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Abstract

We conduct analyses to assess how characteristics of observations of ozone and its
precursors affect air quality forecasting and research. To carry out this investigation
we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-
variational data assimilation system. Using this framework in conjunction with pseudo
observatie perform@zone precursor source inversion and estimate surface
emissions. vve then assess the resulting improvement in ozone air quality prediction.
We use an analytical model to conduct uncertainty analyses. Using this analytical tool
we address some key questions regarding how the characteristics of observations af-
fect ozone precursor emission inversion and in turn ozone prediction. These questions
include what the effect is of choosing which species to observe, of varying amounts
of observation noise, of changing the observing frequency and the observation time
during the diurnal cycle, and of how these different scenarios interact with different
photochemical regimes. These questions will address how different types of observing
platform, e.g., geostationary satellites or ground monitoring networks, could support
future air quality research and forecasting. In our investigation we use three observed
species scenarios: CO and NO,; ozone, CO, and NO,; and HCHO, CO and NO..
The photochemical model was setup to simulate a range of summertime polluted en-
vironments spanning NO, (NO and NO,) limited to volatile organic compound (VOC)
limited conditions. We find that as the photochemical regime changes the relative im-
portance of trace gas observations to constrain emission estimates and subsequent
ozone forecasts varies. For example, adding ozone observations to an NO, and CO
observing system is found to decrease ozone prediction error under NO, and VOC
limited regimes, and complementing the NO, and CO system with HCHO observations
would improve ozone prediction in the transitional regime and under VOC limited con-
ditions. We found that scenarios observing ozone and HCHO with relative observing
noise of lower than 33% were able to achieve ozone prediction errors of lower than
5 ppbv (parts per billion by volume). Further, only observing intervals of 3 hours or
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shorter wable to consistently achieve ozone prediction errors of 5 ppbv or lower
across all priotochemical regimes. Making observations closer to the prediction period
and either in the morning or afternoon rush hour periods made greater improvements
for ozone predictir@rinally, we made two complementary analyses that show that our
conclusions are i sitive to the assumed diurnal emission cycle and to the choice of
which VOC species emission to estimate using our framework.

1 Introduction

Ozone is a hazard to human health, plants and animals and a greenhouse
gas (Mustafa, 1990; Pryor, 1992; Murphy et al., 1999; Fumagalli et al., 2001; Nali et al.,
2002; IPCC, 2007; Van Dingenen et al., 2009; WHO, 201 Prediction of ozone air
quality on local and regional scales is key for providing warning of impending
ozone exceedances (Dabberdt et al., 2004, 2006). Knowledge of the processes that
control the variability of ozone precursors is vital for understanding and predicting
ozone air quality.

Currently, a wide variety of techniques are used to predict ozone concentrations
ranging from statistically based models (Gardner and Dorling, 2000), neural networks
(Yi and Prybutok, 1996), to prognostic models of atmospheric processes that include
data assimilation (Grell et al., 2005; Otte et al., 2005; Zhang et al., 2008; Kang et al.,
2010; Marécal et al., 2015). For prognostic models, uncertainties result from meteorol-
ogy, the limitations of the photochemical mechanisms, wet and dry deposition, uncer-
tainties in the emissions of ozone precursors, and, for data assimilation, observation
uncertainty (Dabberdt et al., 2004, 2006). Most current statistical and data assimila-
tion air quality forecasting techniques rely primarily on surface observing networks, but
satellite observations are increasingly coming to the fo

Ozone pollution can develop under different polluted photochemical regimes. Under
low to moderate levels of NO, (NO and NO-) pollution, such as can be found in rural
and suburban environments, increases in NO,. lead to proportional increases in ozone,

3


Reviewer
Sticky Note
were -> was

Reviewer
Sticky Note
Could you quantify this?

Reviewer
Sticky Note
Could you split the references according to the area discussed, e.g., human health?

Reviewer
Sticky Note
I suggest you provide a reference for this statement


20

25

which is why this regime is classed as NO_-limited (Trainer et al., 1987; Sillman, 1993;
Jacob et al., 1993). Under much higher levels of NO, pollution, i.e., those present in
densely populated regions, increases in NO,, actua(")pring about decreases in ozone.
Under these conditions, the only means by which ground level ozone can increase are
via increases in VO mlssmns (Finlayson-Pitts and Pitts, 1997), and consequently
this regime is consigered to be VOC-limited. Further, studies show that the sensitivity
of ozone to either NO, or VOCs can vary with time, e.g., during different days of the
week (Blanchard and Fairley, 2001; Blanchard and Tanenbaum, 2003). The priorities
to monitor and observe ozone and its different precursors therefore vary according to
location and time.

Observations and models, and their combination through data assimilation, com-
prise essential tools for air quality prediction (Zhang et al., 2008; Strunk et al., 2010;
Zhang et al., 2012). Observations are an essential part of such systems, so it follows
that their characteristics could directly affect their performance. We seek to address
this connection in our study. Given this, we will now attempt to review the relevant
characteristics of the current and planned (in the near term) state of the air quality
monitoring network in order to motivate our work and, later, to place some of our find-
ings in context.

The US national surface air quality observing network typically observes a wide
range of chemical species. For instance, surface monitoring sites within California
(http://www.arb.ca.gov/adam/) have instruments that can measure in-situ ozone, CO,
NO., nitrogen oxide, particulate matter with diameters of 2.5 um and 10 uulphur
dioxide (SO2), methane, total hydrocarbons, and hydrogen sulphide. The surface net-
work is also usually able to make observations at least at hourly temporal resolution.
However, due to the spatial limitations of the surface air quality monitoring network,
space-borne remote sensing observations, which typically have greater spatial sam-
pling, are also able to support air quality research and Iat@perational air quality
forecasting (Lahoz et al., 2012).

Surface station in-situ dat@made at a high spatial resoluti@which is typically
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much higher than most air quality models. As a result, this introduces the problem of
having representativity errors between the model, which is unable to represent fine-
scale variability, and the observations that can measure this variability. This problem
therefore limits the efficacy of data assimilation and systems need to be carefully de-
signed to take this type of error into account.

For this study, the spatial characteristics of observations from different platforms are
not considered, but the advantages satellite data offer in terms of increased spatial
coverage have been recognised and should be not Consequently, various studies
have been conducted that highlight the benefits of llite borne instruments for air
quality research (Martin, 2008; Duncan et al., 2010; Jones et al., 2009; Bowman et al.,
2009; Kurokawa et al., 2009; Konovalov et al., 2006; Millet et al., 2008; Kopacz et al.,
2010; Arellano et al., 2006; Dufour et al., 2010; Fishman et al., 20 Further, satellite
observations of air pollutants have been used within data assim n models to ad-
vance air quality research (Sandu et al., 2003a; Chai et al., 2007; Pierce et al., 2007;
Zhang et al., 2008; Parrington et al., 2009).

Excluding the issue of spatial sampling, there are considerable differences between
remote sensing observations and the existing surface observing network. Each indi-
vidual ground station is able to observe a wider range of species at the surface (see
above) but only at a single point. On the other hand, space-based remote sensing
techniques can only observe a limited number of species that have relevance to air
quality (such as ozone, CO, NO,, SO,, CH,4, glyoxal, and HCHO), have coarser hor-
izontal spatial resolution observing with a footprint ranging from several to up to tens
of kilomet and have (with current capabilities) only limited vertical resolution and
sensitivity tothe surface or boundary layer. Also, all of the studies cited above used
instruments onboard satellites in low earth orbit (LEO). Due to the orbital configura-
tion, LEO borne instruments are only able to observe the same location on a far more
infrequent basis compared to the temporal sampling of the ground based network.

Instruments onboard geostationary (GEQO) satellites can also offer good spatial
coverage (at the continental and regional scale) without sacrificing temporal sam-
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pling. This makes them potentially ideal to support future air quality research and
forecasting. However, in order to achieve this goal, developments must be made
to improve satellite instrument sensitivity to the boundary layer and surface gas
phase composition (Lahoz etal.,, 2012). Various strategies have been proposed
to achieve this aim (primarily for CO and ozone). They typically consist of either
combining wavelength bands that have been previously exploited, i.e., visible,
and (Landgraf and Hasekamp, 2007; Worden et al., 2007, 2010; Fu etar, 2013;
Cuesta et al., 2013), or by focusing on new wavelength bands, i.e., the Chappuis
bands for ozone in the visible (Zoogman et al., 2011) that offer potential novel ben-
efits. The UV and Chappuis bn the visible were combined theoretically to deter-
mine the benefit of such an approach during the development of the TEMPO instru-
ment (Zoogman et al., 2014) and as part of an European intiative (Hache et al., 2014).

As a result of the perceived benefits, several GEO missions are currently in
the various stages of planning. These include the Geostationary Coastal and
Air Pollution Events (GEO-CAPE) planned by NASA to cover the North Amer-
ican continent ((http://science.nasa.gov/earth-science/decadal-surveys/)). Sentinel
4 (http://www.esa.int/esalLP/SEM3ZT4KXMF_LPgmes_0.html) is planned by ESA to
cover Europe, and the Geostationary Environment Spectrometer (GEMS) (Lee et al.,
2009) is aimed at providing coverage of East Asia. Further, NASA’s decadal survey
and Lee et al. (2009) indicate that GEO-CAPE and GEMS will observe the following
trace gases: ozone, CO (not with GEMS), NO,, HCHO, and SO..

