
Responses to Reviewer # 1

We thank reviewer # 1 for taking the time to make a thorough review and for their constructive
remarks. We respond to each of the reviewer’s comments by quoting or summarising the reviewer’s
comments  in  italics,  and by  quoting the changed text  in  the  paper  (shown in  bold  text),  or  by
describing the changes in normal text.

General Comment 1. The reviewer indicated that the presentation quality of the manuscript needs
to be improved. They indicated that Section 2 and the descriptions of each experiment in Section 3
were not very clear or well organised. The reviewer gave several specific  examples of how this
information  was  discussed  in  the  paper  in  separate  locations  without  a  common  link.
Consequently, the reviewer found that readers need to construct the full list of experiments and
their details themselves. As a result, the reviewer recommended that we add a table describing all
of our experiments and that we accompany this table with a paragraph in Section 2.

We thank the reviewer for their recommendation. We agree that these recommended changes
would lead to a substantial improvement to the clarity of the manuscript and that they would
resolve the problems identified by the reviewer. We have implemented changes that differ slightly
from those suggested by the reviewer though. We have added three new tables (Tables 2 and 3
referenced in Section 2.2 and Table 6 referenced in a new Section 2.5) and added a new Section
(2.5) at the end of Section 2 that fulfils the requirements explained by the reviewer. We reduced
the amount of information presented on page 4918 and moved this to the paragraph in Section
2.5. We have also reduced the amount of numbers and information presented in the paragraph on
page 4920 and have moved much of this information into Tables 2 and 3 but kept this discussion in
place in Section 2.2 because these details primarily relate to the photochemical box model. Within
Section 2.5  and Table  6  we now list  all  of  the experiments  that  we carry  out  with  the tools
described in Section 2. 

The reviewer has recommended that we remove Figures 2-4. A reviewer of the previous version of
the manuscript actually asked us to keep Figure 4 in the paper. Also, Figure 4 supports some of our
arguments and responses to comment 3 of reviewer #1. We have changed the captions for Figures
2-3 to make it clear that these are not results but for illustrative purposes only. While we accept
that these figures are superfluous to the reviewer this may not be true for other readers that
perhaps have less background in this field. We therefore wish to keep them in the paper.

General  comment 2.  The reviewer explained that a lot  of  our figures were of  a poor quality.
Specifically,  that  the  numbers  and  labels  were  inconsistent  within  a  single  figure,  and  that
consequently these figures were not very homogenous as a result.

We have now reproduced some of the figures in order to address these concerns. We have now
made the numbers in the x axis of Figure 2 larger to be more consistent with the y axis. We have
improved the resolution of Figure 3. Unfortunately its resolution was degraded in the typesetting
process. We have enlarged the numbers in the Figure 4 x axis to be more consistent with the y
axis. In Figures 5-9 the numbers in the x axis are not the same size of the y axis. However, due to
the dimensions of these figures, and the requirement from a previous reviewer to enlarge the
labels,  it is not possible to have the labels on both axes to be the same size.

General  comment  3.  The  reviewer  questioned  our  inclusion  of  the  CO  observations  into  our
experiments.  The reviewer explains that we describe “…that CO observations do not influence
significantly the ozone forecast”, and that our paper focuses on the results from ozone and HCHO.
Therefore, to them, it is not clear why we included CO. The reviewer proposes several explanations



for its inclusion while seeking clarification, and also says that it would be interesting to see results
that combine ozone and HCHO measurements.

Having  reflected  on  the  reviewer’s  comments  we  can  see  that  our  results  and  experiments
regarding CO have not been described precisely enough and that consequently, the justification
for including CO was not made very clear. A couple of important details were either not included
or  not  well  described.  In  addition,  the  reviewer’s  statement  “…that  CO  observations  do  not
influence significantly the ozone forecast” is not precisely what we said nor is it correct for all
cases of observation noise. We therefore now clarify the situation and show the changed text
below.

First,  in  our  experiments,  working  on  the  timescale  of  three  days,  and  consistent  with  prior
knowledge, ozone is less sensitive to changes in CO concentrations compared to NOx and VOCs.
Thus, ozone is overall less sensitive to changes in CO emissions, and, therefore, ozone predictions
are less sensitive to CO emission uncertainties.

However, on the timescale of our air quality forecasting scenario, ozone is still sensitive to very
large  changes  in  CO  concentrations  and  consequently  to  large  changes  in  its  emissions  and
similarly to large uncertainties in their emissions. In each of the CN, OCN, and HCN scenarios,
where  = 0.1-1.0 ( is the noise parameter), CO emission uncertainties are sufficiently low (i.e.
EXCO < 0.1) that the effect on ozone prediction uncertainties would be less than 0.5 ppbv (estimated
based purely on the perturbation predicted from the Jacobian). Only in the  = 5.0 scenario, where
the uncertainty on XCO is 1.1, are the XCO emission uncertainties large enough to lead to significant
ozone forecast uncertainty, i.e.  5 ppbv.

These results in the paragraph above show it is desirable to resolve CO emissions to a sufficient
degree in  order  to  improve ozone forecasting.  However,  the requirements  for  CO observation
noise needed to achieve a sufficient estimate of the CO emissions, and consequently a good ozone
forecast,  are  much  lower  than  for  either  the  observations  affecting  NOx  or  VOC  emission
estimation. Further, and consistent with a point already made in the paper, the estimation of CO
emissions is only dependent on observation noise and is independent of photochemical regime.

Given the points above, we would like to change the text in the paragraph at the end of section
3.1.1.1 from:

“Until now, we have not directly discussed the impact of CO observations or of the resolution of
CO emission uncertainties within the assimilation framework. We do not show a figure here, but a
posteriori CO emission uncertainties are virtually invariant with respect to photochemical regime
and to the observing scenario  (CN,  OCN, or HCN).  The a posteriori  CO emission uncertainties
increase from 1 × 10−5 to 1.1 with increasing observing noise from β = 0.1 to β = 5.”

to:

“Until now, we have not directly discussed the impact of CO observations or of the resolution of
CO emission uncertainties within the assimilation framework. We do not show a figure here, but a
posteriori CO emission uncertainties are virtually invariant with respect to photochemical regime
and to the observing scenario  (CN,  OCN, or HCN).  The a posteriori  CO emission uncertainties
increase from 1 × 10−5 to 0.1 as the observing noise increases from β = 0.1 to β = 1.0, respectively.
According to the sensitivity of ozone to XCO in the jacobian  K’, these relatively low levels of CO
emission uncertainty would only lead to perturbations in ozone of 0.5 ppbv at most. For the case
with the highest amount of noise, β = 5.0, the a posteriori CO emission uncertainty reaches 1.1.
Again, using K’, we can estimate that this larger level of CO emission uncertainty could lead to a
about a 5 ppbv perturbation in ozone. Therefore, only the β = 5.0 noise scenario leads to large



enough a posteriori CO emission uncertainties that can have a significant effect on a posteriori
ozone prediction errors.”

We also change the text in the paragraph at the end of 4.1 to:

 “We have indirectly performed a sensitivity test to see if CO observations affect ozone a posteriori
prediction errors. We can address their potential impact within the OCN scenario by examining the
jacobian matrix (see Fig. 4). This shows that ozone is relatively insensitive to perturbations in CO
emissions and, therefore, also to a posteriori CO emission uncertainties. In fact, it appears that
only the   =  5.0  noise scenario  has  sufficiently  large a posteriori  CO emission error  to  cause
significant a posteriori ozone prediction error (about 5 ppbv).”

The inclusion of CO observations in the different scenarios is useful and we now include more
discussion  about  CO  within  the  final  version.  The  reviewer  also  mentions  that  it  would  be
interesting to examine a scenario using both O3 and HCHO. We did include results from a scenario
using O3 and HCHO in the HOCN scenario. We think that a comparison between the HOCN and CN
scenarios adequately tests for the sensitivity of the inclusion of O3 and HCHO. 

Responses to specific comments

P 4912, line 25: the representativity of the measurement should also be discussed. It can bring some
limitations when used for data assimilation.

We agree with the reviewer that it would be interesting to discuss this point. We have added the
following text to a separate paragraph immediately after the one highlighted by the reviewer:

“Surface station in-situ data is made at a high spatial resolution, which is typically much higher than
most air quality models. As a result, this introduces the problem of having representativity errors
between the model, which is unable to represent fine-scale variability, and the observations that can
measure this variability. This problem therefore limits the efficacy of data assimilation and systems
need to be carefully designed to take this type of error into account.” 

P4914,  lines  3-4:  reference  to  Fu  et  al.,  ACP,  2013  and  Cuesta  et  al.,  ACP,  2013  concerning
multispectral retrievals (IR+UV) of ozone should be added.

We have now added these references.

P4923, references to Fig. 3 and eq. 12: the choice of E is not judicious as it is already used for the
emissions. I am not sure this figure is very useful. One understands the process by the text.

We have changed E to D.

P4923, line 10: It is not clear for me why the figure “demonstrates the mechanism by which : : :”. It
seems  quite  obvious  and  well  admitted  for  a  secondary  pollutant  that  the  improvement  of  its
precursor emissions will improve its concentrations.

We thank the reviewer for identifying this problem. We have removed this sentence.

P 4924, line 11: I do not understand what the authors mean by this sentence and what the interest is.
They need the Jacobian to go through the error analysis, so it is not redundant.

We meant that Jacobian is redundant specifically for 4D-var. This statement is true because it plays
no role in 4D-var.  The uncertainty analysis is a framework external to 4D-var that we can use to



characterise the errors.  However, to improve the clarity  of the manuscript we have changed the
statement from:

“The  Jacobian  matrix  is  redundant  within  4-D-variational  data  assimilation,  but  it  can  help
characterize the uncertainties…”

To:

“The Jacobian matrix can be used to help characterize the variance…”

P 4924,  line  13-14:  I  would  rephrase  the  sentence  more  like  this:  "Within  our  framework,  each
element of K represents the forward: : :.”.

We thank the reviewer for this recommendation and have changed the text accordingly.

P 4934, reference to Tab 5.: For the OCN scenario, 2 very large values are reported in the table for
XNO=1.25 and 1.5. Are they correctly reported? IF yes, they should be discussed.

These values are correctly reported. These high values occur because the L-BFGS algorithm is only
able to find a solution in a local minimum. The XNO = 1.25 and 1.5 scenarios are neither NOx limited
or VOC limited. The low sensitivity of ozone to the XVOC parameter therefore likely explains the
difficulty the algorithm has in finding the global minimum. We should point out that this error only
has a minimal impact on the ozone prediction error because ozone is not strongly sensitive to XVOC
for this XNO range. We have therefore added the following text:

“There are also examples where ozone precursor emissions are poorly resolved, but this has only
minimal impact on the ozone prediction error, D. This occurs for the OCN scenario when XNO ranges
from  1.25  to  1.5.  For  these  cases  the  unresolved  error  on  XVOC is  larger  than  for  many  other
situations.  Again,  this  occurs  because  the  L-BFGS  algorithm is  only  able  to  find a  local  minima.
However, in these instances, the relatively low sensitivity of ozone to XVOC means that the resulting
ozone prediction errors are relatively low as well.”

P4935, reference to Tab. 6: What about the ozone concentrations outside the ozone maximum? Is the
influence similar?

The influence is very similar outside of the maximum. We have now added this text to the relevant
paragraph discussing Table 6:

“Although we only  show the differences  in  the maximum ozone mixing  ratios,  this  behaviour is
reproduced in the ozone mixing ratios at other times during the sunlit day. This further confirms our
general findings from these tests.”

Technical comments:

P 4915, line 10: change “pre-cursor” to “precursor”

P4922, line 19: Is the notation xˆt within the gradient consistent with the notation use elsewhere in
the text?

P4924, line 5: change “emissions” to “emissions estimates”

P4929, line 26: it should be “HCN scenario” and not “HCHO scenario”



P4935, line 1: change “varibility” to “variability”

P4945, line 27: change “may too be insufficient” to “may be too insufficient”.

All of the technical remarks shown above have been addressed.



Responses to Reviewer # 2

We thank reviewer # 2 for taking the time to make a thorough review and for their constructive
remarks. We respond to each of the reviewer’s comments by quoting or summarising the reviewer’s
comments  in  italics,  and by  quoting the changed text  in  the  paper  (shown in  bold  text),  or  by
describing the changes in normal text.

Responses to specific comments

Abstract:  There  are  several  formulations  in  the  abstract  which  somewhat  obscure  the  scientific
content. Examples are “a variety of analyses”; “characteristics of “; “to support”; “various sets of”;
“our principle method”; “which is the primary focus of this work”; “simple but key”; “our framework’s
ability”; “These questions are designed to examine”; “establish the robustness”. The clarity of the
abstract may be improved by removing several of these phrases.

We have changed the text according to some of the reviewer’s recommendations.

Abstract: “complimentary”

We have corrected this mistake. Thanks.

Introduction: In general the introduction is well written. I found the content a bit too focussed on the
USA, and the authors may consider to add 1-2 lines to balance this a bit more. A reference to MACC is
missing, e.g. the recent GMDD paper by Marecal is relevant.

We have added this reference. Thank you.

p4915, l7: “simplistic”. This is a very negative word.

We have removed this word.

Scenarios: why do all scenarios include CO ? A scenario with O3, NO2 and HCHO would make sense to
me, given the techniques to measure these compounds with satellites. Would that make any change
to the ozone forecasts?

Although ozone is relatively weakly sensitive to CO on the three day timescale of our simulation,
large  perturbations  in  CO  concentrations  can  lead  to  non-negligible  perturbations  in  ozone.
Therefore,  large  unresolved  uncertainties  in  CO  emissions  can  contribute  to  significant  ozone
prediction  uncertainty  (for  more  detail  please  refer  to  the  response  to  reviewer  #1’s  general
comment 3). It was therefore interesting to examine CO in the scenarios we chose. We have added
text to Sections 3.1.1.1 and 4.1 to discuss this point. Also, the performance of CO observations and
the  resulting  CO  emission  inversions  are  close  to  equal  in  all  three  of  the  CN,  OCN,  and  HCN
scenarios. Therefore, its inclusion in each of our scenarios allows us to examine the effects of ozone,
NO2,  and  HCHO  to  this  system  without  having  to  simultaneously  consider  the  removal  of  CO
observations in one or more of the other scenarios. Overall, this allows us to use fewer observing
scenarios.  Finally,  the  HOCN  scenario  highlights  the  value  of  combining  HCHO  and  ozone
observations relative to either the HCN or OCN scenarios.

p4918,  l2:  “averaging kernel  and DFS”.  Readers  may associate  “averaging kernels”  with  satellite
retrievals. It is good to make clear that emission averaging kernels are meant here.

We thank the reviewer for identifying this problem. We have changed the text in several places to
make this point clearer.



p4918, l14: What is a 1D box model. For me, a box model is 0D. If 1D, how many layers? Or does the
1D refer to time?

It would be better if we referred to our model as pseudo 1D. The model in actual fact contains a
single vertical layer, but we use a boundary layer parameterisation with a pre-set diurnal variability
to alter the mixing height in the model. We have therefore changed the text to reflect this point
more clearly.

“A pseudo 1-Dimensional photochemical box model was built ...”  

“The model is not truly 1-Dimensional in the vertical because we use a parameterisation to describe
variability in the boundary layer height and mixing volume.”

p4919, l1:  Isoprene emissions and concentration: please give the reader an impression what this
corresponds to (e.g. “typical concentrations for Summertime North-East USA, Summertime Southern
California”?). Similar for the anthropogenic VOC emissions: is this typical for urbanised regions? (Is
mentioned later, but good to mention it here as well)

We have completely reorganised section 2.2 to state more clearly, and earlier in the text, that the
model is set up for conditions in urbanised Southern California. We are then able to refer back to this
text when we discuss the emissions in the model.

p4919, l10: Again it is unclear what the “box” in the box model represents. Is it the entire boundary
layer?

