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Abstract

Sources of methane (CH,) and nitrous oxide (N,0O) were investigated using measurements from a
site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate
Change) experiment from mid-May toJune-end, 2010. Typical daily minimum mixing ratios of CH, and
N,O were higherthan daily minimathat were simultaneously observed ata mid-oceanic background
station (NOAA, Mauna Loa) by approximately 70 ppb and 0.5 ppb, respectively. Substantial
enhancements of CH,and N,O (hourly averages >500 ppband > 7 ppb, respectively) wereroutinely
observed suggesting the presence of large regional sources. Collocated measurements of carbon
monoxide (CO) and arange of volatile organiccompounds (VOCs) (e.g. straight-chain and branched
alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were
used with a Positive Matrix Factorization (PMF) source apportionment method to estimate the

contribution of regional sources to observed enhancements of CH, and N, 0.

The PMF technique provided a “top-down” deconstruction of ambient gas-phase observations
into broad source categories, yielding a 7-factor solution. We identified these source factors as
emissions from evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil
management; daytime light and temperaturedriven; non-vehicularurban; and nighttime terpene

biogenics and anthropogenics. The dairy and livestock factoraccounted fora majority of the CH, (70 -
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90%) enhancements during the duration of experiments. The dairy and livestock factor was also a
principal contributorto the daily enhancements of N,O (60— 70%). Agriculture and soil management
accountedfor~ 20 - 25% of N,0 enhancements overa24-hour cycle, not surprisingly given that organic
and syntheticfertilizers are known to be a major source of N,0. The N,0 attribution to the agriculture
and soil management factor had a high uncertainty in the conducted bootstrapping analysis. Thisis most
likely due toan asynchronous pattern of soil-mediated N,O emissions from fertilizer usage and
collocated biogenicemissions from crops fromthe surrounding agricultural operations thatis difficult to
apportion statistically when using PMF. The evaporative / fugitive source profile, which resembled a mix
of petroleum operation and non-tail pipe evaporative gasoline sources, did notinclude a PMF resolved-
CH, contribution that was significant (<2%) compared to the uncertainty in the livestock-associated CH,
emissions. The uncertainty of the CH, estimates in this source factor, derived from the bootstrapping
analysis, is consistent withthe ~3% contribution of fugitive oiland gas emissions to the statewide CH,
inventory. The vehicle emission source factor broadly matched VOC profiles of on-road exhaust sources.
This source factor had no statistically significant detected contribution to the N,0 signals (confidence
interval of 3% of livestock N,O enhancements) and negligible CH, (confidence interval of 4% of livestock
CH, enhancements) in the presence of adominantdairy and livestock factor. The CalNex PMF study
provides ameasurement-based assessment of the state CH, and N,0O inventories forthe southern San
Joaquinvalley. The state inventory attributes ~ 18% of total N,0 emissions to the transportation sector.
Our PMF analysis directly contradicts the state inventory and demonstrates therewere no discernible

N,O emissions from the transportation sector inthe southern SJV region.
1. Introduction

Methane (CH,) and nitrous oxide (N,0) are the two most significant non-CO, greenhouse gases
(GHGs) contributing about 50% and 17% of the total direct non-CO, GHG radiative forcing (1 W m™),
respectively (Figure SPM.5; IPCC, 2013). CH,, with a lifetimeof ~ 10 years and Global Warming Potential
(GWP) of 34 on a 100-year basis, accounting for climate-carbon feedbacks (Table 8.7, Myhre et al., 2013;
Montzka etal., 2011), is emitted by both anthropogenicand natural sources (e.g. wetlands, oceans,
termites etc.). Anthropogenicglobal CH, emissions are due to agricultural activities (enteric
fermentationin livestock, manure management and rice cultivation)(McMillan et al., 2007; Owen and
Silver, 2014), energy sector (oil and gas operations and coal mining), waste management (landfills and
waste watertreatment), and biomass burning (some of whichis natural) (Smith etal., 2007; NRC, 2010).

N,O has a higher persistence in the atmosphere (lifetime of ~ 120 years) and strongerinfrared radiation
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absorption characteristics than CH, givingita GWP of 298 (Table 8.7, Myhre et al., 2013; Montzkaet al.,
2011). Agricultureis the biggest source of anthropogenic N,0 emissions since the use of synthetic
fertilizers and manure leads to microbial N,O emissions from soil (Crutzen etal., 2007; Galloway etal.,
2008). Management of livestock and animal waste is anotherimportant biological source of N,O, while
industrial processesincluding fossilfuel combustion have been estimated to account for ~10% of total

global anthropogenicN,0 emissions (Denman et al., 2007).

In 2006, the state of Californiaadopted Assembly Bill 32(AB32) into a law known as the Global
Warming Solutions Act, which committed the state to cap and reduce anthropogenic GHG emissions to
1990 levels by 2020. A statewide GHG emissioninventory (CARB, 2013) maintained by the Air Resources
Board of California (CARB) is used to report, verify and regulate emissions from GHG sources. In 2011,
CH, accounted for 32.5 million metrictonnes (MMT) CO,-eq representing 6.2% of the statewide GHG
emissions, while N,O emissions totaled 13.4 MMT CO,-eq representing about 3% of the GHG emissions
inventory (Figure 1). CARB’s accurate knowledge of GHG sources and statewide emissions is a key
componenttothe success of any climate change mitigation strategy under AB32. CARB’s GHG inventory
isa “bottom—up’’ summation of emissions derived from emission factors and activity data. The bottom-
up approachis reasonably accurate for estimation and verification of emissions from mobileand point
sources (vehicle tailpipes, power plant stacks etc.) where the input variables are well-understood and
well-quantified. The mainanthropogenicsources of CH,in the CARBinventory are ruminant livestock
and manure management, landfills, wastewater treatment, fugitive and process losses from oil and gas
production and transmission, and rice cultivation while the major N,O sources are agricultural soil
management, livestock manure management and vehicle fuel combustion (CARB, 2013). The emission
factors for many of these sources have large uncertainties as they are biological in nature and their
production and release mechanisms are inadequately understood thus making these sources unsuitable
for direct measurements (e.g. emissions of N,O from farmlands). Many of these sources (e.g. CH, from
landfills) are susceptible to spatial heterogeneity and seasonal variability. Unfortunately, amore
detailed understanding of source characteristics is made difficult because CH, and N,O are often emitted
from a mix of pointand areasources within the same source facility (e.g. dairies inthe agricultural
sector) making bottom-up estimation uncertain. There is alack of direct measurement data or “top-
down” measurement-based approachestoindependently validate seasonal trends and inventory
estimates of CH,and N,Oin California’s Central Valley, which has a mix of several agricultural sources

and oil and gas operations, both of which are known major sources of GHGs.
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In the recent past, regional emission estimates derived from measurements from atall towerat
Walnut Grove in Central California coupled with inverse dispersion techniques (Fischer et al., 2009)
reported underestimation of CH, and N,O emissions especially in the Central Valley. Comparison of
regional surface footprints determined from WRF-STILT algorithm between Oct-Dec 2007 indicate
posterior CH, emissions to be higher than California-specificinventory estimates by 37 + 21% (Zhao et
al., 2009). Predicted livestock CH, emissions are 63 + 22% higherthan a priori estimates. Astudy overa
longerperiod (Dec2007 - Nov 2008) at the same tower (Jeongetal., 2012a) generated posterior CH,
estimatesthat were 55 - 84% larger than California-specific prioremissions foraregion within 150 km
fromthe tower. For N,O, inverse estimates forthe same sub-regions (using either EDGAR32 and
EDGARA42 a priori maps) were about twice as much as a priori EDGAR inventories (Jeongetal., 2012b).
Recentstudies have incorporated WRF-STILT inverse analysis on airborne observations across California
(Santonietal., 2012). The authors conclude that CARB CH, budgetis being underestimated by afactor of
1.64 with aircraft-derived emissions from cattle and manure management, landfills, rice, and natural gas
infrastructure beingaround 75%, 22%, 460%, and 430% more than CARB’s current estimates forthese
categories, respectively. Statistical source footprints of CH, emissions generated using FLEXPART-WRF
modeling and CalNex-Bakersfield CH, concentration data are consistent with locations of dairiesin the
region (Gentneretal., 2014a). The authors conclude that the majority of CH, emissionsin the region
originate from dairy operations. Scaled-up CH, rice cultivation estimates derived from aircraft CH,/CO,
flux ratio observations overrice paddiesin the Sacramento valley during the growing season when
emissions are attheirstrongest (Peischl etal., 2012) are around three times largerthan inventory
estimates. CH, budgets derived forthe Los Angeles (LA) basin from aircraft observations (Peischl etal.,
2013) and studiesinvolving comparison with CO enhancements and inventory at Mt. Wilson (Hsu et al.,
2010; Wunch etal., 2009) indicate higher atmospheric CH, emissions in the LA basin than expected from

bottom-up accounting.