GEO based observations of trace gases are therefore becoming more relevant for
the study of air quality and for operational air quality forecasting. For the planned GEO
missions, various choices exist regarding which wavelength bands to observe in, and
these will influence the already limited range of observable species in the troposphere.
In addition, instrument design choices affect how often observations can be made, at
what time of day, and how well. For instance, thermal infrared (TIR) based instruments
can not measure NOs, and UV-VIS instruments can bserve during the night time.
Thus, instrument design choices will affect the future ‘Tapabilities of these missions.
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We have demonstrated that a range of possible capabilities and characteristics exist
for both the current and planned air quality observing systems (ground and satellite
based). Within the scope of this paper, we study how the frequency and specific tim-
ing during the day of observation, the species that get measured, and how well they
get measured affect the ability to conduct air quality research and to aid air quality
forecasting using a data assimilation system. This interaction between observation
characteristics and data assimilation system performance remains an open question
in this cont Therefore, addressing this question will be of interest to the current
air quality observing network and to the planned or future GEO air quality focused mis-
sions. In order to do this we carry out a series of sensitvity analyses using different sets
of pseudo observations to test the influence various observation characteristics have
upon the ability to predict ozone within an idealised model. This model consists of a
photochemical box model, its adjoint, and a 4D-variational data assimilation system
setup to constrain ozone precursor emission uncertainties (NO,,, CO, and VOCs). This
framework thereby mimics a state of the art air quality forecasting system. We conduct
an uncertainty analysis using a linear estimation technique for each of our sensitivity
tests. We are able to perform the uncertainty analysis owing to the fact that we use a
box model because it limits the size of the matrices we solve for. Within the context
of a summertime ozone pollution episode that emerges during stagnant anticyclonic
conditions we attempt to address the following specific air@

— How does the ability to predict ozone vary across three separate observing sce-
narios? The first uses only CO and NO, observations (CN), the second uses
Ozone, CO, and NO, (OCN), and the third uses HCHO, CO, and NO, (HCN).

— What are the effects of both observing frequency and the choice of when to ob-
serve on the prediction of ozone within our framework?

- How does observation noise, when applied evenly onto each observation, affect
ozone prediction in our system?
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- How are the results of these sensitivity tests affected by photochemical regime?
l.e., either NO, or VOC limited.

- Ignoring ozone prediction, which combination of observed species allows the best
constraint on ozone precursor emissions?

In order to support our conclusions regarding the aims above we carry out a variety
of complementary analyses:

- To demonstrate that the 4D-variational data assimilation scheme can solve the full
non-linear retrieval of the emission parameters.

- To test the robustness of our methodology to choices regarding our assumed
diurnal emission profile.

- To test whether the assumed VOC emission uncertainties can be represented
using different VOCs.

Section 2 describes all aspects of the methodology, section 3 describes the results from
each of the analyses, section 4 discusses our results, section 5 details our conclusions.

2 Methodology
2.1 Overview

We use a photochemical box model run over 3 days to represent a worsening pe-
riod of ozone air quality during a stagnation event. Meteorological stagnation events
under hot, sunlit conditions over urban areas typically lead to poor ozone air qual-
ity (Jacob et al., 1993; Valente et al., 1998). We assume that the idealised mixing and
transport represented in the box model are sufficient to represent the meteorology dur-
ing anti-cyclo@conditions. For each of the different sensitivity tests that we perform
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we use different sets of pseudo observations of ozone, HCHO, CO and NO- (see sec-
tion 2.3, and examine Fig. 3 to see an example of the pseudo observations relative
to the true ozone state) in order to separately constrain the ozone precursor emis-
sions with the 4D-variational data assimilation system. The ozone percursor emissions
have known a priori errors. We then make a prediction of ozone using the a posteri-
ori emissions. Within the model framework, days 1-2 represent the period over which
observations are made and the assimilation is carried out and the final day represents
the prediction and monitoring period. Within this final phase, we compare the ozone
prediction, based upon the a posteriori emissions, to the ozone true state in order to
assess the assimilation performance. We support this assessment using a range of
statistics and diagnostics that shall be discussed shortly.

The use of 4D-variational data assimilation to solve the ozone precursor emission
inversion problem is consistent with the current state of the art in prognostic air quality
forecast modeling development. For example, the Community Multi Scale Air Qual-
ity Modeling System, Hakami et al. (2007) and the Sulfur Transport Eulerian Model,
Zhang et al. (2008), and Elbern et al. (2007) are all developing such assimilation ca-
pabilities. Thus, our model framework is relevant to and is reflective of the current and
future direction of air quality forecasting.

In order to establish the utility of more complex air quality forecasting systems that
might use 4D-variational data assimilation, our prototype forecasting system is demon-
strated theoretically. Since the emission inversion problem that we explore only be-
comes more complex as the model state space increases and additional sources of
uncertainty are introduced, a failure to show sufficiently reduced prediction error in this
simplified setting would indicate that more complex systems are unlikely to fare bet-
ter. Sufficient prediction model error within our framework is therefore a necessary but
not sufficient condition for more complex 4D-variational data assimilation forecasting
systems using air quality observations to be successful.

One other advantage of selecting a photochemical box model is that we are able
to generate a Jacobian describing the model response to emission parameter pertur-
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bations, which can be used within an analytical modeling framework to conduct un-
certainty analysis. It would be very difficult to produce a Jacobian within a regional
or global chemical transport models in a timely fashion given the size of the model
state space. Therefore we use an analytic model (derived from the photochemical box
model) that is simplified relative to the full assimilation framework. This is a linear es-
timation technique based upon Rodgers (2000). To support our analyses we calculate
the following diagnostics using this method: a posteriori 0zone prediction error covari-
ance, a posteriori emission parameter error covariance, the emission averaging kernel,
and the associated degrees of freedom of signal.

The 4D-variational data assimilation and uncertainty analysis using the linear esti-
mation are therefore complementary methods, and we use both techniques to achieve
our aim of exploring the effect of observing characteristics on ozone prediction. In
addition, we conduct a series of supporting analyses to test some of our assumptions.

2.2 Photochemical box model

A pseudo 1-Dimensional photochemical box model was built using the Kinetic Pre-
Processor (KPP) (Damian et al., 2002; Daescu et al., 2003; Sandu et al., 2003b). The
model is not truly 1-Dimensional in the vertical because we use a parameterisation to
describe variability in the boundary layer height and mixing volume. The Rosenbrock
solver is used to integrate the KPP generated ordinary differential equations required to
calculate trace gas concentrations (Eller et al., 2009). The photochemical mechanism
consists of 171 gas phase species and 524 chemical reactions simulating the degra-
dation of hydrocarbons from C;—Cs including isoprene and is based upon the Master
Chemical Mechanism v3.1 (Jenkin et al., 1997) (http://mcm.leeds.ac.uk/MCM/). In ad-
dition, the model includes dry deposition for all relevant chemical species, it contains
a 2-parameter photolysis scheme, and it simulates the emission of ozone precursors
including NO,, CO, and volatile organic compounds (VO(

Coastal urbanised Southern California (SC) has historically, and continues to be,
an interesting area of study for air quality owing to the large scale urbanisation and
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population, the resulting anthropogenic emissions, and the meteorological conditions
during summertime that are favourable for the development of photochemical smog
conditions. We therefore set up the box model to study conditions that are analogous
to this region and environment. Consequently, we situate the box model at at 33°
North, run it from June 30" to July 2", and use a humid quivalent to a volume
mixing ratio of 0.0162. In addition, we use anthropogenic (NT,, CO, and VOCs) and
biogenic (isoprene) emissions that result in a range of atmospheric mixing ratios typical
for urbanised SC.

The diurnal emission variability of anthropogenic compounds is pre-
scribed according to the National Atmospheric Emissions Inventory (NAEI)
(http://www.naei.org.uk/emissions/) for an urbanised area (see Fig. 1), and the
isoprene emission variability is parameterizlgl? correlate to solar zenith angle offset
by 2 hours to consider both temperature an oton flux effects (Tingey et al., 1979;
Tawfik et al., 2012). The isoprene emissions have an average daily emission of 1.7 x
10%° molecules m? s~! and an afternoon peak of 4.6 x 10° molecules m? s~1, which
yields modelled isoprene mixing ratios less than 10 pptv (parts per trillion by volume)
typical for this region. The diurnal variability of the isoprene emissions is separate
and distinct to the anthropogenic VOCs. From now on, when we discuss VOCs we
are referring to anthropogenic VOCs unless otherwise stated. The VOC speciation is
defined according to NAEI and the total peak emission of carbon via VOCs (excluding
isoprene) is 2.3 x 10'2 carbon atoms m~—2 s~! and the average emission is 1.2 x 10%?
carbon atoms m—2 s~1. These anthropogenic VOC emissions are typical for urbanised
regions. Boundary layer dynamics are described with a prescribed variability in mixing
height ranging from 500-1500 metres and mixing between the boundary layer and free
troposphere equivalent to a constant 10% mass exchange per hour. In our model,
the vertical extent represents the full depth of the boundary layer. Background free
tropospheric concentrations of long lived species are assumed to remain constant,
and are defined in Tab. 1.

The model is run under a range of photochemical conditions typical for urbanised
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SC. This is achieved by varying the NO emissions across 9 different scenarios that
span the full range of modelled ozone response with respect to changing NO, concen-
tration (i.e., from NO, to VOC limited conditions). We use the same emissions for the
other species across all of these different NO emission scenarios. For the purposes
of the emission inversion we define our ozone precursor emissions in a simplified form
(excluding emitted species not considered in the inversion) as

¢i(t) =ziEi(t),i=NO,CO,VOC (1)

where z; are the time independent emission scaling factors for the emitted species,
i, and E;(t) are the emissions with a prescribed and repeating diurnal cycle for each
emitted species. The emission inversion solves for, z;, the time independent emission
scaling factors, which can be represented as a vector, x, for the emitted species, i, as
shown by

[x]; =xi,i=NO,CO,VOC @)

Further, we define the true state of the emission scaling factors as xt. The variability
of Eno(t) is shown in Fig. 2 and this variability is represented by

Ei(t) = eik(t) 3)

where k(t) is the temporal variability emission factor for all of the emitted species and
e; is the time independent emission for each species. Note then that all of the anthro-
pogenic emissions (NO, CO, and VOCs), FEi(t), share the same temporal variability.
The variability of k(¢) is shown in Fig. 1 as the 'Standard Emission Variability’. Table 2
shows the values of eno, eco, and eyoc used in our model simulations.

In the emission inversion calculations we represent VOC emissions via ethene emis-
sions. We selected ethene because it is a sufficiently reactive gas that is emitted in
abundance through the course of anthropogenic activity. Thus, the adjoint sensitivities
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to ethene emissions allowed the proper functioning of the 4D-var syste@gable 2 de-
scribes the setup of the photochemical model for the range of differen emission
scenarios that we investigate, and shows the values of k(t), and, for each species, ¢
and E(t). Note that for E(t) the overbar indicates the mean value of a variable.

