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Abstract 15 

Chemical transport models (CTMs) driven with high-resolution meteorological fields can 16 

better resolve small-scale processes, such as frontal lifting or deep convection, and thus improve 17 

the simulation and emission estimates of tropospheric trace gases. In this work, we explore the 18 

use of the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system with the 19 

nested high-resolution version of the model (0.5°x0.67°) to quantify North American CO 20 

emissions during the period of June 2004 – May 2005. With optimized lateral boundary 21 

conditions, regional inversion analyses can reduce the sensitivity of the CO source estimates to 22 

errors in long-range transport and in the distributions of the hydroxyl radical (OH), the main sink 23 

for CO. To further limit the potential impact of discrepancies in chemical aging of air in the free 24 

troposphere, associated with errors in OH, we use surface level multispectral MOPITT CO 25 

retrievals, which have greater sensitivity to CO near the surface and reduced sensitivity in the 26 

free troposphere, compared to previous versions of the retrievals. We estimate that the annual 27 
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total anthropogenic CO emission from the contiguous US 48 states was 97 Tg CO, a 14% 28 

increase from the 85 Tg CO in the a priori. This increase is mainly due to enhanced emissions 29 

around the Great Lakes region and along the west coast, relative to the a priori. Sensitivity 30 

analyses using different OH fields and lateral boundary conditions suggest a possible error, 31 

associated with local North America OH distribution, in these emission estimates of 20% during 32 

summer 2004, when the CO lifetime is short. This 20% OH-related error is 50% smaller than the 33 

OH-related error previously estimated for North American CO emissions using a global 34 

inversion analysis. We believe that reducing this OH-related error further will require integrating 35 

additional observations to provide a strong constraint on the CO distribution across the domain. 36 

Despite these limitations, our results show the potential advantages of combining high-resolution 37 

regional inversion analyses with global analyses to better quantify regional CO source estimates.  38 

 39 

1. Introduction 40 

Inverse modeling is a powerful tool to improve our understanding of emissions of 41 

greenhouse gases and pollutant tracers, by combining observations of atmospheric composition 42 

with models. Despite more than a decade of inverse modeling work to better quantify emissions 43 

of atmospheric CO (e.g., Palmer et al., 2003; Pétron et al., 2004; Heald et al., 2004; Arellano et 44 

al., 2006; Jones et al., 2009; Kopacz et al., 2010; Gonzi et al., 2011; Fortems-Cheiney et al., 45 

2012), there is significant uncertainty in regional CO source estimates, reflecting varying source 46 

estimates from the inverse modeling analyses. As noted in previous studies, the discrepancies 47 

between the estimated CO emissions from different inversion analyses are due, in part, to errors 48 

in the atmospheric models used in the inversions. Model errors in long-range transport, vertical 49 

convective transport, diffusion, and chemistry (e.g. Arellano et al. 2006; Fortems-Cheiney et al., 50 
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2011; Locatelli et al., 2013; Worden et al., 2013; Jiang et al., 2011, 2013, 2015) all adversely 51 

impact the inverse modeling of CO and other trace constituents (such as methane), and 52 

mitigating these errors in global models is challenging.  53 

One way to reduce the effects of some model errors is to carry out the model simulations 54 

at high spatial resolution, which allows an improved description of small-scale processes, 55 

particularly those associated with vertical convection and diffusion. There have been several 56 

studies using high-resolution mesoscale models for inversion analyses (e.g. Stroud et al. 2011; 57 

Valin et al. 2011; Klich and Fuelberg 2014; Stock et al. 2014) with the lateral boundary 58 

conditions provided from global, coarse resolution models (e. g. Curci et al., 2010; Peylin et al., 59 

2011). However, the consistency of boundary conditions becomes a critical issue in these 60 

regional analyses (e.g. Gockede et al., 2010). The boundary conditions have also been imposed 61 

based on independent data, such as aircraft in-situ measurements (e.g. Brioude et al., 2012; 62 

Lauvaux et al. 2012; Wecht et al. 2014).  63 

Regional inverse modeling of CO emissions with adequate boundary condition 64 

optimization will also reduce the impact of discrepancies in long-range transport and in the 65 

chemical sink of CO. Reducing the sensitivity to the chemical sink of CO also requires that 66 

transport across the regional domain is fast compared to the lifetime of CO. Jiang et al. (2015) 67 

compared CO source estimates inferred from inversion analyses of surface level and profile 68 

retrievals of CO from the MOPITT (Measurement of Pollution in The Troposphere) satellite 69 

instrument and found that they were generally consistent (to within 10%), except for source 70 

estimates for North America, Europe, and East Asia. In an earlier study, Jiang et al. (2013) noted 71 

that when comparing source estimates inferred from in situ surface data and from satellite 72 

observations, “in the absence of transport bias, the surface and satellite data should provide 73 
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consistent constraints on the sources, if the data coverage is representative of the spatiotemporal 74 

variability in CO”. They were the first to show a large discrepancy in the Asian source estimates 75 

obtained from the MOPITT surface level and profile retrievals, and they argued that it was due to 76 

errors in convective transport over Asia associated with the Asian summer monsoon. In addition 77 

to transport biases, discrepancies in the chemical sink of CO will also impact the constraints on 78 

the surface sources provided by the surface level and free tropospheric data. Jiang et al. (2015) 79 

suggested that the differences in the North American and European sources that they estimated 80 

from the MOPITT surface level and profile retrievals could be due to the fact that air in the free 81 

troposphere over North America and Europe is more chemically aged, thus, the surface level and 82 

profile data are sampling air with different CO characteristics, with the profile data being more 83 

susceptible to biases in the chemical sink. 84 

The work presented here is based on the global analysis of Jiang et al. (2015), but 85 

employs the high-resolution, regional version of GEOS-Chem (e.g. Wang et al., 2004; Chen et 86 

al., 2009) and the MOPITT surface level retrievals to better quantify North American emissions 87 

of CO. We focus on the period June 2004 to May 2005 for consistency with Jiang et al. (2015) 88 

and Kopacz et al. (2010). As mentioned above, regional inversion analyses are sensitive to the 89 

lateral boundary conditions, but use of global models to provide these boundary conditions is 90 

problematic if there are biases in transport and the chemistry in the models. Use of in situ 91 

observations to provide boundary conditions is also problematic because observational coverage 92 

is often limited in space and time. A better approach for imposing the boundary conditions is to 93 

assimilate satellite observations that can provide a strong constraint on the distribution of CO 94 

throughout the free troposphere. Here we explore the use of the MOPITT data to constrain the 95 

lateral boundary conditions as well as the surface CO emissions. We also examine the potential 96 