We  have  changed  the  text  to  reflect  that  the  box  vertical  height  represents  the  height  of  the
boundary layer.

“In our model, the vertical extent represents the full depth of the boundary layer.”

p4919, l22: Can emissions be adjusted with an hourly time step, or longer (e.g. daily)?

This is possible, but the complexity of the data assimilation increases greatly when doing so, and the
difficulty in carrying this out would also greatly increase. We think the increases in complexity and
difficulty mean that these are issues better explored in future work and are beyond the scope of this
paper.

p4922, l1: remove subscript at end of the line.

We have corrected this problem.

p4922, eq 10: S_nˆ{-1}

We have corrected this problem.

p4923: I do not understand eq 11. Does “xt” mean “true state” ?

Yes, xt is the true state of the emissions.

p4923: What does “x” mean in this case. Again, is this the “true” state? It seems “x” has a different
meaning here as in eq.8 ?

There is actually an error here in several places.  x has been written instead of  xt. The ozone true
state at time, t, has been written as qO3(x, t) but should be qO3(xt, t). We have changed the text
to reflect this. This also affects equations 12, 13, and 14. These have been changed accordingly.



p4924, l12: “characterise the uncertainties on x and q”. But I thought “x’ is the uncertainty. So, the
sentence reads like “characterise the uncertainty of the uncertaity”. Is this what is meant?

x tilde is actually the error on the emissions. So what we wrote was the uncertainty on the error. The
accompany text has been changed to state that this method can be used to estimate the variance on
these parameters.

p4925, l8: “z = O3 : : :”. Should this be “y = O3 : : :” ?

We have changed this from z to y.

Caption fig 4: q_Z(x,t)/dx_NO is repeated 3 times. What are the three colors?

Thank  you  for  identifying  these  errors.  We  have  changed  the  text  and  have  now  added  an
explanation of the colours.

Fig 9: lower is NO and upper is VOC ?!

We apologise for this error. We have corrected this figure. Thank you for identifying the problem.

p 4933, top: For Fig 11 it would be interesting to understand if the error reduction is due to the
diurnal  sampling,  or  to  the  reduction  of  the  noise.  More  observations  (n)  effectively  implies  a
1/sqrt(n) decrease of the error. Would the same reduction be obtained if all observations were taken
on the same hour? Figure 10 shown that the time of observation is crucial. How does this relate to
fig.11 ? For instance: for a sampling distance of 12h, what are these two hours?

We agree with the reviewer that is a point of interest. Figure 10 does imply that there should be an
effect on ozone prediction due to the interaction between observing frequency and how this limits
the specific times observations can be made. Figure 10 implies that the decrease in error will not
simply follow 1/sqrt(n) because observations made at  certain times of day appear to have more
value compared to others. In Fig 11 we include results from only a single set of observing times for
each of the different observing frequencies, e.g.,  for an observing frequency of 3 hours we used
observations at 0, 3, 6, 9, 12, 15, 18, 21, 0 hours as opposed to 1, 4, 7, 10, 13, 16, 19, 22. All of the
other observing frequency scenarios  began their  observing cycle at  time 00:00 of  the observing
period. We do think it would be interesting to explore the interaction between observing frequency
and observing time and we would like to explore this topic in a future article. However, we feel that a
study of this interaction would be beyond the scope of this paper, and that it would add extra details
and length to an already sizeable manuscript. We have added the following text to discuss these
issues at the end of section 4.3:

“It is likely that there is an effect on ozone prediction error due to the interaction between observing
frequency and observing time. Figure 10 implies that observing scenarios measuring at the same
frequency could  yield  different  prediction errors  due  to  when they actually  sampled during  the
diurnal cycle. However, in each test we made at a particular observing frequency the observations
were made at a fixed specific set of times, and so our work does not address this issue. We do think
that this is interesting and relevant to evaluating different types of observing scenario, and we would
therefore like explore this problem in a future paper. ”

Table 3, 4, 5: what is the unit of the numbers presented?

The variables in Tables 3 and 5, and the XNO variable in Table 4 are the unitless emission scaling
factors. We have added a note to the captions to explain this.



3.2.2. Table 6 not easy to understand. What does “ozone prediction error – standard true state”
mean? Error-minus-state does not make sense.

We agree. This is an error and have therefore corrected it.

p4936, top: I do not understand the message behind the comparison in Fig. 12. Evidently there is a
clear weekly cycle. However, on top of that there is the full day-to-day variability of weather-related
processes  and  emission  variability  which  complicate  reallife  comparisons  as  compared  to  the
simplified box model approach. In fact, for me Fig 12 is not really useful for this study and may be
removed.

We had wanted to use this to show that within urban areas the diurnal variability and inter-diurnal
variability of anthropogenic emissions is relatively invariant during the midweek, and that one could
therefore assume that it was reasonable to use a consistent profile of emission variability from one
day  to  the  next  in  the  simulation.  However,  following  the  reviewer's  recommendation we have
removed this figure and the paragraph that discusses this issue.

p4937,  l27:  “demonstrated  our  framework’s  relevance“  I  do  not  understand  what  is  meant  by
demonstrated here. Clearly many issues, such as the various modelling uncertainties, role of vertical
distribution, as well as the ground and satellite observation characteristics (kernels, representativity)
are not discussed.

We wanted to explain that we have made the first demonstration that our framework is able to
address this kind of technical problem, and this is a minimum requirement for the framework to be
“relevant”  to  air  quality  forecasting.  We  recognise  that  there  are  many  more  difficulties  and
challenges that would have to be overcome in a real-world situation. We have therefore changed the
text to reflect this more clearly from:

“This therefore demonstrated our framework’s relevance to future air quality forecasting systems
that might utilize state of the art assimilation and observations made using either the ground station
network or from orbiting satellites.”

to:

“This therefore demonstrated our framework’s relevance to future air quality forecasting systems
that might utilize state of the art assimilation and observations made using either the ground station
network or from orbiting satellites.  Clearly, more difficulties and challenges remain before such a
framework could be used in a real-world setting, such as how to incorporate averaging kernels of
satellite measurements into the assimilation system or accounting for representativity errors.”

p4942,  l  14-15:  Apart  from  future  4D-Var,  do  the  authors  think  that  (ensemble)  Kalman  filter
approaches could deliver similar results?

There are  differences in  these two data  assimilation approaches that limit  the type of  emission
solution each can generate. Specifically, Kalman filter approaches are limited by only being able to
arrive at emission inversions in future model timesteps. Besides these differences, the Kalman filter
method could  still  be  used  to  solve  emission  inversion  problems for  different  observations  and
targetted emissions and it uses model sensitivities of concentrations to emission changes to do this.
Therefore, some of our conclusions regarding the effects of photochemistry on emission inversion
will still be relevant. We have therefore added the following text:

“Note too that Kalman filter methods can also be used in this application and we should expect that
the performance of this method will be similarly affected by photochemistry.” 



p4943, l2: “are the first to demonstrate this novel approach” Is this true? For instance, Miyazaki et al.
(doi 10.5194/acp-12-9545-2012) assimilate ozone and NO2, and the system adjusts the emissions.

We have now modified the text to reflect this:

“…ozone observations with either NO2 or HCHO observations would be beneficial, consistent with
Miyazaki et al. (2012), we have actually shown that it could be highly advantageous.”

p4944, l14: “non of the current generation of LEO satellites possesses a reliable means of attaining
instrument sensitivity to the boundary layer for these gases.” Is this true?

In particular in the UV and SWIR spectral ranges there is sensitivity to the ground, and the signals
measured with LEO instruments show a clear signal in NO2 and HCHO (in fact also CO) originating
from the BL.

The text describing this point is not precise enough. We meant to say that this sensitivity is not
unique to the boundary layer for single instruments (this in itself is not true either, see below). In the
case of NO2 and HCHO, the vertical sensitivity is too broad to uniquely resolve the boundary layer.
One  can  assume  that  these  pollutants  are  concentrated  in  the  boundary  layer,  but  this  is  not
information derived from the satellite instruments themselves. We do, however, recognise that the
SWIR channel on MOPITT does give this instrument reliable sensitivity to boundary layer CO over
widespread areas of land surface (Worden et al. 2013).

We have therefore changed the relevant text from:

“However, none of the current generation of LEO satellites possesses a reliable means of attaining
instrument sensitivity to the boundary layer for these gases.”

to:

“However,  only one of the current generation of LEO satellite instruments (MOPITT) possesses a
reliable  means  of  attaining  unique  instrument  sensitivity  to  the  boundary  layer  for  these  gases
(Worden et al. 2013).”

p4945, l6: Perhaps good to mention the night-time mixing (of ozone) between the boundary layer
and free troposphere.

We thank the reviewer for this suggestion and we have therefore changed the text from:

“Of course, if the effects of transported pollution were to be considered, making observations during
the night could offer additional utility by improving the estimated contribution to the pollution made
by this process.”

to:

“Of course, if the effects of transported pollution were to be considered, such as the night time
mixing of ozone between the boundary layer and free troposphere, then making observations during
the night could offer additional utility by improving the estimated contribution to the pollution made
by this process.”
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Abstract

We conduct a variety of analyses to assess how the characteristics of observations
of ozone and its precursors affect their ability to support air quality forecasting and
research. To carry out this investigation we use a photochemical box model and its ad-
joint integrated with a Lagrangian 4D-variational data assimilation system. Using this5

framework in conjunction with various sets of pseudo observations we perform a ozone
precursor source inversion and estimate surface emissions. We then assess the result-
ing improvement in ozone air quality forecasting and prediction. We use an analytical
model as our principle method of conducting uncertainty analyses, which is the primary
focus of this work

:
to

:::::::::
conduct

:::::::::::
uncertainty

:::::::::
analyses. Using this analytical tool we address10

some simple but key questions regarding how the characteristics of observations af-
fect our framework’s ability to constrain ozone precursor emissions

::::::
ozone

::::::::::
precursor

:::::::::
emission

:::::::::
inversion

:
and in turn to predict ozone

::::::
ozone

::::::::::
prediction. These questions

include what the effect is of choosing which species to observe, of varying amounts
of observation noise, of changing the observing frequency and the observation time15

during the diurnal cycle, and of how these different scenarios interact with different
photochemical regimes. These questions are designed to examine

:::
will

::::::::
address

:
how

different types of observing platform, e.g., geostationary satellites or ground monitoring
networks, could support future air quality research and forecasting. In our investiga-
tion we use three observed species scenarios: CO and NO2; ozone, CO, and NO2;20

and HCHO, CO and NO2. The photochemical model was setup to simulate a range
of summertime polluted environments spanning NOx (NO and NO2) limited to volatile
organic compound (VOC) limited conditions. We find that as the photochemical regime
changes the relative importance of trace gas observations to constrain emission esti-
mates and subsequent ozone forecasts varies. For example, adding ozone observa-25

tions to an NO2 and CO observing system is found to decrease ozone prediction error
under NOx and VOC limited regimes, and complementing the NO2 and CO system with
HCHO observations would improve ozone prediction in the transitional regime and un-
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der VOC limited conditions. We found that scenarios observing ozone and HCHO with
relative observing noise of lower than 33% were able to achieve ozone prediction errors
of lower than 5 ppbv (parts per billion by volume). Further, only observing intervals of
3 hours or shorter were able to consistently achieve ozone prediction errors of 5 ppbv
or lower across all photochemical regimes. Making observations closer to the pre-5

diction period and either in the morning or afternoon rush hour periods made greater
improvements for ozone prediction. Finally, we made two complimentary analyses
that establish the robustness of our conclusions

:::::::::::::::
complementary

::::::::::
analyses

::::
that

::::::
show

::::
that

::::
our

::::::::::::
conclusions

:::
are

:::::::::::
insensitive

:
to the assumed diurnal emission cycle and to the

choice of which VOC species emission to estimate using our framework.10

1 Introduction

Ozone is a hazard to human health, plants and animals and a greenhouse
gas (Mustafa, 1990; Pryor, 1992; Murphy et al., 1999; Fumagalli et al., 2001; Nali et al.,
2002; IPCC, 2007; Van Dingenen et al., 2009; WHO, 2013). Prediction of ozone air
quality on local and regional scales is key for providing prior warning of impending15

ozone exceedances (Dabberdt et al., 2004, 2006). Knowledge of the processes that
control the variability of ozone precursors is vital for understanding and predicting
ozone air quality.

Currently, a wide variety of techniques are used to pre-
dict ozone concentrations ranging from statistically based models20

(Gardner and Dorling, 2000), neural networks (Yi and Prybutok, 1996), to
prognostic models of atmospheric processes that include data assimila-
tion (Grell et al., 2005; Otte et al., 2005; Zhang et al., 2008; Kang et al., 2010)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Grell et al., 2005; Otte et al., 2005; Zhang et al., 2008; Kang et al., 2010; Marécal et al., 2015) .

For prognostic models, uncertainties result from meteorology, the limitations of the
photochemical mechanisms, wet and dry deposition, uncertainties in the emissions of25

ozone precursors, and, for data assimilation, observation uncertainty (Dabberdt et al.,
2004, 2006). Most current statistical and data assimilation air quality forecasting
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techniques rely primarily on surface observing networks, but satellite observations are
increasingly coming to the fore.

Ozone pollution can develop under different polluted photochemical regimes. Under
low to moderate levels of NOx (NO and NO2) pollution, such as can be found in rural
and suburban environments, increases in NOx lead to proportional increases in ozone,5

which is why this regime is classed as NOx-limited (Trainer et al., 1987; Sillman, 1993;
Jacob et al., 1993). Under much higher levels of NOx pollution, i.e., those present in
densely populated regions, increases in NOx actually bring about decreases in ozone.
Under these conditions, the only means by which ground level ozone can increase are
via increases in VOC emissions (Finlayson-Pitts and Pitts, 1997), and consequently10

this regime is considered to be VOC-limited. Further, studies show that the sensitivity
of ozone to either NOx or VOCs can vary with time, e.g., during different days of the
week (Blanchard and Fairley, 2001; Blanchard and Tanenbaum, 2003). The priorities
to monitor and observe ozone and its different precursors therefore vary according to
location and time.15

Observations and models, and their combination through data assimilation, com-
prise essential tools for air quality prediction (Zhang et al., 2008; Strunk et al., 2010;
Zhang et al., 2012). Observations are an essential part of such systems, so it follows
that their characteristics could directly affect their performance. We seek to address
this connection in our study. Given this, we will now attempt to review the relevant20

characteristics of the current and planned (in the near term) state of the air quality
monitoring network in order to motivate our work and, later, to place some of our find-
ings in context.

The US national surface air quality observing network typically observes a wide
range of chemical species. For instance, surface monitoring sites within California25

(http://www.arb.ca.gov/adam/) have instruments that can measure in-situ ozone, CO,
NO2, nitrogen oxide, particulate matter with diameters of 2.5 µm and 10 µm, sulphur
dioxide (SO2), methane, total hydrocarbons, and hydrogen sulphide. The surface net-
work is also usually able to make observations at least at hourly temporal resolution.
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However, due to the spatial limitations of the surface air quality monitoring network,
space-borne remote sensing observations, which typically have greater spatial sam-
pling, are also able to support air quality research and later operational air quality
forecasting (Lahoz et al., 2012).

