

1 **Unusual stratospheric ozone anomalies observed in 22 years**
2 **of measurements from Lauder, New Zealand**

3 Gerald E. Nedoluha¹, Ian S. Boyd², Alan Parrish³, R. Michael Gomez¹, Douglas R. Allen¹,
4 Lucien Froidevaux⁴, Brian J. Connor², and Richard R. Querel⁵

5 ¹Naval Research Laboratory, Remote Sensing Division, Washington, D. C., USA

6 ²BC Scientific Consulting LLC, USA

7 ³Department of Astronomy, University of Massachusetts, Amherst, MA, USA

8 ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

9 ⁵National Institute of Water and Atmospheric Research, Lauder, New Zealand

10 **Abstract**

11 The Microwave Ozone Profiling Instrument (MOPI1) has provided ozone (O_3) profiles
12 for the Network for the Detection of Atmospheric Composition Change (NDACC) at Lauder,
13 New Zealand ($45.0^{\circ}S$, $169.7^{\circ}E$), since 1992. We present the entire 22 year dataset and compare
14 with satellite O_3 observations. We study in detail two particularly interesting variations in O_3 .

15 The first is a large positive O_3 anomaly that occurs in the mid-stratosphere ($\sim 10-30$ hPa) in June
16 2001, which is caused by an anticyclonic circulation that persists for several weeks over Lauder.

17 This O_3 anomaly is associated with the most equatorward June average tracer equivalent latitude
18 (TrEL) over the 36-year period (1979-2014) for which the Modern Era Retrospective-Analysis

19 for Research and Applications (MERRA) reanalysis is available. A second, longer-lived feature,
20 is a positive O_3 anomaly in the mid-stratosphere (~ 10 hPa) from mid-2009 until mid-2013.

21 Coincident measurements from the Aura Microwave Limb Sounder (MLS) show that these high
22 O_3 mixing ratios are well correlated with high nitrous oxide (N_2O) mixing ratios. This
23 correlation suggests that the high O_3 over this 4-year period is driven by unusual dynamics. The
24 beginning of the high O_3 and high N_2O period at Lauder (and throughout this latitude band)

- 1 occurs nearly simultaneously with a sharp decrease in O₃ and N₂O at the equator, and the period
- 2 ends nearly simultaneously with a sharp increase in O₃ and N₂O at the equator.

3

4 **1. Introduction**

5 Observations of total column ozone (O₃) show that, over most of the globe, O₃ loss has
6 leveled off since ~2000, and O₃ has even begun to increase. The large decline observed from the
7 1960s to the late 1990s has ended as a result of the reduction in chlorofluorocarbon (CFC)
8 emissions following the 1987 Montreal Protocol (WMO, 2014). While global O₃ may be
9 recovering, the magnitude and sign of stratospheric O₃ trends over multi-decadal timescales in
10 the mid-stratosphere strongly depends on geographical location. It is important to understand the
11 causes of this geographical variation.

12 Several studies of satellite data show the variability in O₃ trends depending upon the
13 exact timeframe and geographical location. Kyrölä et al. (2013), using measurements from the
14 Stratospheric Aerosol and Gas Experiment (SAGE) from 1984-1997, show a general decrease in
15 O₃ that is statistically significant over much of the stratosphere and is particularly large in the
16 mid-latitude upper stratosphere. However, they also show an increase in equatorial O₃ (albeit not
17 statistically significant) in the 30-35 km region.

18 There are a number of studies covering later years, all of which show a variation in O₃
19 that differs dramatically from that of the 1984-1997 SAGE data. Nedoluha et al. (2015) studied
20 O₃ over the period 1991-2005, when Halogen Occultation Experiment (HALOE) measurements
21 are available, and found a strong decrease in mid-stratospheric O₃ in the tropics over this period.
22 Kyrölä et al. (2013) also examined the period 1997-2011, showing a general increase in O₃ from
23 SAGE and Global Ozone Monitoring by Occultation of Stars (GOMOS) measurements, but a

1 statistically significant decrease near 30 km in the tropics. Measurements from the Scanning
2 Imaging Absorption Spectrometer for Atmospheric Chartography (SCHIAMACHY) instrument
3 for the period 2002-2012, reported by Gebhardt et al. (2014), showed a pattern similar to the
4 1997-2011 pattern reported by Kyrölä et al. (2013), i.e., a strong statistically significant decrease
5 in tropical O₃ in the 30-35 km region while most of the middle atmosphere shows a slight
6 increase in O₃. Eckert et al. (2014), using Michelson Interferometer for Passive Atmospheric
7 Sounding (MIPAS) data from 2002-2012, also showed a general increase in O₃ in most regions,
8 especially in the Southern Hemisphere mid-latitudes near ~20 hPa, but found statistically
9 significant negative trends in the tropics from ~25 hPa to 5 hPa. Finally, Nedoluha et al. (2015)
10 showed that from 2004-2013 Aura MLS measurements showed a strong decrease in mid-
11 stratospheric O₃ in the tropics. Nedoluha et al. (2015) also showed, based on changes in N₂O
12 measured by MLS and NO_x measured by HALOE, that the decadal scale changes in equatorial
13 O₃ of the magnitude observed could best be understood as being caused by dynamical variations.
14 The goal of this paper is to better understand how variations in mid-stratospheric O₃ over Lauder
15 are affected by large scale dynamical variations, and in particular how air with unusually tropical
16 characteristics affects the O₃ mixing ratios over Lauder. We will examine in detail two particular
17 variations in O₃: a monthly anomaly in 2001 and a 4 year anomaly from 2009-2013. The 4 year
18 anomaly, when analyzed from the beginning of the Aura MLS time series, results in a positive
19 linear O₃ trend in the mid-stratosphere over Lauder, in the opposite sense to the trend over this
20 time period in the tropics. An improved understanding of how dynamical variations affect mid-
21 stratospheric O₃ variations at this Southern mid-latitude site is important for interpreting
22 measurements from mid-latitude sites in terms of long-term global O₃ change.

1 This paper is organized as follows. Section 2 describes the ground-based and satellite
2 measurements. Section 3 examines the MOPI O₃ time series, focusing on the unusual anomalies
3 in 2001 and 2009-2013. Section 4 examines MOPI O₃ in the context of global O₃ and N₂O
4 variations, and a discussion is presented in Section 5.

5

6 **2. Measurements**

7 The Microwave Ozone Profiling Instrument (MOPI1) instrument has been making
8 measurements of stratospheric O₃ from the Network for the Detection of Atmospheric
9 Composition Change (NDACC) station at Lauder, New Zealand (45.0°S, 169.7°E) since 1992.
10 With the exception of repairs, the instrument has been essentially unchanged during this entire
11 period. Both this MOPI1 instrument and the similar MOPI2 instrument deployed at Mauna Loa,
12 Hawaii, since 1995, have been used as a ground-based reference for a number of satellite
13 instruments. Satellite measurements can provide a global perspective for the MOPI
14 measurements, and we will use measurements from Aura MLS to provide such a global
15 perspective for MOPI ozone variations since 2004. Here we present a brief description of both
16 the ground-based microwave and satellite measurement techniques.

17

18 **2.1 Ground-based microwave measurements**

19 Each MOPI instrument uses a heterodyne receiver coupled to a 120 channel filter
20 spectrometer to measure the line emission spectrum produced by a thermally excited, purely
21 rotational ozone transition at 110.836 GHz (2.7 mm wavelength). The spectral intensities and
22 measurements of the tropospheric thermal emission are calibrated with black body sources at
23 ambient and liquid nitrogen temperatures. The tropospheric opacity is calculated from hourly

1 emission measurements. The experimental technique was described in Parrish et al. (1992), and
2 technical details on the instrument used for this work are given in Parrish (1994). MOPI
3 measurements have been employed in several validation and trend studies (e.g., Boyd et al.,
4 2007; Steinbrecht et al., 2009).