 

 5 

impact of discrepancies in the abundance of the hydroxyl radical (OH), the main CO sink, on the 97 

estimates CO sources in a regional inverse modeling context. 98 

This paper is organized as follows: in Section 2 we describe the MOPITT instruments 99 

and the GEOS-Chem model. In Section 3 we outline the inversion framework used in this work. 100 

In Section 4, we describe our approach for initial and boundary condition optimization, and 101 

present the estimated monthly mean North American emissions. The sensitivity of the source 102 

estimates to the chemical sink is examined by comparing the inversion results obtained with two 103 

different OH fields. Our conclusions are then provided in Section 5. 104 

2. Observations and Model 105 

2.1. MOPITT 106 

The MOPITT instrument was launched on December 18, 1999, on NASA’s Terra 107 

spacecraft. We employ the multispectral version 5 (V5J) retrievals, in which the thermal infrared 108 

(TIR) radiances at 4.7µm are combined the near infrared (NIR) radiances at 2.3µm to provide 109 

greater sensitivity to lower tropospheric CO over land (Worden et al., 2010; Deeter et al., 2011). 110 

The retrievals are conducted with respect to the logarithm of the volume mixing ratio (VMR), 111 

and are reported on a 10-level pressure grid (surface, 900, 800, 700, 600, 500, 400, 300, 200, and 112 

100 hPa). Although we use only the surface level MOPITT retrievals in our analysis, it is 113 

necessary to transform the modeled CO profile to account for the vertical resolution of the 114 

MOPITT retrieval. This transformation is carried out using the following observation operator 115 

  𝐹 𝐱 = 𝐲! + 𝐀(𝐻 𝐱 − 𝐲!) (1) 116 

where A is the MOPITT averaging kernel, H(x) is the GEOS-Chem profile of CO (interpolated 117 

onto the MOPITT retrieval grid), and ya is the MOPITT a priori profile. After transforming the 118 



 

 6 

modeled profile, the modeled CO at the surface is compared to the surface level MOPITT CO, as 119 

described in Eq (2) in Section 3. Deeter et al. (2012, 2013) evaluated the multispectral MOPITT 120 

data and reported a small positive bias of 2.7% at the surface and a larger positive bias of 14% at 121 

200 hPa for the V5J data. The large bias in the upper troposphere is not an issue here since we 122 

focus on the surface level data. Further details for the MOPITT instrument and the multispectral 123 

retrievals are given in Jiang et al. (2015). 124 

2.2. GEOS-Chem 125 

The GEOS-Chem global chemical transport model (CTM) (http://www.geos-chem.org) is 126 

driven by assimilated meteorological fields from the NASA Goddard Earth Observing System 127 

(GEOS-5) at the Global Modeling and data Assimilation Office. The standard GEOS-Chem 128 

chemical mechanism includes 43 tracers, and simulates a detailed description of tropospheric O3-129 

NOx-hydrocarbon chemistry, including the radiative and heterogeneous effects of aerosols. The 130 

native horizontal resolution of GEOS-5 is 0.5°x0.667°, but the meteorological fields are usually 131 

degraded to 4°x5° or 2°x2.5° for global-scale simulations.  132 

Our analysis is based on the CO-only simulation in GEOS-Chem v8-02-01, with relevant 133 

updates through v9-01-01, using archived monthly OH fields from the full chemistry run. The 134 

standard OH field used in this work is from GEOS-Chem version v5-07-08 (Evans et al. 2005). 135 

In order to study the influence of the OH distribution on the inversion analyses, we also archive 136 

the OH fields from a v8-02-01 GEOS-Chem full chemistry simulation. Additional details about 137 

OH fields and emission inventories can be found in Jiang et al. (2015). Briefly, the annual North 138 

America sources of CO are 134 Tg CO from fossil fuel and biofuel combustion and biomass 139 

burning, 61 Tg CO from the oxidation of biogenic volatile organic compounds (VOCs), and 71 140 

Tg CO from the oxidation of CH4. Figure 1 shows the distribution of the annual mean CO 141 
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emissions for June 2004 to May 2005. 142 

The inversion analyses here are carried out using the GEOS-Chem four-dimensional 143 

variational (4D-Var) data assimilation system, which was first described by Henze et al. (2007) 144 

and has been widely used in the chemical assimilation of CO and other tracer gases (e.g. Kopacz 145 

et al., 2009, 2010; Singh et al., 2011, Wells et al., 2014, Deng et al. 2014). Previous GEOS-146 

Chem CO inversion analyses were conducted with the global version of the model. Here we 147 

extend the 4D-Var system to enable regional inverse modeling of CO using the nested version of 148 

GEOS-Chem. 149 

The nested capability was first implemented in GEOS-Chem by Wang et al. (2004) for 150 

the GEOS-3 version of the meteorological fields. The model was then updated by Chen et al. 151 