Recentliterature seems to suggest that the CARB bottom-up inventory is underestimating CH,
and N,O sources, especially from the livestock sectorand perhaps from the oil and gas industry as well.
Source apportionment studies of non-CO, GHGs overthe Central Valley can provide critical information
about under-inventoried orunknown sources that seek to bridge the gap between ‘bottom-up’ and ‘top-
down’ methods. GHG emission inventories can potentially be constrained through simultaneous
measurements of GHGs and multiplegas species (VOCs) that are tracers of various source categories.
This study provides CH, and N,O source attribution during asix-week study involving a complete suite of

continuous GHG and VOC tracer measurements during the CalNex 2010 campaign in Bakersfield whichis
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located inthe southern part of the Central Valley (May - June 2010). The objective of this studyisto
partitionthe measured CH,4, N,0 and VOCenhancements into statistically unique combinations using
Positive Matrix Factorization (PMF) apportionment technique. We classify the se combinations as
plausible source factors based on our prior knowledge of the chemical origin of mutually co-varying
groups of VOCtracers found in each statistical combination. We examinethe source categorization
using observations from source-specific, ground site and airborne measurements and results from other
source apportionment studies. We also compare the relativeabundance of CH, and N,O enhancements
in each source factor with the CARB inventory estimates in orderto assess the accuracy of the inventory.
We hypothesize thatthe PMF analysis will be able to parse the atmosphericobservations into unique
statistical source combinations that, as analysts, we would be able to distinguish from each otheron the
basis of unique VOCsource markers. We should, thus, be able to appropriately attributethe CH, and
N,O apportionedto each of these factor profiles toa major source category. We then proceed to answer
the scientificquestion if ourtop down assessment of the CH,and N,0 inventory canimprove our

understanding of the bottom-up CARBinventoryinthe region.
2. Experimental Setup
2.1. Field Site and Meteorology

Measurements were conducted from 19 May to 25 June 2010 at the Bakersfield CalNex
supersite (35.3463°N, 118.9654°W) (Figure 2) inthe southern SanJoaquin Valley (SJV) (Ryersonetal.,
2013). The SJV representsthe southern half of California’s Central Valley. Itis 60 to 100 km wide,
surrounded on three sides by mountains, with the Coastal Ranges to the west, the SierraNevada

Mountains to the east, and the Tehachapi Mountains to the southeast.

The measurement ssite was located to the southeast of the Bakersfield urban core in Kern
County (Figure 2). The east-west Highway 58is located ~ 0.8 km north; the north-south Highway 99 is~
7 km west. The city’s main waste watertreatment plant (WWTP) and its settling ponds are located east
and south (< 2.5 km), respectively. Numerous dairy and livestock operations are located south -
southwestat 10 km distance and onwards. The metropolitan region has three major oil refineries
located within 10 km (two to the northwest; one to the southeast). A majority of Kern County’s high-
production active oil fields (>10000 barrels (bbl) perday) (CDC, 2013) are located to the west/northwest
and are distant (~40 - 100 km). Kern River oilfield (~ 60000 bbl day™), one of the largestin the country,

and Kern Front (~ 11000 bbl day™) are located about 10 - 15 km to the north. There are several other oil
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fields dotted within the urban core (5- 20 km) which are less productive (<2000 bbl day™) or not active
(<100 bbl day™). The whole region is covered with agricultural farmlands with almonds, grapes, citrus,

carrots and pistachios amongst the top commodities by value and acreage (KernAg, 2010).

The meteorology and transport of air masses inthe southernSJViscomplex and has been
addressed previously (Bao etal., 2007; Beaverand Palazoglu, 2009). The wind rose plots (Figure 3)
shown here presentasimplified distribution of microscale wind speed and direction at the site forthe
campaign duration, the latter often being non-linear overlarger spatial scales. The plots depict broad
differencesin meteorology during daytime and nighttime. A mesoscale representation of the site
meteorology during this study period was evaluated through back-trajectory footprints generated from
each hourly sample using FLEXPART Lagrangian transport model with WRF meteorological modeling
(Gentneretal., 2014a). The 6-h and 12-h back trajectory footprints are generatedona4 X 4 km
resolution with simulations originating from top of the 18-m tall tower. The site experiences persistent
up-valley flows from the north and northwest during afternoons and evenings, usually at high wind
speeds. The direction and speed of the flow during nights is quitevariable (Figure 3). On some nights,
the up-valley flows diminish as night-time inversion forms a stable layer nearthe ground, and eventually
downslope flows off the nearby mountain ranges bring winds from the east and south duringlate night
and early morning periods. On other nights, fast moving northwesterly flows extend into middle of the
nightleadingto unstable conditions through the night. The daytime flows bring plumes from the up wind
metropolitan region (Figure 3), and regional emissions from sources like dairies and farmlands located
furtherupwind. The slow nighttime flows and stagnant conditions cause local source contributions to be
more significant than during daytime, includingthose from nearby petroleum operations and dairies

(Gentneretal., 2014a), and agriculture (Gentneretal., 2014b).
3. Methods

3.1. Trace gas measurements and instrumentation

Ambientairwas sampled from the top of a tower(18.7 m a.g.l) through Tefloninlet sampling
lines with Teflon filters to remove particulate matter from the gas stream. CH,, CO, and H,0 were
measured using a Los Gatos Research (LGR Inc., Mountain View, CA) Fast Greenhouse Gas Analyzer
(FGGA, Model 907-0010). N,0 and CO were measured by another LGR analyzer (Model 907-0015) with
time response of ~0.1 to 0.2 Hz. These instruments use off-axis Integrated Cavity Output Spectroscopy

(1COS) (O’Keefe, 1998; Paul et al., 2002; Hendriks etal., 2008; Parameswaran etal., 2009). The FGGA
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instrumentinternally calculates and automatically applies awatervapor correction to counter the
dilution effect of wateron a target molecule and calculates CH,and CO, on a dry (and wet) mole
fraction basis. We report dry mole fraction mixingratios in this study. The FGGA instrument had a 1o-
precision of 1 ppb (for CH,) and 0.15 ppm (for CO,) while the N,O/CO instrument had a 16-precision of
0.3 ppb, respectively overshorttime periods (<10s). Priorto the campaign, the precision of
measurements of each instrument used in this study were determined as the 1-sigmastandard
deviation of adata setovera given length of time measuring afixed standard (scuba tank) and found to
conformto the manufacturer specifications. The instruments were housed at ground level inathermally
insulated temperature controlled 7-foot wide cargo wagon trailer developed by the instrument
manufacturers (Los Gatos Research Inc.). CO was coincidentally measured using anotherinstrument
(Teledyne API, USA, Model # M300EU2) with a precision of 0.5% of readingand outputas 1-minute
averages. The mixingratios from the two collocated CO instruments correlated well (r~0.99) and
provided agood stability checkforthe LGR instrumentation. Scaled Teledyne CO data was used to gap-
fill the LGR CO data. The coincident gas-phase VOC measurements were made using a gas
chromatograph (GC) with a quadrapole mass selective detector and a flame ionization detector (Gentner

et al., 2012).

Hourly calibration checks of the three GHGs and CO were performed using near-ambient level
scuba tank standards through the entire campaign. The scubatanks were secondary references and
were calibrated before and afterthe experiments using primary standards conforming to the WMO
mole fraction scale obtained from the Global Monitoring Division (GMD) at the NOAA Earth System
Research Lab. The calibration tests confirmed thatthere was noissue in short term stability of these
species. During data processing, final concentrations were generated from the raw data values using
scaling factors obtained from comparison of measured and target concentrations during secondary
calibration checks. Diurnal plots of measured species are generated from 1-min averages. PMF analyses
inthe following sections are based on 30-minute averagesto match the time resolution of VOC
measurements. The meteorological data measured atthe top of the towerincluded relative humidity

(RH), temperature (T), and wind speed (WS) and direction (WD).
3.2. Positive Matrix Factorization (PMF)

Source apportionment techniques like PMF have been used in the pastto apportion ambient
concentration datasets into mutually co-varying groups of species. PMF is especially suitablefor studies

where a priori knowledge of contributing number of sourcesimpacting the measurements, chemical
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nature of source profiles and relative contribution of each source to the concentrationtime series of a
measured compound are unknown or cannot be assumed. PMF has been applied to ambient particulate
matterstudies (Lee etal., 1999; Kim et al., 2004); in determining sources of atmosphericorganic
aerosols (OA) (Ulbrich etal., 2009; Slowik etal., 2010; Williams etal., 2010); and in gas phase
measurements of VOCsin major metropolitan cities (Brown etal., 2007; Bon et al., 2011). PMF is a
receptor-only unmixing model which breaks down ameasured dataset containingtime seriesof a
number of compoundsinto a mass balance of an arbitrary number of constant source factor profiles (FP)

with varying concentrations overthe time of the dataset (time series orTS) (Ulbrich etal., 2009).