5 MOPI observations are made continuously, with selected spectra chosen based on the
6 absolute tropospheric opacity and its variability, where limits for these values are set empirically
7 at each site. This technique allows measurements in weather ranging from clear sky to some
8 overcast conditions. The standard MOPI retrieval product, which will be used here, provides
9 four retrievals per day, using up to 6-hour data periods starting at local midnight. The diurnal
10 variations in the O₃ measurements from the MOPI2 instrument at Mauna Loa (using a 1-hour
11 retrieval product) have been validated and compared to the Goddard Earth Observing System
12 Chemistry Climate Model (GEOSCCM) O₃ (Parrish et al., 2014), and measurements and model
13 values generally agree to better than 1.5% of the midnight value. For this study we make use of
14 three of the four daily retrievals, and do not include the daytime afternoon measurements (i.e.,
15 1200-1800 local time). This selection has been made because, at Lauder, these measurements
16 show a slightly anomalous vertical profile in the mid-stratosphere, with values at 10 hPa lower
17 by ~3% than at other times of the day. We believe that these variations may be caused by the
18 strong thermal cycles in the building housing the instrument, especially in the afternoon.

19 In Fig. 1 we show a typical spectrum and O₃ profile retrieval from the MOPI1 instrument.
20 As described in Parrish et al. (1992), the measurement shown is obtained using a switching
21 technique (Parrish et al., 1988) so that the spectrum used in the retrievals is the difference
22 between measurements being made at a low elevation angle (in this case 22.6° above the
23 horizon), and measurements made near the zenith through an attenuating sheet of plexiglass.

1 The measured temperature in the two positions is approximately balanced, and any remaining
2 slope or offset in this difference spectrum is removed before retrieving the O₃ profile. The O₃
3 mixing ratio profiles are retrieved from the spectra using an adaptation of the optimal estimation
4 method of Rodgers (1976), discussed in Parrish et al. (1992) and Connor et al. (1995). Error
5 analysis techniques are discussed in the latter paper. The independent variable in the retrieval
6 system is pressure.

7 In Fig. 2 we show typical averaging kernels for the MOPI1 version 6 retrievals. The
8 vertical resolution of the MOPI1 measurements is ~7-8 km (FWHM) at 10 hPa, slightly coarser
9 than at Mauna Loa, where the MOPI2 resolution at the 10 hPa pressure level is ~6 km. The
10 MOPI retrievals have a measurement contribution of near 100% at 10 hPa, as defined by the
11 technique of Connor et al. (1995). Unless otherwise indicated the satellite measurements which
12 will be shown have not been convolved with the MOPI averaging kernels.

13

14 **2.2 Satellite measurements**

15 We compare MOPI O₃ measurements with observations from three satellites that provide
16 coincident measurements. Two of these are solar occultation instruments, which make ~15
17 sunrise and ~15 sunset high vertical resolution (~1 km) profile measurements each day, generally
18 at different latitudes, with the latitude bands varying differently over the course of the season
19 depending on the satellite orbit. The majority of MOPI-satellite comparisons come from Aura
20 MLS, which provides measurements over all latitudes between 82°S and 82°N on a daily basis.

21 The SAGE II instrument was launched in October 1984 aboard the Earth Radiation
22 Budget Satellite, and continued making measurements through August 2005. It consisted of a
23 seven channel solar photometer using ultraviolet and visible channels between 0.38 and 1.0 μm

1 in solar occultation mode to retrieve atmospheric profiles of ozone, water vapor, nitrogen dioxide
2 and aerosol extinction. Measurements were made over a latitude range from 80°S to 80°N. The
3 measurements are retrieved as ozone number density as a function of altitude, but are also
4 provided as ozone mixing ratio as a function of pressure. The version 6.1 data is described in
5 Wang et al. (2002).

6 The v7.00 dataset (Damadeo et al., 2013), released in December 2012, is used in this
7 analysis. This latest processing version implements an algorithm that is consistent across all
8 SAGE missions. The most significant change in the new version is that, whereas the previous
9 SAGE retrievals made use of the meteorological profiles from the Climate Prediction Center
10 (CPC) NCEP analysis, the new retrievals make use of the Modern Era Retrospective-Analysis
11 for Research and Applications (MERRA) reanalysis. Retrievals using the meteorological
12 profiles from the MERRA reanalysis show significantly different O₃ mixing ratios as a function
13 of pressure in the upper stratosphere and mesosphere (pressures below ~4 hPa). For the pressure
14 levels of interest for this study, however, the differences between the v6.1 and v7.00 SAGE O₃
15 retrievals are insignificant.

16 HALOE solar occultation measurements of O₃ are available from 1991-2005. The
17 latitude bands drifted daily so that near global latitudinal coverage was provided in both sunrise
18 and sunset modes five times over the course of a year. The trends in the HALOE O₃
19 measurements have been compared against SAGE II (Nazaryan et al., 2005) and differences
20 have been found to be on the order of less than 0.3% per year in a majority of latitude bands at
21 25, 35, 45, and 55 km.

22 Aura MLS measurements of O₃ and N₂O are available since 2004. The stratospheric O₃
23 product has been validated by Froidevaux et al. (2008). The vertical resolution of the MLS O₃

1 measurements at 10 hPa is \sim 3 km. The N₂O measurements have been validated by Lambert et
2 al. (2007) and have a vertical resolution of \sim 4 km. Upper Atmosphere Research Satellite
3 (UARS) MLS measurements of O₃ are available from 1991-1999, and were validated by
4 Froidevaux et al. (1996) for the v2.2 retrievals and by Livesey et al. (2003) for the v5 retrievals.

5

6 **3. The MOPI O₃ timeseries**

7 In Fig. 3 we show the monthly anomalies at selected pressure levels for the entire
8 MOPI1 data record. The anomalies are calculated by first fitting the data with a sinusoidal
9 seasonal cycle (including annual and semi-annual terms) and then subtracting this seasonal cycle
10 from the data. There are two interesting features that particularly stand out. The first is the large
11 positive anomaly that occurs in June 2001 at 31.6, 17.7, and 10.0 hPa (green boxes). The
12 second, much longer-term feature, is the positive anomaly at 10.0 and 5.6 hPa from August 2009
13 through July 2013 (red boxes). During this period the mean monthly O₃ anomaly at 10 hPa is
14 0.32 ppmv, only 7 of the 47 measurement months show a negative anomaly, and the 3-month
15 smoothing never shows a negative anomaly. This period ends with a sharp drop in O₃ in August
16 2013.

17

18 **3.1 Unusually high mid-stratospheric O₃ in June 2001**

19 Since there are no MLS measurements available to document the global variation in O₃
20 during June 2001, we use Tracer Equivalent Latitude (TrEL) simulations in order to better
21 understand the June 2001 anomaly over Lauder. TrEL is determined from isentropic passive
22 tracer advection calculations on the sphere as described by Allen and Nakamura (2003). The
23 tracer mixing ratio is converted to an equivalent latitude by matching the area enclosed by tracer

1 contours to that enclosed by an equivalent latitude line. Specific details of the TrEL calculation
2 used for this paper, based on MERRA winds, are provided by Allen et al. (2012). The average
3 TrEL in June 2001 over Lauder on potential temperatures surfaces from 550 K to 850 K (~35 to
4 10 hPa) was the highest (i.e., most equatorward TrEL) June average observed throughout the 36-
5 year period from 1979-2014. At 650 K the mean TrEL value at Lauder in June 2001 was ~31°S,
6 indicating unusually tropical air relative to the latitude of the site.

7 From ~30 hPa to ~3 hPa, O_3 generally increases from pole to equator throughout the year,
8 hence the unusually high (equatorward) TrEL is associated with high O_3 . We calculated the
9 climatological monthly O_3 latitudinal gradient from 45°S to 35°S from the MLS measurements,
10 and found that from 20-10 hPa, this gradient peaks during the months of March-June. Hence O_3
11 mixing ratios measured over Lauder are particularly sensitive to changes in TrEL during these
12 months. Thus the unusually high O_3 anomaly in June 2001 is likely the result of an unusual
13 amount of equatorward air over Lauder at a time when O_3 variations are particularly sensitive to
14 such transport.