::::::::
Surface

:::::::
station

:::::::
in-situ

:::::
data

::
is

:::::::
made

::
at

::
a
:::::
high

::::::::
spatial

::::::::::
resolution,

:::::::
which

::
is
:::::::::

typically5

:::::
much

:::::::
higher

:::::
than

::::::
most

:::
air

::::::::
quality

::::::::
models.

::::
As

::
a
:::::::
result,

::::
this

:::::::::::
introduces

::::
the

:::::::::
problem

::
of

:::::::
having

::::::::::::::::
representativity

:::::::
errors

:::::::::
between

::::
the

::::::::
model,

:::::::
which

::
is

::::::::
unable

:::
to

::::::::::
represent

:::::::::
fine-scale

:::::::::::
variability,

:::::
and

::::
the

::::::::::::::
observations

::::
that

:::::
can

::::::::::
measure

::::
this

:::::::::::
variability.

::::::
This

::::::::
problem

::::::::::
therefore

::::::
limits

::::
the

::::::::
efficacy

:::
of

:::::
data

:::::::::::::
assimilation

:::::
and

:::::::::
systems

::::::
need

:::
to

:::
be

::::::::
carefully

::::::::::
designed

::
to

:::::
take

::::
this

:::::
type

::
of

:::::
error

::::
into

:::::::::
account.

:
10

For this study, the spatial characteristics of observations from different platforms are
not considered, but the advantages satellite data offer in terms of increased spatial
coverage have been recognised and should be noted. Consequently, various studies
have been conducted that highlight the benefits of satellite borne instruments for air
quality research (Martin, 2008; Duncan et al., 2010; Jones et al., 2009; Bowman et al.,15

2009; Kurokawa et al., 2009; Konovalov et al., 2006; Millet et al., 2008; Kopacz et al.,
2010; Arellano et al., 2006; Dufour et al., 2010; Fishman et al., 2010). Further, satellite
observations of air pollutants have been used within data assimilation models to ad-
vance air quality research (Sandu et al., 2003a; Chai et al., 2007; Pierce et al., 2007;
Zhang et al., 2008; Parrington et al., 2009).20

Excluding the issue of spatial sampling, there are considerable differences between
remote sensing observations and the existing surface observing network. Each indi-
vidual ground station is able to observe a wider range of species at the surface (see
above) but only at a single point. On the other hand, space-based remote sensing
techniques can only observe a limited number of species that have relevance to air25

quality (such as ozone, CO, NO2, SO2, CH4, glyoxal, and HCHO), have coarser hor-
izontal spatial resolution observing with a footprint ranging from several to up to tens
of kilometers, and have (with current capabilities) only limited vertical resolution and
sensitivity to the surface or boundary layer. Also, all of the studies cited above used
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instruments onboard satellites in low earth orbit (LEO). Due to the orbital configura-
tion, LEO borne instruments are only able to observe the same location on a far more
infrequent basis compared to the temporal sampling of the ground based network.

Instruments onboard geostationary (GEO) satellites can also offer good spatial
coverage (at the continental and regional scale) without sacrificing temporal sam-5

pling. This makes them potentially ideal to support future air quality research and
forecasting. However, in order to achieve this goal, developments must be made
to improve satellite instrument sensitivity to the boundary layer and surface gas
phase composition (Lahoz et al., 2012). Various strategies have been proposed
to achieve this aim (primarily for CO and ozone). They typically consist of either10

combining wavelength bands that have been previously exploited, i.e., UV, visible, and
IR (Landgraf and Hasekamp, 2007; Worden et al., 2007, 2010)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Landgraf and Hasekamp, 2007; Worden et al., 2007, 2010; Fu et al., 2013; Cuesta et al., 2013) ,

or by focusing on new wavelength bands, i.e., the Chappuis bands for ozone in the
visible (Zoogman et al., 2011) that offer potential novel benefits. The UV and Chappuis
band in the visible were combined theoretically to determine the benefit of such an15

approach during the development of the TEMPO instrument (Zoogman et al., 2014)
and as part of an European intiative (Hache et al., 2014).

As a result of the perceived benefits, several GEO missions are currently in
the various stages of planning. These include the Geostationary Coastal and
Air Pollution Events (GEO-CAPE) planned by NASA to cover the North Amer-20

ican continent ((http://science.nasa.gov/earth-science/decadal-surveys/)). Sentinel
4 (http://www.esa.int/esaLP/SEM3ZT4KXMF LPgmes 0.html) is planned by ESA to
cover Europe, and the Geostationary Environment Spectrometer (GEMS) (Lee et al.,
2009) is aimed at providing coverage of East Asia. Further, NASA’s decadal survey
and Lee et al. (2009) indicate that GEO-CAPE and GEMS will observe the following25

trace gases: ozone, CO (not with GEMS), NO2, HCHO, and SO2.
GEO based observations of trace gases are therefore becoming more relevant for

the study of air quality and for operational air quality forecasting. For the planned GEO
missions, various choices exist regarding which wavelength bands to observe in, and
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these will influence the already limited range of observable species in the troposphere.
In addition, instrument design choices affect how often observations can be made, at
what time of day, and how well. For instance, thermal infrared (TIR) based instruments
can not measure NO2, and UV-VIS instruments can not observe during the night time.
Thus, instrument design choices will affect the future capabilities of these missions.5

We have demonstrated that a range of possible capabilities and characteristics exist
for both the current and planned air quality observing systems (ground and satellite
based). Within the scope of this paper, we study how the frequency and specific timing
during the day of observation, the species that get measured, and how well they get
measured affect the ability to conduct air quality research and to aid air quality fore-10

casting using a data assimilation system. This interaction between observation char-
acteristics and data assimilation system performance remains an open question in this
context. Therefore, addressing this question will be of interest to the current air qual-
ity observing network and to the planned or future GEO air quality focused missions.
In order to do this we carry out a series of sensitvity analyses using different sets of15

simplistic pseudo observations to test the influence various observation characteristics
have upon the ability to predict ozone within an idealised model. This model consists
of a photochemical box model, its adjoint, and a 4D-variational data assimilation sys-
tem setup to constrain ozone pre-cursor

:::::::::
precursor

:
emission uncertainties (NOx, CO,

and VOCs). This framework thereby mimics a state of the art air quality forecasting20

system. We conduct an uncertainty analysis using a linear estimation technique for
each of our sensitivity tests. We are able to perform the uncertainty analysis owing to
the fact that we use a box model because it limits the size of the matrices we solve
for. Within the context of a summertime ozone pollution episode that emerges during
stagnant anticyclonic conditions we attempt to address the following specific aims:25

– How does the ability to predict ozone vary across three separate observing sce-
narios? The first uses only CO and NO2 observations (CN), the second uses
Ozone, CO, and NO2 (OCN), and the third uses HCHO, CO, and NO2 (HCN).
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– What are the effects of both observing frequency and the choice of when to ob-
serve on the prediction of ozone within our framework?

– How does observation noise, when applied evenly onto each observation, affect
ozone prediction in our system?

– How are the results of these sensitivity tests affected by photochemical regime?5

I.e., either NOx or VOC limited.

– Ignoring ozone prediction, which combination of observed species allows the best
constraint on ozone precursor emissions?

In order to support our conclusions regarding the aims above we carry out a variety
of complementary analyses:10

– To demonstrate that the 4D-variational data assimilation scheme can solve the full
non-linear retrieval of the emission parameters.

– To test the robustness of our methodology to choices regarding our assumed
diurnal emission profile.

– To test whether the assumed VOC emission uncertainties can be represented15

using different VOCs.

Section 2 describes all aspects of the methodology, section 3 describes the results from
each of the analyses, section 4 discusses our results, section 5 details our conclusions.

2 Methodology

2.1 Overview20

We use a photochemical box model run over 3 days to represent a worsening pe-
riod of ozone air quality during a stagnation event. Meteorological stagnation events
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under hot, sunlit conditions over urban areas typically lead to poor ozone air qual-
ity (Jacob et al., 1993; Valente et al., 1998). We assume that the idealised mixing and
transport represented in the box model are sufficient to represent the meteorology dur-
ing anti-cyclonic conditions. For each of the different sensitivity tests that we perform
we use different sets of pseudo observations of ozone, HCHO, CO and NO2 (see sec-5

tion 2.3, and examine Fig. 3 to see an example of the pseudo observations relative
to the true ozone state) in order to separately constrain the ozone precursor emis-
sions with the 4D-variational data assimilation system. The ozone percursor emissions
have known a priori errors. We then make a prediction of ozone using the a posteri-
ori emissions. Within the model framework, days 1-2 represent the period over which10

observations are made and the assimilation is carried out and the final day represents
the prediction and monitoring period. Within this final phase, we compare the ozone
prediction, based upon the a posteriori emissions, to the ozone true state in order to
assess the assimilation performance. We support this assessment using a range of
statistics and diagnostics that shall be discussed shortly.15

The use of 4D-variational data assimilation to solve the ozone precursor emission
inversion problem is consistent with the current state of the art in prognostic air quality
forecast modeling development. For example, the Community Multi Scale Air Qual-
ity Modeling System, Hakami et al. (2007) and the Sulfur Transport Eulerian Model,
Zhang et al. (2008), and Elbern et al. (2007) are all developing such assimilation ca-20

pabilities. Thus, our model framework is relevant to and is reflective of the current and
future direction of air quality forecasting.

In order to establish the utility of more complex air quality forecasting systems that
might use 4D-variational data assimilation, our prototype forecasting system is demon-
strated theoretically. Since the emission inversion problem that we explore only be-25

comes more complex as the model state space increases and additional sources of
uncertainty are introduced, a failure to show sufficiently reduced prediction error in this
simplified setting would indicate that more complex systems are unlikely to fare bet-
ter. Sufficient prediction model error within our framework is therefore a necessary but
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not sufficient condition for more complex 4D-variational data assimilation forecasting
systems using air quality observations to be successful.

One other advantage of selecting a photochemical box model is that we are able
to generate a Jacobian describing the model response to emission parameter pertur-
bations, which can be used within an analytical modeling framework to conduct un-5

certainty analysis. It would be very difficult to produce a Jacobian within a regional
or global chemical transport models in a timely fashion given the size of the model
state space. Therefore we use an analytic model (derived from the photochemical box
model) that is simplified relative to the full assimilation framework. This is a linear es-
timation technique based upon Rodgers (2000). To support our analyses we calculate10

the following diagnostics using this method: a posteriori ozone prediction error covari-
ance, a posteriori emission parameter error covariance, the

:::::::::
emission averaging kernel,

and the
::::::::::
associated

:
degrees of freedom of signal.

The 4D-variational data assimilation and uncertainty analysis using the linear esti-
mation are therefore complementary methods, and we use both techniques to achieve15

our aim of exploring the effect of observing characteristics on ozone prediction.
In addition, we conduct a series of supporting analyses . Since we assume a

fixed diurnal variability of ozone precursor emissions, we study the impact on our
conclusions of changing the diurnal variability of emissions. When conducting the VOC
emission inversion we solve ethene emission uncertainties (rather than a more diverse20

range of VOCs) we therefore test that assumption in a sensitivity analysis by assuming
VOC emission errors for ethane instead of ethene.

::
to

::::
test

::::::
some

:::
of

::::
our

:::::::::::::
assumptions.

:

2.2 Photochemical box model

A
::::::::
pseudo 1-Dimensional photochemical box model was built using the Kinetic Pre-

Processor (KPP) (Damian et al., 2002; Daescu et al., 2003; Sandu et al., 2003b). The25

::::::
model

::
is

::::
not

:::::
truly

::::::::::::::
1-Dimensional

:::
in

:::
the

::::::::
vertical

:::::::::
because

::::
we

::::
use

::
a

:::::::::::::::::
parameterisation

::
to

::::::::
describe

::::::::::
variability

:::
in

:::
the

::::::::::
boundary

::::::
layer

::::::
height

:::::
and

:::::::
mixing

::::::::
volume.

:::::
The Rosenbrock

solver is used to integrate the KPP generated ordinary differential equations required to
10



calculate trace gas concentrations (Eller et al., 2009). The photochemical mechanism
consists of 171 gas phase species and 524 chemical reactions simulating the degra-
dation of hydrocarbons from C1–C5 including isoprene and is based upon the Master
Chemical Mechanism v3.1 (Jenkin et al., 1997) (http://mcm.leeds.ac.uk/MCM/). In ad-
dition, the model includes dry deposition for all relevant chemical species, it contains5

a 2-parameter photolysis scheme, and it simulates the emission of ozone precursors
including NOx, CO, and volatile organic compounds (VOCs).

::::::::
Coastal

::::::::::
urbanised

::::::::::
Southern

::::::::::
California

::::::
(SC)

::::
has

::::::::::::
historically,

::::
and

::::::::::
continues

:::
to

::::
be,

::
an

:::::::::::
interesting

::::::
area

::
of

::::::
study

::::
for

:::
air

:::::::
quality

:::::::
owing

::
to

::::
the

::::::
large

::::::
scale

:::::::::::::
urbanisation

::::
and

:::::::::::
population,

::::
the

:::::::::
resulting

::::::::::::::
anthropogenic

:::::::::::
emissions,

:::::
and

:::
the

:::::::::::::::
meteorological

:::::::::::
conditions10

::::::
during

:::::::::::::
summertime

:::::
that

::::
are

:::::::::::
favourable

:::
for

::::
the

:::::::::::::
development

:::
of

:::::::::::::::
photochemical

::::::
smog

::::::::::
conditions.

:::::
We

:::::::::
therefore

::::
set

:::
up

:::
the

:::::
box

::::::
model

:::
to

::::::
study

::::::::::
conditions

::::
that

::::
are

:::::::::::
analogous

::
to

::::
this

:::::::
region

:::::
and

:::::::::::::
environment.

::::::::::::::::
Consequently,

::::
we

:::::::
situate

::::
the

::::
box

:::::::
model

:::
at

:::
at

::::
33◦

::::::
North,

::::
run

::
it
:::::
from

::::::
June

:::::
30th

::
to

:::::
July

:::::
2nd,

::::
and

:::::
use

::
a

:::::::::
humidity

::::::::::
equivalent

:::
to

::
a
::::::::
volume

::::::
mixing

:::::
ratio

:::
of

::::::::
0.0162.

:::
In

:::::::::
addition,

:::
we

:::::
use

::::::::::::::
anthropogenic

:::::::
(NOx,

::::
CO,

:::::
and

:::::::
VOCs)

::::
and15

::::::::
biogenic

:::::::::::
(isoprene)

::::::::::
emissions

::::
that

::::::
result

::
in

::
a

::::::
range

::
of

:::::::::::::
atmospheric

:::::::
mixing

:::::
ratios

:::::::
typical

::
for

:::::::::::
urbanised

::::
SC.

:

The diurnal emission variability of anthropogenic compounds is pre-
scribed according to the National Atmospheric Emissions Inventory (NAEI)
(http://www.naei.org.uk/emissions/) for an urbanised area (see Fig. 1), and the20

isoprene emission variability is parameterized to correlate to solar zenith angle offset
by 2 hours to consider both temperature and photon flux effects (Tingey et al., 1979;
Tawfik et al., 2012). The isoprene emissions have an average daily emission of
1.7 × 1010 molecules m2 s−1 and an afternoon peak of 4.6 × 1010 molecules m2

s−1, which yields modeled
:::::::::
modelled

:
isoprene mixing ratios less than 10 pptv (parts25

per trillion by volume)
::::::
typical

:::
for

::::
this

:::::::
region. The diurnal variability of the isoprene

emissions is separate and distinct to the anthropogenic VOCs. From now on, when
we discuss VOCs we are referring to anthropogenic VOCs unless otherwise stated.
The VOC speciation is defined according to NAEI and the total peak emission of
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carbon via VOCs (excluding isoprene) is 2.3 × 1012 carbon atoms m−2 s−1 and the
average emission is 1.2 × 1012 carbon atoms m−2 s−1.