In real world ambient scenarios, emissions sources are often not known or well-understood.
PMF technique requires no a priori information about the number or composition of factor profiles or
time trends of those profiles. The constraint of non-negativity in PMF ensures that all valuesinthe
derived factor profiles and their contributions are constrained to be positive leading to physically
meaningful solutions. PMF requires the userto attribute a measure of experimental uncertainty (or
weight) to eachinput measurement. Data point weights allowthe level of influence to be related to the
level of confidence the analyst hasin the measured data (Hopke, 2000). In this way, problematicdata
such as outliers, below-detection-limit (BDL), or altogether missing data can still be substituted into the
model with appropriated weight adjustment (Comero et al., 2009) allowingforalargerinputdata set,
and hence a more robust analysis. PMF results are quantitative;itis possible to obtain chemical
composition of sources determined by the model (Comero etal., 2009). PMF is not data-sensitive and
can be applied to datasets that are nothomogenous and/or require normalization withoutintroducing

artifacts.
3.3. Mathematical Framework of PMF

The PMF modelisdescribedin greater detail elsewhere (Paatero and Tapper, 1994; Paatero
1997; Comeroetal., 2009; Ulbrich etal., 2009) and we will briefly mention some concepts relevantto
the understanding of the analysis carried outin this study. The PMF input parametersinvolveamxn
data matrix X with i rows containing mixing ratios at sampling time t;and j columns containingtime
series of each tracer;. A corresponding uncertainty matrix S reports measurement precision (uncertainty)

of the signal of each tracer; at everyt; (s;). The PMF model can thenbe resolved as:

Xij = Zgipfpj+ eij (1)
P
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where prefersto the number of contributing factorsin the solution as determined by the analyst
(discussed below), g;(mass concentration) are elements of a m x p matrix G whose columns represent
the factor time series while f;(mass fraction) are elements of a p x n matrix F whose rows represent the
factor chemical profiles. e;are the elements of am x n matrix E containing residuals not fit by the model

matrix at each data point.

The PMF algorithm uses aleast-squares algorithmtoiteratively fit the values of G and F by

minimizing a “quality of fit” parameter Q(Bon et al., 2011), defined as:

Q= ii(eij/sij)z 2

i=1j=1
In this way, PMF minimizes the sum of squares of error-weighted model-measurement deviations. The

theoretical value of Q, denoted by Q-expected (Q.,,) can be estimated as:

Qexp=(m xn)—p X (m+n) (3)
If all the errors have been estimated within the uncertainty of the data points (i.e. e; s,»j'l ~ 1) and the

model fits the data perfectly, then Qshould be approximately equal to Q..
3.4. Data preparation for PMF analysis

For this study, measurements from the FGGA, LGR N,0O/CO analyzerand the GC were combined
intoa unified datasetto create matrices Xand S. Only VOCs that are a part of broad chemical
composition of nearby sources (like dairies and vehicle emissions) or could potentially serve as source
specifictracers (e.g. iso-octaneas a tailpipe emissions tracer; isoprene as abiogenictracer) were
included. Isomers were limited (e.g. 2,3-Dimethylbutane over 2,2-Dimethylbutane) and VOCs with large
number of missingvalueswere notincluded. The input dataset represented major chemical families like
straight-chain and branched alkanes, cycloalkanes, alkenes, aromatics, alcohols, aldehydes, ketones and
chlorinated as well as organosulfur compounds. In spite of best efforts by the authors, it was not
possible to quantify the magnitude of observed concentrations of benzenerelative to the positive
artifacts coming fromthe Tenax TA adsorbent (previously documented elsewhere). Hence, benzene was
not includedinthe PMFanalysis. Inall, there were a total of 653 half-hoursamples of data collected
from 22 May to 25 June. Inthe days priorto and afterthis period, there was noN,O and/orVOCdata
collected and hence the PMF analysisis limited to this period. Table 1lists all the compoundsincludedin

the PMF analysisalong with a spectrum of observed and background concentrations.
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PMF analysis resolves the covariance of mixing ratio enhance ments and thus characterizes the
chemical composition of emissions from various sources. Hence, for this analysis, only enhancements
representinglocal emissions were included in the dataset after subtractinglocal background
concentrations fromthe original signals. Background concentrations were derived as the minimainthe
time series (Oth percentile)foreach of the 50 tracersincludedinthe PMF analysis (CH,4, N,O, COand 46
VOCs). ForVOCs, tracers with a minimumvalue less than two times the limit of detection (LOD, in ppt)
and a maximum value largerthan hundred timesthe LOD were assumed to have a negligible
background (0 ppt) (Table 1). The 99th percentileforeach tracer was treated as the effective-maximum
mixingratio and the upperlimit of the range for the “normalization” of time series. Enhancements
above the 99th percentileare often extreme values. Such outliers, even if true enhancements,
representisolated and short-duration footprints of high-emission events that are difficult for PMF to
reconstruct. In order to maintain the robustness of PMF analysis, outliers were selectively down-
weighted by increasing their uncertainty in proportion to the uncertainty of other data points (described
below). Finally, the enhancementsin each time series were “normalized” by dividing every sample by
the difference inthe 99th percentile and background (the range) as seenin Equation 4. This process
scaledthe enhancementsin each time series (final data pointsin X) withinarange of 0to 1. Thisallowed
for a consistent scheme to represent tracers with vastly different concentrations (e.g. ppm level of CH,
vs pptlevel of propene) andimprovethe visual attributes of PMF output plots to follow. Data points
denoting zero enhancement (lower limit) were replaced by avery small positive number (i.e. exp(-5)) to
avoid ‘zeros’ inthe data matrix X.

_ (Mixing ratio;;

(4)
Xl']' =

— Backgroundj)/
( Maximum mixing ratio; — Backgroundj)

For the VOCs, guidelines set forth by Williams et al., (2010) were adopted to calculate the
uncertainty estimates. Ananalytical uncertainty (AU) of 10% was used; a limit of detection (LOD) of 1
ppt and a limit of quantification (LOQ) of 2 ppt (Gentneretal., 2012) was used to calculate the total
uncertainty foreach x;:
sij = 2 XLOD, if x;< LOD, (5a)
sy = LOQ, if LOD < x;<LOQ, (5b)

0.5
siy = ((av x xy) + (LOD)?) ", ifx,;>10Q
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Usingthis approach, detection limit dictates the errors forlow enhancements (near LOD) while errors

for largerenhancements of VOCs are tied more to the magnitude of the datavalue ( x;) itself.

The GHG and CO measurements have high precision and significantly lower detection limits than
ambientlevels. The relatively low values of GHGs in the uncertainty matrix, comparedto VOCs, is
substituted with those calculated using a custom approach. The GHG and CO uncertainties are assumed
to be proportional tothe square root of the data value and an arbitrary scaling factor determined

throughtrial and errorinorderto produce lowervalues of Q Qex,,'lz

sij = A x(x;;)”", where A= 1(for CH,), 0.25 (for CO,), 0.5 (for C0), 0.1 (for N,0) (6)
This method attributes larger percentage uncertainties to smallerenhancements and hence lesser
weightinthe final solution and vice versa. This approach leads to an uncertainty matrix that attributes
relatively similar percentageerrorsto both GHGs and VOCs, which should lead to a betterfitting of the

data through PMF.