(2009) to support the GEOS-5 meteorological fields, with 0.5°x0.667° resolution, which are used 152 

here. In the nested simulation the boundary conditions are based on fields archived from a global 153 

simulation (at 4°x5° or 2°x2.5°) with a 3-hour temporal resolution, which are used to rewrite the 154 

tracer concentrations in a buffer zone around the nested domain before every transport step. 155 

Along the boundary of the nested domain, the direction of the wind field is used to identify 156 

whether the flow is directed into or out of the domain, and the mixing ratios of the tracers in the 157 

buffer zone are used to provide the necessary upstream information. A key benefit of using the 158 

nested model was shown by Wang et al. (2004), who found that the CO mixing ratios in the 159 

high-resolution nested simulation were lower than in the coarse resolution global model, which 160 

they attributed to the failure of the coarse global model to capture subgrid vertical motions. 161 

Figure 2 shows the simulated CO mixing ratio on May 1, 2006, obtained with the 4°x5° global 162 

simulation and with the nested North America simulation. The yellow box in Figure 2 indicates 163 

the buffer zone in which the boundary conditions are applied. As shown in the figure, the high-164 
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resolution CO distribution better reflects the influence of the mid-latitude cyclone present over 165 

central North America, and the urban emission centers can be more clearly identified in the high-166 

resolution simulation. 167 

3. Inversion Approach 168 

The inverse method seeks an optimal estimate of the CO sources that is consistent with 169 

both the observed atmospheric concentrations and the a priori constraints on the sources by 170 

minimizing the cost function

� 

J(x) ,  171 

 𝐽 𝐱 = (𝐹!!
!!! 𝐱 − 𝐲!)!𝐒!!! 𝐹! 𝐱 − 𝐲! + (𝐱− 𝐱!)!𝐒!!!(𝐱− 𝐱!) (2) 172 

where x is the state vector of emissions, N is the total number of observations assimilated over 173 

the assimilation window (which is one month), yi is the ith vector of observed concentrations 174 

(the MOPITT surface level retrievals), and F(x) is the forward model, which accounts for the 175 

vertical smoothing of the MOPITT retrieval and is described in Eq. 1. Here 

� 

xa  is the a priori 176 

estimate and ΣS  and 

� 

Sa  are the observational and a priori error covariance matrices, respectively. 177 

The first term on the right in Eq 2 represents the mismatch between the simulated and observed 178 

concentrations weighted by the observation error covariance. The second term represents the 179 

departure of the estimate from the a priori. The cost function is iteratively minimized using the 180 

L-BFGS algorithm (Liu and Nocedal, 1989). The inversion approach is exactly the same as 181 

described in Jiang et al. (2015). We, therefore, refer the reader to Jiang et al. (2015) for details of 182 

the optimizing scheme, the MOPITT data selection criteria, and the specification of the error 183 

covariance matrices. We employed an Observing System Simulation Experiments (OSSE) to 184 

evaluate our high-resolution 4D-Var system in the Appendix, which suggested the nested 185 

inversion has similar reliability as the global scale assimilation system.  186 
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4. Results and Discussion 187 

4.1. Optimization on the initial and boundary conditions 188 

We produce initial conditions following the approach of Jiang et al. (2015), by 189 

assimilating MOPITT V5J tropospheric profile data using the sequential sub-optimal Kalman 190 

filter (Parrington et al. 2008) from 1 January 2004 to 1 May 2005. Because of the bias in the V5J 191 

data at 200 hPa, we assimilate the profile data only below 200 hPa. The optimized CO 192 

distribution from the Kalman filter is archived at the beginning of each month, providing the 193 

initial conditions at the beginning of each month for the 4D-Var inversion analyses.  194 

As mentioned above, the lateral boundary conditions for the nested simulation could be 195 

specified from the global model. However, a better approach would be to constrain the global-196 

scale and regional-scale emissions within the same inversion framework, so that the optimized 197 

emissions on the global-scale will provide less biased boundary conditions for the regional 198 

inversion. Such an approach has been used to constrain CH4 and N2O emissions over South 199 

America and Europe (Meirink et al., 2008; Bergamaschi et al., 2010; Corazza et al., 2011) with 200 

the nested TM5 model. An issue with this approach is that the adjustment in the emissions on the 201 

global scale will have to be projected through long-range transport to the nested domain. If there 202 

are any biases in the model transport, those biases will also be projected onto the nested 203 

inversion. 204 

Because the GEOS-Chem nesting is one-way, we cannot implement the same approach 205 

that is used in TM5. Instead, we conduct a global-scale inversion analysis and use the a posteriori 206 

CO fields as boundary conditions for the regional inversion. The a posteriori simulation from the 207 

global scale inversion should provide less biased boundary conditions for the regional scale 208 

inversion than the free running model (without assimilation). However, as mentioned above, the 209 
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boundary conditions could potentially be problematic if there are biases in the model transport. 210 

Alternatively, one could optimize the model CO distribution (using the sequential sub-optimal 211 

Kalman filter, for example), over writing any potential discrepancy in the tracer distribution 212 

associated with errors in the model transport (or chemistry). Here we compare the CO 213 

distribution obtained from optimizing the CO distribution using the Kalman filter and from 214 

optimizing the CO sources using the 4D-Var system. 215 

The relative differences in the CO distribution obtained from these two assimilation 216 

approaches are shown in Figure 3. The assimilation of the MOPITT tropospheric profiles with 217 

the sequential sub-optimal Kalman filter from January 1 2004 to June 1 2005 is referred as 218 

CO_KF. The a posteriori CO distribution obtained from optimizing the monthly mean CO 219 

emissions using the 4D-Var scheme is referred as CO_EMS. Shown in Figure 3 are the relative 220 

differences of the lower tropospheric (surface – 500 hPa) partial columns, calculated as 221 