::::::
These

:::::::::::::::
anthropogenic

:::::
VOC

::::::::::
emissions

::::
are

:::::::
typical

:::
for

::::::::::
urbanised

:::::::::
regions.

:
Boundary layer dynamics are described

with a prescribed variability in mixing height ranging from 500-1500 metres and mixing
between the boundary layer and free troposphere equivalent to a constant 10% mass5

exchange per hour.
::
In

::::
our

:::::::
model,

::::
the

::::::::
vertical

:::::::
extent

:::::::::::
represents

::::
the

:::
full

:::::::
depth

::
of

::::
the

:::::::::
boundary

::::::
layer.

:
Background free tropospheric concentrations of long lived species are

assumed to remain constant, and are defined in Tab. 1. The box model is situated at
33◦ North and is run from June 30th to July 2nd and has a humidity of 1.62, equivalent
to the Southern Californian coastal region.10

The model is run under a range of photochemical conditions
::::::
typical

:::
for

::::::::::
urbanised

:::
SC.

This is achieved by varying the NO emissions across 9 different scenarios that span
the full range of modeled

:::::::::
modelled

:
ozone response with respect to changing NOx con-

centration (i.e., from NOx to VOC limited conditions).
:::
We

:::::
use

:::
the

::::::
same

:::::::::::
emissions

:::
for

:::
the

::::::
other

:::::::
species

:::::::
across

:::
all

::
of

::::::
these

:::::::::
different

:::
NO

::::::::::
emission

::::::::::
scenarios.

:
For the purposes15

of the emission inversion we define our ozone precursor emissions in a simplified form
(excluding emitted species not considered in the inversion) as

ϕi(t)=xiEi(t), i=NO,CO,VOC (1)

where xi are the time independent emission scaling factors for the emitted species,
i, and Ei(t) are the emissions with a prescribed and repeating diurnal cycle for each
emitted species. The emission inversion solves for, xi, the time independent emission20

scaling factors, which can be represented as a vector, x, for the emitted species, i, as
shown by

[x]i=xi , i=NO,CO,VOC (2)

Further, we define the true state of the emission scaling factors as xt. The variability
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of ENO(t) is shown in Fig. 2 and this variability is represented by

Ei(t) = eik(t) (3)

where k(t) is the temporal variability emission factor for all of the emitted species and
ei is the time independent emission for each species. Note then that all of the anthro-
pogenic emissions (NO, CO, and VOCs), Ei(t), share the same temporal variability.
The variability of k(t) is shown in Fig. 1 . In our model simulations

::
as

::::
the

::::::::::
’Standard5

:::::::::
Emission

:::::::::::
Variability’.

:::::::
Table

::
2

:::::::
shows

::::
the

:::::::
values

::
of

:
eNOis 4.8 × 1010 molecules m −2

s−1, eCO is 2.6 × 1012 molecules m −2 s−1, and eVOC is 4.3 × 1010 molecules m −2 s−1

where in the emission inversion calculations we represent VOC emissions via ethene
emissions. We define a range of different k(t) scenarios in order to probe the emission
solution sensitivity to diurnal emission variability and these along with the true variability10

are shown in Fig. 1.
:::::
used

::
in

::::
our

::::::
model

::::::::::::
simulations.

:

In the emission inversion calculations we represent VOC emissions via ethene emis-
sions. We selected ethene because it is a sufficiently reactive gas that is emitted in
abundance through the course of anthropogenic activity. Thus, the adjoint sensitivi-
ties to ethene emissions allowed the proper functioning of the 4D-var system. k(t) is15

1.89 (note, overbar indicates the mean value of a variable here and elsewhere), and
therefore the average emissions are a factor of 1.89 larger than ei. In the case of
NO, E(t)NO is 9 × 1010 molecules m−2s−1. The scalings used xNO= 0.5, 0.75, 1.0,
1.25, 1.5, 1.75, 2.0, 2.25, and 2.5lead to a range in E(t)NO between 4.5 × 1010

:::::
Table

::
2

:::::::::
describes

::::
the

::::::
setup

::
of

::::
the

:::::::::::::::
photochemical

::::::
model

:::
for

::::
the

::::::
range

:::
of

::::::::
different

::::
NO

:::::::::
emission20

:::::::::
scenarios

:::::
that

:::
we

::::::::::::
investigate, and 2.3 × 1011 molecules m−2s−1, andto modeled peak

NOx concentrations ranging between 4.0 ppbv and 24.0 ppbv (peak concentrations
from 1 to 11.3 ppbv for NO and 3 to 16.9 ppbv for

::::::
shows

::::
the

:::::::
values

:::
of

:::::
k(t),

:::::
and,

:::
for

:::::
each

::::::::
species,

::
e
::::
and

::::::
E(t).

:::::
Note

::::
that

::::
for

::::
E(t)

::::
the

::::::::
overbar

:::::::::
indicates

::::
the

::::::
mean

::::::
value

::
of

::
a

::::::::
variable.

:
25

::::
The

:
NO 2). These NO emission scalings

:::::::
shown

::
in

:::::
Tab.

::
2

:
are chosen to represent

a wide range of photochemical conditions and given the VOC burden in the model,
13



xNO scalings 0.5, 0.75 and 1.0 represent NOx limited conditions, 1.25, 1.5 and 1.75
represent transitional conditions, and 2.0, 2.25, and 2.5 represent VOC limited condi-
tions. E(t)CO is 5× 1012 molecules m −2 s−1 and E(t)VOC (for ethene) 8.2 × 1010

molecules m −2 s−1. Given the latitude, humidity, dominance of the VOC burden
from anthropogenic VOCs, and range of modeled NOx concentrations these model5

runs can be viewed as somewhat analogous to a range of environments spanning the
wider urbanized Southern Californian region. The emissions

::::
The

:::::::
mixing

::::::
ratios

::
of

:::::
NOx

::::
that

::::::
result

:::::
from

::::::
these

:::::::::
different

::::
NO

:::::::::
emission

::::::::
factors,

::::
and

::::
the

:::::::
mixing

::::::
ratios

:
of CO and

VOCs lead to modeled peak concentrations of CO and HCHO ranging between 590
and 820 ppbv and 6.5 and 8.1 ppbv, respectively.

::::::
HCHO

:::::
that

::::::
result

:::::
from

::::
the

::::
CO

::::
and10

:::::
VOC

::::::::::
emissions

::::
are

:::
all

::::::::::::
summarised

::
in

:::::
Tab.

:::
3.

2.3 Forecasting framework and 4D-variational data assimilation

Several NOx emissions scenarios are simulated to cover a wide range of photochemical
conditions (xNO=0.5-2.5). Each emission scenario is represented mathematically as a
forward model, F(x,t), which are the concentrations as a function of time evaluated15

at emissions x. Depending on the scenario, either pseudo observations of CO, NO2,
O3, or HCHO are used in various combinations (see Fig. 3 for a representation of
the ozone pseudo observations relative to the true state for ozone). In order to derive
the pseudo observations the model true state is sampled at 3 hourly intervals in the
standard scenarios (used as default unless specified) and at intervals between 1 and20

24 hours in scenarios characterizing the impact of observing frequency on prediction
error. The sampled species concentrations are then combined with an additive noise
model to generate the pseudo observations, y, represented by

y=F(x,t)+n (4)
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where n is the noise

n=F(x)×β×ϵ (5)

and where F(x) is the average species concentration (values shown in Tab. 4), β
is the noise scaling factor, and ϵ is a random number with a gaussian distribution, a
standard deviation of 1, and a mean of zero. The modeled

:::::::::
modelled

:
concentrations for

all species and times resulting from F(x) can be represented as a vector, q,5

q=F(x,t) (6)

or for specific species, z, at time, t, as qz(x,t) ::::::
qz(x,t),

qz(x,t)= [F(x,t)]z (7)

where z can be O3, NO2, CO or HCHO. We define a priori emission scaling factors,
xa, with specified errors relative to xt (Tab. 5 provides a summary of the values of x
used for both xt and xa), which are combined with the model to yield the a priori model
state, F(xa). Note that within our framework the a priori is also the initial guess.10

The assimilation is started at the first iteration with the forward model using the initial
guess and is thus described as F(xa) after one iteration. A cost function, which is a
scalar, J(x), is then evaluated

J(x)=
1

2
((y−F(x))TS−1

n (y−F(x))+
1

2
(x−xa)

TS−1
a (x−xa)) (8)

where Sa is the a priori constraint matrix and Sn is the observation error covariance.
The 4D-variational data assimilation method seeks the solution for x, x̂, that minimizes15

J(x)

x̂=min
x

J(x) (9)

15



such that the gradient of the cost function with respect to x is zero if the solution x̂ is
equal to the true state, xt, (though this is never fully achieved)

∇xJ =KTSn
−1
::(y−F(x̂))−S−1

a (x̂−xa)= 0 (10)

where K is the Jacobian matrix (see Eq. 15) describing the forward model response
to perturbations to the emission parameters, and ∇xtJ

::::
∇xJ:is the adjoint sensitiv-

ity (Daescu et al., 2003; Sandu et al., 2003b), calculated by the Rosenbrock solver5

(Eller et al., 2009), which indicates the sensitivity of the cost function to the emission
parameters. The cost function and its adjoint sensitivities are passed to the quasi-
Newton L-BFGS algorithm (Zhu et al., 1997). The L-BFGS algorithm iteratively deter-
mines the optimal state of x, x̂, that minimizes the difference between the model and
observations subject to the a priori constraints.10

Using the estimated emissions, x̂, the forward model, F(x̂), provides the air quality
prediction of the ozone concentration, qO3(x,t), on the afternoon of the 3rd day of the
simulation during the prediction and monitoring period. The relevance of qO3(x,t) to
the prediction and monitoring period is shown in Fig. 3.

Figure 2 shows how the a priori emissions, xa, relate to the true emissions x
::
xt, and15

the a posteriori emissions, x̂, after the 4D-variational data assimilation, as well as the
a priori, the true and the a posteriori ozone levels (i.e., qO3(xa,t), qO3(x,t)::::::::

qO3(xt,t),
and qO3(x̂,t), respectively). Figure 2 therefore demonstrates the mechanism by which
the forecasting framework improves the forward model ozone predictions, i.e., by an
optimization of the ozone precursor emissions. The left panel of Fig. 2 shows the20

a priori emission error for NO emissions and the right panel shows the a posteriori
NO emission error. The a posteriori emission parameter error can be defined more
generally as a vector x̃.

x̃= x̂−xt (11)

Figure 3 provides an example representation of the pseudo observations, ozone pre-
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diction, qO3(x̂,t), relative to the true state, qO3(x,t)::::::::
qO3(xt,t), during the prediction and

monitoring period on the third day. In Fig. 3 E
::
D

:
represents the a posteriori ozone

prediction error at time, tµ (tµ is 3pm on day 3 during the prediction and monitoring
period), defined by

ED: = qO3(x̂,t
µ)−qO3(xxt::,t

µ) (12)

In Fig. 3 G represents the a priori ozone prediction error defined by5

G= qO3(xa,t
µ)−qO3(xxt::,t

µ) (13)

The air quality prediction error over the entire prediction and monitoring period for each
of the species, z, can be defined as a vector, q̃

[q̃z]j = qz(x̂,tj)−qz(xxt::,tj) ,j=3,6......21,24 (14)

where j is the hour of day on the 3rd day during the prediction and monitoring period.

2.4 Uncertainty analysis

2.4.1 Overview10

The uncertainty analysis has two separate foci: the estimation
::::::::::
evaluation

:
of the per-

formance of the emissions
::::::::::
estimates

:
and an estimation of the a posteriori ozone pre-

diction error. Note that there is a direct synergy between these two analyses since
uncertainties in the emissions estimate directly impact upon ozone prediction uncer-
tainty. The diagnostics that we calculate in the analysis of the emissions uncertainties15

include the a posteriori emission parameter error, the
:::::::::
emission averaging kernel matrix,

and the
:::::::::
emission

:::::::::
inversion degrees of freedom of signal.
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2.4.2 The Jacobian Matrix

The Jacobian matrix is redundant within 4D-variational data assimilation, but it can
:::
can

::
be

::::::
used

::
to

:
help characterize the uncertainties on

::::::::
variance

::
of

:
x̃ and q̃. Therefore it is

advantageous to determine K. Within our frameworkwe define
:
, each element of K

as
::::::::::
represents

:
the forward model response, ∂qz(x,t)/∂xi, at time, t, and for observed5

species, z, to perturbations in emissions of species, i, in the case of the OCN scenario
(using pseudo observations of ozone, CO, and NO2) it is defined by

K=



∂qO3(x,t1)/∂xNO ∂qO3(x,t1)/∂xCO ∂qO3(x,t1)/∂xVOC

∂qO3(x,t2)/∂xNO ∂qO3(x,t2)/∂xCO ∂qO3(x,t2)/∂xVOC

. . .

. . .

. . .
∂qO3(x,tNt)/dxNO ∂qO3(x,tNt)/∂xCO ∂qO3(x,tNt)/∂xVOC

∂qCO(x,t1)/dxNO ∂qCO(x,t1)/∂xCO ∂qCO(x,t1)/∂xVOC

∂qCO(x,t2)/dxNO ∂qCO(x,t2)/∂xCO ∂qCO(x,t2)/∂xVOC

. . .

. . .

. . .
∂qCO(x,tNt)/dxNO ∂qCO(x,tNt)/∂xCO ∂qCO(x,tNt)/∂xVOC

∂qNO2(x,t1)/dxNO ∂qNO2(x,t1)/∂xCO ∂qNO2(x,t1)/∂xVOC

∂qNO2(x,t2)/dxNO ∂qNO2(x,t2)/∂xCO ∂qNO2(x,t2)/∂xVOC

. . .

. . .

. . .
∂qNO2(x,tNt)/dxNO ∂qNO2(x,tNt)/∂xCO ∂qNO2(x,tNt)/∂xVOC



=
∂F(x,t)

∂x
(15)

where K has dimensions Ni × N . Ni is the number of species in the emission factor
state vector, x and is thus always three. We define N as the total number of observa-
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tions for all species

N =Nt×Ny (16)

where Nt is the number of points in time the model perturbations are sampled and Ny

is the number of species whose perturbations are used in the Jacobian. In the case
of Eq. 15 z

:
y
:
= O3, CO and NO2 therefore Ny = 3. z

:
y

:
includes HCHO in the HCN

scenario.5

Figure 4 plots columns of the Jacobian and it shows that ozone is more sensitive to
changes in emissions during the afternoon, and that CO and NO2 respond to changes
in emissions during the rush hour periods.

The key assumption in using the Jacobian is that changes in the emissions can be
described approximately by (Rodgers, 2000)10

F(x)−F(x+δx)≈Kδx (17)

this assumption has been validated using finite differencing to compare to solutions
derived from the right side of Eq. 17.

2.4.3 Emission error characterization

We calculate various statistics to determine the emission estimation performance.
First, we determine the a posteriori emission parameter error covariance, which is15

defined by (Rodgers, 2000)

E
[
x̃x̃T

]
=(S−1

a +KTS−1
n K)−1 (18)

Next, we calculate the
:::::::::
emission averaging kernel defined by

A=(S−1
a +KTS−1

n K)−1KTS−1
n K (19)
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and the degrees of freedom of signal that is calculated via

d.o.f.=Tr(A) (20)

where both of these diagnostics provide information on the resolution of the emission
retrieval, i.e., the ability of the estimate to uniquely distinguish between the emissions
of individual species. While the diagonals of A represent the sensitivity of x̂i to xi the
d.o.f. represents the number of separate emission parameters that can be uniquely5

retrieved.