15 To better explain the dynamics that caused this unusually high TrEL (and hence O_3) over
16 Lauder in June 2001 we show, in Fig. 4, the TrEL at 650 K (~20 hPa) for the entire Southern
17 Hemisphere from 18 June – 2 July 2001. Low TrEL occurs throughout the polar vortex, also
18 identified by streamlines (white contours) circling the pole. A strong anticyclone, identified by
19 closed streamlines and elevated TrEL (marked with black “H”), moves eastward from 18-22
20 June, before remaining relatively stationary for the next 8 days. This is an unusually strong
21 “blocking” type pattern that kept high TrEL/high O_3 air over Lauder. Figure 5 shows the vertical
22 structure of this feature at 45°S, identified by zonal anomalies of geopotential height over a range
23 of pressure surfaces from 1000 to 0.1 hPa. Elevated values extend from the tropopause (~200

1 hPa) into the lower mesosphere, tilting westward and narrowing with height. The anomaly peaks
2 at \sim 10 hPa, with a longitudinal extent of \sim 120°. While this quasi-stationary stratospheric
3 “Australian high” signature is known to occur in the SH spring (Harvey et al., 2002), this is the
4 largest and most persistent episode observed in June in the 36-year TrEL simulation.

5

6 **3.2 Unusually high mid-stratospheric O₃ from August 2009 through July 2013**

7 The 4 years of elevated O₃ (2009-2013) occurred during the period when coincident Aura
8 MLS measurements are available. Aura MLS overpasses occur near 01:15 and 14:30 local solar
9 time at the latitude of Lauder. Since we are not using the MOPI1 measurements from 12:00-
10 18:00, only the 01:15 overpasses are used. For comparison with MOPI1, we choose a longitude
11 coincidence criterion of \pm 6°, which generally includes two daily 01:15 MLS overpasses. The
12 monthly averages at 10 hPa from 2004-2014 are compared in Fig. 6. The MLS measurements
13 show very good agreement with the MOPI measurements over the entire period, and both
14 instruments show the large O₃ increase in mid-2009 and the large decrease in mid-2013. In mid-
15 2009, mixing ratios increased from values near the lowest observed during the Lauder winter
16 over this 10 year period, to values at, or near, the highest observed in a Lauder summer. There
17 was a month-long gap in the MOPI1 measurements in July 2013, but the observed drop in the
18 coincident MLS measurements is very similar to that of the MOPI1 measurements between June
19 and August 2013. Both instruments show that, in August 2013, the O₃ values were the lowest
20 since 2009.

21 The unusual nature of the 2009-2013 period is even more clearly emphasized in Fig. 7,
22 which shows annual average anomalies from MOPI and from four satellite instruments that
23 measured O₃ over extended periods since the early 1990’s. All of the measurements shown in

1 Fig. 7 are provided on their native grid. For the SAGE II measurements the native grid is
2 altitude, and results are shown at 30 km. For HALOE, UARS and Aura MLS, and MOPI we
3 show results at a 10 hPa. Note that, with the exception of the MOPI measurements, the O_3
4 anomalies shown in Fig. 7 are zonally averaged. Since only the MOPI1 measurements are
5 available throughout the entire time period, all of the satellite measurements have been offset so
6 that the average ozone matches that of MOPI1 during the period of coincidence. We note that
7 there is an increase of ~4% in the MOPI measurements relative to both the locally coincident and
8 the zonally averaged and convolved Aura MLS (shown in Fig. 6), which occurs primarily near
9 the beginning of the Aura MLS timeseries. Since Fig. 7 shows annual averages it helps to
10 emphasize the Quasi-Biennial Oscillation (QBO). The annual-average MOPI measurements
11 show local minima in 1997, 1999, 2002, 2004, late 2006/early 2007, and late 2008/early 2009.
12 Following the minimum in late 2008/early 2009 the O_3 rises and remains well above the long-
13 term average until 2013.

14

15 **4. O_3 and N_2O at Lauder and at the Equator**

16 **4.1 Monthly O_3 anomaly correlations**

17 To better understand the global implications of the observed O_3 variations over Lauder,
18 we investigated how the variations in O_3 observed over Lauder compare globally with changes in
19 MLS O_3 . We first calculated monthly averaged O_3 at each MLS pressure level from 50 to 1 hPa
20 in 2° latitude bins for 10 years of MLS data (2004-2014). We then calculated a climatological
21 (i.e., 10-year) average for each calendar month. Using this climatology, we calculated an
22 anomaly for each month of the 10-year series as a function of latitude and pressure. A similar
23 monthly anomaly time series was calculated for the MOPI ozone at 10 hPa. Correlation

1 coefficients were calculated between the 10 hPa MOPI anomalies and the MLS anomalies at
2 different pressures and latitudes, using months where both MLS and MOPI measurements were
3 available.

4 Figure 8 shows the correlation coefficient (r) as a function of pressure and latitude. The
5 strongest correlation occurs slightly equatorward of Lauder and at a slightly higher pressure
6 level. This is likely due to differences in instrumental errors, vertical resolution, and because the
7 MOPI1 measurement is for local conditions near Lauder and not a zonal average. At the equator
8 and 10 hPa there is a strong anti-correlation ($r < -0.5$) between MOPI1 and MLS (the correlation
9 between 10 hPa MLS O_3 at $45^\circ S$ and the equator is similar). There is also a weaker anti-
10 correlation between MOPI1 and MLS O_3 at $\sim 20-45^\circ N$ below 10 hPa.

11 The geographical correlations seen in Fig. 8 are similar to those discovered by Randel
12 and Wu (1996), who used singular value decomposition (SVD) analysis to study the relationship
13 between QBO zonal winds and global SAGE O_3 anomalies. The second mode of their analysis
14 (SVD2; which explains 25% of the overall covariance) shows an anti-correlation between 10 hPa
15 O_3 at Southern mid-latitudes and at the equator. It also shows a much weaker anti-correlation
16 between 10 hPa O_3 at Southern mid-latitudes and O_3 at Northern mid-latitudes at slightly higher
17 pressures.

18 Of course the temporal correlations shown in Fig. 8 give no indication of the time period
19 over which the correlation is taking place (by using anomalies we have eliminated only the
20 seasonal cycle), and could, e.g., represent QBO-like variations, solar cycle driven variations, or
21 decadal-scale changes. What Fig. 8 certainly does emphasize is that the anomalies over Lauder
22 at 10 hPa during the period 2004-2014 are not, predominantly, driven by a decadal scale global
23 trend.

1

2 **4.2 Links between O₃ and N₂O**

3 Nedoluha et al. (2015) showed that O₃ variations at the equator are very strongly
4 positively correlated to variations in N₂O. This relationship could best be understood as
5 resulting from dynamical variations. Using a 2D chemical transport model, Nedoluha et al.
6 (2015) showed that slower ascent resulted in more N₂O being photodissociated and oxidized to
7 produce NO_x (while reducing N₂O), and the increased NO_x destroyed more ozone, resulting in a
8 positive correlation between O₃ and N₂O. Such a relationship has been previously deduced from
9 changes in HALOE measurements of NO₂ at ~10 hPa from 1993-1997, where the change in NO₂
10 was shown to be consistent with a decrease in upward transport (Nedoluha et al., 1998).

11 In Fig. 9 we show monthly average anomalies for O₃ and N₂O from Aura MLS and
12 MOPI at 10 hPa. The variations in both O₃ and N₂O from 5°S to 5°N (Fig. 9, right) show a clear,
13 and similar, QBO signature. The connection between the QBO signal in O₃ and NO_y (which is
14 affected by N₂O) was recognized in SAGE II data by Chipperfield et al. (1994), who pointed out
15 that it was the result of QBO modulation of the vertical advection, with faster ascent resulting in
16 larger O₃ mixing ratios in the mid-stratosphere.

17 In addition to O₃ and N₂O, Fig. 9 shows the zonally averaged 30 hPa QBO winds over
18 the equator from the Climate Data Assimilation System (from www.cpc.ncep.noaa.gov). The 10
19 hPa equatorial O₃ and N₂O anomalies show a slight phase-lag relative to the 30 hPa QBO wind
20 anomaly, but the generally positive correlation between this 30 hPa wind anomaly and O₃ and
21 N₂O mixing ratios suggests that an anomalously fast ascent rate near 10 hPa is associated with
22 westerly (positive) winds at 30 hPa.

1 Figure 9 also shows that in 2006, 2008, 2010, and 2013 there are sharp increases in O_3
2 and N_2O from $5^{\circ}S$ to $5^{\circ}N$ near the middle of the year, while in 2007, 2009, and 2011 there are
3 sharp decreases. Following these sharp changes the equatorial anomaly often remains high (or
4 low) until the next June/July period. Thus the variation is often nearly biennial except for the
5 absence of a change in sign for the O_3 and N_2O anomalies from $5^{\circ}S$ to $5^{\circ}N$ in June/July 2012.