(CO_EMS – CO_KF) / CO_KF. Since both approaches used the same initial conditions, 222 

archived from the Kalman Filter assimilation, at the beginning of each month, the relative 223 

differences shown in Figure 3 can be considered as the residual bias in the a posteriori simulation 224 

that cannot be effectively removed within the one-month assimilation period by adjusting only 225 

the surface emissions. The most significant feature is the positive residual bias along the 226 

Intertropical Convergence Zone (ITCZ), suggesting errors in convective transport in the model 227 

(e.g., Jiang et al., 2013; Worden et al., 2013).  228 

Since the objective of this work is to constrain the North American CO emissions, using 229 

CO_EMS for the boundary conditions may lead to biases in Mexico, the southern US, and along 230 

the North American west coast. Consequently, we decided to use the a posteriori fields from the 231 

Kalman filter as our optimized boundary conditions. The impact of the initial and boundary 232 
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conditions from the Kalman filter assimilation is shown in Figure 4. Driven with original initial 233 

and boundary conditions (without assimilation), the modeled CO columns (Figure 4b) are 234 

obviously lower than that of the MOPITT observations over the North America continent. The 235 

difference over the continent is much smaller when the initial and boundary conditions are 236 

optimized (Figure 4c) with the assimilation of the MOPITT profiles. It is clear that a significant 237 

bias will be introduced in the a posteriori regional emission estimates if the original initial and 238 

boundary conditions were used in the inversion analyses. As described in Jiang et al. (2015), we 239 

do not assimilate MOPITT data at high latitudes due to a potential positive bias in the CO 240 

retrievals at high latitudes; we only assimilate MOPITT data equator-ward of 40° over oceans 241 

and 52° over land, as shown in Figure 4. 242 

The distribution of the relative differences between the modeled and observed CO fields 243 

is shown in Figure 5. With both the free running model and the optimized initial and boundary 244 

conditions, the distribution of the differences with respect to the MOPITT data are approximately 245 

Gaussian. The free running model has a low bias of -13.3%. Assimilating the MOPITT profile 246 

data to optimize the initial and boundary conditions reduced the mean bias to 3.5%, which 247 

should produce a better constraint on local North American emissions. 248 

Although the mean a posteriori bias in the initial and boundary conditions is small, the 249 

largest residual bias in the boundary conditions is found on the southern boundary (near 10°N), 250 

where the a posteriori bias can be as large as 20% (between 80°W – 100°W). The vertical 251 

distribution of the relative bias along the southern boundary is shown in Figure 6. In lower 252 

troposphere, the original model simulation has a large positive bias (Figure 6a), approaching 253 

50%, which the Kalman Filter assimilation significantly reduces (Figure 6b). The inability of the 254 

assimilation to more strongly reduce the bias is likely due to limited MOPITT observational 255 
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coverage over South America, associated with cloud cover (Keller et al., 2015).  256 

A similar bias over the eastern Pacific (0°-12°N, 77.5°W – 122.5°W) was reported by Liu 257 

et al. (2010) in their comparison of CO data from the Tropospheric Emission Spectrometer (TES) 258 

and GEOS-Chem driven by GEOS-4 and GEOS-5 meteorological fields, for 2005 and 2006 (see 259 

their Figures 3 and 4). Relative to TES, the GEOS-Chem was biased high at 681 hPa over the 260 

region, which Liu et al. (2010) attributed to excessive export of South American biomass burning 261 

emissions, which typically peak in August-September. The magnitude of the bias was larger with 262 

GEOS-4 fields than with GEOS-5 (which are used here), and varied from year to year, reflecting 263 

the variability in the biomass burning emissions; the model bias was larger in 2005 than in 2006. 264 

In Figure 6 we see that relative to MOPITT, the model is biased low in the upper troposphere. 265 

This reflects, in part, the high bias in the MOPITT V5J retrievals in the upper troposphere. 266 

However, Liu et al. (2010) found that relative to CO data from the Microwave Limb Sounder 267 

(MLS), the model (driven by GEOS-5) was also biased low over the eastern Pacific at 215 hPa in 268 

August-September 2006, whereas it was biased high in 2005 (see their Figures 5 and 6). The 269 

residual bias on the southern boundary will clearly impact the source estimates obtained here, 270 

with the high bias in the lower troposphere resulting in an over adjustment (i.e., underestimation) 271 

of the CO emission estimates in June – October in southern North America (Mexico and the 272 

southern US). Since the TES retrievals are carried out in the presence of clouds, the TES data 273 

may provide additional information on CO in the outflow region. Thus, assimilating TES 274 

together MOPITT with the Kalman filter may help further reduce the bias the southern boundary 275 

conditions. Another promising approach is the weak-constrained 4D-Var technique, recently 276 

implemented in GEOS-Chem by Keller et al. (2015), in which the cost function Eq. (2) is 277 

augmented with an addition term to mitigate the model transport errors. 278 
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4.2. CO Source Estimates for June 2004 – May 2005 279 

Figure 7 shows the monthly scaling factors, which are the ratio of the a posteriori to a 280 

priori emissions, for June 2004 – May 2005. The figure shows enhancement of anthropogenic 281 

CO emissions in the Great Lakes region and along the US west coast. The annual total 282 

anthropogenic emission for the contiguous US 48 states is increased by 14%, from 85 Tg to 97 283 

Tg. This estimate is consistent with the results of our global inversion analysis presented in Jiang 284 

et al. (2015). The annual total North America CO emission from the oxidation of biogenic VOCs 285 

is reduced by 17%, from 61 Tg to 51 Tg with the largest reduction around the Gulf of Mexico in 286 