2.4.4 Ozone prediction error characterization

Using the a posteriori emission error we can determine the a posteriori ozone predic-
tion error during the prediction period. In order to do this we need to define a new Jaco-
bian matrix, K

′
, that defines the forward photochemical response during the prediction10

and monitoring period (day 3) to perturbations in the emissions. Thus, K and K′ sim-
ply differ because K describes the model response during the observation period as
opposed to the prediction and monitoring period. Each element of K

′
is ∂qz(x,tj)/∂xi

where j is the index of time denoting when the model is sampled on the 3rd day. The
a posteriori ozone prediction error covariance for the 3rd day can be determined by15

E
[
q̃q̃T

]
=K′E

[
x̃x̃T

]
K′T (21)
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3 Results

2.1
::::::::::
Summary

:::
of

::::::::::::::
Experiments

2.2 Uncertainty analyses

2.1.1 Assessing observations of CO, NO2, ozone, and HCHO and the influence
of observation error5

3.1.1.1 Emission error characterization and ozone prediction error
In this section we examine the choice of which species to observe in order to best

constrain the emissions and improve the ozone prediction, and we look at the three
scenarios CN, OCN, and HCN in order to do this.We examine each of these three
scenarios across the full range of NO emission scenarios (

::::
We

:::::::::
describe

:::
all

:::
of

::::
the10

::::::::::::
experiments

::::
that

::::
we

::::::::
perform

::::
for

::::
the

:::::::::::
uncertainty

:::::::::
analysis

:::::::::
(Section

:::::
3.1)

::
in

:::::
Tab.

:::
6.

:::
In

:::::
each

:::::::::::
experiment

:::
we

:::::
test

:
a
:::::::
range

::
of

::::::::
different

::::::::::::
observation

:::::::::::::::
characteristics

::::::
using

::::::::
different

::::::::::::
parameters.

:::
To

:::::
give

::::
an

:::::::::
example,

::::
for

::::
the

::::
CN

::::::::::
observing

:::::::::
scenario

::::
we

::::
test

::::
the

:::::::
model

::::::::
forecast

:::::::::::::
uncertainties

:::::::
across

:::
the

:::::
nine

:::::::
values

::
of

:
xNO =

::::
(i.e.,

:
0.5 – 2.5 with increments of

0.25) , and
::::
and

:::
for

:
eight different levels of observing error:

:
,
::
β

::
=

:::::::
0.01–5

::::::::::::
(equivalent

::
to15

1%, 5%, 10%, 25%, 50%, 100%, 250%,
::::
and 500% (

:::::::
relative

:::::::
error).

::::::
Thus,

::::
we

::::::::
perform

::
72

::::::::::
separate

:::::
tests

:::
for

::::
this

:::::::::::
experiment

:::::
and

:::
for

::::
the

:::::
OCN

::::
and

::::::
HCN

::::::::::
scenarios

:::
as

:::::
well.

:::
All

:::::::::
However,

:::
for

::::
the

::::::::::::
experiment

:::::::::::
comparing

::::::
HCN

::::
and

::::::
OCN

:::
we

::::::
carry

::::
out

::::::
three

:::::::::
separate

:::::
tests

::::::
where

::::
we

::::::
scale

:::::::
HCHO

::::::::::::
observation

::::::
noise

::::::::
relative

::
to

::::
the

::::::
other

::::::::
species.

:::::
We

::::
test

:::::
three

::::::::
different

::::::::::
scalings:

:::
50%

::::::
lower,

::::
the

::::::
same,

::::
and

:::
50%

::::::
higher

:::::::
noise.20

:::::::
Section

::::
3.2

:::
is

::::::::::
dedicated

::
to

::::::::::
sensitivty

::::::::
studies

::::::
using

:::
the

::::
full

:::::::
4D-var

:::::
data

::::::::::::
assimilation

::::::::
forecast

::::::::
system.

::::
In

:::::::::
Section

::::::
3.2.1

::::
we

:::::::::::::
demonstrate

::::
the

:::::::
ability

:::
of

::::
the

::::::::
4D-var

:::::
data

:::::::::::
assimilation

:::::::::
forecast

::::::::
system

:::
to

:::::::::
forecast

:::::::
ozone

:::::::
when

::::::
using

::::
the

:::::::
three

::::::::::::
observation

:::::::::
scenarios

:::::
CN,

::::::
OCN,

:::::
and

::::::
HCN.

::::
For

::::::
these

::::::::::::
experiments

::::
we

::::
use

:::::::::::::
observations

:::::::
made

::
at

:::::
three

:::::
hour

::::::::::
intervals,

:::::
and

::::::
using

:
β=0.1-5). The observing errors are absolute errors25

represented here as a percentage of the average speciesconcentration over all of the
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photochemical scenarios. In each of these tests we use pseudo observations obtained
by sampling the model true state.

:

:::::
Next,

:::
in

:::::::
section

::::::
3.2.2,

::::
we

::::::
define

::
a

::::::
range

:::
of

::::::::
different

::::
k(t)

::::::::::
scenarios

:::
in

:::::
order

:::
to

::::::
probe

:::
the

:::::::::
emission

:::::::::
solution

::::
and

:::::::
ozone

::::::::
forecast

::::::::::
sensitivity

:::
to

::::
the

:::::::::
assumed

::::::::
diurnal

:::::::::
emission

:::::::::
variability.

::::::::
These

:::::::::::
alertnative

:::::
k(t)

::::::::::
scenarios

:::::
and

::::
the

::::::::::
’Standard

::::::::::
Emission

:::::::::::
Variability’5

:::
are

:::::::
shown

:::
in

::::
Fig.

::::
1.

:::
In

::::::
each

::::
test

::::
we

::::::::
perform

::::
the

:::::::
4D-var

:::::
data

:::::::::::::
assimilation

::::::::
forecast

:::::
using

::::
the

:::::::::::
alternative

:::::
k(t)

:::::::::
scenario

::::::
while

::::
still

::::::::::
assuming

:::::
that

::::
the

::::::::::
’Standard

::::::::::
Emission

::::::::::
Variability’

::
is

:::::::::::::::
representative

:::
of

::::
the

:::::
true

::::::
state.

:::::
We

::::::::
perform

:::::
this

::::
test

::::::
using

::::
the

::::::
OCN

:::::::::
scenario,

::::::::::
observing

:
at three hour intervals. The observing noises are identical for

each compound within a particular scenario. ,
::::
and

::::::
using

:::::::
β=0.1.

:
10

::::::
When

::::::::::::
conducting

:::::
the

::::::
VOC

::::::::::
emission

::::::::::
inversion

:::::
we

:::::::::::
represent

::::::
VOC

::::::::::
emission

:::::::::::::
uncertainties

:::
as

::::::::
ethene

:::::::::
emission

::::::::::::::
uncertainties

::::::::
(rather

:::::
than

::
a
::::::

more
::::::::

diverse
:::::::

range

::
of

::::::::
VOCs).

:::
In

::::::::
section

::::::
3.2.3

::::
we

::::
test

:::::
that

::::::::::::
assumption

::::::
using

:::
a

::::::::::
sensitivity

:::::::::
analysis

:::
by

:::::::::
assuming

::::::
VOC

:::::::::
emission

:::::::
errors

:::
for

:::::::
ethane

::::::::
instead

:::
of

::::::::
ethene.

:::::::
Again,

::::
we

::::::::
perform

::::
this

::::
test

:::
for

:::
the

::::::
OCN

:::::::::
scenario,

::::::::::
observing

:::
at

::
a

:::::
three

:::::
hour

:::::::::::
frequency,

::::
and

::::::
using

:::::::
β=0.1.

:
15

3
::::::::
Results

3.1
::::::::::::
Uncertainty

::::::::::
analyses

3.1.1
:::::::::::
Assessing

::::::::::::::
observations

:::
of

::::
CO,

::::::
NO2,::::::::

ozone,
::::
and

:::::::
HCHO

:::::
and

::::
the

::::::::::
influence

::
of

:::::::::::::
observation

::::::
error

:::::::
3.1.1.1

::::::::::
Emission

::::::
error

:::::::::::::::::
characterization

:::::
and

:::::::
ozone

:::::::::::
prediction

:::::
error20

::
In

::::
this

::::::::
section

:::
we

:::::::::
examine

::::
the

:::::::
choice

:::
of

::::::
which

::::::::
species

:::
to

::::::::
observe

:::
in

::::::
order

::
to

:::::
best

:::::::::
constrain

::::
the

::::::::::
emissions

:::::
and

::::::::
improve

::::
the

:::::::
ozone

:::::::::::
prediction,

::::
and

::::
we

:::::
look

::
at

::::
the

::::::
three

:::::::::
scenarios

:::::
CN,

::::::
OCN,

:::::
and

:::::
HCN

:::
in

::::::
order

::
to

::::
do

:::::
this.

::::::
Table

::
6
::::::::::
describes

::::
the

:::::::::::
parameter

::::::
space

:::
we

::::::::
sample

::
in

::::::
each

::
of

::::::
these

::::::::::
scenarios

:::::
and

:
it
::::::::::
describes

::::::
other

::::::::::
important

::::::::
aspects
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::
of

:::
the

:::::::::
forecast

:::::::
system

:::::::
setup,

::::
i.e.,

:::
the

:::::::
values

:::
of

::::
xNO::::

and
:::
β,

::::
and

:::
the

::::::::
pseudo

::::::::::::
observation

::::::::::
observing

::::::::::
frequency.

:

These results include the a posteriori ozone prediction error (calculated by Eq. 21)
and the a posteriori emission parameter error (calculated by Eq. 18). Later, we will
characterize the emission estimate using the averaging kernel and degrees of freedom5

of signal diagnostics (see section 3.1.1.3). We limit our analysis of the observed
species to just ozone, CO, NO2, and HCHO because these gases are be monitored by
both ground stations and satellites.

Figure 5 presents the a posteriori ozone prediction errors across the complete range
of parameter space and, in each panel, the results from the three observing scenarios.10

All of the scenarios exhibit similar general behavior in the derived a posteriori ozone
prediction errors: a first maximum in ozone prediction uncertainty in the NOx limited
scenarios (xNO=0.5-0.75

::::::
–0.75), with a consistent minimum in ozone prediction error

in the transition region that is both NOx and VOC limited (xNO=1.0-1.75
:::::
–1.75), and

a second larger maximum in ozone prediction uncertainty in the VOC limited regime15

(xNO=2-2
::::
2–2.5). Scenario CN (observing only CO and NO2) yields the highest a pos-

teriori ozone prediction uncertainties of the three scenarios across the range of NO
emission scenarios. The inclusion of ozone and HCHO observations in the OCN and
HCN scenarios, respectively, reduces the a posteriori ozone prediction uncertainties
compared to those from the CN scenario. Scenarios OCN and HCN both show signifi-20

cant improvement in the VOC limited emission scenarios (xNO = 2.0-2.5
:::::
–2.5) with each

outperforming the CN scenario by up to 2.4 ppbv. Scenarios OCN and HCN diverge
from one another when (xNO = 2.0), which represents the lowest xNO factor that is still
VOC limited. In this case, scenario OCN outperforms scenario HCN by up to 1.4 ppbv.
Under NOx limited conditions (xNO =0.5-1.0

::::
–1.0), the OCN scenario a posteriori ozone25

prediction errors show a strong improvement relative to the CN scenario (2.6 ppbv),
and a slightly more modest improvement relative to the HCN scenario (1.9 ppbv).

We will now focus on explaining these differences in a posteriori ozone prediction
error highlighted above. To gain further insight into this behavior Figs. 6 and 7 show
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the a posteriori error for xNO and xVOC. Note that the a posteriori error for xCO (not
shown) is invariant with respect to the photochemical regime and is therefore unable to
explain any of the observed variability of ozone prediction error over varying xNO.

Figure 6 shows that scenario HCN is able to reduce xVOC a posteriori errors over the
largest range of NO emission scenarios, followed by scenario OCN, and scenario CN.5

This reduction in VOC emission uncertainty in scenario HCN explains why it shows
reduced a posteriori ozone prediction error (by up to 2.4 ppbv) compared to the CN
scenario under VOC limited conditions. Despite HCHO observations overall providing
a better constraint on VOC emission uncertainties under all conditions this improved
constraint only leads to lower a posteriori ozone prediction error compared to the OCN10

scenario in the transition region regimes (xNO= 1.0-1.75
:::::
–1.75) (see Fig. 8 central plot),

and under the most VOC limited conditions (xNO >2.0). The exception to this behavior
occurs at xNO = 2.0; despite the HCN scenario showing lower xVOC a posteriori errors
compared to the OCN scenario the HCN scenario shows higher a posteriori ozone
prediction error. This occurs because the a posteriori ozone prediction error is also15

sensitive to the a posteriori NO emission uncertainties under VOC limited conditions,
and ozone is better than HCHO at constraining the NO emission uncertainties.

Fig. 7 illustrates that the OCN scenario exhibits the smallest a posteriori NO emission
parameter errors compared to any of the other observing scenarios. This is particularly
pronounced under VOC limited and NOx limited conditions. Therefore, ozone is better20

able to constrain NO emission uncertainties as compared with HCHO under all photo-
chemical conditions, which is because ozone is always more sensitive to changes in
NO emissions than HCHO. Note, in the case of VOC limited conditions, ozone is neg-
atively sensitive to NO emissions. As a direct result of this, the OCN scenario ozone
a posteriori prediction errors are 2.5 ppbv and 1.9 ppbv lower than the CN and HCN25

scenarios, respectively, while under NOx limited conditions. Under VOC limited condi-
tions, the OCN scenario shows a posteriori ozone prediction errors that are 2.4 ppbv
lower than for the CN scenario. The improved estimation of the NO emissions in the
OCN scenario compared to the HCHO

::::
HCN

:
scenario only lead to reduced a posteriori
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ozone prediction errors (by 1.4 ppbv) for the xNO = 2.0 emission case (see Fig. 8).
This one exception is because VOC emissions errors dominate the ozone prediction
uncertainty for the other VOC limited cases.

We now briefly explore the benefits of combining all four of the observed species
(CO,NO2, ozone, and HCHO) to make the HOCN scenario. This scenario can im-5

prove ozone prediction errors by up to 2.9 ppbv and 3.1 ppbv under NOx and VOC
limited conditions, respectively, compared to the CN scenario. Combining ozone and
HCHO observations slightly improves ozone prediction errors by up to 0.3 ppbv and
0.8 ppbv under NOx and VOC limited conditions, respectively, compared to the OCN
scenario. The differences between the ozone and HCHO combined scenario and the10

OCN scenario under VOC limited conditions further highlight the potential for HCHO
observations to improve ozone prediction errors under the most VOC limited conditions.

Until now, we have not directly discussed the impact of CO observations or of the
resolution of CO emission uncertainties within the assimilation framework. We do not
show a figure here, but a posteriori CO emission uncertainties are virtually invariant15

with respect to photochemical regime and to the observing scenario (CN, OCN, or
HCN). The

:::::::::
However,

::::
the

:
a posteriori CO emission uncertainties increase from 1 ×

10−5 to 1.1 with increasing observing noise
:::::::
1×10−5

:::
to

::::
0.1

:::
as

::::
the

:::::::::::
observing

::::::
noise

:::::::::
increases

:
from β = 0.1

::::
0.01

:
to β = 5.

::::
1.0,

::::::::::::
respectively.