6 While the variation shown in Fig. 9 seems to be primarily nearly biennial, the period
7 from 2009-2013 shows lower average equatorial O_3 and N_2O mixing ratios than are observed
8 from 2004-2008, as is apparent in the annual averages shown in Fig. 7. Figure 9 shows that the
9 $5^{\circ}S$ to $5^{\circ}N$ O_3 and N_2O mixing ratios have both lower maxima and lower minima at a similar
10 phase of the QBO. While these equatorial N_2O and O_3 anomalies are correlated with the phase
11 of the QBO wind anomalies, it is not clear whether or not the unusually low O_3 and N_2O mixing
12 ratios in 2009-2013 are associated with unusual QBO wind anomalies.

13 There are some peculiarities in the QBO winds during the 2009-2013 period. For
14 instance, the westerly wind anomalies in 2010 are weaker than the other four cycles during this
15 period (16.0 m/s in August 2010 is the lowest maximum since 1992). The easterly 30 hPa wind
16 anomalies in 2009/2010 are unusually strong for ~ 3 months before an unusually fast transition
17 back to westerly winds, while the 21.4 m/s maximum easterly wind anomaly in 2012 is the
18 weakest over the four cycles shown. The 30 hPa wind anomalies during the 2008-2013 period
19 persist for slightly longer than usual. The winds switched from easterly to westerly in March
20 2008, August 2010, and March 2013, producing QBOs of length 29 months and 31 months
21 respectively.

22 The 10 hPa O_3 and N_2O anomalies at $40^{\circ}S$ to $50^{\circ}S$ (Fig. 9, left) are not as strongly
23 correlated as at the equator (see Fig. 4, Nedoluha et al., 2015), but nonetheless there is clearly a

1 positive correlation between the anomalies of these two species. Not unexpectedly, given the
2 correlations shown in Fig. 8, these Southern mid-latitude anomalies show variations that are
3 usually opposite to those seen at the equator. Most clearly the sharp changes in June/July are
4 anti-correlated with those near the equator. Figure 9 shows that, like the O₃ values that have
5 been shown previously, the N₂O values over latitudes near Lauder are elevated from 2009-2013.

6 The lower stratospheric anomalies in O₃ and N₂O at 40°S to 50°S are likely to be caused
7 by the variations in the rate at which tropical air with high N₂O and low O₃ air moves into the
8 Southern mid-latitudes, relative to the rate at which low N₂O and high O₃ air descends into this
9 region. The same tropical 30 hPa westerly winds which are associated with the increased ascent
10 rate in the tropics seem to be correlated with a decrease in transport from the tropics into the
11 Southern Hemisphere, resulting in an anti-correlation between N₂O (and hence O₃) anomalies at
12 the tropics and the Southern mid-latitudes.

13

14 **4.3 Decadal changes in O₃ and N₂O**

15 To provide a global perspective on the 2009-2013 anomalies, we used linear regression to
16 fit the MLS monthly mean data from August 2004 through May 2013 to 8 parameters, including
17 annual and semi-annual sinusoidal terms, the 30 hPa and 50 hPa QBO winds, and a linear trend
18 term. The linear trend terms from these fits are shown in Fig. 10. Based on the monthly MLS
19 dataset that was used for the fit, the average 1- σ uncertainty in the O₃ (N₂O) trend fit is 0.008
20 ppmv/yr (0.46 ppbv/yr), and it is <0.020 ppmv/yr (<1.05 ppbv/yr) everywhere in Fig. 10. The 1-
21 σ uncertainty in the O₃ (N₂O) trend fit at 45°S is <0.011 ppmv/yr (<0.76 ppbv/yr). Since there is
22 no clear correlation between the amplitude of the QBO wind variation and the depth of the N₂O
23 and O₃ changes in 2009-2013, these changes are fit by the linear trend term. The O₃ linear trend

1 fit plot (Fig. 10a) has been shown previously in Nedoluha et al. (2015), where it was shown that
2 the decrease observed at 10 hPa near the equator has been occurring for more than 20 years.
3 While a linear trend is clearly a very coarse representation of the MLS data from 2004-2013, it
4 does allow us to show the strong global correlations between N_2O and O_3 increases (and
5 decreases) during this time period. While the beginning and ending dates are slightly different,
6 Fig. 10 is qualitatively consistent with the conclusion in Mahieu et al. (2014) that the air in the
7 SH mid-latitude lower stratosphere is younger in 2010/2011 than in 2005/2006, while the
8 opposite is true in the NH.

9

10 **5. Discussion**

11 We have investigated two unusual O_3 variations which occurred in the mid-stratosphere
12 over Lauder, New Zealand during the 22 years of ground-based microwave measurements from
13 the site. First, we examined a large positive O_3 anomaly that was observed by the MOPI
14 instrument in June 2001. The anomaly was associated with an unusually persistent stratospheric
15 blocking anticyclone that kept air from more equatorial latitudes (with high ozone) over Lauder
16 for much of this month. The very unusual nature of this event was emphasized by comparing the
17 average Tracer Equivalent Latitude (TrEL) in June 2001 over Lauder on potential temperatures
18 surfaces from 550 to 850 K (~35 to 10 hPa) with values found in other years. It was found that
19 the TrEL in June 2001 was higher (i.e., more equatorward TrEL) than in any other June
20 throughout the 36-year period 1979-2014.

21 The second interesting, and much longer-term, feature is the positive O_3 anomaly near
22 ~10 hPa which persists over Southern mid-latitudes from 2009-2013. During this period N_2O in
23 this region is also unusually high, and the same chemical-dynamical relationship that causes the

1 very strong N₂O-O₃ correlation in the tropics is likely the cause of the high O₃. Briefly, N₂O
2 decreases rapidly both as a function of increasing altitude and increasing distance from the
3 tropics due to photodissociation and oxidation. Thus the high N₂O at Southern mid-latitudes
4 from 2009-2013 suggests that air was transported into this region from the tropical lower
5 stratosphere more quickly during this period, thus decreasing the amount of photodissociation
6 and oxidation of N₂O. At the same time, air was being transported more slowly into the tropical
7 10 hPa region. The mid-2013 decrease in mid-latitude N₂O suggests that air is now again being
8 transported more quickly upwards in the tropics as opposed to being shifted towards Southern
9 mid-latitudes, but it remains to be seen whether this is a brief interruption, a halt, or a reversal of
10 a decadal scale trend.

11

12 **Acknowledgments.** We especially thank M. Kotkamp and A. Thomas for their long-term
13 support of the MOPI instrument at Lauder. This project was funded by NASA under the Upper
14 Atmosphere Research Program, by the Naval Research Laboratory, and by the Office of Naval
15 Research. Work at the Jet Propulsion Laboratory, California Institute of Technology, was
16 carried out under a contract with the National Aeronautics and Space Administration. MLS and
17 HALOE data are available from the NASA Goddard Earth Science Data Information and
18 Services Center (acdsc.gsfc.nasa.gov).

19

20 **References**

21 Allen, D. R., and Nakamura, N.: Tracer equivalent latitude: a diagnostic tool for isentropic
22 transport studies, *J. Atmos. Sci.*, 60, 287-304, 2003.

1 Allen, D. R., Douglass, A. R., Nedoluha, G. E., and Coy, L.: Tracer transport during the Arctic
2 stratospheric final warming based on a 33-year (1979-2011) tracer equivalent latitude
3 simulation, *Geophys. Res. Lett.*, 39, L12801, doi:10.1029/2012GL051930, 2012.

4 Boyd, I. S., Parrish, A. D., Froidevaux, L., von Clarmann, T., Kyrola, E., Russell III, J. M., and
5 Zawodny, J. M.: Ground-based microwave ozone radiometer measurements compared
6 with Aura-MLS v2.2 and other instruments at two Network for Detection of Atmospheric
7 Composition Change sites, *J. Geophys. Res.*, 112, D24S33, doi:10.1029/2007JD008720,
8 2007.