July- September 2004. A possible reason for this reduction is the overestimation of isoprene 287 

emission in the MEGANv2.0 inventory used in this work. As discussed in Jiang et al. (2015) 288 

several previous studies have suggested that the MEGANv2.0 isoprene emissions are biased high 289 

over North America. Hu et al. (2015) found that using the MEGANv2.1, together with an 290 

improved land cover distribution, in GEOS-Chem successfully reproduced isoprene observations 291 

in North America. However, the MEGANv2.1 inventory is not yet available in the GEOS-Chem 292 

adjoint model. It is also possible that the reduction in the biogenic emissions, which are strongest 293 

in the southern US, is due, in part, to the high bias in the southern boundary conditions. 294 

The time series for the a priori and a posteriori estimates for different emission categories 295 

are shown in Figure 8 for all of North America (15°N-65°N) and for the contiguous US 48 states. 296 

For the whole continent, generally, the “bottom-up” inventory shows high CO emissions in 297 

summer and lower values in winter. This seasonal variation is driven by the oxidation of 298 

biogenic VOCs, which is significant in May-September and peaks in July, and by biomass 299 

burning, which is at a maximum in April in Mexico and in August in boreal Canada. The 300 

uncertainty of the anthropogenic emissions is assumed to be small. The analysis, however, does 301 
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suggest greater anthropogenic emissions in January-May 2005, which accounts for the larger 302 

total CO emissions for this period, as shown in Figure 8. 303 

The United States is the largest CO source in North America, contributing 63% to the 304 

total North America source. The monthly a priori source in July is 16 Tg, twice as large as the 305 

source in winter. The distinct seasonal variation is driven by the strong biogenic VOCs source in 306 

summer. During January – April 2005, the total a posteriori CO source in this region is 59 Tg, 36% 307 

higher than the a priori value. On the contrary, during June – August 2004, the total a posteriori 308 

CO source in this region is 31 Tg, 29% lower than the a priori value. This significant discrepancy 309 

between summer and winter was also observed by Kopacz et al. (2010). The estimated winter 310 

emissions of Kopacz et al. (2010) are about 50% larger than the summer emissions. Kopacz et al. 311 

(2010) and Stein et al. (2014) attributed the higher wintertime emissions in the Northern 312 

Hemisphere to vehicular emissions, which are not account for in the a priori emission inventory. 313 

The monthly total CO emissions for the contiguous US 48 states agrees well with the 314 

results from the global 4°x5° resolution inversion of Jiang et al. (2015). The largest difference is 315 

observed in Dec 2004, when the a posteriori emission estimate from the coarse-resolution 316 

inversion is 17% higher. The smallest difference is observed in Oct 2004, when the a posteriori 317 

emission estimate of the coarse-resolution inversion is 2% higher. As discussed in Jiang et al. 318 

(2015), the seasonal variations of the a posteriori source estimates obtained here are consistent 319 

with those of Kopcz et al. (2010), but the magnitude of the source estimates differ significantly, 320 

reflecting differences in the configuration of the inversions analayses. We refer the reader to 321 

Jiang et al. (2015) for a more detailed discussion of the differences between the source estimates 322 

obatined here and those from Kopcz et al. (2010). 323 

Although there is good agreement at continental scales between our high-resolution 324 
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inverse analysis and the course-resolution inversion of Jiang et al. (2015), we do observe 325 

significant differences at regional scales. In June 2004, the high-resolution inversion shows large 326 

changes, along the west coast, whereas the spatial variation is much smaller in the coarse-327 

resolution inversion, due to averaging on the model grid. More pronounced discrepancies are 328 

observed in Dec 2004. The coarse-resolution inversion shows the a priori CO emission estimates 329 

over Eastern US should be increased by 20-50%. However, the high-resolution inversion shows 330 

much more variation on regional or urban scales. For example, there is a significant CO emission 331 

decrease in the Toronto area, whereas there are large increases to the east of Lake Ontario. There 332 

is also significant CO emission reduction in West Virginia, and large increases in North and 333 

South Carolina. The greater spatial structure in the regional emission estimates is somewhat 334 

expected because of the higher spatial resolution, but it is unclear as to how reliable these 335 

features are, given the information content of the MOPITT data. 336 

The Intercontinental Transport Experiment – North America, Phase A (INTEX-A) 337 

campaign was conducted during July 1 - August 15, 2004, over North America (Singh et al., 338 

2006). A DC-8 aircraft was used to measure gas and aerosol abundances, including CO, NO2, 339 

formaldehyde (HCHO), and H2O, over an altitude range from 0.2 to 12.5 km. In this work, the 340 

aircraft measurements from the INTEX-A DC-8 aircraft in July 2004 are used to evaluate the 341 

inversion results obtained from MOPITT data. Figure 9 shows the difference between the GEOS-342 

Chem simulation and the INTEX-A DC-8 aircraft observation in free troposphere. The inverse 343 

model significantly reduces the positive bias in the model bias relative to the aircraft 344 

measurements, from 7.2 ppb to 0.5 ppb, suggesting that the a posteriori CO does indeed provide 345 

a better regional fit to the independent aircraft data. The reduction in the bias relative to the 346 

aircraft data also suggests that vertical transport within North America is unbaised, since such a 347 
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transport bias in the inversion would degrade the agreement with aircraft data that was obtained 348 

with the optimized initial and boundary conditions (the a priori). 349 

4.3. Sensitivity of Regional Source Estimates to OH  350 

Following Jiang et al. (2015) we assess the sensitivity of the source estimates to the OH 351 

fields by repeating the inversion for June – August 2004 with the OH fields from version v8-02-352 

01 of GEOS-Chem. We focus on just the summer months for comparison with Jiang et al. (2015). 353 

Also, the OH impact is expected to be greater in summer, when the CO lifetime is short. The 354 

initial and boundary conditions for this inversion were obtained by assimilating the MOPITT 355 

V5J profiles into the model with the Kalman filter and the v8-02-01 OH fields from 1 January 356 