:::::::::::
According

:::
to

:::
the

:::::::::::
sensitivity

::
of

::::::
ozone

::
to

:::::
xCO ::

in
::::
the

::::::::
jacobian

::::
K′,

::::::
these

:::::::::
relatively

::::
low

::::::
levels

:::
of

:::
CO

::::::::::
emission

:::::::::::
uncertainty20

::::::
would

::::
only

:::::
lead

:::
to

::::::::::::::
perturbations

::
in

:::::::
ozone

::
of

::::
0.5

:::::
ppbv

:::
at

::::::
most.

:::::
For

:::
the

::::::
case

::::
with

::::
the

:::::::
highest

::::::::
amount

:::
of

:::::::
noise,

::
β

::
=

::::
5.0,

::::
the

::
a
::::::::::
posteriori

::::
CO

::::::::::
emission

:::::::::::
uncertainty

:::::::::
reaches

::::
1.1.

:::::::
Again,

:::::
using

::::
K′,

::::
we

::::
can

:::::::::
estimate

::::
that

::::
this

::::::
larger

:::::
level

:::
of

:::
CO

::::::::::
emission

:::::::::::
uncertainty

:::::
could

:::::
lead

::
to

::
a
::::::
about

::
a
::
5

:::::
ppbv

::::::::::::
perturbation

:::
in

:::::::
ozone.

:::::::::::
Therefore,

::::
only

::::
the

::
β

::
=

:::
5.0

::::::
noise

::::::::
scenario

::::::
leads

:::
to

:::::
large

::::::::
enough

::
a

:::::::::
posteriori

::::
CO

::::::::::
emission

:::::::::::::
uncertainties

::::
that

::::
can

:::::
have

::
a25

::::::::::
significant

::::::
effect

:::
on

::
a

:::::::::
posteriori

:::::::
ozone

::::::::::
prediction

:::::::
errors.

3.1.1.2 Sensitivity Test for Degraded HCHO Observations
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The standard HCN scenario described above assumes that the relative observing
errors for HCHO are the same as for the other gases. However, within the context of
satellite observations, the quality of HCHO observations are likely to be degraded rela-
tive to ozone, for instance. This is likely due to the relative magnitude of the absorption
cross-sections and interferences from other absorbing gases. We therefore perform5

a sensitivity test whereby we apply an upward scaling factor to the β of HCHO to in-
crease it by 50% relative to the other observed gases in the standard HCN scenario .

::::
(see

::::
the

:::::::::::
experiment

:::::::::::::
’comparison

:::::::::
between

:::::
HCN

:::::
and

::::::
OCN’

::
in

:::::
Tab.

::
6

:::
for

:::::::
further

:::::::
details

:
).
:

Figure 8 shows that scenario HCN only has lower a posteriori ozone prediction un-
certainties over the full range of NO emission scenarios under the optimistic scenario10

of lower HCHO observation uncertainties (β of HCHO is set to be 50% lower than that
of ozone), and that in the other scenarios, that we assume would be closer to reality,
scenario HCN only out performs scenario OCN in the transition region and for the most
VOC sensitive regimes. Under the assumptions of lower ozone observing uncertainty
OCN out performs scenario HCN in the NOx and VOC limited regimes by up to 1.915

ppbv.

3.1.1.3 Averaging Kernel and Degrees of Freedom of Signal

The
:::::::::
Following

::::::
from

::::::::
Section

::::::::
3.1.1.1,

::::
we

:::::
now

:::::::::::::
characterize

::::
the

::::::::::
emission

:::::::::
estimate

:::::
using

::::
the

:::::::::
emission

::::::::::
averaging

::::::
kernel

:::::
and

::::::::
degrees

::
of

:::::::::
freedom

::
of

:::::::
signal

::::::::::::
diagnostics.

::::
The

:::::::::
emission averaging kernel ( Eq. 19) represents the sensitivity of the retrieved emission20

parameters along the diagonal, i.e., for a particular species, i, to changes in the real
emission parameter for species, i.

::::
This

::::::::
analysis

:::
is

:::::::
carried

::::
out

:::
for

::::
the

::::
CN,

:::::::
OCN,

::::
and

:::::
HCN

::::::::::
scenarios

::::::
(refer

::
to

:::::
Tab.

:
6
::::
for

::::::::
details).

:
Figure 9 shows the respective diagonals of

the
::::::::
emission

:
averaging kernel (for xVOC and xNO) varying in a manner consistent with

the a posteriori parameter errors as shown in Figs. 6 and 7. A comparison of the lower25

panels indicates that the NO emission parameter estimate using the OCN observing
scenario is more sensitive to the true state of the NO emission parameter under both
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NOx limited and VOC limited conditions than any of the other observing scenarios. The
top panels show that the VOC parameter estimate shows the highest sensitivity to the
true state of the VOC emission parameter using the HCN observing scenario.

Consistent with the averaging kernel the
:::::::::
emission

::::::::::
inversion degrees of freedom of

signal (see Eq. 20, results not shown) indicates that the HCN scenario is better able5

to uniquely retrieve and resolve the 3 separate emission parameters compared to the
OCN scenario. This is because HCHO provides a better constraint on VOC emissions
over a wider range of xNO and β. However, ozone in general constrains ozone pre-
cursor emissions across a wider variety of emission parameters, specifically for xNO,
which allows ozone observations to yield better a posteriori ozone prediction errors.10

The OCN scenario shows a decrease in the degrees of the freedom of signal under
NOx limited conditions due to the lack of sensitivity of the retrieval to the VOC emission
parameter when using these observations.

3.1.2 Observing time and observing frequency

We now examine the sensitivity of the ozone prediction error to the removal of obser-15

vations at different times during the day. We again use pseudo observations made at
3 hourly intervals, we only use the OCN scenario, we perform these tests of the full
range of NO emission scenarios (xNO= 0.5 – 2.5 with increments of 0.25), and use
an observation noise of β = 0.25.

:::::
Refer

:::
to

::::
the

::::::::::
’observing

:::::
time

::::::::::::
experiment’

::
in

:::::
Tab.

::
6

:::
for

:::::::
details.

:
Since the first observations are made at 00:00 local time, this means practially20

that we run our tests by removing observations at 00:00, 03:00, 06:00 (all local time)
and so on until each observation within the entire observing window (the first two days
of simulation) has been tested.

Figure 10 shows a posteriori ozone prediction errors are most sensitive to the re-
moval of observations during the day particularly during the high emission periods25

in the morning and afternoon rush hours and particularly so during the period of el-
evated ozone in the afternoon. The timing and magnitude of the sensitivity and its
peak to observation removal varies according to the 9 NO emission scenarios as
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well. In the more NOx limited scenarios, xNO=0.5-1.0
::::
–1.0, the sensitivity to obser-

vation removal is distributed relatively evenly over the entire day. In the VOC limited
regimes, xNO=1.75-2.5

:::::
–2.5, the sensitivity to observation removal is more tightly dis-

tributed within the afternoon period and peaks between 3pm and 6pm even showing a
broad maximum out to 8pm under the most VOC limited conditions. The temporal vari-5

ability of the maximum sensitivity to observation removal with changing photochemical
regime is due to the timing of afternoon peak ozone concentrations. This is because
across all of the photochemical regimes maxima in ozone sensitivity to perturbations
in emissions coincide with the daytime peak ozone concentration (see Fig. 4). Ob-
servations made during these key periods are therefore better able to constrain the10

emissions uncertainties. Ozone concentrations peak later in the afternoon under more
VOC limited conditions compared to the NOx limited conditions thus explaining some
of the variability in maximum sensitivity to observation removal with changing photo-
chemical regime.

Next, we address how observing frequency will affect the ozone prediction error.15

We run a series of sensitivity tests using a variety of observing frequencies ranging
from once a day to once every hour.

::::::
Table

::
6

:::::::::
provides

::
a

:::::::::
complete

::::::::::::
description

::
of

::::
the

::::::::::
’observing

::::::::::
frequency

:::::::::::::
experiment’. We carry out these tests across the full range of NO

emission scenarios (xNO= 0.5– 2.5
::::
–2.5

:
with increments of 0.25), and with β = 0.25.

Figure 11 shows how a posteriori ozone prediction errors vary with changing observing20

frequency. Increasing observing frequency causes the largest decreases in a posteriori
ozone prediction uncertainty in the VOC limited regime and to a lesser extent in the NOx

limited regime due to the sensitivity of ozone prediction error to unresolved emission
parameter errors in those regimes.
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3.2 Supporting sensitivity analyses

3.2.1 4D-variational data assimilation

We now demonstrate the usage and performance of the 4D-variational data assim-
ilation. Our 4D-var framework solves the non-linear estimation problem whereby it
optimizes the ozone precursor emissions and then estimates a posteriori ozone mixing5

ratios (the forecast). We run the system across the full range of photochemical con-
ditions (xNO=0.5–2.5) and for the CN, OCN and HCN scenarios whilst assuming low
levels of observational error (β=0.1) represented in the observation error covariance
matrix.

The results shown in Tab. 7 indicate that scenarios OCN and HCN yield acceptable10

prediction error under these idealised conditions (β=0.1) within this prototype frame-
work for all photochemical conditions. The more limited success of scenario CN (ob-
servations of CO and NO2) is due to the lower sensitivity of CO and NO2 observations
to the emissions of VOCs across all NOx emission scenarios, and of the low sensitivity
of CO observations to the emissions of NO. The magnitude of the adjoint sensitivities15

guides the L-BFGS algorithm (Zhu et al., 1997) to the global minimum. In cases where
the adjoint sensitivities are low, e.g., in VOC limited conditions using the CN scenario,
the optimization routine may only be able to find a non-global minimum, which leads to
larger a posteriori emission factor errors, x̂−xt.

Table 7 indicates that there is variability of a posteriori peak ozone prediction error20

over changing photochemical regime and xNO for each observing scenario CN, OCN,
and HCN. This variability with xNO is due in part to the variations in modeled

:::::::::
modelled

ozone sensitivity to the different ozone precursor emission parameters, ∂qO3(x,t)/∂xi,
and the a posteriori emission parameter errors (i.e., x̂−xt). Generally, large sensitivity
of predicted ozone to the emissions of ozone precursors, ∂qO3(x,t)/∂xi, combined with25

unresolved ozone precursor emission parameter errors can lead to larger a posteriori
peak ozone prediction error. For instance, in the NOx limited regimes (xNO= 0.5-1.0)
large residual error in the element of x̂ corresponding to NO emissions would lead to
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large a posteriori ozone errors.
One example of this phenomenon occurs in the case of photochemically VOC lim-

ited scenarios (i.e., xNO=1.75-2.5). Table 8 shows the variability of a posteriori VOC
emission errors with xNO and observing scenario. For observing scenario CN there is
large unresolved error in xVOC (Tab. 8) as in this case the size of the adjoint sensitivities5

is insufficient to guide the L-BFGS algorithm to the global minimum and the solutions
represent local minima. This leads to larger a posteriori ozone prediction error as com-
pared to scenarios OCN and HCN (see Tab. 7), which are better able to resolve errors
in VOC emissions.

::::::
There

::::
are

::::
also

::::::::::
examples

:::::::
where

::::::
ozone

::::::::::
precursor

:::::::::::
emissions

:::
are

:::::::
poorly

:::::::::
resolved,

::::
but10

:::
this

:::::
has

::::
only

::::::::
minimal

:::::::
impact

:::
on

::::
the

:::::::
ozone

::::::::::
prediction

:::::
error,

:::
D.

:::::
This

:::::::
occurs

:::
for

::::
the

:::::
OCN

::::::::
scenario

::::::
when

:::::
xNO:::::::

ranges
:::::
from

:::::
1.25

:::
to

::::
1.5.

::::
For

::::::
these

:::::::
cases

:::
the

::::::::::::
unresolved

:::::
error

:::
on

:::::
xV OC:::

is
::::::
larger

:::::
than

:::
for

::::::
many

:::::
other

:::::::::::
situations.

:::::::
Again,

::::
this

:::::::
occurs

:::::::::
because

::::
the

::::::::
L-BFGS

:::::::::
algorithm

::
is

:::::
only

::::
able

:::
to

::::
find

::
a

:::::
local

::::::::
minima.

::::::::::
However,

::
in

::::::
these

::::::::::
instances,

::::
the

:::::::::
relatively

:::
low

::::::::::
sensitivity

:::
of

:::::::
ozone

::
to

::::::
xV OC::::::::

means
::::
that

::::
the

:::::::::
resulting

:::::::
ozone

::::::::::
prediction

::::::
errors

::::
are15

:::::::::
relatively

:::
low

:::
as

:::::
well.

:

Thus, there are a rather complex set of factors interacting to cause these resulting
a posteriori prediction errors and the analysis of the results is limited to identifying
relationships between the observing scenario, the photochemical regime, the adjoint
sensitivities and the resulting ozone a posteriori prediction error. This demonstrates20

the utility of the analytical model in allowing a far more in-depth analysis. Overall, the
4D-variational data assimilation framework seems capable of resolving emission un-
certainties and in turn reducing ozone prediction error. This successful demonstration
of the framework is a necessary but not sufficient condition for systems based upon
more complex photochemical models to have ozone predictive skill.25
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3.2.2 Examining day-to-day varibility
::::::::::
variability

:
and probing emission solution

sensitivity to diurnal emission variability

We investigate the sensitivity of the forward photochemical model ozone mixing ra-
tios, obtained via the 4D-var ozone prediction and the 4D-var emissions estimate, to
a range of assumed emission diurnal profiles. We use the following profiles selected5

arbitrarily to test the model sensitivity: constant, sine wave, square wave, and offsets
of the existing profile by 1 and 2 hour shifts both forward and backward in time (see
Fig. 1). These alternate emission profiles are taken to represent the new true state,
xt, (using xNO=0.75) and are used to generate the pseudo observations (using β=0.1).
We then attempt the assimilation using the pseudo observations generated from the10

alternative emission scenarios whilst assuming that the emissions temporal variability
is the standard variability. The alternate emission profiles test the robustness of the
4D-variational data assimilation method to diurnal uncertainty in the emissions.

Table 9 indicates that the forward model shows peak ozone mixing ratios diverging
from the base case run (standard assumed emission variability with xNO=0.75) by up to15

10.6 ppbv and that the forward model ozone mixing ratios are sensitive to the assump-
tion of the diurnal emission variability. In addition, Tab. 9 shows that the 4D-variational
data assimilation is able to achieve a posteriori peak ozone prediction errors of up
to 2.4 ppbv relative to the true state, as defined by the perturbed scenario, despite
using the unperturbed diurnal emission scenario as its emission variability.

:::::::::
Although20

:::
we

:::::
only

:::::
show

::::
the

::::::::::::
differences

::
in

::::
the

::::::::::
maximum

:::::::
ozone

:::::::
mixing

:::::::
ratios,

::::
this

:::::::::::
behaviour

::
is

:::::::::::
reproduced

::
in

::::
the

:::::::
ozone

:::::::
mixing

::::::
ratios

::
at

::::::
other

:::::
times

:::::::
during

::::
the

::::::
sunlit

::::
day.

:::::
This

:::::::
further

::::::::
confirms

::::
our

::::::::
general

:::::::::
findings

:::::
from

::::::
these

::::::
tests.

