines mark the 965 

highways, WWTP stands for waste water treatment plant, and O&G stands for oil and gas fields. The 966 

location of the CalNex experiment site is marked by the ‘tower’ symbol.  967 
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Figure 3 968 

 969 

Figure 3.  Wind rose plots showing mean wind direction measured at the site during (left) day time 970 

(07:00-16:00 hour), and (right) nighttime (17:00-06:00 hour) during the experiment period in summer 971 

2010. The concentric circles represent the percentage of total observations; each colored pie represents a 972 

range of 10° while the colors denote different wind speed ranges.  973 
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Figure 4 974 

975 
Figure 4.  Source profile of the seven factors derived using PMF.  The source factors are evaporative and fugitive, motor vehicles, dairy and 976 

livestock, agricultural + soil management, daytime biogenics + secondary organics, urban, and nighttime anthropogenics + terpene biogenics. The 977 

y-axis represents the normalized fraction of mass in each source factor, while the x-axis lists all the chemical species included in the PMF analysis. 978 
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Figure 5979 

 980 

Figure 5. Mean hourly diurnal plots of PMF source factor concentration enhancements for (a) 981 

evaporative and fugitive, (b) motor vehicles, (c) dairy and livestock, (d) agricultural + soil management, 982 

(e) daytime biogenics and secondary organics, (f) non-vehicular/miscellaneous urban and (g) nighttime 983 

anthropogenics + terpene biogenics.  The y-axis represents sum of normalized mass concentrations from 984 

all tracers contributing to the factor. The x-axis is hour of day (local time). The solid lines represent the 985 

mean and the shaded area represents the standard deviation (variability) at each hour.  986 



41 
 

Figure 6987 

 988 

Figure 6. Time series of (a) CH4, (b) CO2, (c) CO, and (d) N2O obtained from 30-min averages from 989 

May 15- June 30, 2010. The color bar indicates the average wind direction during each 30-min period. 990 

Mixing ratios plotted as average diurnal cycles for (e) CH4, (f) CO2, (g) CO and (h) N2O along with wind 991 

direction. The curve and the red whiskers represent the mean and the standard deviations about the mean, 992 

respectively. 993 
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Figure 7994 

 995 

Figure 7. Diurnal plot of PMF derived (a) CH4, (b) CO, and (c) N2O concentrations sorted by PMF 996 

source category. The legend on the bottom right shows the names of the PMF source factor which each 997 

color represents.  The PMF derived enhancements from each source have been added to the background 998 

concentrations. 999 