2004 to 1 September 2004. The inversion based on these initial and boundary conditions is 357 

referred to as v8OH_BCv8. Our standard inversion with initial and boundary conditions based on 358 

the v5-07-08 OH is referred to as v5OH_BCv5. As discussed in Jiang et al. (2015), the OH 359 

concentrations in v8-02-01 are significantly higher than the v5-07-08 version in the Northern 360 

Hemisphere, and consequently, the CO lifetime is about 30% shorter. 361 

Figures 10a-c show the scaling factors for the v8OH_BCv8 inversion. The differences 362 

relative to the standard inversion (v5OH_BCv5) are shown in Figs 10d-f. The relative difference 363 

in the a posteriori CO emission estimates in the contiguous US 48 states inferred from the two 364 

OH fields is 32%, suggesting that the OH fields still have a significant impact on the a posteriori 365 

estimates, even with the optimized boundary conditions. The relative difference of 32% is 20% 366 

smaller than the relative difference (40%) obtained by Jiang et al. (2015) in their 4°x5° 367 

resolution global-scale inversion. Although the OH–related error is smaller than in the global, 368 

coarse-resolution inversion, it is still suprisingly large. Figures 10j-l show the relative differences 369 

between the boundary conditions obtained from the v5-07-08 and the v8-02-01 OH fields, which 370 
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were used in the v5OH_BCv5 and v8OH_BCv8 inversions, respectively. Under ideal conditions, 371 

the difference between two boundary conditions should be small because both were optimized 372 

with the same MOPITT data using the same approach. However, we do see large differences of 373 

more than 15% along the northern and northeastern boundaries, suggesting our optimization of 374 

the boundary conditions is inadequate. We believe that the main reason for this is that we 375 

neglected MOPITT data at high latitudes (see Figure 4) to avoid a potential positive bias in the 376 

data. Assimilating data from multi-instruments, such as was done by Kopacz et al (2010), could 377 

provide better data coverage at high-latitutdes, and thus a better constraint on the northern 378 

boundary conditions. Moving the northern boundary to lower latitude would be also helpful.  379 

To quantify the contribution of the differences in the boundary conditions to the 380 

differences in the source estimates, we repeated the inversion using the v8-02-01 OH fields, but 381 

with the initial and boundary conditions obtained with v5-07-08 OH. This inversion is referred to 382 

as v8OH_BCv5. Since the initial and boundary condtions in the v8OH_BCv5 and v5OH_BCv5 383 

inversions are identical, the differences in the source estimates obtained from these will reflect 384 

only the influence of the OH differences over North America. Figures 10g-i show the differences 385 

between v8OH_BCv5 and v5OH_BCv5 (our standard inversion). The relative difference in the a 386 

posteriori CO emission estimates for the contiguous US 48 states is only 20%, which is 50% 387 

smaller than the relative difference obtained by Jiang et al. (2015) in their 4°x5° global inversion. 388 

The large reduction in the impact of OH on the source estimates compared to the global-scale 389 

inversion is encouraging, and demonstrates the potential advantages of high-resolution regional 390 

inversion analyses. 391 

5. Summary 392 

High-resolution CTM simulations have obvious accuracy advantages over coarse 393 
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resolution simulations, particularly for small-scale processes (e.g., Stroud et al. 2011; Klich and 394 

Fuelberg 2014; Stock et al. 2014). In this work, we used the adjoint of the nested GEOS-Chem 395 

model, at a resolution of 0.5° x 0.67°, to constrain North American CO emissions during the 396 

period of June 2004 – May 2005. To reduce the potential impact of discrepancies in the modeled 397 

OH field on the source estimates, we used the V5J surface level MOPITT retrievals. Our results 398 

show that the annual total anthropogenic CO emissions for the contiguous US 48 states should be 399 

increased by 14%, from 85 Tg to 97 Tg for 2004 – 2005. The adjustment was mainly caused by 400 

an increase in emissions near the Great Lakes and along the west coast. The inversion analysis 401 

also suggested that the total CO emissions should be increased by 36% during January – April 402 

2005, and decreased by 29% during June – August 2004. This seasonal variation was also 403 

observed by Kopacz et al. (2010), and could be associated with an underestimation of road traffic 404 

emission in winter (Stein et al. 2014). The inversion results were evaluated with in-situ 405 

measurements from the DC-8 aircraft during the INTEX-A campaign in July 2004. The mean 406 

bias between the model and the aircraft data in the free troposphere was reduced from 7.2 ppb 407 

with the a priori emissions to 0.5 ppb with the a posteriori emissions. 408 

Reliable initial and boundary conditions are critical for regional inversion analyses. We 409 

used a sequential sub-optimal Kalman filter (Parrington et al. 2008) to assimilate MOPITT CO 410 

profiles to optimize the distribution of CO (rather than the emissions) to produce improved initial 411 

and lateral boundary conditions for the regional inversion analyses. Because of the restricted 412 

domain of the regional analyses, the optimized boundary conditions should significantly reduce 413 

the sensitivity of the estimated CO sources to errors in long-range transport and in the OH 414 

distribution. We found that the Kalman filter assimilation significantly improved the initial and 415 

lateral boundary conditions, reducing the bias from -13.3% to 3.5%. However, there was a large 416 
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residual bias in the southern boundary (near 10°N, between 80°W – 100°W), in the outflow 417 

region for biomass burning emissions from South America, which could result in an over 418 

adjustment of the CO emissions in Mexico and the southern US. Comparison of the inversion 419 

results driven with two different OH fields, from version v5-07-08 and v8-02-01 of GEOS-Chem, 420 

produced relative differences in the North American source estimates of 32% for June – August 421 