The NO emission scalings shown in Tab. 2 are chosen to represent a wide range of
photochemical conditions and given the VOC burden in the model, xno scalin.5,
0.75 and 1.0 represent NO,, limited conditions, 1.25, 1.5 and 1.75 represent transmonal
conditions, and 2.0, 2.25, and 2.5 represent VOC limited conditions. The mixing ratios
of NO,, that result from these different NO emission factors, and the mixing ratios of CO
and HCHO that result from the CO and VOC emissions are all summarised in Tab. 3.

2.3 Forecasting framework and 4D-variational data assimilation

Several NO, emissions scenarios are simulated to cover a wide range of photochemical
conditions (zno=0.5-2.5). Each emission scenario is represented mathematically as a
forward model, F(x,t), which §(®the concentrations as a function of time evaluated
at emissi . Depending on tne scenario, either pseudo observations of CO, NO,,
O3, or HCro are used in various combinations (see Fig. 3 for a representation of
the ozone pseudo observations relative to the true state for ozone). In order to derive
the pseudo observations the model true state is sampled at 3 hourly intervals in the
standard scenarios (used as default unless specified) and at intervals between 1 and
24 hours in scenarios characterizing the impact of observing frequency on prediction
error. The sampled species concentrations are then combined with an additive noise
model to generate the pseudo observations, y, represented by

y=F(x,t)+n “4)
where n is the noise
n=F(x)x [ xe &)
13
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and where F(x) is the average species concentration (values shown in Tab. 4), g is the
noise scaling factor, and ¢ is a random number with ussian distributio@standard
deviation of 1, and a mean of zero. The modelled corcentrations for all cies and
times resulting from F(x) can be represented as a vector, q,

a=F(x,t) (6)
or for specific species, z, at time, ¢, as ¢,(x,t),

da(x,t) = [F(x,1)], )

where z can be O3, NO,, CO or HCHO. We define a priori emission scaling factors,
Xa, With specified errors relative to xt (Tab. 5 provides a summary of the values of z
used for both xt and x,), which are combined with the model to yield the a priori model
state, F(x,). Note that within our framework the a priori is also the initial guess.

The assimilation is started at the first iteration with the forward model using the initial
guess and is thus described as F(x,) after one iteration. A cost function, which is a
scalar, J(x), is then evaluated

T = (v~ F G087y~ F(30) 5 (x )87 (x—x4)) ®
where S, is the a priori constraint matrix and S, is the observation error covarian@
The 4D-variational data assimilation method seeks the solution for x, %, that minimi
J(x)

X= m}in J(x) )

such that the gradient of the cost function with respect to x is zero if the solution x is
equal to the true state, xt, (though this is never fully achieved)

Vid =K' (y —F(%)) S, (x—%4) =0 (10)
14
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where K is the Jacobian matrix (see Eq. 15) describing the forward model re-
sponse to perturbations to the emission parameters, and V,J is the adjoint sensi-
tivity (Daescu et al., 2003; Sandu et al., 2003b), calculated by the Rosenbrock solver
(Eller et al., 2009), which indicates the sensitivity of the cost function to the emission
parameters. The cost function and its adjoint sensitivities are passed to the quasi-
Newton L-BFGS algorithm (Zhu et al., 1997). The L-BFGS algorithm iteratively deter-
mines the optimal state of x, %, that minimizes the difference between the model and
observations subject to the a priori constraints.

Using the estimated emissions, X, the forward model, F(%), provides the air quality
prediction of the ozone concentration, go, (x,t), on the afternoon of the 3 day of the
simulation during the prediction and monitoring period. The relevance of qo,(x,t) to
the prediction and monitoring period is shown in Fig. 3.

Figure 2 shows how the a priori emissions, x,, relate to the true emissions xt, and
the a posteriori emissions, x, after the 4D-variational data assimilation, as well as the a
priori, the true and the a posteriori ozone levels (i.e., o, (Xa,t), g0, (xt,t), and qo,(x,t),
respectively). The left panel of Fig. 2 shows the a priori emission error for NO emissions
and the right panel shows the a posteriori NO emission error. The a posteriori emission
parameter error can be defined more generally as a vector x.

X=%—xt (11)

Figure 3 provides an example representation of the pseudo observatio[=)lozone pre-
diction, go,(%,t), relative to the true state, go,(xt,t), during the predictio d monitor-
ing period on the third day. In Fig. 3 D represents the a posteriori ozone prediction error
at time, ¢* (¢t* is 3pm on day 3 during the prediction and monitoring period), defined by

D= q03 ()Agt“) - q03 (Xtvtu) (12)
In Fig. 3 G represents the a priori ozone prediction error defined by

G = qo,(%a,t") — qo, (xt,t") (13)
15
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The air quality prediction error over the entire prediction and monitoring period for each
of the species, z, can be defined as a vector, q

[@:]; = q2(X,t5) — qa(xt,t5) ,j = 3,6......21,24 (14)
where j is the hour of day on the 3rd day during the prediction and monitoring period.

2.4 Uncertainty analysis
2.4.1 Overview

The uncertainty analysis has two separoci: the evaluation of the performance of
the emissions estimates and an estimatis—of the a posteriori ozone prediction error.
Note that there is a direct synergy between these two analyses since uncertainties
in the emissions estimate directly impact upon ozone prediction uncertainty. The di-
agnostics that we calculate in the analysis of the emissions uncertainties include the
a posteriori emission parameter error, the emission averaging kernel matrix, and the
emission inversion degrees of freedom of signal.

2.4.2 The Jacobian Matrix

The Jacobian matrix can be used to help characterize the variance of x and q. There-
fore it is advantageous to determine K. Within our framework, each element of K rep-
resents the forward model response, dq¢,(x,t)/0x;, at time, ¢, and for observed species,
z, to perturbations in emissions of species, i, in the case of the OCN scenario (using
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pseudo observations of ozone, CO, and NO,) it is defined by

I a(Iog(X,tl)@o dqo,(x,t1)/0xco  Dqo,(x,t1)/dzvoc |
dq0,(x,t2) o 0qo;(x,t2)/0xco  0qo,(x,t2)/0xvoc

0qo, (%,tn,)/drno  0qo,(X,tN,)/0xco  Oqo,(X,tn,)/Orvoc
dqco(x,t1)/dxno  Ogco(x,t1)/0xco Oqco(x,t1)/0xvoc
dqco(x,t2)/deno  Ogco(x,t2)/0xco  Dgco(x,t2)/dxvoc

OF (x,t)

K= I I ﬁ T Y

dqco(x,tn,)/dxno Ogco(x,tn,)/0rco Ogqco(x,tn,)/0xvoc
dgno, (x,t1)/dzno  Ogno,(X,t1)/0xco Ogno,(X,t1)/Oxvoc
dgno, (X,t2)/dzno  Ogno,(X,t2)/02xco Ogno,(X,t2)/Oxvoc

| Ogno, (X,tN,)/dzNno Ogno, (X,tN,) /0T co Dgno, (X,tN,)/Ozvoc |

where K has dimensions N; x N. N; is the number of species in the emission factor
state vector, x and is thus always three. We define N as the total number of observa-
tions for all species

N =N x N, (16)

where N; is the number of points in time the model perturbations are sampled and N,

is the number of species whose perturbations are used in the Jacobi n the case of

Eq. 15 y = O3, CO and NO, therefore N, = 3. y includes HCHO in the FCN scenario.
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Figure 4 plots columns of the Jacobian and it shows that ozone is more sensitive to
changes in emissions during the afternoon, and that CO and NO, respond to changes
in emissions during the rush hour periods.

The key assumption in using the Jacobian is that changes in the emissions can be
described approximately by (Rodgers, 2000)

F(x)—F(x+0x) ~ Kdx (17)
this assumption has been validated using finite differencing to compare to solutions
derived from the right side of Eq. 1@

2.4.3 Emission error characterization

We calculate various statistics to determine the emission estimation performance.
First, we determine the a posteriori emission parameter error covariance, which is
defined by (Rodgers, 2000)

E [xxT} = (S; +KTS;IK) ! (18)
Next, we calculate the emission averaging kernel defined by

A=(S;1+KTS'K)'KTS 'K (19)

and the degrees of freedom of signal that is calculated via

do.f.= Tr(A@ (20)

where both of these diagnostics provide information on the resolution of the emission
retrieval, i.e., the ability of the estimate to uniquely distinguish between the emissions
of individual species. While the diagonals of A represent the sensitivity of z; to x; the
d.o.f. represents the number of separate emission parameters that can be uniquely
retrieved.
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2.4.4 Ozone prediction error characterization

Using the a posteriori emission error we can determine the a posteriori ozone predic-
tion error during the prediction period. In order to do this we need to define a new Jaco-
bian matrix, K', that defines the forward photochemical response during the prediction
and monitoring period (day 3) to perturbations in the emissions. Thus, K and K’ sim-
ply differ because K describes the model response during the observation period as
opposed to the prediction and monitoring period. Each element of K’ is 0qz(x,t5)/0x;
where j is the index of time denoting when the model is sampled on the 3rd day. The
a posteriori ozone prediction error covariance for the 3rd day can be determined by

E [qu] —K'E [XXT} KT Q1)
2.5 Summary of Experiments

We describe all of the experiments that we perform for the uncertainty analysis (Section
3.1) in Tab. 6. In each experiment we test a range of different observation character-
istics using different parameters. To give an example, for the CN observing scenario
we test the model forecast uncertainties across the nine values of xno (i.e., 0.5 -2.5
with increments of 0.25) and for eight different levels of observing error, 5 = 0.01-5
(equivalent to 1%, 5%, 10%, 25%, 50%, 100%, 250%, and 500% relative error). Thus,
we perform 72 separate tests for this experiment and for the OCN and HCN scenarios
as well. All Howe or the experiment comparing HCN and OCN we carry out three
separate tests wh e scale HCHO observation noise relative to the other species.
We test three different scalings: 50% lower, the same, and 50% higher noise.