Missing values are replaced by geometricmean of the tracertime series and theiraccompanying
uncertainties are setat fourtimesthis geometricmean (Polissaretal., 1998) to decrease theirweightin
the solution. Based on the a priori treatment of the entire input data (scaling) and the corresponding
outputs of the PMF analysis, aweighting -approach (for measurements from different instruments) as

usedin (Slowiketal., 2010) is not found to be necessary.
3.5. PMF source analysis

We use the customized software tool (PMF Evaluation Tool v2.04, PET) developed by Ulbrich et
al. (2009) in Igor Pro (Wavemetrics Inc., Portland, Oregon) to run PMF, evaluate the outputsand
generate statistics. The PET calls the PMF2 algorithm (described in detail in Ulbrich et al., 2009) to solve
the bilinear model foragiven set of matrices X and S fordifferent numbers of factors p and for different
values of FPEAK or SEED (defined and described later). The tool also stores the results for each of these
combinationsinauserfriendlyinterface thatallows simultaneous display of factor profiles (FP) and time
series (TS) of a chosen solution along with residual plots forindividual tracers. A detailed explanation of
PMF analysis performedin this studyis provided inthe Supplement (seeSectionS). The supplement
describesthe PMF methodology of how the final number of user-defined factors was chosen (Section
S1), the outcomes of linear transformations (rotations) of various PMF solutions (Section S2) and how

uncertaintiesin the chosen solution were derived (Section S3). The standard deviations in the mass
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fractions of individualtracersin each factor profile and time series of each factor mass is evaluated using
a bootstrappinganalysis (Norris etal., 2008; Ulbrich et al., 2009) and describedin Section S3. The
uncertainty of a tracer contributionto a source factor is derived fromthe 1-sigma deviation of the
averaged mass fraction of that tracer to that factor from 100 bootstrappingruns. Thisis the quantity we
reportand referto as ‘uncertainty’ throughout the text in Section 4. The percentage rangesreportedin
the abstract and in Section 4 are derived from the relative apportionment of CH, and N,0 to different
source factors overthe 653 half-hourly samples collected during the experiment period. This range
representsthe mean diurnal range observed and asseenin Figure 7. Thisdiurnal range combined with
bootstrapping based uncertainty estimatesis used to understand betterthe contribution of each source

factor to the observed enhancements of atarget GHG and the analyst’s confidence in those estimates.

4. Results and Discussion

In Bakersfield, thereare a multitude of pollutant sources, ranging fromlocal toregional, from
biogenicto anthropogenic, and from primary to secondary. We recognize that PMF analysisis not
capable of precise separation of all sources. In PMF analysis, the analyst chooses the number of factor
profilestoinclude in the solution and assigns asource category interpretation for each identified factor.
The PMF factors are not unique sources but really statistical combinations of coincident sources. The
chemical profile of each factor may contain some contributions from multiple sources thatare
collocated, or have a similardiurnal pattern of emissions. The cycle of daytime dilution of the boundary
layerand nighttime inversion can also resultin a covariance that can lead to emissions from unrelated
sources being apportioned to asingle source factor. Such limitations have been observed previously by
Williams et al. (2010) while applying PMF in an urban-industrial setting like Riverside, California. The
usermust inferthe dominant source contributions to these individual factors. Ourfactor profile (FP)
nomenclature is based on the closest explanation of the nature and distribution of emission sourcesin
the region. The source factor names should be treated with caution bearingin mind the physical
constraints of the solution and not used to over-explain ourinterpretation of the region’s CH,and N,O

inventories.

A sevenfactorsolution has been chosento optimally explain the variability of the included
trace gases. The factors have been named based on ourinterpretation of the emission “source”
categories they represent, with corresponding colors which remain consistentin the discussion across
the rest of the paper: evaporative and fugitive (black), dairy and livestock (orange), motorvehicles (red),

agricultural + soil management (purple), daytime biogenics +secondary organics (light blue), non-
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vehicularurban (green) and nighttime anthropogenic+terpene biogenics (navy blue). Figure 4 presents
the Factor Profile (FP) plots of each factor. The sum of the normalized contributions of the 50 speciesin
each “source” isequalto 1 inthe FP plots. Figures 5athrough 5g presentthe diurnal profiles based on
mean hourly concentrations (in normalized units) of each PMF factor with standard deviations
explaining the variability. The interpretation of the individual FPsis discussed below (in Section 4.2-4.8).
Molar emission factor (EF) of tracers with respect to (w.r.t) one another can be derived foreach FP.
These EFs can then be compared to those from previous source-specificand apportionment studies
(Table 2 through 5). The ratio of PMF-derived total CH, enhancementto the input measured CH,
enhancementranges from 0.90 to 0.95 (mol mol™) through the whole time series except outliers with
really high values (>500 ppb). For N,0, the ratiois somewhat lower (0.82-0.92 mol mol™) and thisis
reflectedinthe higher PMF-derived uncertainties. The apportionment of some N,O massintoa
statistically weak and time-varying factoris discussedin Section 4.5. The general assessmentisthat

PMF analysisis able to reconstructa majority of the measured enhancements for both CH,and N, 0.
4.1. Time trends of measured CH,, CO,, CO, and N,O

The time series of CH,, CO,, CO, and N,0 mixingratios have been plotted in Figures 6a through
6d while the diurnal variations have been plotted in Figures 6e-6h, respectively. The color markersin
each plotindicate the median wind direction. The daily minimaforthe three GHGs and CO occur during
the late afternoon period when daytime heating, mixingand subsequent dilution occurs rapidly. The
daily minimum values of CH; and N,O were larger than that observed at National Oceanicand
Atmospheric Administration’s (NOAA) Mauna Loa station at 19.48°N latitude in Hawaii (Dlugokencky et
al., 2014) by at least 70 ppb and 0.5 ppb, respectively, forthis period. We also compare Bakersfield (at
35.36°N latitude) observations to that from NOAA’s Trinidad Head station which is located on the coast
in Northern Californiaand is more re presentative of mid-latitudes at 40.97°N latitude. Although there
was no N,0O data collected at Trinidad Head, the CH, concentrations observed in discrete flask samples
collected every fewdays duringsummer of 2010 (not necessarily adaily low background) were
consistently lowerthan the daily minimum CH, concentration curve at Bakersfield by 10 - 15 ppb. This
indicatesthatthere are significant GHG emissions from regional sources around Bakersfield that get
addedto the already higherlocal background concentrations, thus keep the local mixingratio levels
quite high. Winds during the highest temperature period between noon and evening (12:00 - 20:00 hour
local time) almost always arrive through the urban core in the northwest. Any PMF factor whose

dominantsource directionis northwestis likely to contain contributions from VOCs emitted from urban
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sources, regional sources further upwind or contain contributions from secondary tracers generated
from photochemical processing during the day. The three GHGs show a sharp increase during nighttime
whenthe inversion layer builds up and traps primary emissions close to the ground. For CO, measured
concentrations show two distinct peaks in the diurnal plot (Figure 6g). The observed early morning peak
inthe concentrationisacombination of decreased dilution and fresh emissions from the morning motor
vehicle traffic. The late evening peakin CO concentrationsis not coincident with rush hourandisa
result of build-up of evening emissions in the boundary layerthatis getting shallower as the night
progresses. Figure 6aindicates CH, enhancements of 500 ppb or more on almost every night with peak
mixing ratios exceeding 3000 ppb on several occasions indicating an active methane source(s)in the
region. Figure 6d shows that peak N,0 mixingratios rise above 330 ppb onalmostevery night
suggesting large sourcesinthe region. Huge enhancements of CH4, CO, and N,O (on DOY 157,164, and
165) (in Figures 6a, 6b and 6d, respectively) may appearwell-correlated to each other due to regional
sources emittingintothe inversion layer. However, the shapes of the diurnal cycles differ indicating
different emission distributions, with the early morning maximumin CH, occurring before the maxima
for CO, and N,0, and the morning maximum for CO occurring slightly later. These differencesin timing

allow PMF analysis to differentiate their contributions into separate factors.
4.2. Factor 1: Evaporative and fugitive emissions

Factor 1 has a chemical signature indicative of evaporative and fugitive losses of VOCs. The FP of
this source is dominated by C; to C¢ straight-chain and branched alkanes and some cycloalkanes (Figure
4). The average diurnal cycle of Factor 1 (Figure 5a) shows a broad peak duringlate night and early
morning hours after which the concentrations begin to decrease as the day proceeds reachinga
minimum at sunset before beginningto rise again. Thisis strongindication of a source containing
primary emissions thatbuild upinthe shallow pronounced nighttimeinversions of southern SJV. The
subsequentdilution of primary emissions as the mixed layer expands leads to low concentrations during

the daytime.