9 Chipperfield, M. P., Gray, L. J., Kinnersley, J. S., and Zawodny, J.: A two-dimensional model
10 study of the QBO signal in SAGE II NO₂ and O₃, *Geophys. Res. Lett.*, 21, 589-592, 1994.

11 Connor, B. J., Parrish, A., Tsou, J. J., and McCormick, M. P.: Error analysis for the groundbased
12 microwave ozone measurements during STOIC, *J. Geophys. Res.*, 100, 9283–9291, 1995.

13 Damadeo, R. P., Zawodny, J. M., Thomason, L. W., and Iyer, N.: SAGE version 7.0 algorithm:
14 application to SAGE II, *Atmos. Meas. Tech.*, 6, 3539-3561, doi:10.5194/amt-6-3539-
15 2013, 2013.

16 Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S., Glatthor, N., Degenstein, D.
17 A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M.,
18 Steinbrecht, W., Swart, D. P. J., Walker, K. A., and Bernath, P. F.: Drift-corrected trends
19 and periodic variations in MIPAS IMK/IAA ozone measurements, *Atmos. Chem. Phys.*,
20 14, 2571–2589, doi:10.5194/acp-14-2571-2014, 2014.

21 Froidevaux, L., Read, W. G., Lungu, T. A., Cofield, R. E., Fishbein, E. F., Flower, D. A., Jarnot,
22 R. F., Ridenoure, B. P., Shippoly, Z. , Waters, J. W., Margitan, J. J., McDermid, I. S.,
23 Stachnik, R. A., Peckham, G. E., Braathen, G., Deshler, T., Fishman, J., Holmann, D. J.,

1 and Oltmans, S. J.:Validation of UARS Microwave Limb Sounder Ozone Measurements,
2 J. Geophys. Res., 101, D6, 10017–10060, 1996.

3 Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., Browell,
4 E. V., Hair, J. W., Avery, M. A., McGee, T. J., Twigg, L. W., Sumnicht, G. K., Jucks, K.
5 W., Margitan, J. J., Sen, B., Stachnik, R. A., Toon, G. C., Bernath, P. F., Boone, C. D.,
6 Walker, K. A., Filipiak, M. J., Harwood, R. S., Fuller, R. A., Manney, G. L., Schwartz,
7 M. J., Daffer, W. H., Drouin, B. J., Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B.
8 W., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., and Wagner, P. A.:
9 Validation of Aura Microwave Limb Sounder stratospheric ozone measurements, J.
10 Geophys. Res., 113, D15S20, doi:10.1029/2007JD008771, 2008.

11 Gebhardt, C., Rozanov, A., Hommel, R., Weber, M., Bovensmann, H., Burrows, J. P.,
12 Degenstein, D., Froidevaux, L., and Thompson, A. M.: Stratospheric ozone trends and
13 variability as seen by SCIAMACHY from 2002 to 2012, Atmos. Chem. Phys., 14, 831–
14 846, doi:10.5194/acp-14-831-2014, 2014.

15 Harvey, V. L., Pierce, R. B., Fairlie, T. D., and Hitchman, M. H.: A climatology of stratospheric
16 polar vortices and anticyclones, J. Geophys. Res., 107, 4444,
17 doi:10.1029/2001JD001471, 2002

18 Kyrölä, E., Laine, M., Sofieva, V., Tamminen, J., Päivärinta, S.-M., Tukiainen, S., Zawodny, J.,
19 and Thomason, L.: Combined SAGE II–GOMOS ozone profile data set for 1984–2011
20 and trend analysis of the vertical distribution of ozone, Atmos. Chem. Phys., 13, 10645–
21 10658, doi:10.5194/acp-13-10645-2013, 2013.

22 Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L., Froidevaux, L., Wu, D.,
23 Schwartz, M. J., Pumphrey, H. C., Jimenez, C., Nedoluha, G. E., Cofield, R. E.,

1 Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fuller, R. A., Jarnot, R. F., Knosp, B. W.,
2 Pickett, H. M., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A.,
3 Waters, J. W., Jucks, K. W., Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D.,
4 Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.: Validation of the
5 Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide
6 measurements, *J. Geophys. Res.*, 112, D24S36, doi:10.1029/2007JD008724, 2007.

7 Livesey, N. J., Read, W. G., Froidevaux, L., Waters, J. W., Santee, M. L., Pumphrey, H. C., Wu,
8 D. L., Shippony, Z., and Jarnot, R. F.: The UARS Microwave Limb Sounder version 5
9 data set: theory, characterization, and validation, *J. Geophys. Res.*, 108, 4378,
10 doi:10.1029/2002JD002273, 2003.

11 Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P. F.,
12 Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W., Franco, B., Froidevaux, L.,
13 Griffith, D. W. T., Hannigan, J. W., Hase, F., Hossaini, R., Jones, N. B., Morino, I.,
14 Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell, J. M., Schneider, M.,
15 Servais, C., Smale, D., Walker, K. A.: Recent Northern Hemisphere stratospheric HCl
16 increase due to atmospheric circulation changes, *Nature*, doi:10.1038/nature13857, 2014.

17 Nazaryan, H., McCormick, M. P., and Russell III, J. M.: New studies of SAGE II and HALOE
18 ozone profile and long-term change comparisons, *J. Geophys. Res.*, 110, D09305,
19 doi:10.1029/2004JD005425, 2005.

20 Nedoluha, G. E., Siskind, D. E., Bacmeister, J. T., Bevilacqua, R. M., and Russell III, J. M.:
21 Changes in upper stratospheric CH₄ and NO₂ as measured by HALOE and implications
22 for changes in transport, *Geophys. Res. Lett.*, 25, 987–990, 1998.

1 Nedoluha, G. E., Siskind, D. E., Lambert, A., and Boone, C.: The decrease in mid-stratospheric
2 tropical ozone since 1991, *Atmos. Chem. Phys. Discuss.*, 453–480, doi:10.5194/acpd-15-
3 453-2015, 2015.

4 Randel, W. J., and Wu, F.: Isolation of the ozone QBO in SAGE II data by singular-value
5 decomposition, *J. Atmos. Sci.*, 53, 2546-2559, 1996.

6 Parrish, A.: Millimeter-wave remote sensing of ozone and trace constituents in the stratosphere,
7 P. IEEE, 82, 1915–1929, 1994.

8 Parrish, A., deZafra, R. L., Solomon, P. M., and Barrett, J. W.: A ground-based technique for
9 millimeter wave spectroscopic observations of stratospheric trace constituents, *Radio*
10 *Sci.*, 23, 106-118, 1988.

11 Parrish, A., Connor, B. J., Tsou, J. J., McDermid, I. S., and Chu, W. P.: Ground-based
12 microwave monitoring of stratospheric ozone, *J. Geophys. Res.*, 97, 2541–2546, 1992.

13 Parrish, A., Boyd, I. S., Nedoluha, G. E., Bhartia, P. K., Frith, S. M., Kramarova, N. A., Connor,
14 Bodeker, G. E., Froidevaux, L., Shiotani, M., and Sakazaki, T.: Diurnal variations
15 of stratospheric ozone measured by ground-based microwave remote sensing at the
16 Mauna Loa NDACC site: measurement validation and GEOSCCM model comparison,
17 *Atmos. Chem. Phys.*, 14, 7255–7272, doi:10.5194/acp-14-7255-2014, 2014.

18 Rodgers, C. D., Retrieval of atmospheric temperature and composition from remote
19 measurements of thermal radiation, *Rev. Geophys.*, 14, 609–624, 1976.