Section 3.2 is dedicated to sensiti tudies using the full 4D-var data assimilation
forecast system. In Section 3.2.1 we onstrate the ability of the 4D-var data assim-
ilation forecast system to forecast ozone when using the three observation scenarios
CN, OCN, and HCN. For these experiments we use observations made at three hour

intervals, ar@ing 5=0.1.
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Next, in section 3.2.2, we define a range of different k(t) scenarios in order to probe
the emission solution and ozone forecast sensitivity to the assumed diurnal emission
variability. These alertna k(t) scenarios and the 'Standard Emission Variability’
are shown in Fig. 1. In each test we perform the 4D-var data assimilation forecast
using the alternative k(¢) scenario while still assuming that the 'Standard Emission
Variability’ is representative of the true state. We perform this test using the OCN
scenario, observing at three hour intervals, and using 5=0.1.

When conducting the VOC emission inversion we represent VOC emission uncer-
tainties as ethene emission uncertainties (rather than a more diverse range of VOCs).
In section 3.2.3 we test that assumption using a sensitivity analysis by assuming VOC
emission errors for ethane instead of ethene. Again, we perform this test for the OCN
scenario, observing at a three hour frequency, and using 5=0.1.

3 Results
3.1 Uncertainty analyses

3.1.1 Assessing observations of CO, NO,, ozone, and HCHO and the influence
of observation error

3.1.1.1 Emission error characterization and ozone prediction error

In this section we examine the choice of which species to observe in order to best
constrain the emissions and improve the ozone prediction, and we look at the three
scenarios CN, OCN, and HCN in order to do this. Table 6 describes the parameter
space we sample in each of these scenarios and it describes other important aspects
of the forecast system setup, i.e., the values of xno and 3, and the pseudo observation
observing frequency.

These results include the a posteriori ozone prediction error (calculated by Eq. 21)
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and the a posteriori emission parameter error (calculated by Eq. 18). We limit our
analysis of the observed species to ju@zone, CO, NO,, and HCHO because these
gases are monitored by both ground s ns and satellites.

Figure 5 presents the a posteriori ozone prediction errors across the complete range
of parameter space and, in each panel, the results from the three observing scenarios.
All of the scenarios exhibit similar general beha@n the derived a posteriori ozone
prediction errors: a first maximum in ozone prediction uncertainty in the NO, limited
scenarios (xno=0.5-0.75), with a consistent minimum in ozone prediction error in the
transition region that is both NO, and VOC limited (zno=1.0—1.75), and a second larger
maximum in ozone prediction uncertainty in the VOC limited regime (zno=2-2.5). Sce-
nario CN (observing only CO and NO,) yields the highest a posteriori ozone prediction
uncertainties of the three scenarios across the range of NO emission scenarios. The
inclusion of ozone and HCHO observations in the OCN and HCN scenarios, respec-
tively, reduces the a posteriori ozone prediction uncertainties compared to those from
the CN scenario. Scenarios OCN and HCN both show significant improvement in the
VOC limited emission scenarios (zno = 2.0—2.5) with each outperforming the CN sce-
nario by up to 2.4 ppbv. Scenarios OCN and HCN diverge from one another when
(xrno = 2.0), which represents the lowest zno factor that is still VOC limited. In this
case, scenario OCN outperforms scenario HCN by up to 1.4 ppbv. Under NO, lim-
ited conditions (zno =0.5—1.0), the OCN scenario a posteriori ozone prediction errors
show a strong improvement relative to the CN scenario (2.6 ppbv), and a slightly more
modest improvement relative to the HCN scenario (1.9 ppbv).

We will now focus on explaining these differences ™ posteriori ozone prediction
error highlighted above. To gain further insight into ths—wehav| igs. 6 and 7 show
the a posteriori error for znyo and xyoc. Note that the a post i error for zco (not
shown) is invariant with respect to the photochemical regime and is therefore unable to
explain any of the observed variability of ozone prediction error over varying zyo.

Figure 6 shows that scenario HCN is able to reduce xyoc a posteriori errors over the
largest range of NO emission scenarios, followed by scenario OCN, and scenario CN.
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This reduction in VOC emission uncertainty in scenario HCN explains why it shows
reduced a posteriori ozone prediction error (by up to 2.4 ppbv) compared to the CN
scenario under VOC limited conditions. Despite HCHO observations overall providing
a better constraint on VOC emission uncertainties under all conditions this improved
constraint only leads to lower a posteriori ozone prediction error compared to the OCN
scenario in the transition region regimes (znyo= 1.0-1.75) (see Fig. 8 central plot), and
under the most VOC limited conditions (zno >2.0). The exception to this beha\@
occurs at zno = 2.0; despite the HCN scenario showing lower xyoc a posteriori err
compared to the OCN scenario the HCN scenario shows higher a posteriori ozone
prediction error. This occurs because the a posteriori ozone prediction error is also
sensitive to the a posteriori NO emission uncertainties under VOC limited conditions,
and ozone is better than HCHO at constraining the NO emission uncertainties.
illustrates that the OCN scenario exhibits the smallest a posteriori NO emission
pararmreter errors compared to any of the other observing scenarios. This is particularly
pronounced under VOC limited and NO,, limited conditions. Therefore, ozone is better
able to constrain NO emission uncertainties as compared with HCHO under all photo-
chemical conditions, which is because ozone is always more sensitive to changes in
NO emissions than HCHO. Note, in the case of VOC limited conditions, ozone is neg-
ativensitive to NO emissions. As a direct result of this, the OCN scenario ozone
a posteriori prediction errors are 2.5 ppbv and 1.9 ppbv lower than the CN and HCN
scenarios, respectively, while under NO,, limited conditions. Under VOC limited condi-
tions, the OCN scenario shows a posteriori ozone prediction errors that are 2.4 ppbv
lower than for the CN scenario. The improved estimation of the NO emissions in the
OCN scenario compared to the HCN scenario only lead to reduced a posteriori ozone
prediction errors (by 1.4 ppbv) for the zno = 2.0 emission case (see Fig. 8). This one
exception is because VOC emissions errors dominate the ozone prediction uncertainty
for the other VOC limited cases.

We now briefly explore the benefits of combining all four of the observed species
(CO,NO,, ozone, and HCHO) to make the HOCN scenario. This scenario can im-
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prove ozone prediction errors by up to 2.9 ppbv and 3.1 ppbv under NO, and VOC
limited conditions, respectively, compared to the CN scenario. Combining ozone and
HCHO observations slightly improves ozone prediction errors by up to 0.3 ppbv and
0.8 ppbv under NO, and VOC limited conditions, respectively, compared to the OCN
scenario. The differences between the ozone and HCHO combined scenario and the
OCN scenario under VOC limited conditions further highlight the potential for HCHO
observations to improve ozone prediction errors under the most VOC limited conditions.

Until now, we have not directly discussed the impact of CO observations or of the
resolution of CO emission uncertainties within the assimilation framework. We do not
show a figure here, but a posteriori CO emission uncertainties are virtually invariant
with respect to photochemical regime and to the observing scenario (CN, OCN, or
HCN). However, the a posteriori CO emission uncertainties increase from 1 x 107> to
0.1 as the observing noise increases from g = 0.01 to 5 = 1.0, respectively. According
to the sensitivity of ozone to zco in the jacobi ', these relatively low levels of CO
emission uncertainty would only lead to perturoations in ozone of 0.5 ppbv at most.
For the case with the highest amount of noise, 5 = 5.0, the a posteriori CO emission
uncertainty reaches 1.1. Again, using K’, we can estimate that this larger level of CO
emission uncertainty could lead to a about a 5 ppbv perturbation in ozone. There-
fore, only the g = 5.0 noise scenario leads to large enough a posteriori CO emission
uncertainties that can have a significant effect on a posteriori ozone prediction errors.

3.1.1.2 Sensitivity Test for Degraded HCHO Observations

The standard HCN scenario described above assumes that the relative observing
errors for HCHO are the same as for the other gases. However, within the context of
satellite observations, the quality of HCHO observations are likely to be degraded rela-
tive to ozone, for instance. This is likely due to the relative magnitude of the absorption
cross-sections and interferences from other absorbing gases. We therefore perform
a sensitivity test whereby we apply an upward scaling factor to the g of HCHO to in-
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crease it by 50% relative to the other observed gases in the standard HCN scenario
(see the experiment 'comparison between HCN and OCN’ in Tab. 6 for further details
). Figure 8 shows that scenario HCN only has lower a posteriori ozone prediction un-
certainties over the full range of NO emission scenarios under the optimistic scenario
of lower HCHO observation uncertainties (5 of HCHO is set to be 50% lower than that
of ozone), and that in the other scenarios, that we assume would be closer to reality,
scenario HCN only out performs scenario OCN in the transition region and for the most
VOC sensitive regimes. Under the assumptions of lower ozone observing uncertainty
OCN out performs scenario HCN in the NO, and VOC limited regimes by up to 1.9

ppbv.

3.1.1.3 Averaging Kernel and Degrees of Freedom of Signal

Following from Section 3.1.1.1, we now characterize the emission estimate using the
emission averaging kernel and degrees of freedom of signal diagnostics. The emission
averaging kernel ( Eq. 19) represents the sensitivity of the retrieved emission parame-
ters along the diagonal, i.e., for a particular species, i, to changes in the real emission
parameter for species, i. This analysis is carried out for the CN, OCN, and HCN sce-
narios (refer to Tab. 6 for details). Figure 9 shows the respective diagonals of the
emission averaging kernel (for zyvoc and xnp) varying in a manner consistent with the
a posteriori parameter errors as shown in Figs. 6 and 7. A comparison of the lower
panels indicates that the NO emission parameter estimate using the OCN observing
scenario is more sensitive to the true state of the NO emission parameter under both
NO,, limited and VOC limited conditions than any of the other observing scenarios. The
top panels show that the VOC parameter estimate shows the highest sensitivity to the
true state of the VOC emission parameter using the HCN observing scenario.