:
Despite the relative success of the a

posteriori peak ozone prediction (only a maximum ozone prediction error of 2.4 ppbv)
under these more challenging conditions the assimilation performs poorly in terms of25

the a posteriori emission factor error. Errors range up to 0.46 (18-92%), 0.17 (17%),
and 7.0 (108%) for xNO, xCO, and xVOC (relative to true scaling factors of 0.5-5.0, 1.0,
and 6.5, respectively) and thus emission inversion success is strongly affected by er-
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rors in the assumed diurnal variability of ozone precursor emissions. In summary, we
demonstrate forward model ozone sensitivity to perturbations in the diurnal variability
of ozone precursor emissions, relative insensitivity of the 4D-variational data assimila-
tion a posteriori prediction error to mismatches in the assumed versus observed diurnal
variability of ozone precursor emissions, and sensitivity of the emissions inversion suc-5

cess to mismatches in the assumed versus true emissions variability.
We also explore what the real-world variability is in terms of day-to-day emission

magnitude and apparent emission profile for a specific case. This investigation
is necessary because we assume that there is no day-to-day variation in either
emission magnitude or the profile of the emissions. Observation data for ozone,10

CO and NO2 collected by the South Coast Air Quality Monitoring District at
Wilson Ave., Pasadena (see Fig. ??) show that this assumption is valid for a
consecutive three day period consisting of Wednesday, Thursday, and Friday.
Our assumption of no day-to-day variability in ozone precursor emissions is
reasonable for this region across a three day period such as this. These15

findings are fully consistent with previous work studying air quality in Southern
California (Blanchard and Fairley, 2001; Blanchard and Tanenbaum, 2003) .

3.2.3 Emission inversion and ozone predictive skill sensitivity to VOC species
selection

We conducted a sensitivity test whereby we represent VOC emission uncertainties20

with uncertainties in the emission of ethane, which is a less reactive VOC compared to
ethene. We found that that the VOC emission inversion is severely degraded by build-
ing the Jacobian by perturbing xethane as opposed to xethene across the three scenarios.
The a posteriori xVOC parameter error relaxes to our chosen a priori of 1.5 to within
1 significant figure for most of the scenarios explored. However, this does not affect25

ozone prediction error since the degraded VOC emission uncertainty is mitigated by
the lower reactivity of ethane compared to ethene. As a result, the sensitivity of ozone
to that uncertainty is therefore lower.
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4 Discussion and Conclusions

We addressed a set of key questions to determine how characteristics of observations
of ozone and its precursors affect one’s ability to constrain ozone precursor emissions
and consequently to predict ozone when using an idealised prognostic air quality model
coupled to a data assimilation framework. These questions consisted of which species5

to observe, how well to observe them, how often to make observations, when to make
them during the diurnal cycle, and how soon to observe before making a prediction.
Further to this, we were interested in how the answers to these questions changed
according to varying photochemical regime (from NOx to VOC limited conditions for
ozone formation). These questions are relevant to determining, in a very coarse way,10

how the various observing platforms (i.e., LEO and GEO satellites) and ground moni-
toring networks are able to support air quality research and forecasting.

We used a framework consisting of a photochemical box model using idealised me-
teorology, its adjoint, and a 4D-variational data assimilation system setup to constrain
ozone pre-cursor

::::::::::
precursor

:
emission uncertainties (NOx, CO, and VOCs). The pho-15

tochemical box model used idealised meteorology that represented stagnant summer
weather conditions. Using linear analysis to assess the framework’s prediction uncer-
tainties we carried out a series of sensitivity analyses to test the performance of the
forecasting framework under a range of different observing scenarios. This consisted
of using various sets of pseudo observations. We examined the effect of changing20

which four species were observed (CO, NO2 and HCHO, CO, and NO2), of varying
the observation noise, of changing the observing frequency, and of changing the time
during the day when observations are made.

We were able to demonstrate that the 4D-var framework was able to constrain ozone
precursor emissions and consequently that it was able to reduce ozone prediction un-25

certainties and provide an adequate ozone forecast under the idealised conditions that
we used. This therefore demonstrated our framework’

::::::::::
frameworks relevance to future

air quality forecasting systems that might utilize state of the art assimilation and obser-
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vations made using either the ground station network or from orbiting satellites. Then,

:::::::
Clearly,

::::::
more

:::::::::::
difficulties

::::
and

::::::::::::
challenges

::::::::
remain

:::::::
before

:::::
such

::
a
::::::::::::

framework
::::::
could

:::
be

:::::
used

::
in

::
a
::::::::::
real-world

::::::::
setting,

::::::
such

:::
as

::::
how

:::
to

:::::::::::
incorporate

:::::::::::
averaging

:::::::
kernels

:::
of

::::::::
satellite

:::::::::
retrievals

::::
into

::::
the

::::::::::::
assimilation

::::::::
system

:::
or

:::::::::::
accounting

:::
for

::::::::::::::::
representativity

:::::::
errors.

::::::
Also,

using the linear analysis to estimate the prediction uncertainties, we were able to derive5

a series of general conclusions that are discussed below.

4.1 The Effect of Changing the Observed Species

Our results show that the variability of ozone prediction error with both photochemical
regime and observing species scenario (CN, OCN and HCN) is complex and no single
observed species is ideal for all photochemical conditions.10

Under NOx limited conditions ozone prediction error is strongly controlled by the a
posteriori NO emission errors and therefore observations of NO2 and ozone would be
highly advantageous. Ozone provides a particularly good constraint upon NO emis-
sions under very NOx limited and VOC limited conditions. The value of NO2 observa-
tions in constraining NO emissions improves as the NOx lifetime increases under the15

somewhat less NOx limited conditions (xNO = 1.0 - 1.25). Much of the troposphere is
in fact highly NOx limited outside of the most polluted areas (Duncan et al., 2010).

Under VOC limited conditions ozone prediction error is sensitive to both a posteriori
xNO (due to the negative sensitivity of ozone to NOx) and xVOC errors and thus obser-
vations of ozone, HCHO and NO2 allow significant improvements in ozone prediction20

error. Assimilating ozone, therefore, allows constraints to be placed upon VOC and
NO emission uncertainties. HCHO provides an excellent constraint upon reactive VOC
emissions, which due to their reactivity are more relevant to air quality compared to
less reactive VOCs. NO2 provides an excellent constraint upon NO emissions under
VOC limited conditions; more than under NOx limited conditions due to the longer NOx25

lifetime. Despite the fact that large geographical portions of the US are NOx limited a
disproportionately large percentage of the populous live within or are exposed to ozone
arising from VOC limited conditions due to the significant extent of urbanization within
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the US. Large urbanized areas of the South West that lack significant native vegetative
biomass typically have a larger VOC limited regime that extends over the urban as well
as sub-urban areas. In contrast, US cities in the East are located in regions with often
dense vegetative biomass, e.g., Atlanta, and thus the VOC limited region is far more
geographically limited to the urban center itself. Therefore, improving ozone predic-5

tive skill within VOC limited conditions will not yield forecasting improvements over a
wide geographical area but will yield improvements within certain regions with large
populations.

Our findings with respect to the utility of NO2 and HCHO observations for constrain-
ing NOx and VOC emissions, respectively, and in turn for improving ozone estimation10

are broadly consistent with the findings of Zhang et al. (2008), which used satellite
observations of NO2 and HCHO in conjunction with 4D-variational data assimilation
to solve for NO2 and HCHO emissions and to improve the model’s ozone estimation.
One should note, however, that our work goes further by demonstrating how the effi-
cacy of NO2 and HCHO observations varies according to photochemical regime. Sim-15

ilar to (Elbern et al., 2000, 2007), we demonstrate the use of ozone in this regard. Our
work offers an extension to Elbern et al. (2000) and (Elbern et al., 2007) by considering
the photochemical regime and by considering other observations simultaneously.

Note that the statements above regarding the need to constrain NO and VOC emis-
sions under NOx and VOC limited conditions, respectively, are what we should expect.20

Further, the use of ozone to constrain either NOx or VOC emissions in either of the re-
spective photochemical regimes is fully consistent with existing theory relating to ozone
control strategies (Sillman, 1993) and our understanding of factors controlling ozone at
regional and continental scales (Jacob et al., 1993). This was one motivation for us to
explore this problem.25

There is one further advantage to observations of ozone and HCHO made under
VOC limited conditions. Often, plumes of NOx polluted and VOC limited air can be
exported from regions that are VOC limited into areas that are NOx limited, and this
can lead to significant temporal variability in the photochemical regime in the regions
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surrounding an urban center. Therefore, observations of HCHO and ozone in addition
to NO2 observations could help to understand such events and in turn reduce ozone
prediction errors.

We have not
:::::::::
indirectly

:
performed a sensitivity test to directly the effect CO

observations have upon
:::
see

::
if
::::
CO

::::::::::::::
observations

::::::
affect

:
ozone a posteriori prediction5

errors. However, we can briefly
:::
We

::::
can

:
address their potential impact within the OCN

scenario by examining the jacobian matrix (see Fig. 4)that
:
.
:::::
This

:
shows that ozone is

relatively insensitive to perturbations in CO emissions and, therefore, also to a poste-
riori CO emission uncertainties.

::
In

:::::
fact,

::
it

::::::::
appears

::::
that

:::::
only

::::
the

::
β

::
=

:::
5.0

::::::
noise

:::::::::
scenario

::::
has

:::::::::::
sufficiently

:::::
large

::
a
::::::::::
posteriori

::::
CO

::::::::::
emission

:::::
error

:::
to

:::::::
cause

::::::::::
significant

::
a
::::::::::
posteriori10

::::::
ozone

::::::::::
prediction

:::::
error

:::::::
(about

::
5

:::::::
ppbv).

4.2 Observation Error

We now make some broad conclusions regarding the observation uncertainties. Both
the OCN and standard HCN scenarios achieve a posteriori ozone prediction errors of
2.4-6.1 ppbv and 1.9-6.3 ppbv, respectively, when absolute errors equivalent to 33%15

of the average over polluted regions were used. Even though the OCN and HCN
scenarios compared favourably to one another in terms of their a posteriori ozone
prediction errors, when we considered more realistic observational noise on the HCHO
observations, the performance of the HCN scenario was degraded to 2.2-6.9 ppbv
(33% noise level). In comparison, for the same noise level, the CN scenario achieved20

ozone prediction errors of 2.5-8.4 ppbv. Only when the noise level was reduced to 25%
were the OCN and HCN scenarios able to achieve ozone prediction errors of 5 ppbv
or less. At 10% noise ozone prediction errors of less than 2.5 ppbv were consistently
attained for both OCN and HCN. This strongly points towards there being a good payoff
in forecast accuracy with reducing observation error. Further work in a 3D framework25

would be required in order to determine how these ozone forecast errors translate into
the context of real air quality forecasting. For instance, it might be possible to calculate
the probability of detection or false alarm rate statistics similar to the work carried out
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by Hache et al. (2014).
Connecting this to real instrument profiles and real observations, and how these

might perform in a real assimilation system, is beyond the scope of this study. The
furthest we can take this point is to note that the resulting prediction uncertainties for a
particular observation noise scenario are optimistic and represent the lowest error that5

could be expected. This is because of reduced complexity in our model’s representa-
tion of its spatial domain and its meteorology and because of the way we represented
the errors on our observations, which in reality would be more complex.

4.3 Temporal considerations

Concerning the temporal sampling of observations, there is strong sensitivity of ozone10

prediction error to observation removal in the daytime, particularly in the afternoon,
and therefore observations made during the day present greater returns in terms of im-
proved forecasting ability. The NOx limited regimes favour observations made through-
out the day with increased observing density close to 3pm. The VOC limited regimes
favour a greater concentration of observations within the afternoon even up to 6pm15

in the most VOC limited cases. These differing results for the two different photo-
chemical regimes are consistent with existing knowledge of photochemistry and NOx

lifetime. The main underlying factors controlling this are the changing time at which
ozone peaks and the time of day that emissions occur that contribute to that peak.
Under VOC limited conditions ozone peaks later in the day due to the reduced ozone20

lifetime and the slower recovery of HOx radicals (suppressed by NOx) that occurs after
the night time period. The NOx limited scenarios also show a smaller peak in the morn-
ing. This smaller peak is present due to the observations of ozone and NO2 during the
morning rush hour that better allow NOx emissions to be constrained. The presence of
the smaller peak also indicates that peak afternoon ozone concentrations are sensitive25

to the morning rush hour emissions of NOx; this is possible due to the longer ozone
lifetime present under NOx limited conditions.

We demonstrate that the ozone prediction error is sensitive to the frequency of ob-
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servation. We show that ozone prediction errors vary between negligible to up to 12.5
ppbv as the observing frequency varies between once per hour to once per day, re-
spectively. The ozone prediction error is maximised within either the NOx limited or
VOC limited regimes. We find very similar levels of ozone prediction error for the sce-
narios that observe once every hour and every three hours (1.8-3.2 ppbv compared5

to 2.2-4.8 ppbv, respectively), and that ozone prediction errors greater than 5 ppbv
only emerge for observing scenarios using a frequency of six hours or more. The fact
that our forecasting system performs best using observations made at a frequency of
three hours or less highlights the temporal sampling advantage posed by the ground
observation network relative to observing systems with lower observing frequency, i.e.,10

a satellite in LEO configuration.

:
It
:::

is
::::::
likely

::::
that

::::::
there

:::
is

:::
an

::::::
effect

::::
on

:::::::
ozone

::::::::::
prediction

::::::
error

::::
due

:::
to

::::
the

:::::::::::
interaction

::::::::
between

:::::::::::
observing

::::::::::
frequency

:::::
and

::::::::::
observing

::::::
time.

:::::::
Figure

::::
10

:::::::
implies

:::::
that

::::::::::
observing

:::::::::
scenarios

:::::::::::
measuring

:::
at

:::
the

::::::
same

:::::::::::
frequency

::::::
could

:::::
yield

::::::::
different

::::::::::
prediction

:::::::
errors

::::
due

::
to

::::::
when

::::
they

::::::::
actually

:::::::::
sampled

:::::::
during

:::
the

:::::::
diurnal

::::::
cycle.

::::::::::
However,

::
in

::::::
each

::::
test

:::
we

::::::
made15

::
at

::
a

::::::::::
particular

::::::::::
observing

:::::::::::
frequency

::::
the

:::::::::::::
observations

::::::
were

::::::
made

:::
at

::
a
::::::

fixed
::::::::
specific

:::
set

:::
of

::::::
times,

:::::
and

:::
so

::::
our

:::::
work

::::::
does

::::
not

:::::::::
address

::::
this

::::::
issue.

:::::
We

:::
do

::::::
think

::::
that

:::::
this

::
is

::::::::
relevant

::
to

:::::::::::
evaluating

:::::::::
different

::::::
types

:::
of

::::::::::
observing

::::::::::
scenario,

::::
and

::::
we

:::::::
would

:::::::::
therefore

:::
like

:::
to

:::::::
explore

::::
this

:::::::::
problem

::
in

::
a
::::::
future

:::::::
paper.

:

4.4 Implications for emission inversion20

Aside from the relevance of these results to air quality forecasting and research in gen-
eral, we believe these results are also relevant for emission and flux estimation via
inversion methologies. Our prototype framework is mechanically very similar to other
work using 4D-variational data assimilation methologies (Elbern et al., 2000, 2007;
Henze et al., 2009; Stavrakou et al., 2009; Kopacz et al., 2010) using chemistry trans-25

port models that have focused on emission inversion. Much of the emission inversion
performance shown in this study is driven by the photochemistry, and it is reason-
able to suppose that some of our results are relevant to future work conducted using
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4D-variational data assimilation in emission inversion studies.
:::::
Note

:::
too

:::::
that

::::::::
Kalman

::::
filter

::::::::::
methods

::::
can

:::::
also

::::
be

:::::
used

:::
in

:::::
this

:::::::::::
application

:::::
and

:::
we

::::::::
should

:::::::
expect

:::::
that

::::
the

::::::::::::
performance

:::
of

::::
this

:::::::::
method

::::
will

:::
be

:::::::::
similarly

:::::::::
affected

:::
by

::::::::::::::::
photochemistry.