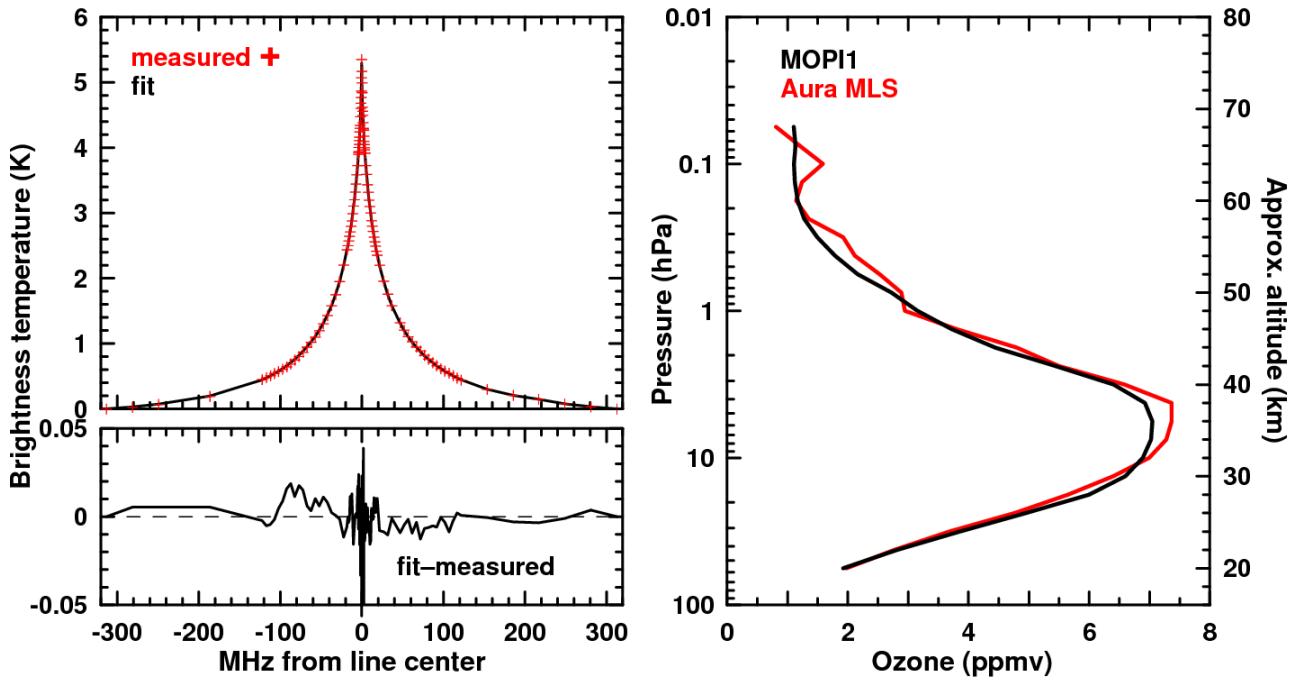
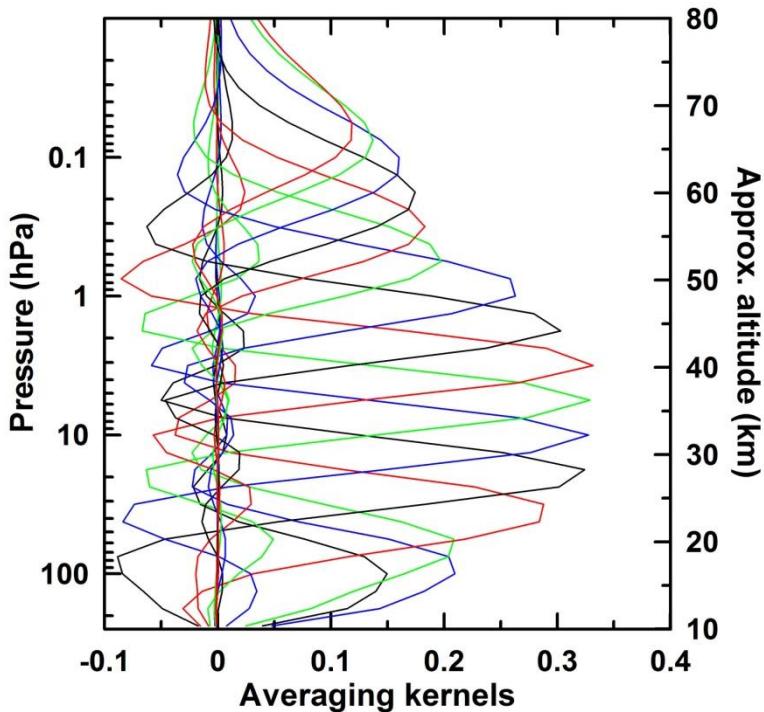
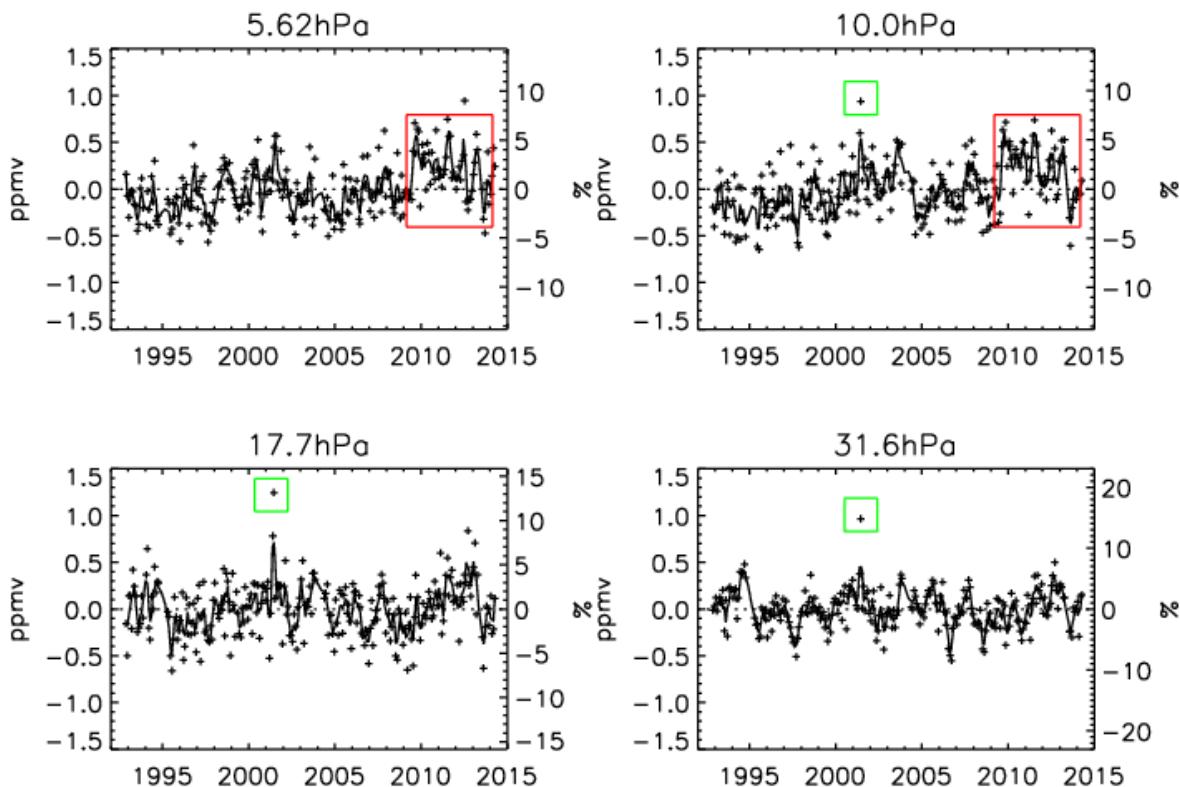
20 Steinbrecht, W., Claude, H., Schönenborn, F., McDermid, I. S., Leblanc, T., Godin-Beekmann,
21 S., Keckhut, P., Hauchecorne, A., Van Gijsel, J. A. E., Swart, D. P. J., Bodeker, G. E.,
22 Parrish, A., Boyd, I. S., Kämpfer, N., Hocke, K., Stolarski, R. S., Frith, S. M., Thomason,
23 L. W., Remsberg, E. E., Von Savigny, C., Rozanov, A., and Burrows, J. P.: Ozone and