Consistent with the averaging kernel the emission inversion degrees of freedom of
signal (see Eq. 20, results not shown) indicates that the HCN scenario is better able
to uniqutrieve and resolve the 3 separate emission parameters compared to the
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OCN scenario. This is because HCHO provides a better constraint on VOC emissions
over a wider range of zno and 5. However, ozone in general constrains ozone pre-
cursor emissions across a wider variety of emission parameters, specifically for xyo,
which allows ozone observations to yield better a posteriori ozone prediction errors.
The OCN scenario shows a decrease in the degrees of the freedom of signal under
NO, limited conditions due to the lack of sensitivity of the retrieval to the VOC emission
parameter when using these observations.

3.1.2 Observing time and observing frequency

We now examine the sensitivity of the ozone prediction error to the removal of obser-
vations at different times during the day. Refer to the ’observing time experiment’ in
Tab. 6 for details. Since the first observations are made at 00:00 local time, this means
practially that we run our tests by removing observations at 00:00, 03:00, 06:00 (all
local time) and so on until each observation within the entire observing window (the
first two days of simulation) has been tested.

Figure 10 shows a posteriori ozone prediction errors are most sensitive to the re-
moval of observations during the day particularly during the high emission periods in
the morning and afternoon rush hours and particularly so during the period of ele-
vated ozone in the afternoon. The timing and magnitude of the sensitivity and its peak
to observation removal varies according to the 9 NO emission scenarios as well. In
the more NO, limited scenarios, xno=0.5—1.0, the sensitivity to observation removal is
distributed relatively evenly over the entire day. In the VOC limited regimes, zno=1.75—
2.5, the sensitivity to observation removal is more tightly distributed within the afternoon
period and peaks between 3pm and 6pm even showing a broad maximum out to 8pm
under the most VOC limited conditions. The temporal variability of the maximum sen-
sitivity to observation removal with changing photochemical regime is due to the timing
of afternoon peak ozone concentrations. This is because across all of the photochem-
ical regimes maxima in ozone sensitivity to perturbations in emissions coincide with
the daytime peak ozone concentration (see Fig. 4). Observations made during these
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key periods are therefore better able to constrain the emissions uncertainties. Ozone
concentrations peak later in the afternoon under more VOC limited conditions com-
pared to the NO, limited conditions thus explaining some of the variability in maximum
sensitivity to observation removal with changing photochemical regime.

Next, we address how observing frequency will affect the ozone prediction error.
We run a series of sensitivity tests using a variety of observing frequencies ranging
from once a day to once every hour. Table 6 provides a complete description of the
‘observing frequency experiment’. We carry out these tests across the full range of
NO emission scenarios (zno= 0.5-2.5 with increments of 0.25), and with g = 0.25.
Figure 11 shows how a posteriori ozone prediction errors vary with changing observing
frequency. Increasing observing frequency causes the largest decreases in a posteriori
ozone prediction uncertainty in the VOC limited regime and to a lesser extent in the NO,
limited regime due to the sensitivity of ozone prediction error to unresolved emission
parameter errors in those regimes.

3.2 Supporting sensitivity analyses
3.2.1 4D-variational data assimilation

We now demonstrate the usage and performan E' the 4D-variational data assim-
ilation. Our 4D-var framework solves the non-limedr estimation problem whereby it
optimizes the ozone precursor emissions and then estimates a posteriori ozone mixing
ratios (the forecast). We run the system across the full range of photochemical con-
ditions (zno=0.5-2.5) and for the CN, OCN and HCN scenarios whilst assuming low
levels of observational error (5=0.1) represented in the observation error covariance
matrix.

The results shown in Tab. 7 indicate that scenarios OCN and HCN yield acceptable
prediction error under these idealised conditions (5=0.1) within this prototype frame-
work for all photochemical conditions. The more limited success of scenario CN (ob-
servations of CO and NO,) is due to the lower sensitivity of CO and NO, observations
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to the emissions of VOCs across all NO, emission scenarios, and of the low sensitivity
of CO observations to the emissions of NO. The magnitude of the adjoint sensitivities
guides the L-BFGS algorithm (Zhu et al., 1997) to the global minimum. In cases where
the adjoint sensitivities are low, e.g., in VOC limited conditions using the CN scenario,
the optimization routine may only be able to find a nhon-global minimum, which leads to
larger a posteriori emission factor errors, x — xt.

Table 7 indicates that there is variability of a posteriori peak ozone prediction error
over changing photochemical regime and zyo for each observing scenario CN, OCN,
and HCN. This variability with zno is due in part to the variations in modelled ozone
sensitivity to the different ozone precursor emission parameters, dqo,(x,t)/0z;, and
the a posteriori emission parameter errors (i.e., x — xt). Generally, large sensitivity of
predicted ozone to the emissions of ozone precursors, dqo,(x,t)/0z;, combined with
unresolved ozone precursor emission parameter errors can lead to larger a posteriori
peak ozone prediction er For instance, in the NO,, limited regimes (zno= 0.5-1.0)
large residual error in theerement of x corresponding to NO emissions would lead to
large a posteriori ozone errors.

One example of this phenomenon occurs in the case of photochemically VOC lim-
ited scenarios (i.e., zno=1.75-2.5). Table 8 shows the variability of a posteriori VOC
emission errors with zno and observing scenario. For observing scenario CN there is
large unresolved error in zyoc (Tab. 8) as in this case the size of the adjoint sensitivities
is insufficient to guide the L-BFGS algorithm to the global minimum and the solutions
represent local minima. This leads to larger a posteriori ozone prediction error as com-
pared to scenarios OCN and HCN (see Tab. 7), which are better able to resolve errors
in VOC emissions.

There are also examples where ozone precursor emissions are poorly resolved, but
this has only minimal impact on the ozone prediction error, D. This occurs for the OCN
scenario when z o ranges from 1.25 to 1.5. For these cases the unresolved error on
zyoc is larger than for many other situations. Again, this occurs because the L-BFGS
algorithm is only able to find a local minima. However, in these instances, the relatively
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low sensitivity of ozone to zyoc means that the resulting ozone prediction errors are
relatively low as well.

Thus, there are a rather complex set of factors interacting to cause these resulting
a posteriori prediction errors and the analysis of the results is limited to identifying
relationships between the observing scenario, the photochemical regime, the adjoint
sensitivities and the resulting ozone a posteriori prediction error. This demonstrates
the utility of the analytical model in allowing a far more in-depth analysis. Overall, the
4D-variational data assimilation framework seems capable of resolving emission un-
certainties and in turn reducing ozone prediction error. This successful demonstration
of the framework is a necessary but not sufficient condition for systems based upon
more complex photochemical models to have ozone predictive skill.

3.2.2 Examining day-to-day variability and probing emission solution sensitiv-
ity to diurnal emission variability

We investigate the sensitivity of the forward photochemical model ozone mixing ra-
tios, obtained via the 4D-var ozone prediction and the 4D-var emissions estimate, to
a range of assumed emission diurnal profiles. We use the following profiles selected
arbitrarily to test the model sensitivity: constant, sine wave, square wave, and offsets
of the existing profile by 1 and 2 hour shifts both forward and backward in time (see
Fig. 1). These aIternmission profiles are taken to represent the new true state,
xt, (using xno=0.75) armaare used to generate the pseudo observations (using 5=0.1).
We then attempt the assimilation using the pseudo observations generated from the
alternative emission scenarios whilst assuming that the emissions temporal variability
is the standard variability. The alternate emission profiles test the robustness of the
4D-variational data assimilation method to diurnal uncertainty in the emissions.

Table 9 indicates that the forward model shows peak ozone mixing ratios diverging
from the base case run (standard assumed emission variability with zn0=0.75) by up to
10.6 ppbv and that the forward model ozone mixing ratios are sensitive to the assump-
tion of the diurnal emission variability. In addition, Tab. 9 shows that the 4D-variational
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data assimilation is able to achieve a posteriori peak ozone prediction errors of up to
2.4 ppbv relative to the true state, as defined by the perturbed scenario, despite us-
ing the unperturbed diurnal emission scenario as its emission variability. Although we
only show the differences in the maximum ozone mixing ratios, this behaviour is re-
produced in the ozone mixing ratios at other times during the sunlit day. This further
confirms our general findings from these tests. Despite the relative success of the a
posteriori peak ozone prediction (only a maximum ozone prediction error of 2.4 ppbv)
under these more challenging conditions the assimilation performs poorly in terms of
the a posteriori emission factor error. Errors range up to 0.46 (18-92%), 0.17 (17%),
and 7.0 (108%) for zno, zco, and xzyoc (relative to true scaling factors of 0.5-5.0, 1.0,
and 6.5, respectively) and thus emission inversion success is strongly affected by er-
rors in the assumed diurnal variability of ozone precursor emissions. In summary, we
demonstrate forward model ozone sensitivity to perturbations in the diurnal variability
of ozone precursor emissions, relative insensitivity of the 4D-variational data assimila-
tion a posteriori prediction error to mismatches in the assumed versus observed diurnal
variability of ozone precursor emissions, and sensitivity of the emissions inversion suc-
cess to mismatches in the assumed versus true emissions variability.

3.2.3 Emission inversion and ozone predictive skill sensitivity to VOC species
selection

We conducted a sensitivity test whereby we represent VOC emission uncertainties
with uncertainties in the emission of ethane, which is a less reactive VOC compared to
ethene. We found that that the VOC emission inversion is severely degraded by build-
ing the Jacobian by perturbing zethane as opposed t0 xeinene aCross the three scenarios.
The a posteriori xzvoc parameter error relaxes to our chosen a priori of 1.5 to within
1 significant figure for most of the scenarios explored. However, this does not affect
ozone prediction error since the degraded VOC emission uncertainty is mitigated by
the lower reactivity of ethane compared to ethene. As a result, the sensitivity of ozone
to that uncertainty is therefore lower.
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4 Discussion and Conclusions

We addressed a set of key questions to determine how characteristics of observations
of ozone and its precursors affect one’s ability to constrain ozone precursor emissions
and consequently to predict ozone when using an idealised prognostic air quality model
coupled to a data assimilation framework. These questions consisted of which species
to observe, how well to observe them, how often to make observations, when to make
them during the diurnal cycle, and how soon to observe before making a prediction.
Further to this, we were interested in how the answers to these questions changed
according to varying photochemical regime (from NO, to VOC limited conditions for
ozone formation). These questions are relevant to determining, in a very coarse way,
how the various observing platforms (i.e., LEO and GEO satellites) and ground moni-
toring networks are able to support air quality research and forecasting.