Most of the propane, n-butane and pentanes signal is apportioned to this factor, but not the
typical vehicle emission tracers like isooctane or CO or any of the alkenes oraromatics. Absence of these
tracers inthe FP suggests thisfactoris notrelated tovehicularexhaustandisa combination of non-
tailpipe emissions and fugitive losses from petroleum operations. None of the CH, signal at the SJV site
isapportioned to thisfactor, but almostall of the small straight-chain alkanes, exclusively apportion to

thisfactor. Thisisin agreementwith Gentneretal. (2014a) where the authors show that VOCemissions
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from petroleum operations are due to fugitive losses of associated gas from condensate tanks following
separation from CH,. Table 2 compares EFs derived from this PMF study for the non-tailpipe
(evaporative) and fugitive petroleum operation source factor with those from the Gentneretal. (2014a)
study done on the same CalNex dataset usinganindependent source receptor model with chemical
mass balancing and effective variance weighting method, and also to, reports of fugitive emissions from
the oil and natural gas sources (Pétronetal., 2012; Gilmanetal., 2013) and similarfactors produced by
other PMF studies (Buzcu and Fraser, 2006; Leuchnerand Rappengliick, 2010; Bon et al., 2011). Good
agreement of Factor 1 VOCEFs with those from the mentioned studies confirms petroleum operations
in Kern County as the major source contributingto this factor. The PMF apportionmentindicates that
this source factor does not contribute to CH, enhancements observed at the SJV site (Figure 7a) and thus
most of the ‘associated’ CH, is likely separated from the condensate priorto emission. As mentioned
before, atinyfraction (~ 5%; Section 4) of the total input CH, enhancementis not resolvedinto source-
apportioned contributions. There could be a minor contribution to CH, signal from this source, whichis

unresolved within the framework of uncertainties in the PMF analysis.
4.3. Factor 2: Motor vehicle emissions

Factor 2 has a chemical signature consistent with the tailpipe exhausts of gasoline and diesel
motor vehicles. This source factorincludes the combustion tracer CO, and othervehicularemissions
tracers, such as isooctane (Figure 4). Alkenes are a product of incomplete fuel combustion in motor
vehicles, and almost all of the propene and asignificant portion of the isobutenesignal are attributed to
this source factor. The diurnal variation of Factor 2 shows two distinctive peaks (Figure 5b). The first
peak occurs inthe morning between 06:00 and 07:00 local time andis influenced by morningrush hour
traffic, with suppressed mixing allowing vehicle emissions to build up. As the day proceeds, accelerated
mixing and dilution (and perhaps chemical processing of reactive VOCs) reducethe enhancementsto a
minimum by late afternoon. The evening peak mainly occurs as the dilution process slows down after
sunsetand emissions build up. The increased motor vehicle trafficin the evening adds more emissions
to the shrinking boundary layer. This build-up reaches apeakaround 22:00. The occasional high wind
events from the northwest (unstable conditions) and fewer vehicles operating on the roads during late
nighttime hours contribute to the relatively lower levels of enhancements as compared to the peakson

eitherside of this nighttime period.

Table 3 compares selective PMF derived EFs from vehicle emissions with the measured gasoline

composition collected during CalNexin Bakersfield (Gentneretal., 2012), analysis of gasoline samples
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from Riverside in Los Angeles basin (Gentneretal., 2009) and ambient VOC emission ratios measured
during CalNex at the Pasadenasupersite (Borbonetal., 2013). Although, the two Bakersfield studies
employ different source apportionment techniques (and so do the studies conductedinthe Los Angeles
basin), we observe abroad agreement of relative emission rates of vehicular emission tracers. This

agreementvalidates ourassertion that Factor 2 represents a broad suite of vehiculartailpipe emissions.

The PMF derived CH,/CO EF in Factor 2 is 0.58 (mol mol™) and is significantly higherthan the
range of 0.03 - 0.08 (mol mol™) calculated from results of a vehicle dynamometer study of 30 different
cars and trucks (Nametal., 2004) and an EF of 0.014 (mol mol™) calculated for SJV district during
summer of 2010 using EMFAC, whichis CARB’s model for estimating emissions from on-road vehicles
operatingin California (EMFAC, 2011). While itis certainly a possibility that currentin-use CH, emission
factor inthe inventory may be an underestimation, it seems more logical that the relatively high
proportion of CH, signal in the vehicle source factor profileis due to contributions from coincid ent urban
sources (e.g. natural gas leaks) mixed into the vehicle gasoline exhausts resultingin a ‘mixing’
phenomenaasdiscussedinthe supplement. Inspite of the non-negligible proportion of CH,inthe
Factor 2 source profile, the contribution of the factor to CH, enhancements (Figure 7a) at Bakersfieldis

negligible relative to the dairy and livestock factor.

The state GHG inventory attributes about 18% of the 2010 statewide N,0 emissions to the on-
road transportation sector (CARB 2012). Our PMF analysis shows essentially a negligibleenhancement
of N,O associated with the vehicle emission Factor 2 with a PMF derived N,0/CO EF of 0.00015 (mol
mol™). The EMFAC generated N,0/CO EF in SJV during summer of 2010 is more than 20 times higherat
0.0034 (mol mol™). The PMF derived ‘vehicle emissions’ contribution to N, isin stark contrast to the
inventory andisan important outcome suggestingasignificanterrorin EFs used to derive the statewide

inventoryforN,O.
4.4. Factor 3: Dairy and livestock emissions

Factor 3 has a chemical signature indicative of emissions from dairy operations. This source
factoristhe largest contributorto CH, enhancements (Figure 7a) and a significant portion of the N,O
signal (Figure 7c). The FP also has major contributions from methanol (MeOH) and ethanol (EtOH), with
minor contributions from aldehydes and ketones (Figure 4). A separate PMF analysis with a broaderset
of VOC measurements at the same site showed that most of the aceticacid (CH;COOH) and some

formaldehyde (HCHO) signal attributed to this factoras well (Allen Goldstein, personal communication,
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2014). All the above-mentioned VOCs are emitted in significant quantities from dairy operations and
cattle feedlots (Filipy etal., 2006; Shaw etal., 2007; Ngwabie etal., 2008; Chungetal., 2010). About 70-
90% of the diurnal CH, signal is attributed to this factor (Figure 7a) depending on the time of day. The
CH, dairy and livestock mass fraction whichis used to calculate thisdiurnal range has an uncertainty of
29% derived using the bootstrapping method. This source factor contributes about 60 - 70% of the total
N,O daily enhancements asseenin Figure 7c. The bootstrapping uncertainty inthe N,O dairy and

livestock massfractionis 33%.

Comparingthe Factor 3 profile to dairy source profiles fromvarious studiesis challenging. A
dairyis, in essence, a collection of area sources with distinct emission pathways and chemical
characteristics. Hence, alot of dairy studies do not look at facility-wide emissions instead focusing on
specificareasources within the facility. In contrast, PMF captures the covariance of CH,, N,O, and VOCs
emitted from the ensemble source as downwind plumes from dairies arrive at the site. Table 4
compares the PMF derived EFs of CH, w.r.t MeOH and EtOH with those from otherstudies. Previously,
cow chamberexperiments (Shawetal., 2007; Sun etal., 2008) have measured emissions from
ruminants and theirfresh manure; emissions have also been studied in a German cowshed (Ngwabie et
al., 2008) and EFs have been derived from SJV dairy plumes sampled from aircraft (Gentneretal., 2014a;
Guha et al.,inprep). Since entericfermentation and waste manure is the predominant CH, source in
dairies, CH; emissionrates calculated by Shaw et al. (2007) are representative of awhole facility.
However, their MeOH/CH, ratios are lowerthan those determined by PMF and aircraft studies. Animal
feed andsilage are the dominant sources of many VOCs including MeOH and EtOH (Alanisetal., 2010;
Howard etal., 2010) andthe ratiosin (Shaw et al., 2007) do not reflectthese emissions. In Ngwabie et
al. (2008), experiments were performedin cold winter conditions (-2to 8°C) when temperature
dependentVOCemissions fromsilage and feed are ata minimum. The authors comment that MeOH
emissions from California dairies are likely higher, as the alfalfa-based feed is a big source of MeOH
owingtoits high pectin content (Galbally and Kirstine, 2002). These observations explain why
MeOH/CH, ratios inthese studies are lowerthan PMF derived ratios. The PMF range for EtOH /CH, EF
for Factor 3 agrees with the slope derived from ground-site data (Gentneretal., 2014a) and is similar,
but somewhatlargerthanthe German dairy study (Ngwabie etal., 2008) . Millerand Varel (2001) and
Filipy etal. (2006) did not measure CH, emission rates so a direct derivation of EFw.r.t CH, is not
possible. Thesestudies, however, reported EtOH emission rates (from dairies and feedlots in United
States) which are used to derive EFs w.r.t to CH, using an averaged CH, emission rate from (Shaw etal.,

2007). Usingthis method, we get EFs that are comparable to PMF derived EF of CH,/EtOH (Table 4).
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Hence, we demonstrate within reasonableterms that the relative fractions of massesin Factor 3 are

consistent with CH, and VOC emissions from dairies.