2004. This OH-related difference in the source estimates is about 20% smaller than the 422 

differences obtained by Jiang et al. (2015) for the same period in their global-scale inversion 423 

analysis.  424 

Examination of the differences in the boundary conditions based on the two OH fields 425 

showed large relative differences (greater than 15%) in the northern and northeastern boundaries, 426 

suggesting that our optimization of the boundary conditions was inadequate. In our assimilation 427 

of the MOPITT data we neglected data pole-ward of 52° and 40° over land and oceans, 428 

respectively, to avoid the influence of a potential high-latitude bias in the data, and we believe 429 

that this accounted for the weaker constraint on the northern boundary conditions in the analysis. 430 

To assess the influence of the boundary conditions we repeated the inversion with the v8-02-01 431 

OH fields using the same initial and boundary conditions from the standard inversion using the 432 

v5-07-08 OH. In this case, we estimated a relative difference between the source estimates based 433 

on the v8-02-01 and v5-07-08 OH fields of 20%, which is 50% smaller than that reported by 434 

Jiang et al. (2015). Thus, our best estimate for North American CO emissions for 2004 – 2005 is 435 

97 Tg, with a potential error of 20%, associated with discrepancies in local North America OH. 436 

Our results demonstrate that high-resolution, regional inversion analyses can reduce the 437 

sensitivity of the inferred CO source estimates to errors in long-range transport and in the OH 438 

distributions. However, the 20% OH-related discrepancy that we estimated is still large, and 439 
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could indicate that more stringent constraints on the regional boundary conditions are needed. 440 

This may be achieved by integrating data from multiple sources. The OH-related discrepancies 441 

could also reflect that fact that in summer, air in the middle and upper troposphere over North 442 

America is trapped by a semipermanent anticyclone, which allows greater chemical aging than 443 

direct lateral export from the continent (Li et al., 2005; Cooper et al., 2007). Although the 444 

MOPITT surface level retrievals have peak sensitivity to CO near the boundary layer, their 445 

sensitivity extend up to the middle troposphere (see Figure 1a of Jiang et al. 2013). Consequently, 446 

the inversion analyses could be sensitivite to chemical aging of air in the North American 447 

anticyclone. Work is needed to determine the residence time for air in the anticyclone compared 448 

to the spatio-temporal variability of the constraints on the North American source estimates 449 

provided by the MOPITT surface level retrievals. Improving the source estimates will likely 450 

require assimilating sufficient information to obtain a strong constraint on the CO distribution on 451 

a timescales shorter than the timescale for chemical aging in the domain. Despite these 452 

limitations, we believe that our results show the potential advantages of combining high-453 

resolution regional inversion analyses with global analyses to better quantify regional CO source 454 

estimates. 455 

Appendix: Observing System Simulation Experiments (OSSE) 456 

The reliability of the nested inversion is examined with an OSSE for the period June 1-15, 457 

2004. In the OSSE, we firstly create pseudo-observations, by archiving model output with CO 458 

emission unchanged. In the pseudo-inversion, we reduced the CO emission by 50% and the 459 

objective of the OSSE is to observe whether the scaling factors can return to true state (1.0).   460 

Figure A1a shows the result of the reference global scale inversion with 4°x5° resolution. The a 461 

posteriori estimation converges to the true state in all major emission regions. In the nested 462 
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inversion (Figure A1c), the model converges to the true state in Eastern US, whereas the result is 463 

noisy in Western US and Canada, which is consistent with the global scale inversion, as shown 464 

in Figure A1b. The OSSE demonstrates the nested inversion has similar reliability as the global 465 

scale assimilation system.  466 
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Tables and Figures 637 

Figure 1. Annual mean CO emissions from fossil fuel (FF), biofuel (BF), biomass burning (BB) 638 
and the oxidation of biogenic NMVOC and CH4, averaged for June 2004 to May 2005. The unit 639 
is 1012 molec/cm2/sec. 640 
 641 
Figure 2. CO mixing ratio in GEOS-Chem on level 10 (about 850 hPa) on May 1, 2006. The 642 
influence of a mid-latitude cyclone is clearly shown in the high-resolution (0.5°x0.667°) 643 
simulation (right), whereas it is not obvious in that with coarse resolution (4°x5°) simulation 644 
(left). The light yellow line on the 0.5°x0.667° plot demarcates the buffer zone in which the 645 
coarse resolution boundary conditions are imposed. 646 
 647 
Figure 3. Relative difference between the optimized lower tropospheric partial columns (surface 648 
– 500 hPa) between Kalman Filter assimilation, referred as CO_KF and a posteriori simulation 649 
of global scale inversion, referred as CO_EMS. The value is calculated as (CO_EMS – CO_KF) 650 
/ CO_KF. 651 
 652 
Figure 4. Mean tropospheric CO columns (1018 molec/cm2) in the GEOS-Chem North America 653 
nested domain in June 2004 from (a) MOPITT version 5; (b) GEOS-Chem model with the 654 
original initial and boundary conditions; (c) with the optimized initial and boundary conditions. 655 
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Note that MOPITT data poleward of 40° and 52° over oceans and land, respectively, are not used 656 
in this work to reduce the influence of potential positive bias in MOPITT CO retrievals, as 657 
described in Jiang et al. (2015).  658 
 659 
Figure 5. Distribution of the relative bias between the model and MOPITT with the oiriginal 660 
initial and lateral boundary conditions (red) and the the optimized initial and lateral boundary 661 
conditions (blue), after assimilation of the MOPITT data using the Kalman filter. The numbers 662 
are the mean relative difference. 663 
 664 
Figure 6. Vertical distribution of relative difference in June 2004 along the southern boundary, 665 
between model and MOPITT, calculated as (Mod - MOP) / MOP. (a) original model simulation. 666 
(b) optimized model simulation by assimilating MOPITT data using Kalman Filter.  667 
 668 
Figure 7. Monthly scaling factor for total CO emissions (from combustion sources and the 669 
oxidation of biogenic NMVOC) during June 2004 – May 2005. 670 
 671 
Figure 8. Monthly CO emissions during June 2004 – May 2005 for different emission 672 
categories: total emissions (black), anthropogenic emissions (blue), biomass burning (red), and 673 
the oxidation of biogenic NMVOCs (green). The a priori estimates are shown with the solid line 674 
and a posteriori values are indicated with the dashed line. The unit is Tg/month. 675 
 676 
Figure 9. Difference between the GEOS-Chem simulation with INTEX-A DC-8 aircraft 677 
observation in free troposphere in July 2004. (a) A priori model simulation (based on the 678 
optimized initial and boundary conditions). (b) A posteriori model simulation. The model is 679 
sampled at the aircraft measurements time, location and alitude. 680 
 681 
Figure 10. (a–c): Scaling factors of v8OH_BCv8 inversion, based on the v8-02-01 OH; (d–f): 682 
Difference between scaling factors of the v5OH_BCv5 and v8OH_BCv8 inversions; (g–i): 683 
Similar to Panel (d-f), but for the v8OH_BCv5 inversion, with the initial and boundary 684 
conditions from the standard inversion with the v5-07-08 OH fields; (j-l) Relative difference 685 
between the lower tropospheric CO partial columns (surface – 500 hPa) of the boundary 686 
conditions for the v5OH_BCv5 (v5) and the v8OH_BCv8 (v8) inversions, calculated as: 2 * (v8 687 
- v5) / (v8 + v5). 688 
 689 
Figure A1. OSSE scaling factors for June 1-15, 2004. (a) Global reference inversion with 4°x5° 690 
resolution. (b) Zoomed in North America region of the global inversion. (c) Nested inversion 691 
results. The scaling factor for the first guess is 0.5 and for the true state is 1.0. 692 
 693 