We used a framework consisting of a photochemical box model using idealised me-
teorology, its adjoint, and a 4D-variational data assimilation system setup to constrain
ozone precursor emission uncertainties (NO,,, CO, and VOCs). The photochemical
box model used idealised meteorology that represented stagnant summer weather
conditions. Using linear analysis to assess the framework’s prediction uncertainties
we carried out a series of sensitivity analyses to test the performance of the forecast-
ing framework under a range of different observing scenarios. This consisted of using
various sets of pseudo observations. We examined the effect of changing which four
species were observed (CO, NO, and HCHO, CO, and NOy), of varying the observa-
tion noise, of changing the observing frequency, and of changing the time during the
day when observations are made.

We were able to demonstrate that the 4D-var framework was able to constrain ozone
precursor emissions and consequently that it was able to reduce ozone prediction un-
certainties and provide an adequate ozone forecast under the idealised conditions that
we used. This therefore demonstrated our frameworks relevance to future air qual-
ity forecasting systems that might utilize state of the art assimilation and observations
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made using either the ground station network or from orbiting satellites. Clearly, more
difficulties and challenges remain before such a framework could be used in a real-
world setting, such as how to incorporate averaging kernels of satellite retrievals into
the assimilation system or accounting for representativity errors. Also, using the linear
analysis to estimate the prediction uncertainties, we were able to derive a series of
general conclusions that are discussed below.

4.1 The Effect of Changing the Observed Species

Our results show that the variability of ozone prediction error with both photochemical
regime and observing species scenario (CN, OCN and HCN) is complex and no single
observed species is ideal for all photochemical conditions.

Under NO, limited conditions ozone prediction error is strongly controlled by the a
posteriori NO emission errors and therefore observations of NO, and ozone would be
highly advantageous. Ozone provides a particularly good constraint upon NO emis-
sions under very NOy limited and VOC limited conditions. The value of NO, observa-
tions in constraining NO emissions improves as the NO, lifetime increases under the
somewhat less NO, limited conditions (zno = 1.0 - 1.25). Much of the troposphere is
in fact highly NO, limited outside of the most polluted areas (Duncan et al., 2010).

Under VOC limited conditions ozone prediction error is sensitive to both a posteriori
xno (due to the negative sensiti Ei ozone to NO,) and zyoc errors and thus obser-
vations of ozone, HCHO and NGzallow significant improvements in 0zone prediction
error. Assimilating ozone, therefore, allows constraints to be placed upon VOC and
NO emission uncertainties. HCHO provides an excellent constraint upon reactive VOC
emissions, which due to their reactivity are more relevant to air quality compared to
less reactive VOCs. NO, provides an excellent constraint upon NO emissions under
VOC limited conditions; more than under NO, limited conditions due to the longer NO,
lifetime. Despite the fact that large geographical portions of the US are NO, limited a
disproportionately large percentage of the popul ) ive within or are exposed to ozone
arising from VOC limited conditions due to the slg—icant extent of urbanization within
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the US. Large urbanized areas of th uth West that lack significant native vegetative
biomass typically have a larger VO ited regime that extends over the urban as well
as sub-urban areas. In contrast, US cities in the East are located in regions with often
dense vegetative biomass, e.g., Atlanta, and thus the VOC limited region is far more
geographically limited to the urban cen@’:self. Therefore, improving ozone predic-
tive skill within VOC limited conditions ot yield forecasting improvements over a
wide geographical area but will yield improvements within certain regions with large
populations.

Our findings with respect to the utility of NO, and HCHO observations for constrain-
ing NO, and VOC emissions, respectively, and in turn for improving ozone estimation
are broadly consistent with the findings of Zhang et al. (2008), which used satellite
observations of NO, and HCHO in conjunction with 4D-variational data assimilation
to solve for NO, and HCHO emissions and to improve the model’s ozone estimation.
One should note, however, that our work goes further by demonstrating how the effi-
cacy of NO, and HCHO observations varies according to photochemical regime. Sim-
ilar to (Elbern et al., 2000, 2007), we demonstrate the use of ozone in this regard. Our
work offers an extension to Elbern et al. (2000) and (Elbern et al., 200(D)y considering
the photochemical regime and by considering other observations simurmaneously.

Note that the statements above regarding the need to constrain NO and VOC emis-
sions under NO, and VOC limited conditions, respectively, are what we should exp
Further, the use of ozone to constrain either NO, or VOC emissions in either of the
spective photochemical regimes is fully consistent with existing theory relating to ozone
control strategies (Sillman, 1993) and our understanding of factors controlling ozone at
regional and continental scales (Jacob et al., 1993). This was one motivation for us to
explore this problem.

There is one further advantage to observations of ozone and HCHO made under
VOC limited conditions. Often, plumes of NO, polluted and VOC limited air can be
exported from regions that are VOC limited into areas that are NO, limited, and this
can lead to significant temporal variability in the photochemical regime in the regions
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surrounding an urban cen Therefore, observations of HCHO and ozone in addition
to NO, observations coul Ip to understand such events and in turn reduce ozone
prediction errors.

We have indirectly performed a sensitivity test to see if CO observations affect ozone
a posteriori prediction errors. We can address their potential impact within the OCN
scenario by examining the jacobi atrix (see Fig. 4). This shows that ozone is rel-
atively insensitive to perturbations O emissions and, therefore, also to a posteriori
CO emission uncertainties. In fact, it appears that only the 8 = 5.0 noise scenario has
sufficiently large a posteriori CO emission error to cause significant a posteriori ozone
prediction error (about 5 ppbv).

4.2 Observation Error

We now make some broad conclusions regarding the observation uncertainties. Both
the OCN and standard HCN scenarios achieve a posteriori ozone prediction errors of
2.4-6.1 ppbv and 1.9-6.3 ppbv, respectively, when absolute errors equivalent to 33%
of the average over polluted regions were used. Even though the OCN and HCN
scenarios compared favourably to one another in terms of their a posteriori ozone
prediction errors, when we considered more realistic observational noise on the HCHO
observations, the performance of the HCN scenario was degraded to 2.2-6.9 ppbv
(33% noise level). In comparison, for the same noise level, the CN scenario achieved
ozone prediction errors of 2.5-8.4 ppbv. Only when the noise level was reduced to 25%
were the OCN and HCN scenarios able to achieve ozone prediction errors of 5 ppbv
or less. At 10% noise ozone prediction errors of less than 2.5 ppbv were consistently
attained for both OCN and HCN. This strongly points towards there being a good payoff
in forecast accuracy with reducing observation error. Further work in a 3D framework
would be required in order to determine how these ozone forecast errors translate into
the context of real air quality forecasting. For instance, it might be possible to calculate
the probability of detection or false alarm rate statistics similar to the work carried out
by Hache et al. (2014).
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Connecting this to real instrument profiles and real observations, and how these
might perform in a real assimilation system, is beyond the scope of this study. The
furthest we can take this point is to note that the resulting prediction uncertainties for a
particular observation noise scenario are optimistic and represent the lowest error that
could be expected. This is because of reduced complexity in our model’s representa-
tion of its spatial domain and its meteorology and because of the way we represented
the errors on our observations, which in reality would be more complex.

4.3 Temporal considerations

Concerning the temporal sampling of observations, there is strong sensitivity of ozone
prediction error to observation removal in the daytime, particularly in the afternoon,
and therefore observations made during the day present greater returns in terms of im-
proved forecasting ability. The NO, limited regimes favour observations made through-
out the day with increased observing density close to 3pm. The VOC limited regimes
favour a greater concentration of observations within the afternoon even up to 6pm
in the most VOC limited cases. These differing results for the two different photo-
chemical regimes are consistent with existing knowledge of photochemistry and NO,
lifetime. The main underlying factors controlling this are the changing time at which
ozone peaks and the time of day that emissions occur that contribute to that peak.
Under VOC limited conditions ozone peaks later in the day due to the reduced ozone
lifetime and the slower recovery of HO, radicals (suppressed by NO,) that occurs after
the night time period. The NO, limited scenarios also show a smaller peak in the morn-
ing. This smaller peak is present due to the observations of ozone and NO, during the
morning rush hour that better allow NO, emissions to be constrained. The presence of
the smaller peak also indicates that peak afternoon ozone concentrations are sensitive
to the morning rush hour emissions of NO,; this is possible due to the longer ozone
lifetime present under NO, limited conditions.

We demonstrate that the ozone prediction error is sensitive to the frequency of ob-
servation. We show that ozone prediction errors vary between negligible to up to 12.5
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ppbv as the observing frequency varies between once per hour to once per day, re-
spectively. The ozone prediction error is maximised within either the N imited or
VOC limited regimes. We find very similar levels of ozone prediction erro the sce-
narios that observe once every hour and every three hours (1.8-3.2 ppbv compared
to 2.2-4.8 ppbv, respectively), and that ozone prediction errors greater than 5 ppbv
only emerge for observing scenarios using a frequency of six hours or more. The fact
that our forecasting system performs best using observations made at a frequency of
three hours or less highlights the temporal sampling advantage posed by the ground
observation network relative to observing systems with lower observing frequency, i.e.,
a satellite in LEO configuration.

It is likely that there is an effect on ozone prediction error due to the interaction
between observing frequency and observing time. Figure 10 implies that observing
scenarios measuring at the same frequency could yield different prediction errors due
to when they actually sampled during the diurnal cycle. However, in each test we made
at a particular observing frequency the observations were made at a fixed specific
set of times, and so our work does not address this issue. We do think that this is
relevant to evaluating different types of observing scenario, and we would therefore
like to explore this problem in a future paper.