Entericfermentationis a part of the normal digestive process of livestock such as cows, and is a
large source of CH, while the storage and management of animal manure inlagoons or holding tanksis
alsoa majorsource of CH,4. According to the state GHG inventory (CARB, 2013), ~ 58% of the statewide
CH, emissionsresults from a combination of these two processes. N,Ois also emitted during the
breakdown of nitrogenin livestock manure and urine and accounts for about 10% of the statewide N,O
emissioninventory. Kern County has abig dairy industry with about 160,000 milk cows representing
10% of the dairy livestock of the state in 2012 and another330,000 heads of cattle for beef (KernAg,
2011; CASR, 2013). The dominant contributionsto CH, and N,0O signal and the general agreement of
dairy EFs with PMF EFs from Factor 3 indicate that the extensive cattle operationsin the county are a big
source of these emissions. We do observe that the proportion of regional N,0 enhancements attributed
to thissectoris a significantly larger proportion of the total N,O emissions as compared to the state

inventory.

4.5. Factor 4: Agricultural and soil management emissions

The chemical profile of Factor4 is a mix of emissions from agricultural activities around the site.
Factor 4 includes amajor portion of the N,O signal along with anumber of VOCs that have crop/plant
signatures like methacrolein, methylethyl ketone (Jordan et al., 2009; McKinney etal., 2011), methanol
and acetone (Goldstein and Schade, 2000; Hu etal., 2013; Gentneret al., 2014b) (Figure 4). While many
of these oxygenated VOCs have several prominent sources, studies have reported substantial
simultaneous emissions from natural vegetation and agricultural crops. Atarural site in the Northeast,
Jordan et al. (2009) reported high concentrations of oxygenated VOCs and correlations between the
diurnal concentrations of acetone, methanol, and methyl ethylketone. Kern County is one of the most
prolificagricultural countiesin California. The four main crops grown (by value as well as acreage) in
2010 were almonds, grapes, citrus and pistachios (KernAg, 2011). Table 5 compares the PMF derived EFs
for acetone/MeOH from Factor 4 with ratios of basal emission factors (BEFs) from crop -specific
greenhouse and field measurements (Fares etal., 2011, 2012; Gentneretal., 2014b). The good
agreement of the ratios confirms that the FP of Factor 4 is an aggregate of biogenicVOCemissions from
the agricultural sector. Nitrous oxide is emitted when nitrogenis added to soil through use of synthetic
fertilizers and animal manure, while crops and plants are responsible for the VOC emissions. Hence this

source factor isa combination of collocated sources (soils and crops). The PMF solution to this factor has

18



536  uncertainties greaterthanthose for otherfactors (Figure S4). Thisis potentially becausenotall crops
537 emitthe same combination of VOCs norare all agricultural fields fertilized at the same time. The

538 existence of this statistically weak factoris confirmed by bootstrapping runs (Section S3) and numerous
539 PMF trials all of which produce a distinct factor with N,0 as a dominant contributor along with certain
540  biogenicVOCs, though ofteninvarying proportions. CO,is notincludedinthe PMF analysis reportedin
541  the paper, most importantly because negative CO, fluxes during daytime can introduce artifactsin PMF
542  analysisandresultinerroneous apportionment. But PMF runs involving CO, indicate that most of the
543  CO,isapportionedtothisfactor. Plantand soil respiration (especially during the night) is amajorsource
544  of CO,and the apportionment of CO, to Factor 4 confirms the nature of this source. The temporal

545  correlation between CO,and N,Oisalsoevidentintheiraverage diurnalcycles (Figures 6f and 6h),

546  whichhave a coincident early morning peak. The absence of monoterpenes from the FP of this factor
547  can be explained by theirshorteratmosphericlifetimes comparedto VOCs like acetoneand MeOH and
548  therapid daytime mixing which dilutes the terpenoid emissions arriving at the site during the day. At
549  night, whenatmosphericdilutionislow, monoterpenes emissions from agriculture are more likely to get
550 apportionedintoaseparate source factordominant during nighttime, when temperature -sensitive

551  biogenicemissions of MeOH and acetone can be expected to be a minorconstituentin the FP (see

552  Section4.8).

553 Factor 4 is a significant source of GHGs contributingabout 20 - 25% of the total N,O

554  enhancementsinthe diurnal cycle (Fig. 7c) but with a relatively large 1o confidenceinterval of 70%in
555  theagriculture and soil N,O mass fraction. Kern County is one of the premieragricultural counties of
556  Californiaaccountingfor$4.2 billion (about 18%) of the total agricultural revenue from fruits and nuts,
557  vegetablesandfield crops (KernAg, 2011; CASR, 2013) andis also the biggest consumer of synthetic
558 fertilizers. Agricultural soil management accounts forabout 60% of the statewide N,O emission

559 inventory (CARB, 2013). Our assessment of diurnal source distribution of N,0 emissions from the

560  agriculture source factor (Figure 7c) in presence of anotherdominating source (dairy and livestock) is

561 consistentwiththe inventory estimates from agricultural and soil management sector.
562  4.6. Factor 5: Daytime biogenics and secondary organics

563 The chemical composition and diurnal profile of Factor 5 pointsto a source whose emissions are
564  eitherprimarybiogenicVOCs with temperature-dependent emissions (e.g. isoprene), or products of
565  photochemical oxidation of primary VOCs (e.g. acetone) (Figure 4). Isopreneisadominantcomponent

566  of the source FP andis mostly apportioned to Factor 5. Figure 5e shows a steadyincrease inthe PMF
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factor mass concentration during the daytime hours that hits a peak during afternoons indicating that
thissource is dependentonsunlight and temperature. Potential source contributions come from oak
forests onthe foothills of the western edge of the SJV or scattered isoprene producing plantsinthe SJV
(note that most crops do not emitsignificantamounts of isoprene). Factor 5includes contribution from
VOCsthat have primary light and temperature driven (crops), as well as secondary sources in the Central
Valley e.g. acetone (Goldstein and Schade, 2000), methanol (Gentneretal., 2014b) and aldehydes. A
similar PMF analysis with a different objective (Goldstein etal., in prep) shows that secondary organics
like glyoxal, formaldehyde and formicacid mostly apportion to Factor 5. The CO apportionedto this
factor could potentially be a product of mobile and/or stationary combustion co-located or
up/downwind of the biogenicVOCsource. CO can also come from coincidentisoprene oxidation
(Hudman etal., 2008). This daytime source is notresponsibleforany of the observed CH,and N,O

enhancements.

4.7. Factor 6: Non-vehicular/miscellaneous urban emissions

The chemical signature of Factor 6 is composed of VOCs associated with an array of applications
and processes, including solvents, fumigants, industrial-byproducts, etc. The diurnal profile of Factor6
(Figure 5f) issomewhat different from that of evaporative and fugitive source (Figure 5a) and dairies
(Figure 5¢) in that even duringthe middle of the day when vertical mixingis atits strongest, the
enhancements contributing to the factor are substantial. This suggests that the source(s) isin close
proximity to the site and hence most likely located within the urban core. The FP has CO as an important
component butrelative absence of fugitive source markers (e.g. light alkanes) and vehicle emissions
tracers (e.g.isooctane, cycloalkanes etc.) indicate that the origin of this source factoris potentially non-
mobile combustion. Also presentinamajor proportionis carbon disulfide (CS,), chlorinated alkanes like
1,2-dichloroethaneand 1,2-dichlorpropane, isobutene (product of incomplete combustion), and minor
contributions from aromatics and aldehydes (Figure 4). There are a myriad of potential sources that
could be contributing to thisfactor, and we don't have specifictracers or otherinformation to ascribe it
to a single source or group of sources. Hence we call Factor 6 an ‘urban emissions source’. Thereisa
very minor CH, contribution from this factor which resultsinatiny and negligible contributiontothe
PMF source apportionment of CH, (Figure 7a). The source factor does not contribute tothe N,0O

enhancements.

4.8. Factor 7: Nighttime anthropogenicand terpene biogenicemissions
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Factor 7 is primarily composed of biogeniccompounds belonging to the terpene familyand p -
cymene (Figure 4). Factor 7 mostly influences the site during late night and early morning hours (Figure
5g) when nighttime downslope flows usually dominate bringing winds from the east and south to the
site. The entire flow path from the base of the foothills to the site is covered with agri cultural crops
emittingintoashallow nighttime boundary layer. These cropsinclude grapes, almonds, citrus and
pistachios, which are the top fouragricultural commodities grown in the county (KernAg, 2011; CASR,
2013), and these produce considerable monoterpenoid emissions (Fares etal., 2012; Gentneretal.,
2014b). The spatial distribution of terpenoid compounds from statistical source footprint derived from
FLEXPART back-trajectoriesis consistent with the location of croplandsin southern SJV (Gentneretal.,
2014b). BiogenicVOCs emitted from forests in the foothills are likely minor contributors to the
downslope flows arriving at the site owingto theirlifetime and distance (>50 km) (Tannerand Zielinska,

1994).