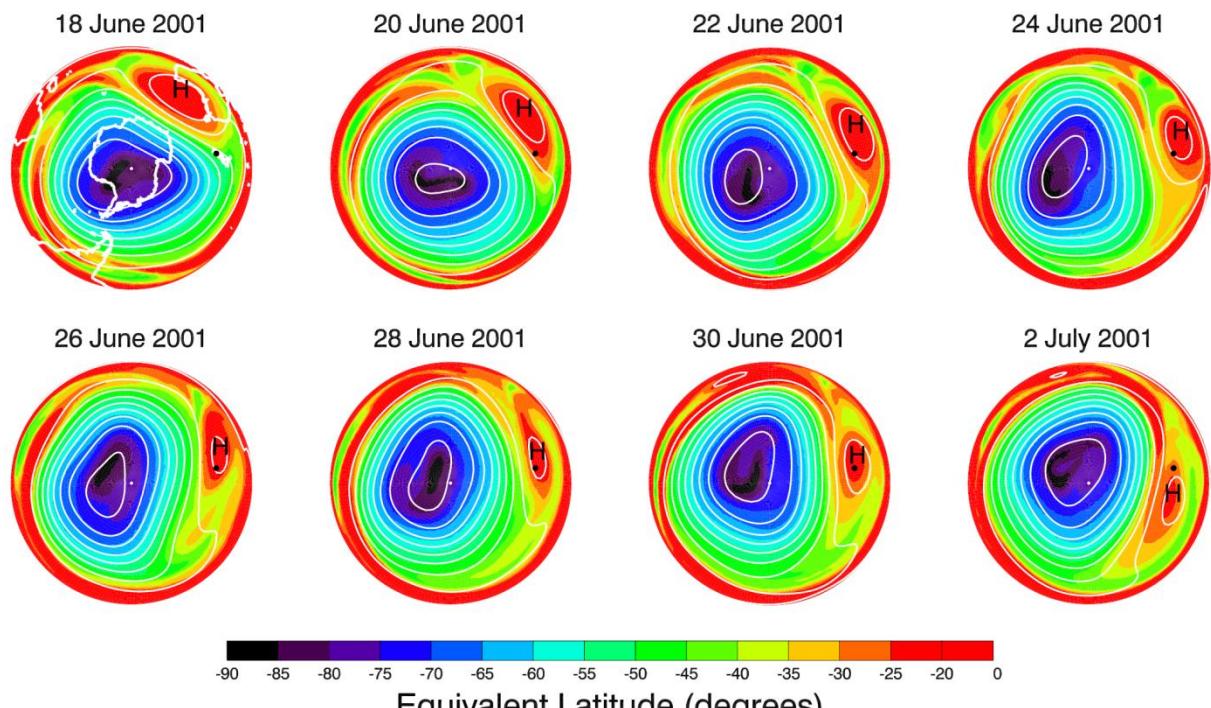
1 temperature trends in the upper stratosphere at five stations of the Network for the
2 Detection of Atmospheric Composition Change, *Int. J. Remote Sens.*, 30, 3875–3886,
3 doi:10.1080/01431160902821841, 2009.

4 Wang, H. J., Cunnold, D. M., Thomason, L. W., Zawodny, J. M., and Bodeker, G. E.:
5 Assessment of SAGE version 6.1 ozone data quality, *J. Geophys. Res.*, 107, 4691,
6 doi:10.1029/2002JD002418, 2002.

7 WMO Global Ozone Research and Monitoring Project Report No. 54: Report of the Ninth
8 Meeting of the Ozone Research Managers of the Parties to the Vienna Convention for the
9 Protection of the Ozone Layer, Geneva, Switzerland, 14-16 May 2014, 2014.

10


Figure 1 – Top left: The spectrum centered at 110.836GHz as measured by MOPI1 from Lauder over 3 h on 11 March 2014 (red crosses), and the model fit to this spectrum (black line). Bottom left: The residual difference between the measured and modeled spectrum. Right: The retrieved O_3 profile from MOPI1 (black) and from a coincident Aura MLS measurement (red).

1
2 Figure 2 – Typical averaging kernels for the MOPI1 instrument based on 6 h of spectral integration. Averaging kernels are
3 shown for every second level, with the averaging kernels in blue shown at 100, 10, 1, and 0.1 hPa.

4
5 Figure 3 – Crosses show monthly ozone anomalies from the MOPI1 measurements. The line shows a 3-point smoothing of
6 the data. Boxes indicate periods of particular interest (see text).

4

5 Figure 4 – The tracer equivalent latitude (see text) for the Southern Hemisphere at 650 K. The location of Lauder (45°S ,

6 169.7°E) is indicated by a black dot. White contours are 650 K streamlines at constant intervals. The black “H” indicates the

7 location of strong anticyclonic circulation.

8

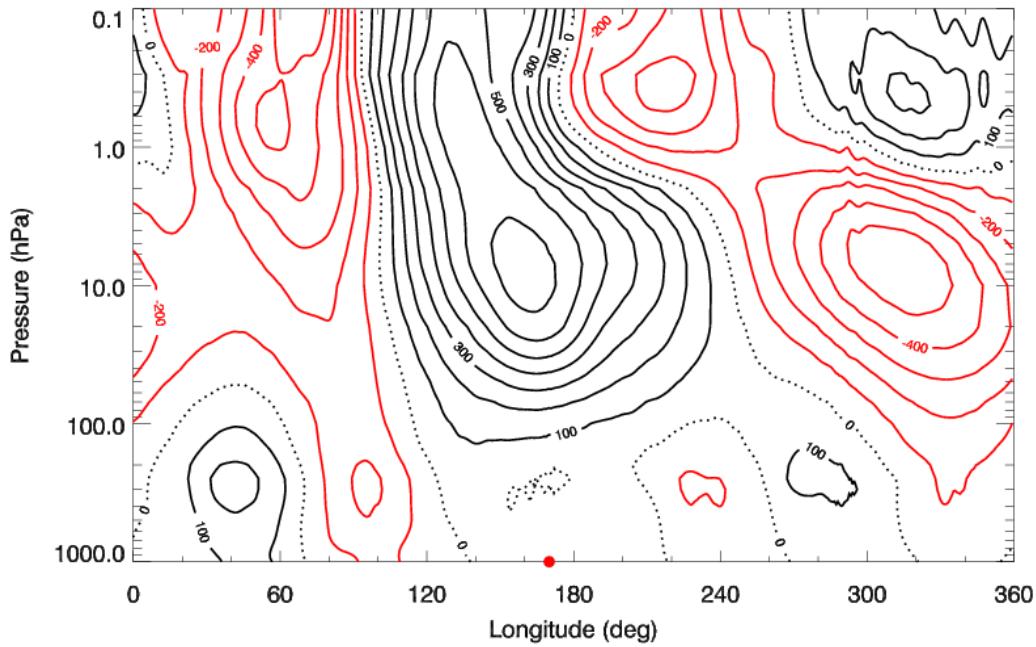


Figure 5 - The MERRA geopotential height anomaly, in 100 m increments, calculated for the period 21-30 June 2001, at 45°S. The longitude of Lauder is indicated by the red dot. Positive (negative) anomalies are identified by solid black (red) contours, while the black dotted line indicates zero anomaly.

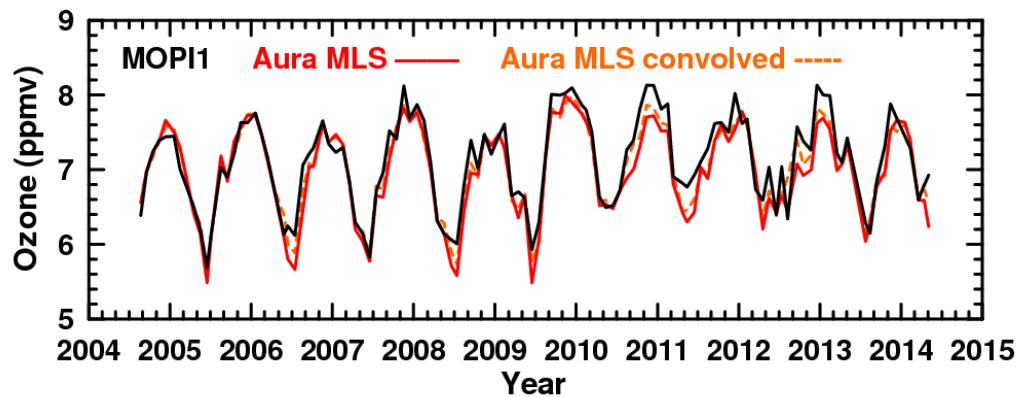


Figure 6 - Monthly ozone averages for MOPI1 (black), Aura MLS (red), and Aura MLS convolved with the MOPI averaging kernels (dashed orange) measurement pairs at 10 hPa. Measurements are shown when there is an MLS measurement taken within $\pm 1^\circ$ latitude and $\pm 6^\circ$ longitude within 6 hours of a MOPI measurement.