4.4 Implications for emission inversion

Aside from the relevance of these results to air quality forecasting and research in gen-
eral, we believe these results are also relevant for emission and flux estimation via
inversion methologies. Our prototype framework is mechanica ry similar to other
work using 4D-variational data assimilation methologies (Elberrret al., 2000, 2007;
Henze et al., 2009; Stavrakou et al., 2009; Kopacz et al., 2010) using chemistry trans-
port models that have focused on emission inversion. Much of the emission inversion
performance shown in this study is driven by the photochemistry, and it is reasonable
to suppose that some of our results are relevant to future work conducted using 4D-
variational data assimilation in emission inversion studies. Note too that Kalman filter
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methods can also be used in this application and we should expect that the perfor-
mance of this method will be similarly affected by photochemistry. From this premise,
we recommend that emission inversion studies for NO, utilize both observations of
NO, and ozone since ozone observations add information to the xno estimation under
both strongly positively and negatively NO, limited conditions and NO, observations
constrain emission parameter uncertainties the most under the more VOC limited con-
ditions. Thus, these two observations are complementary to each other. Likewise, for
emission inversions of VOCs we recommend observations of HCHO and ozone since
HCHO observations can constrain VOC emission uncertainties under a wide variety of
photochemical conditions and ozone can constrain VOC emission uncertainties under
VOC limited conditions.

Previous studies have shown that NO, (Konovalov et al., 2006; Zhang et al., 2008;
Muller and Stavrakou, 2005) and HCHO (Stavrakou et al., 2009; Millet et al., 2006,
2008; Palmer et al., 2003, 2006; Zhang et al., 2008) observations can constrain NO,
and VOC emissions, respectively. Although one could have inferred that combining
ozone observations with either NO, or HCHO observations would be beneficial, we
have actually shown n@hat it could be highly advantageous, which is consistent with
Miyazaki et al. (2012).

It should be noted that the conclusions regarding VOC emission inversion are sen-
sitive to our choice of representing VOC emission uncertainties with ethene. The suc-
cess of the VOC emission inversion is significantly limited by solving for etha@mis—
sion uncertainties. This is due to the lack of impact on secondary chemical species
such as HCHO. This is one reason why previous emission inversion modeling studies
have focused on constraining reactive VOCs like isoprene (Millet et al., 2006, 2008;
Palmer et al., 2003, 2006).

Concerning CO, all of the observing scenarios (CN, OCN, and HCN) performed
equally well at constraining CO emission uncertainties since all these scenarios in-
cluded observations of CO. Ind the jacob Qfor CO with respect to CO emission
perturbations shown in Fig. 4 clearty shows a stong sensitivity of CO to changes in its
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own emissions. On the other hand, Fig. 4 shows much lower sensitivity of CO to the
emissions of NO or VOCs. These results are fully consistent with expectations due to
the relatively low reactivity of CO and its potential to produce ozone on short timescales
and of the lack of a strong chemical connection between NO, levels and resulting CO
concentrations. In the latter case, there is a link due to the way that NO, can perturb
OH, but due to the relative unreactivity of CO this leads to only weak sensitivity in the
jacotﬂ Consistent with this, there have already been several studies that use obser-
vatio CO to constrain CO emissions (Muller and Stavrakou, 2005; Kopacz et al.,
2010; Arellano et al., 2006).

In the supporting sensitivity analysis probing emission solution sensitivity to diur-
nal emission variability we demonstrate that emission inversions are potentially highly
sensitive to the assumed variability of the emissions and that even perfect observations
would lead to such errors. In our system such emission inversion errors would be hard
to characterize in the absence of any information regarding the true state of the emis-
sions variability. We recommend that such uncertainties should be considered and
characterized in emissions inversion studies. Currently diurnal emission variabilities
are determined in the process of building bottom-up emission inventories. Although
our prototype assimilation system can only currently solve for time independent scaling
factors it could be modified to solve for time dependent scaling factors and the diurnal
emissions variability. Future assimilation forecasting systems should also possess this
ability to solve for time dependent emission scaling factors. Observations that ade-
quately capture the diurnal variability of pollutants will be essential to making this leap
from time independent solutions to time dependent solutions.

4.5 Implications for GEO and LEO satellites

In the previous sections we have motivated the potential utility of surface or bound-
ary layer ozone, CO, NO-, and HCHO observations either in the context of improving
ozone forecasting or for emission inversions. Ground station networks that implicitly
sample boundary layer air are already in place across the American and European
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continents. However, only one of the current generation of LEO satellite instruments
(MOPITT) possesses a reliable means of attaining unique instrument sensitivity to the
boundary layer for these gases (Worden et al., 2013). If future GEO stationary satellite
instruments (GEO-CAPE/TEMPO, GEMS, and Sentinel-4) wish to fully take advantage
of their simultaneous potential for sup overage and temporal sampling and wish to
fully contribute to state of the art ozone—ar quality forecasting, then attaining sensitivity
to the boundary layer is essential and should be a high priority aim.

The heightened importance of observations made during the morning and mid to
late afternoon raises the question of whether making more targettbservations, for
instance made during the morning and evening rush hours, wotra—be able to sup-
port ozone forecasting even further. There are various observing systems that would
be able to provide this capability, such as several combined LEO missions or ground
stations or a GEO mission with increased temporal sampling capability during those
periods. Investigating these questions in the future would be of interest to@

Our forecasting system is better able to improve the ozone prediction g obser-
vations made during the day as opposed to the night. In the context of satellites, and
remembering that our idealised case ignores the effects of transport, this indicates that
instruments capable of observing during the night, such as those observing in the TIR,
do not offer a significant advantage over instruments restricted to making measure-
ments during the day time. Of course, if the effects of transported pollution were to
be considered, such as the night time mixing of ozone between the boundary layer
and free troposphere, then making observations during the night could offer additional
utility by improving the estimated contribution to the pollution made by this process.
For instance, this could provide advance warning of the trajectory of a pollution plume.
This is therefore a limitation of this work that we are not able to explore such effects
using a model with only idealised meteorology.

Our forecasting system (and the emission inversion) performs best using observa-
tions made at a frequency of three hours or less. This highlights the temporal sampling
advantage posed by satellites in a GEO configuration as opposed to those in LEO. Cur-
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rently, the proposed observing frequencies for the future GEO missions (Lahoz et al.,
2012) and the current ground monitoring network are at least at one hour. LEO satel-
lites, on the other hand, can ttain high frequency sampling without a large number
of satellites being employed oz et al., 2012). In isolation, a single LEO satellite
with a sampling frequency of between 1 and 16 days is perhaps inadequate for the
purpose of constraining precursor emissions at the regional scale or for supporting air
quality forecasting. Another consideration is that observing frequencies of three hours
or more might not be adequate for studying the diurnal cycle of pollutants and for fore-
casting systems that use 3D-var, for instance, to update ozone concentrations. Note
that the nature of our framework for performing these tests (i.e., a box model using only
idealised meteorology) places limitations on our conclusions such that the performance
of the higher frequency observing scenarios (3 hours or less) may be too optimistic.
Thus, observing at three hours may be too insufficient to constrain ozone precursor
emissions.
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Table 1. Background free tropospheric concentrations of trace gases mixed into the boundary
layer in the photochemical model.

Chemical Species Background Mixing Ratio

Ozone 30 ppbv
NO 100 pptv
NO, 50 pptv
CO 80 ppbv
CH,4 1.76 ppm
NMH1Q 100-200 pptv each

Table 2. Values of the different parameters and emissions used in the photochemical box
model. The emissions are shown with the corresponding units of molecules m=2s~!. Since
k(t) is 1.89, the average emissions, E(t), are a factor of 1.89 larger than e;. For E(t)\o, the
value shown outside of the brackets is equivalent to zyo = 1, and the values in the brackets

denote the range in the emissions that arise from using the full range of zno (0.5-2.5).

Model variable Parameter or Emission Value
0] 1.89
INO 0.5,0.75,1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5
eNO 4.8 x 10'° molecules m—2s~1
€co 2.6 x 10'2 molecules m—2s~1
evoc 4.3 x 10'° molecules m—2s~1
E(t)no 9 x 10'° (4.5 x 101°-2.3 x 1 olecules m—2s~!
E(t)co 5x 10'2 molecules m—2s~}
E(t)yoc 8.2 x 10 molecules m—2s~!
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Table 3. Simulated range in NO, mixing ratios that result from the different photochemical
scenarios using different zno (0.5-2.5). Also shown are the ranges of CO and HCHO that

result from emissions of CO and VOCs, respectively.
Modelled Mixing Ratio Range

Chemical Species
NO, 4.0 - 24.0 ppbv

NO 1-11.3 ppbv

NO, 3 -16.9 ppbv
CO 590 - 820 ppbv
HCHO 6.5 - 8.1 ppbv

Table 4. Values of F(x) used to calculate y. The overbar indicates that this represents the

mean value.
F(x) Mixing Ratio
Ozone  44.4 ppbv
CO 620 ppbv
NO, 6.5 ppbv

HCHO 3.9 ppbv
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Table 5. Values of x and x, (in terms of unitless emission scaling factor) used in the 4D-
variational data assimilation model.

X Xa
NO CO VOC NO CO VOC
05 1.0 65 0475 095 0.1

0.75 - - 0.7125 - -
1.0 - - 0.95 - -
125 - - 1.1875 - -
1.5 - - 1.425 - -
1.75 - - 1.8375 - -
2.0 - - 2.1 - -
225 - - 2.3625 - -
2.5 - - 2.625 - -
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Table 6. List and details of all of the experiments carried out as part of the uncertainty analysis.
The experiment details include the observed species, xno emission factors (see Tab. 2 for the
full list), the observation noise, 3, and the observing frequency. The 8 different values of 3 are
0.01,0.05, 0.1, 0.25, 0.5, 1.0, 2.5, and 5.0. These fractional errors are relative to the average
species mixing ratios over all of the photochemical scenarios (see Tab. 4). The observing
noises are identical for each compound within a particular scenario unless otherwise stated.
All of the results from these experiments are described in Section 3.1. We also include short
notes describing other aspects of the experiments. The table includes a list of the precise
sections where the different experiments are discussed.