Followingthe rapidrise inenhancementsinthe early morning hours, contributions of Factor 7
to total signal decrease rapidly when the flow moves to more typical daytimewind directions (Figure
5g). A nearby source (e.g. the WWTP), thatis upwind of the site foronly a certain part of the diurnal
cycle, isexpectedto be more directionally constrained and emissions profile from such a source will look
similartothe diurnal profile of Factor 7. Among source factors which contain non-negligible fractional
contribution of both CH,and N,O (i.e. dairies, agriculture and soil management, and Factor 7), the PMF
derived CH,/N,O EF of 42 + 20 (gCgN™) from Factor 7 is most similarto the bottom-up inventory EF of
56 (gCgN™) forwaste watertreatmentin Kern County (KernGHG, 2012). Given the proximity of the
WWTP and previous observations of GHGs fromthem, itis possible thatthere isaminorbut noticeable

contribution (~5%) to CH, and N,0O enhancements from this nighttime source (Figures 7aand 7c).
5. Implications

This study demonstrates the potential of PMF technique to apportion atmosphericgas-phase
observations of CH,and N,O into source categories using a broad array of tracers. PMF is not commonly
employed to perform for source attribution of these GHGs because studies generally lack simultaneous
measurements of specificsource-markers. Applyingthis statistical technique ona GHG-VOC unified
data set, well-represented by a broad suite of VOC classes, allows a set of compounds acting as source

markers to be partitionedinto separate profiles leading to easieridentification of their sources.
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We provide clearanalysis that dairy and livestock operations are the largest sources of
emissionsinthe Bakersfield region accounting for a majority of the CH, (70 - 90%) and N,O ( 60 -70%)
emissions. As perthe CARBinventory (Figure 1), dairy operations are the dominant source of non-CO,
GHGs inthe state and our analysis agrees with that broad trend. However, in the recent past, a number
of top-down CH,; and N,0 emission studiesinthe Central Valley have reported underestimation of the
non-CO, GHG inventory (Zhao et al., 2009; Santoni etal., 2012; Jeongetal., 2012a, 2012b; Milleretal.,
2013). These studies attribute a majority of this underestimation to the dairy sector. Ourresults
emphasize the significance of this sectorin the SJV although we do not derive total emission estimates

to compare directly with the inventory.

The contribution of fugitive emissions from the oil and gasindustry in Bakersfieldto CH,
emissionsisfoundto be negligible especially in the presence of the much larger dairy source. The PMF
analysis, though, clearly establishes an evaporative and fugitive source that contributes to emissions of
lighter hydrocarbons. This supports the conclusion that the majority of the CH, is being separated at the
point of extraction from the ‘associated gas’ andis not released with fugitive emissions (Gentneretal.,
2014a). Kern County produces 75% of all the oil produced in California (~ 6% of US production) and has
81% of the state’s 60000+ active oil wells (CDC, 2013). There is, however, asurprising s carcity of
measured datato quantify the estimates of fugitive CH, from the prolific oil fields in the county and
validate the bottom-up, activity data-based inventory. Currently, fugitive emissions from fossil fuel
extraction and distribution contribute ™~ 5% to the county’s CH, emissionsinventory (KernGHG, 2012).
Nationwide, anumber of recent studies have reported significantly higher emissions of fugitive CH, from
oil and gas production operationsin otherregions (Pétron etal., 2012; Karion etal., 2013; Milleretal.,
2013; Kort etal., 2014) . The PMF apportionmentin this study (~2%) is consistent with the fraction of
fugitive CH, emissionsin the regionaland state inventories butthe PMF method, by itself, cannot

accurately constrain emissions from minorsources owingto the uncertaintiesinthe dominant sources.

We find thatthe vehicle emissions source factoridentified in this study makes no detectable
contributionto observed N,0 enhancements. Our findings do not agree with the significant contribution
(~18%) of the transportation sectorto the state’s N,O emissioninventory (CARB, 2013). Vehicle
dynamometerstudies have indicated rapidly declining N,O EFs with advancementin catalyst
technologies, declining sulfur contentin fuel and newertechnology vehicles (Huai etal., 2004). N,O
emissions from California vehicles, required to meet progressively stringent emission standards, are

expected to declineand should have a minimal contribution to the CARBinventoryin this decade.
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However, it seems the updates to the mobile N,O emissionsinventory is not keepingin pace with the
improvementsin vehicle catalysttechnologies and corresponding decline in tailpipe N,O emissions.
Bakersfieldisafairly large population urban region (~500,000) and the essentially non-existent
contribution of the PMF vehicle emissions source to the N,0 apportionmentand large divergence of the
PMF derived N,0/CO EF from the state inventory EF for motor vehiclesis asignificant outcome pointing

to overestimation of N,O from motorvehiclesin the inventory.
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938

939

Table 1. PMF dataset with total samples (N) and mixing ratio range (in ppt).

Class Compound N 1st percentile 99th percentile Background
CH4*° 619 1855.0 3400.8 1813.6
GHG CO,"¢ 619 390.8 468.3 390.0
N20* 490 323.3 339.5 323.2
combustion tracer  CO*® 653 118.9 330.6 102.1
propane 592 580.8 30839.0 4555
straight chain n-butane 587 96.4 12649.0 73.6
alkanes n-pentane 647 93.2 3805.4 64.4
n-hexane 647 23.1 960.5 17.2
dodecane 643 1.56 54.3 0
isopentane 646 165.4 7490.5 100.4
2,3-dimethylbutane 650 52.5 1747.7 411
2,5-dimethylhexane 651 2.37 145.8 0
branched alkanes isooctane 647 16.6 476.9 12.3
4-ethylheptane 651 1.45 52.6 0
dimethyl undecane 643 0.46 24.9 0
methylcyclopentane 647 23.3 1329.6 20.3
cyclo alkanes methylcyclohexane 649 8.10 813.9 0
ethylcyclohexane 651 1.78 169.1 0
alkenes propene 592 34.7 3299.9 28.6
isobutene 595 16.7 422.1 10.7
toluene 647 48.8 1749.5 33.1
ethylbenzene 647 5.83 282.0 0
m,p-xylene 647 21.8 1127.1 21.8
o-xylene 647 431 405.0 0
aromatics cumene 640 0.55 22.8 0
1-ethyl-3,4-methylbenzene 651 2.22 358.6 0
p-cymene 649 0.84 93.9 0
indane 647 0.45 27.9 0
1,3-dimethyl-4-ethylbenzene 635 0.46 23.9 0
naphthalene 654 0.44 19.9 0
unsaturated -
aldehyde methacrolein 573 14.2 337.0 0
methanol 429 2636.81 88691.8 1085.2
alchohol ethanol 598 1021.93 65759.8 1021.9
isopropyl alcohol 583 25.7 2001.0 25.7
acetone 663 142.9 3505.8 142.9
ketone methyl ethyl ketone 605 8.55 1111.2 0
methyl isobutyl ketone 629 2.03 71.9 0
propanal 636 3.68 140.8 0
aldehyde butanal 589 1.72 35.1 0
isoprene 651 9.70 310.0 0
alpha-pinene 740 1.67 525.8 0
biogenics d-Iirponene 641 1.10 357.1 0
nopinone 614 0.78 89.5 0
alpha-thujene 591 0.52 23.8 0
camphene 645 0.72 100.3 0
chloroform 647 34.1 209.3 31.6
chloroalkanes tetra(?hloroethylene 641 3.41 120.9 0
1,2-dichloroethane 640 20.6 103.8 20.6
1,2-dichloropropane 627 2.40 28.4 0
sulfides carbon disulfide 610 7.84 133.7 0
thiol ethanethiol 491 4,54 685.8 0

2 parts per billion volume (ppb)

® parts per million (ppm)

¢measured using LGR Fast Green House Gas Analyzer
4 measured using LGR N,0/CO analy zer
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940  Table 2. Comparison of light alkane ratios to propane (gC gC™) from PMF fugitive and evaporative
941  factor with those from other PMF studies and oil and gas operations.