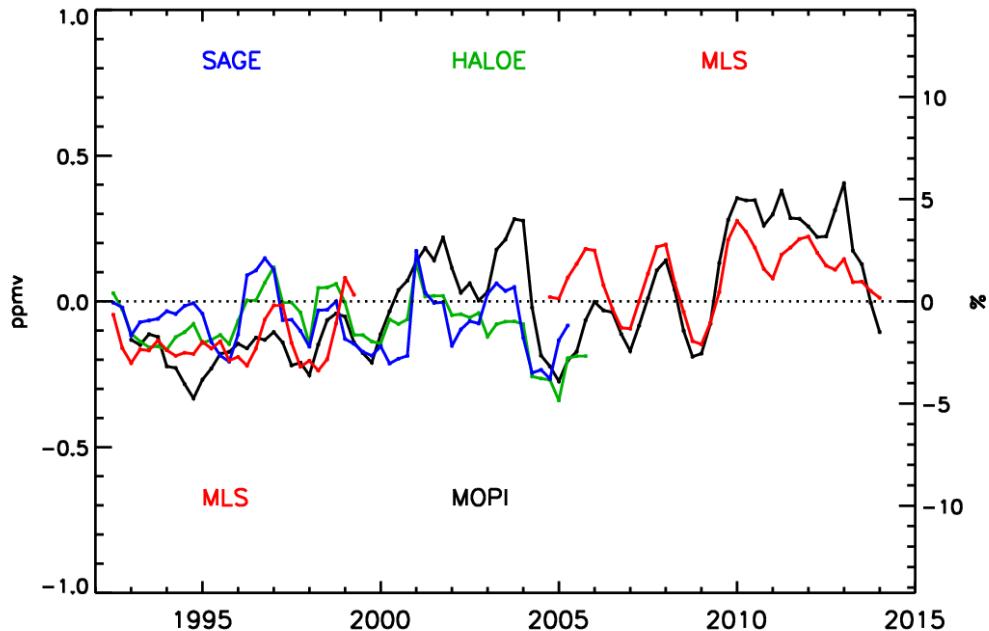
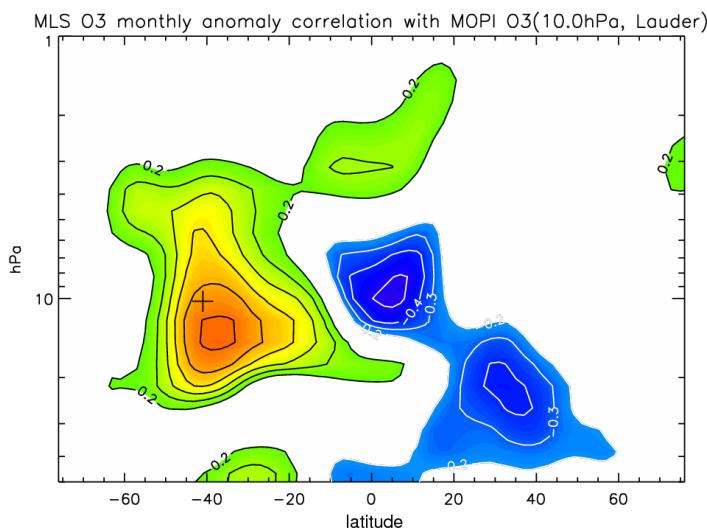
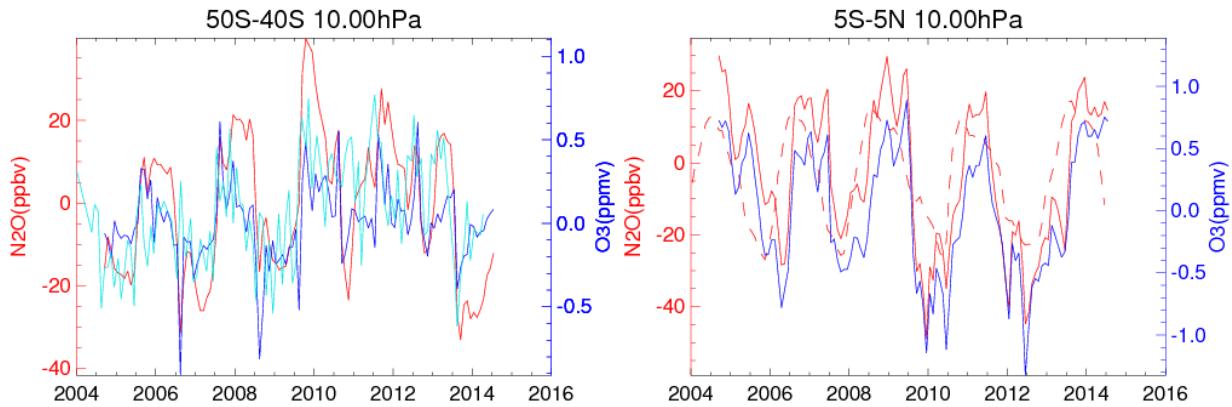
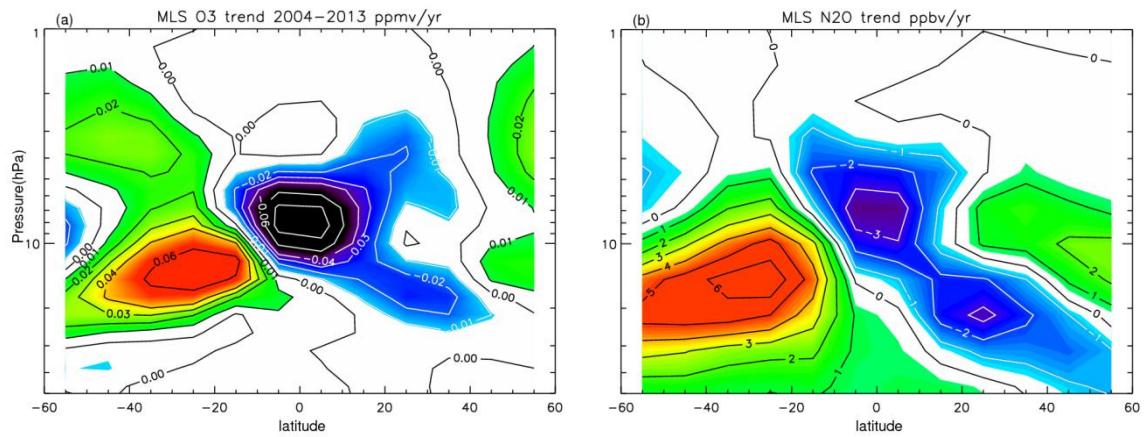


Figure 7 Annual average ozone anomalies at 10 hPa (30 km for SAGE II) shown 4-times annually (with annual averages taken from January-December, April-March, July-June, and October-September). Results are shown for SAGE II (blue), HALOE (green), UARS and Aura MLS (both red), and MOPI1 (black). Satellite measurements (latitudinal averages from 40°S-50°S) have been offset so that the average ozone matches that of MOPI1 during the period of coincidence.


Figure 8 - The correlation coefficient of the monthly MLS O₃ anomalies with the monthly anomalies of the MOPI1 O₃ measurements at 10 hPa. The cross represents the latitude of Lauder at 10 hPa.

1
2

3
4 **Figure 9** - Monthly average anomalies for N₂O (red) and O₃ (blue) as measured by MLS at 10 hPa within 5° of the Lauder
5 latitude (45°S) (left) and within 5° of the equator (right). The left hand plot also shows the monthly average O₃ anomalies
6 (based on the 2004–2014 averages) for MOPI (cyan). The right hand plot also shows (dashed red line) the 30 hPa QBO index
7 in m s⁻¹, using the same numerical scale as the N₂O in ppbv.

8
9
10
11
12
13

14
15 **Figure 10** - Linear trend fits to MLS O₃ and N₂O measurements from August 2004 through May 2013. Contour lines for O₃ are
16 shown at +/-0.01, 0.02, 0.03, 0.04, 0.06, 0.08 ppmv yr⁻¹. Contour lines for N₂O are shown at intervals of 1 ppmv yr⁻¹. The O₃
17 figure is from Nedoluha et al. (2015).

18