Experiment Section Observed ZNo Observation Observing Special
Species Scenarios Noise (3) Frequency Notes
CN 3.1.1.1 COand NO; 9 apno scenarios 8 3 values 3 hours
and 3.1.1.3 (0.5-2.5) (0.01-5.0)
OCN 3.1.1.1 Ozone, 9 xno Scenarios 8 3 values 3 hours
and 3.1.1.3  CO and NO, (0.5-2.5) (0.01-5.0)
HCN 3.1.1.1 HCHO, 9 zno Scenarios 8 3 values 3 hours
and 3.1.1.3  CO and NO, (0.5-2.5) (0.01-5.0)
HOCN 3.1.1.1 HCHO, ozone, 9 xno scenarios 8 3 values 3 hours Results not
CO and NO, (0.5-2.5) (0.01-5.0) shown in a figure
Comparison between 3.1.1.2 HCHO, ozone, 9 xnp scenarios 8 3 values 3 hours Three different
HCN and OCN CO and NO, (0.5-2.5) (0.01-5.0) scenarios tested each
(Encn - Eoon) using different HCHO
observation noise
Observing frequency 3.1.2 Ozone, 9 zno Scenarios 3=0.25 6 frequencies tested:
experiment CO and NO, (0.5-2.5) 1,3, 6, 12, 18, and 24 hours
Observing time 3.1.2 QOzone, 9 xno Scenarios 3=0.25 3 hours 16 different scenarios
experiment CO and NO, (0.5-2.5) tested. Observations are

removed at different
times in each case
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Table 7. Initial peak ozone predictions, true state peak ozone, initial guess ozone prediction
error, and prediction error across the full range of xno (xno is in terms of unitless emission
scaling factor) and the three observing scenarios CN, OCN and HCN. The ozone values and
absolute differences in 0zone mixing ratio are li for 3pm during the final day of the prediction
model. Figure 3 shows what D and G represe@

Tno Scenario  go,(xast") (PPLV) o, (xt,t") (ppbv) G D (ppbv) D (ppbv) D (ppbv)
(ppbv) Scenario CN  Scenario OCN  Scenario HCN
0.5 72.7 79.3 -6.6 -6.3 -0.4 -1.0
0.75 81.3 89.7 -8.4 -8.3 -0.5 -0.7
1.0 85.2 96.3 -11.1 -4.5 -0.6 -0.5
1.25 85.5 100.3 -15.1 -3.3 -0.6 -0.3
1.5 79.7 101.5 -21.8 -4.2 -0.5 -0.1
1.75 66.1 98.7 -32.6 2.2 0.3 0.2
2.0 52.8 89.0 -36.2 1.9 0.3 0.2
2.25 43.6 73.0 -29.4 1.4 0.3 0.2
2.5 371 58.8 -21.7 1.0 0.3 0.2
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Table 8. The a posteriori xyoc error resulting from the 4D-variational data assimilation. The
table shows the variability of the a posteriori VOC emission error (in terms of unitless emission
scaling factor) both with observing scenario and NO emission factor. Errors are represented as
absolute errors of zyoc.

Tvoc - TVoC

Scenario CN  Scenario OCN Scenario HCN

TNO

0.5 -6.4 0.40 8.5x 1072
0.75 9.1 0.33 5.0x 1072
1.0 2.7 -0.01 3.3x 1072
1.25 -1.6 9.87 -2.6x 1072
1.5 -1.7 2.71 -3.6x 1072
1.75 0.77 0.21 2.4x 1072
2.0 0.54 0.20 3.3x 1072
2.25 0.40 0.18 45%x 1072
2.5 0.35 0.18 4.8x 1072
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Table 9. Results from a study exploring the sensitivity of the 4D-variational data assimilation
forecast of peak ozone to varying assumptions regarding, k(t), the diurnal variability of ozone
precursor emissions. Note that in each scenario the cumulative daily emission burden remains
constant for each scenario and thus each scenario has identical E(t). The overbar indicates
that this represents the mean value. The table shows (in ppbv) the modelled ozone for each
alternative k(t) scenario, the differences in true state peak ozone between these alternative
k(t) scenarios and the standard & (¢) scenario, and the absolute errors of the a posteriori ozone
predictions of these alternative k(t) scenarios relative to both the standard and alternative k(t)

scenario true states. All of the ozone mixing ratios are listed for 3pm during the final day of the
prediction and monitoring period.

Assumed k(t) Alternative  Alternative Emission  Alternative Ozone Alternative
Scenario Emission  Scenario True State - Prediction Ozone Prediction
Scenario Standard Emission - Standard True - Alternative
(ppbv) Scenario True State (ppbv) True State (ppbv)
State (ppbv)
Constant 925 2.8 4.0 0.7
Sine Wave 97.6 7.9 8.8 0.5
Saw-Tooth 100.3 10.6 9.7 -14
Offset -1 93.8 4.2 4.7 0.1
Offset -2 98.9 9.0 9.2 -0.2
Offset +1 86.2 -3.5 -4.9 -1.4
Offset +2 83.5 -6.2 -8.6 -2.4
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Fig. 1. The various different profiles of the temporal variability emission factor, k(¢), used in the
analysis of the emission solution sensitivity to diurnal emission variability. The red dashed and
the solid black lines indicate the alternative and standard emissions variabilities, respectively.
The different profiles of variability are indicated at the top of each panel in bold textﬁ
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Fig. 2. A schematic showing how both the a priori and a posteriori emissions relate to the
true emissions of NO, and the modelled peak afternoon ozone that results from these emission
variabilities. Note that the same emission variability is used for all of the anthropogenic chemical
species emitted in the model. The a priori and a posteriori emissions are scaled relative to the
true emissions and these differences can be characterized as being due to different emission
scaling factors (i.e., xno) for the a priori, a posteriori and true emissions. The black solid, green
dashed and red dashed lines show the truth, a posteriori, and a priori emissions, respectively.
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Fig. 3. A representation of the ozone prototype forecasting framework and the 4D-variational
data assimilation results for scenario OCN with 5=0.1. The observation period covers the first
48 hour period of the assimilation during which time pseudo observations are made (at a fre-
quency of every 3 hours in this case) and are used within the assimilation. The observations
are used to constrain the emissions of ozone precursors, which in turn allows the forecasting
model to produce the a posteriori ozone prediction. During the prediction and monitoring pe-
riod the model true state now plays the monitoring role allowing comparisons to be made to
the ozone forecast. The a posteriori ozone prediction represents the forecast for ozone con-
centrations one day in the future. D represents the a posteriori prediction model error and G
represents the a priori and intiuess prediction error. The black solid line, red solid line,
green dashed line, and blue diarmonds represent the truth, a priori, a posteriori, and pseudo
observations, respectively.
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Fig. 4. These plots show the columns of the Jacobian matrix, K, that correspond to the per-
turbations of the three observed species in scenario OCN. Ozone is shown on the left, CO in
the middle, and NO-, on the right. This Jacobian is for the zno = 1.25 emission scenario. The
shaded area represents observations made during the night. NO, observations made using
visible remote sensing instruments can only function during the daytime, so there is no need
to include a row in the Jacobian corresponding to night time NO, observations. The blue, red,
and green solid lines represent qz(x,t)/0zno, qz(x,t)/0zco, and gz (x,t)/dxvoc, respectively.
The y axes on the left and right represent the different perturbations to z.
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Fig. 5. Ozone a posteriori prediction errors across the complete range of parameter space
for zno (0.5-2.5) on the x axis and 3 (0.1-5) along the y axis with each panel presenting the
results from the three observing scenarios CN, OCN and HCN. The coloontours represent
the a posteriori prediction error in units of ppbv. The green and red .@ gicate low and high
levels of a posteriori 0zone prediction error, respectively.
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Fig. 6. xvoc a posteriori errors across the complete range of parameter space for xno (0.5—
2.5) on the x axis and g (0.1-5) along the y axis with each panel presenting the results from
the three observing scenarios A—C. The colored contours represent the a posteriori error. To
allow comparison of the error in zyoc to the true state we note that the true state is defined as
zvoc =6.5. The light blue and green colors indicate low and high a posteriori error on zvoc,
respectively.
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Fig. 7. xno a posteriori errors across the complete range of parameter space for xyo (0.5-2.5)
on the x axis and g (0.1-5) along the y axis with each panel presenting the results from the
three observing scenarios CN, OCN and HCN. The colored contours represent the a posteriori
error. To allow comparison of the error in zy0 to the true state we note that the true state is
defined as the x axis value. The light blue and green colors indicate low and high a posteriori
error on xyo, respectively.
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Fig. 8. The difference between the scenario HCN and OCN a posteriori ozone prediction error
for a range of assumed HCHO observing error scenarios. In all of the previous analyses and
results 5 has been identical for all observed species, but in this sensitivity analysis we scale
for HCHO independently from the other observed species. From left to right HCHO observing
errors are assumed to be 50%, 100%, and 150% of the observing error for the other species.
Thus the right hand panel indicates a scenario with HCHO observations to be of poorer quality
relative to the other species, and represents the difference in ozone prediction error between
the right and middle panels of Fig. 5, and the left panel indicates a rather optimistic case with
assumed HCHO observation errors to be less than the other observed species errors. The
brown and purple contour colors indicate the negative and positive differences between the
scenario HCN and OCN a posteriori ozone prediction error, respectively.
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Fig. 9. The diagonal of the emission averaging kernel for zno on the lower row and zyvoc on
the upper row. Each column represents a different observing scenario (CN, OCN, and HCN).
The x axis denotes the varying value of xno and the y axis shows 5 (0.1-5). The contours
represent the varying magnitude of the diagonal of the averaging kernel matrix from 0 to 1.
The purple and light blue contour colors indicate high and low values of the diagonal of the
averaging kernel matrix, respectively.
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Fig. 10 e absolute increase in a posteriori ozone prediction error between scenario OCN
with f=uz5 and the same scenario with observations removed form specific times over the
course of 2 days (perturbed case), e.g., hour 15 on the second day indicates that no observa-
tions were included in the analytical model calculation of a posteriori 0zone prediction error for
the perturbed case from 3pm on the second day. The green and black colors indicate low and
high values, respectively.
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Fig. 11. The a posteriori ozone prediction error for a variety of observation frequency scenarios
ranging from an observing frequency of 1 hour to once per day. These were calculated for
scenario OCN with 5=0.25. The green and red colors indicate low and high levels of a posteriori
ozone prediction error, respectively.
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