942
Study Source propane  n-butane n-pentane n-hexane isopentane
Bakersfield 052 +
PMF evaporative This study 1 0 02‘ 0.18+0.01 0.06 £+0.003 0.33+0.02
and fugitive factor® '
Bakersfield
petroleum Gentner et al.
operations source (2014a) 1 0.53+0.1 0.09 + 0.02 0.04 £ 0.01 0.08 £ 0.02
profile”
Mexico city PMF Bon et al. 1 0.5 0.05 0.02 0.07
LPG factor® (2011) (04-0.7) (0.04-0.07) (0.02-0.03) (0.06-0.1)
Wattenberg field Gilman et al. 0.75
BAO, Colorado® (2013) 1 137 0.32+0.6 0.08 £ 0.13 0.28 + 0.52
Wattenberg field Petron et al. 0.58 -
BAO, Colorado® (2012) 1 0.65 0.22-0.31 NA 0.22-0.31
PMF natural gas
: Leuchner and
and evaporation ‘popenaick 1 0.33 0.27 0.12 0.37
factor, Houston (2010)
Ship ChanneP
PMF natural gas
factor, Houston Fzgz(r:lé;(?éjﬁ) 1 Obﬁzg 0.07+0.18 NA NA
Ship Channel’ '
@ Uncertainties calculated from propagation of errors (standard deviations) over FPEAK range of -1.6 to 0.4.
® Ratios calculated from Table 4, Gentneret al., 2014a; uncertainties defined as +20% to account for variability in oil well data.
¢ Uncertainties calculated from propagation of uncertainties over FPEAKrange of -3 to 3.
¢ Emission ratios derived from multivariate regression analysis; error bars derived from propagation of uncertainty using mean and standard deviation
of samples.
¢ Ranggover 5 regressions conducted over data collected in different seasons and from mobile lab samples.
f Ratios derived from mean and standard deviations, with propagation of uncertainty.
9 Estimated from Figure 2, Leuchner and Rappengluck, 2010.
" Estimated from Figure 2, Buzcuand Frazer, 2006.
943
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944  Table 3. Comparison of hydrocarbon ratios to toluene (gC gC™) from PMF vehicle emission factor with

945

946

947

similar ratios from other California specific studies.

Bakersfield .
; Bakersfield s CalNex Los
Study P Mﬂ'; v?hr:cle gasoline source Rlvelzzlde r"qflijllde Angeles ambient
ermiss oas profile”* gasoline prothie emission ratios®
factor
. Gentner et al. Gentner et al. Borbon et al.
Source This study (2012) (2009) (2013)
CH, 81+21 NA NA NA
CO 140+ 04 NA NA 45
toluene 1 1 1 1
isopentane 0.69 £ 0.01 0.77 £ 0.04 0.64-0.84 1.95
isooctane 0.29 +0.03 0.34+0.02 0.64-0.80 NA
n-dodecane 0.03 +0.001 (0.02 + 0.007)" NA NA
methylcyclopentane 0.24 +£0.01 0.32 £0.02 NA NA
ethyl benzene 0.17 £ 0.01 0.14+0.01 NA 0.2
m/p - xylene 0.65+0.01 0.65+0.03 (0.45-0.52)" 0.64
0 - xylene 0.22+0.01 0.23+0.01 NA 0.24

errorsare standard deviation of 12 unique PMF solutions between FPEAK =-1.6t0+0.4; see section S2.

® derived from liquid gasoline fuel speciation profile (Table S9; Gentner etal., 2012).

¢ errors bars derived from propagation of uncertainties.

¢ derived by combining diesel fuel and gasoline speciation profile (Table S9 and S10; Gentner etal., 2012) and gasoline and
diesel fuel sale data in Kern County (Table S1, Gentneret al.,2012).

¢ summer data.
fonly m-xylene.

9 derived from Linear Regression Fit slope of scatterplot from CalNex Pasadenasupersite samples.
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948  Table 4. Comparison of PMF dairy and livestock emission factors (mmol mol™) with previous studies.

949
Cow/manure methanol / ethanol /
Study Source type (if methane EF avg. methane EF
applicable) (range) avg. (range)
PMF analysis of .
regional measurements This study 15-47 9-322
Environmental chamber . Dry 32(06-7.4) NA
with cows and/or '
(2008) _
manure Lactating 1.9 (0.8 - 3.6) NA
Environmental chamber o Dry 13.4 (4 - 25) 14.4 (11 - 19)
with cows and/or (2008) '
manure Lactating 19.2 (15 - 25) 24.2 (18 - 32)
Cowshed with regular Nowabie et al
dairy operations g (2008) ' 20(1.6-24) 9.3(4-16)
(winter)
Cow stall area with Filiov et al
regular dairy operations (%06) : NA (42 - 127)°
(summer)
Fresh (< 24 14
Manure from cattle Miller and hr) NA
feedlot Varel (2001) Aged (> 24 b
118
hr)
Measured slope of Gentner et al
regression (CalNex (2014a) ' 7.4(7-16)° 18°
2010)
Sampling of dairy .
plumes from aircraft Guha ?é a)l. (in 9.6 (9 - 30)° NA
(CABERNET 2011) prep
@ calculated based on CH,4 emission rateof 4160 pg cow™ s* for mid-lactating cows (Shawet al., 2007).
® calculated based on CH4 emission rate 0f4160 pg cow-1 s-1 for mid-lactating cows (Shawet al., 2007) and ethanol emission rate for
fresh and aged manure of 175 and 1223 pg cow-1 s-1, respectively, derived by Filipy etal. (2006).
¢ slope of regressionwith range of measured slopes (in parentheses) from sampling of dairy plumes by aircraft.
¢ ground site data; lower limit of slope ofnon-vehicular ethanol versus methane
950
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951  Table 5. Comparison of PMF agricultural and soil management emission factor for acetone versus
952  methanol (gC gC™) with ratios of basal emission factors generated for major crops grown in the Kern
953  County. Errors denote standard deviations computed by propagation of uncertainty.

Bakersfield PMF

aaricultural and Almond Table grape Pistachio Navel oranges  Valencia oranges
so?l management greenhouse greenhouse greenhouse greenhouse greenhouse
fac tgr summer 2008  summer 2008  summer 2008  summer 2008° summer 2008
This study Gentner etal. Gentner etal.  Gentner et al. Fares et al. Fares et al.
(2014b) (2014b) (2014b) (2011) (2012)
0.58 £ 0.37 0.14+0.2 0.04 £0.02 0.5+0.6 0.57+0.1 05+0.3

* branch with flowers not removed.
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Figures

Figure 1
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I I
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Figure 1. 2011 California emission inventory for (a) methane (CH,4) - 32.5 million ton CO,eqat GWP =
25; and (b) nitrous oxide (N,O) - 13.4 million ton CO,eqat GWP = 298. (Source: CARB GHG Inventory

Tool, Aug 2013)
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Figure 2. Map of potential sources of methane and nitrous oxide in/around the city of Bakersfield and
the surrounding parts of the valley. The inset map is a zoomed out image of the southern part of San
Joaquin Valley (SJV) with location of Kern County superimposed. The light blue lines mark the
highways, WWTP stands for waste water treatment plant, and O&G stands for oil and gas fields. The

location of the CalNex experiment site is marked by the ‘tower’ symbol.
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Figure 3. Wind rose plots showing mean wind direction measured at the site during (left) day time
(07:00-16:00 hour), and (right) nighttime (17:00-06:00 hour) during the experiment period in summer
2010. The concentric circles represent the percentage of total observations; each colored pie represents a

range of 10° while the colors denote different wind speed ranges.
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976  Figure 4. Source profile of the seven factors derived using PMF. The source factors are evaporative and fugitive, motor vehicles, dairy and
977  livestock, agricultural + soil management, daytime biogenics + secondary organics, urban, and nighttime anthropogenics + terpene biogenics. The

978  y-axis represents the normalized fraction of mass in each source factor, while the x-axis lists all the chemical species included in the PMF analysis.
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Figure 5. Mean hourly diurnal plots of PMF source factor concentration enhancements for (a)
evaporative and fugitive, (b) motor vehicles, (c) dairy and livestock, (d) agricultural + soil management,
(e) daytime biogenics and secondary organics, (f) non-vehicular/miscellaneous urban and (g) nighttime
anthropogenics + terpene biogenics. The y-axis represents sum of normalized mass concentrations from
all tracers contributing to the factor. The x-axis is hour of day (local time). The solid lines represent the

mean and the shaded area represents the standard deviation (variability) ateach hour.
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Figure 6. Time series of (a) CH,, (b) CO,, (c) CO, and (d) N,O obtained from 30-min averages from
May 15- June 30, 2010. The color bar indicates the average wind direction during each 30-min period.
Mixing ratios plotted as average diurnal cycles for (e) CH,, (f) CO,, (g) CO and (h) N,O along with wind
direction. The curve and the red whiskers represent the mean and the standard deviations about the mean,

respectively.
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Figure 7. Diurnal plot of PMF derived (a) CH,, (b) CO, and (c) N,O concentrations sorted by PMF
source category. The legend on the bottom right shows the names of the PMF source factor which each
color represents. The PMF derived enhancements from each source have been added to the background

concentrations.
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