 

 
Figure 1. Annual mean CO emissions from fossil fuel (FF), biofuel (BF), biomass burning 
(BB) and the oxidation of biogenic NMVOC and CH4, averaged for June 2004 to May 2005. 
The unit is 1012 molec/cm2/sec. 
 
 

 
Figure 2. CO mixing ratio in GEOS-Chem on level 10 (about 850 hPa) on May 1, 2006. The 
influence of a mid-latitude cyclone is clearly shown in the high-resolution (0.5°x0.667°) 
simulation (right), whereas it is not obvious in that with coarse resolution (4°x5°) simulation 
(left). The light yellow line on the 0.5°x0.667° plot demarcates the buffer zone in which the 
coarse resolution boundary conditions are imposed. 
 
 
 



 
Figure 3. Relative difference between the optimized lower tropospheric partial columns 
(surface – 500 hPa) between Kalman Filter assimilation, referred as CO_KF and a posteriori 
simulation of global scale inversion, referred as CO_EMS. The value is calculated as 
(CO_EMS – CO_KF) / CO_KF. 

 
  

 

 
Figure 4. Mean tropospheric CO columns (1018 molec/cm2) in the GEOS-Chem North 
America nested domain in June 2004 from (a) MOPITT version 5; (b) GEOS-Chem model 
with the original initial and boundary conditions; (c) with the optimized initial and boundary 
conditions. Note that MOPITT data poleward of 40° and 52° over oceans and land, 
respectively, are not used in this work to reduce the influence of potential positive bias in 
MOPITT CO retrievals, as described in Jiang et al. (2015).  
 
 
 
 
 



 

 
Figure 5. Distribution of the relative bias between the model and MOPITT with the oiriginal 
initial and lateral boundary conditions (red) and the the optimized initial and lateral boundary 
conditions (blue), after assimilation of the MOPITT data using the Kalman filter. The 
numbers are the mean relative difference. 
 
 
 
 

 
Figure 6. Vertical distribution of relative difference in June 2004 along the southern 
boundary, between model and MOPITT, calculated as (Mod - MOP) / MOP. (a) original 
model simulation. (b) optimized model simulation by assimilating MOPITT data using 
Kalman Filter.  
 
 
 



 
Figure 7. Monthly scaling factor for total CO emissions (from combustion sources and the 
oxidation of biogenic NMVOC) during June 2004 – May 2005. 

 
 

 
Figure 8. Monthly CO emissions during June 2004 – May 2005 for different emission 
categories: total emissions (black), anthropogenic emissions (blue), biomass burning (red), 
and the oxidation of biogenic NMVOCs (green). The a priori estimates are shown with the 
solid line and a posteriori values are indicated with the dashed line. The unit is Tg/month. 



 
 
 

 
Figure 9. Difference between the GEOS-Chem simulation with INTEX-A DC-8 aircraft 
observation in free troposphere in July 2004. (a) A priori model simulation (based on the 
optimized initial and boundary conditions). (b) A posteriori model simulation. The model is 
sampled at the aircraft measurements time, location and alitude. 
 
 
 
 

 
Figure 10. (a–c): Scaling factors of v8OH_BCv8 inversion, based on the v8-02-01 OH; (d–f): 
Difference between scaling factors of the v5OH_BCv5 and v8OH_BCv8 inversions; (g–i): 
Similar to Panel (d-f), but for the v8OH_BCv5 inversion, with the initial and boundary 
conditions from the standard inversion with the v5-07-08 OH fields; (j-l) Relative difference 
between the lower tropospheric CO partial columns (surface – 500 hPa) of the boundary 
conditions for the v5OH_BCv5 (v5) and the v8OH_BCv8 (v8) inversions, calculated as: 2 * 
(v8 - v5) / (v8 + v5). 

 
 



 
Figure A1. OSSE scaling factors for June 1-15, 2004. (a) Global reference inversion with 
4°x5° resolution. (b) Zoomed in North America region of the global inversion. (c) Nested 
inversion results. The scaling factor for the first guess is 0.5 and for the true state is 1.0. 
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