::
From this

premise, we recommend that emission inversion studies for NOx utilize both observa-
tions of NO2 and ozone since ozone observations add information to the xNO estimation5

under both strongly positively and negatively NOx limited conditions and NO2 observa-
tions constrain emission parameter uncertainties the most under the more VOC limited
conditions. Thus, these two observations are complementary to each other. Likewise,
for emission inversions of VOCs we recommend observations of HCHO and ozone
since HCHO observations can constrain VOC emission uncertainties under a wide va-10

riety of photochemical conditions and ozone can constrain VOC emission uncertainties
under VOC limited conditions.

Previous studies have shown that NO2 (Konovalov et al., 2006; Zhang et al., 2008;
Muller and Stavrakou, 2005) and HCHO (Stavrakou et al., 2009; Millet et al., 2006,
2008; Palmer et al., 2003, 2006; Zhang et al., 2008) observations can constrain NOx15

and VOC emissions, respectively. Although one could have inferred that combining
ozone observations with either NO2 or HCHO observations would be beneficialto our
knowledge we are the first to demonstrate this novel approach, and we have shown

:
,

:::
we

:::::
have

::::::::
actually

:::::::
shown

:::::
now that it could be highly advantageous

:
,
::::::
which

:::
is

::::::::::
consistent

::::
with

::::::::::::::::::::::
Miyazaki et al. (2012) .20

It should be noted that the conclusions regarding VOC emission inversion are sen-
sitive to our choice of representing VOC emission uncertainties with ethene. The suc-
cess of the VOC emission inversion is significantly limited by solving for ethane emis-
sion uncertainties. This is due to the lack of impact on secondary chemical species
such as HCHO. This is one reason why previous emission inversion modeling studies25

have focused on constraining reactive VOCs like isoprene (Millet et al., 2006, 2008;
Palmer et al., 2003, 2006).

Concerning CO, all of the observing scenarios (CN, OCN, and HCN) performed
equally well at constraining CO emission uncertainties since all these scenarios in-
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cluded observations of CO. Indeed, the jacobian for CO with respect to CO emission
perturbations shown in Fig. 4 clearly shows a strong sensitivity of CO to changes in its
own emissions. On the other hand, Fig. 4 shows much lower sensitivity of CO to the
emissions of NO or VOCs. These results are fully consistent with expectations due to
the relatively low reactivity of CO and its potential to produce ozone on short timescales5

and of the lack of a strong chemical connection between NOx levels and resulting CO
concentrations. In the latter case, there is a link due to the way that NOx can perturb
OH, but due to the relative unreactivity of CO this leads to only weak sensitivity in the
jacobian. Consistent with this, there have already been several studies that use obser-
vations of CO to constrain CO emissions (Muller and Stavrakou, 2005; Kopacz et al.,10

2010; Arellano et al., 2006).
In the supporting sensitivity analysis probing emission solution sensitivity to diur-

nal emission variability we demonstrate that emission inversions are potentially highly
sensitive to the assumed variability of the emissions and that even perfect observations
would lead to such errors. In our system such emission inversion errors would be hard15

to characterize in the absence of any information regarding the true state of the emis-
sions variability. We recommend that such uncertainties should be considered and
characterized in emissions inversion studies. Currently diurnal emission variabilities
are determined in the process of building bottom-up emission inventories. Although
our prototype assimilation system can only currently solve for time independent scaling20

factors it could be modified to solve for time dependent scaling factors and the diurnal
emissions variability. Future assimilation forecasting systems should also possess this
ability to solve for time dependent emission scaling factors. Observations that ade-
quately capture the diurnal variability of pollutants will be essential to making this leap
from time independent solutions to time dependent solutions.25

4.5 Implications for GEO and LEO satellites

In the previous sections we have motivated the potential utility of surface or boundary
layer ozone, CO, NO2, and HCHO observations either in the context of improving ozone
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forecasting or for emission inversions. Ground station networks that implicitly sample
boundary layer air are already in place across the American and European continents.
However, non

::::
only

::::
one

:
of the current generation of LEO satellites

:::::::
satellite

::::::::::::
instruments

::::::::::
(MOPITT) possesses a reliable means of attaining

:::::::
unique

:
instrument sensitivity to the

boundary layer for these gases
:::::::::::::::::::::
(Worden et al., 2013) . If future GEO stationary satellite5

instruments (GEO-CAPE/TEMPO, GEMS, and Sentinel-4) wish to fully take advantage
of their simultaneous potential for superb coverage and temporal sampling and wish to
fully contribute to state of the art ozone air quality forecasting, then attaining sensitivity
to the boundary layer is essential and should be a high priority aim.

The heightened importance of observations made during the morning and mid to10

late afternoon raises the question of whether making more targetted observations, for
instance made during the morning and evening rush hours, would be able to sup-
port ozone forecasting even further. There are various observing systems that would
be able to provide this capability, such as several combined LEO missions or ground
stations or a GEO mission with increased temporal sampling capability during those15

periods. Investigating these questions in the future would be of interest to us.
Our forecasting system is better able to improve the ozone prediction using obser-

vations made during the day as opposed to the night. In the context of satellites, and
remembering that our idealised case ignores the effects of transport, this indicates that
instruments capable of observing during the night, such as those observing in the TIR,20

do not offer a significant advantage over instruments restricted to making measure-
ments during the day time. Of course, if the effects of transported pollution were to
be considered,

::::
such

:::
as

::::
the

::::::
night

:::::
time

:::::::
mixing

:::
of

:::::::
ozone

:::::::::
between

::::
the

::::::::::
boundary

:::::
layer

::::
and

::::
free

:::::::::::::
troposphere,

:::::
then making observations during the night could offer additional

utility by improving the estimated contribution to the pollution made by this process.25

For instance, this could provide advance warning of the trajectory of a pollution plume.
This is therefore a limitation of this work that we are not able to explore such effects
using a model with only idealised meteorology.

Our forecasting system (and the emission inversion) performs best using observa-
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tions made at a frequency of three hours or less. This highlights the temporal sampling
advantage posed by satellites in a GEO configuration as opposed to those in LEO. Cur-
rently, the proposed observing frequencies for the future GEO missions (Lahoz et al.,
2012) and the current ground monitoring network are at least at one hour. LEO satel-
lites, on the other hand, can not attain high frequency sampling without a large number5

of satellites being employed (Lahoz et al., 2012). In isolation, a single LEO satellite
with a sampling frequency of between 1 and 16 days is perhaps inadequate for the
purpose of constraining precursor emissions at the regional scale or for supporting air
quality forecasting. Another consideration is that observing frequencies of three hours
or more might not be adequate for studying the diurnal cycle of pollutants and for fore-10

casting systems that use 3D-var, for instance, to update ozone concentrations. Note
that the nature of our framework for performing these tests (i.e., a box model using
only idealised meteorology) places limitations on our conclusions such that the per-
formance of the higher frequency observing scenarios (3 hours or less) may be too
optimistic. Thus, observing at three hours may too be

::
be

::::
too

:
insufficient to constrain15

ozone precursor emissions.
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M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Ku-
mar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L.,
Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S.,
Robertson, L., Rouı̈l, L., Schaap, M., Segers, A., Sofiev, M., Thomas, M., Timmermans, R.,30

Valdebenito, A., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional
air quality forecasting system over Europe: the MACC-II daily ensemble production, Geo-
scientific Model Development Discussions, 8, 2739–2806, doi:10.5194/gmdd-8-2739-2015,

46



http://www.geosci-model-dev-discuss.net/8/2739/2015/, 2015.
Martin, R. V.: Satellite remote sensing of surface air quality, ATMOSPHERIC ENVIRONMENT,

42, 7823–7843, doi:{10.1016/j.atmosenv.2008.07.018}, 2008.
Millet, D. B., Jacob, D. J., Turquety, S., Hudman, R. C., Wu, S., Fried, A., Walega, J., Heikes,

B. G., Blake, D. R., Singh, H. B., Anderson, B. E., and Clarke, A. D.: Formaldehyde dis-5

tribution over North America: Implications for satellite retrievals of formaldehyde columns
and isoprene emission, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 111,
doi:{10.1029/2005JD006853}, 2006.

Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., Heald, C. L.,
and Guenther, A.: Spatial distribution of isoprene emissions from North America derived10

from formaldehyde column measurements by the OMI satellite sensor, JOURNAL OF GEO-
PHYSICAL RESEARCH-ATMOSPHERES, 113, doi:{10.1029/2007JD008950}, 2008.

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simulta-
neous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric
chemical composition and emissions, Atmospheric Chemistry and Physics, 12, 9545–9579,15

doi:10.5194/acp-12-9545-2012, http://www.atmos-chem-phys.net/12/9545/2012/, 2012.
Muller, J. and Stavrakou, T.: Inversion of CO and NOx emissions using the adjoint of the IM-

AGES model, ATMOSPHERIC CHEMISTRY AND PHYSICS, 5, 1157–1186, 2005.
Murphy, J., Delucchi, M., McCubbin, D., and Kim, H.: The cost of crop damage caused by

ozone air pollution from motor vehicles, JOURNAL OF ENVIRONMENTAL MANAGEMENT,20

55, 273–289, 1999.
Mustafa, M.: BIOCHEMICAL BASIS OF OZONE TOXICITY, FREE RADICAL BIOLOGY AND

MEDICINE, 9, 245–265, 1990.
Nali, C., Pucciariello, C., and Lorenzini, G.: Ozone distribution in central Italy and its effect on

crop productivity, AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 90, 277–289, 2002.25

Otte, T., Pouliot, G., Pleim, J., Young, J., Schere, K., Wong, D., Lee, P., Tsidulko, M., McQueen,
J., Davidson, P., Mathur, R., Chuang, H., DiMego, G., and Seaman, N.: Linking the Eta Model
with the Community Multiscale Air Quality (CMAQ) modeling system to build a national air
quality forecasting system, WEATHER AND FORECASTING, 20, 367–384, 2005.

Palmer, P., Jacob, D., Fiore, A., Martin, R., Chance, K., and Kurosu, T.: Mapping isoprene emis-30

sions over North America using formaldehyde column observations from space, JOURNAL
OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 108, doi:{10.1029/2002JD002153}, 2003.

Palmer, P. I., Abbot, D. S., Fu, T.-M., Jacob, D. J., Chance, K., Kurosu, T. P., Guenther, A.,

47



Wiedinmyer, C., Stanton, J. C., Pilling, M. J., Pressley, S. N., Lamb, B., and Sumner, A. L.:
Quantifying the seasonal and interannual variability of North American isoprene emissions
using satellite observations of the formaldehyde column, JOURNAL OF GEOPHYSICAL
RESEARCH-ATMOSPHERES, 111, doi:{10.1029/2005JD006689}, 2006.

Parrington, M., Jones, D. B. A., Bowman, K. W., Thompson, A. M., Tarasick, D. W., Merrill,5

J., Oltmans, S. J., Leblanc, T., Witte, J. C., and Millet, D. B.: Impact of the assimilation of
ozone from the Tropospheric Emission Spectrometer on surface ozone across North Amer-
ica, GEOPHYSICAL RESEARCH LETTERS, 36, doi:{10.1029/2008GL036935}, 2009.

Pierce, R. B., Schaack, T., Al-Saadi, J. A., Fairlie, T. D., Kittaka, C., Lingenfelser, G., Natara-
jan, M., Olson, J., Soja, A., Zapotocny, T., Lenzen, A., Stobie, J., Johnson, D., Avery, M. A.,10

Sachse, G. W., Thompson, A., Cohen, R., Dibb, J. E., Crawford, J., Rault, D., Martin, R.,
Szykman, J., and Fishman, J.: Chemical data assimilation estimates of continental US
ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-
North America, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 112, doi:
{10.1029/2006JD007722}, 2007.15

Pryor, W.: How Far Does Ozone Penetrate Into The Pulmonary Air Tissue Boundary Before It
Reacts, Free Radical Biology And Medicine, 12, 83–88, 1992.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding - Theory and Practice, World Sci-
entific, 2000.

Sandu, A., Daescu, D., and Carmichael, G.: Direct and adjoint sensitivity analysis of chemical20

kinetic systems with KPP: Part I - theory and software tools, ATMOSPHERIC ENVIRON-
MENT, 37, 5083–5096, doi:{10.1016/j.atmosenv.2003.08.019}, 2003a.

Sandu, A., Daescu, D., and Carmichael, G.: Direct and adjoint sensitivity analysis of chemical
kinetic systems with KPP: Part I - theory and software tools, ATMOSPHERIC ENVIRON-
MENT, 37, 5083–5096, doi:{10.1016/j.atmosenv.2003.08.019}, 2003b.25

Sillman, S.: TROPOSPHERIC OZONE - THE DEBATE OVER CONTROL STRATEGIES, AN-
NUAL REVIEW OF ENERGY AND THE ENVIRONMENT, 18, 31–56, doi:{10.1146/annurev.
energy.18.1.31}, 1993.

Stavrakou, T., Mueller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L.,
and Guenther, A.: Global emissions of non-methane hydrocarbons deduced from SCIA-30

MACHY formaldehyde columns through 2003-2006, ATMOSPHERIC CHEMISTRY AND
PHYSICS, 9, 3663–3679, 2009.

Strunk, A., Ebel, A., Elbern, H., Friese, E., Goris, N., and Nieradzik, L. P.: Four-Dimensional

48



variational assimilation of atmospheric chemical data–application to regional modelling of air
quality, in: Large-Scale Scientific Computing, pp. 214–222, Springer, 2010.

Tawfik, A. B., Stoeckli, R., Goldstein, A., Pressley, S., and Steiner, A. L.: Quantifying the contri-
bution of environmental factors to isoprene flux interannual variability, ATMOSPHERIC EN-
VIRONMENT, 54, 216–224, doi:{10.1016/j.atmosenv.2012.02.018}, 2012.5

Tingey, D., MANNING, M., GROTHAUS, L., and BURNS, W.: INFLUENCE OF LIGHT AND
TEMPERATURE ON ISOPRENE EMISSION RATES FROM LIVE OAK, PHYSIOLOGIA
PLANTARUM, 47, 112–118, doi:{10.1111/j.1399-3054.1979.tb03200.x}, 1979.

Trainer, M., WILLIAMS, E., PARRISH, D., BUHR, M., ALLWINE, E., WESTBERG, H., FEHSEN-
FELD, F., and LIU, S.: MODELS AND OBSERVATIONS OF THE IMPACT OF NATURAL10

HYDROCARBONS ON RURAL OZONE, NATURE, 329, 705–707, doi:{10.1038/329705a0},
1987.

Valente, R., Imhoff, R., Tanner, R., Meagher, J., Daum, P., Hardesty, R., Banta, R., Alvarez, R.,
McNider, R., and Gillani, N.: Ozone production during an urban air stagnation episode over
Nashville, Tennessee, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 103,15

22 555–22 568, 1998.
Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and Cofala, J.: The

global impact of ozone on agricultural crop yields under current and future air quality legis-
lation, ATMOSPHERIC ENVIRONMENT, 43, 604–618, doi:{10.1016/j.atmosenv.2008.10.033},
2009.20

WHO: Review of evidence on health aspects of air pollution, Tech. rep., WHO (World Health
Organization), 2013.

Worden, H. M., Edwards, D. P., Deeter, M. N., Fu, D., Kulawik, S. S., Worden, J. R.,
and Arellano, A.: Averaging kernel prediction from atmospheric and surface state pa-
rameters based on multiple regression with MOPITT CO and TES-OMI O3 multispec-25

tral observations, Atmospheric Measurement Techniques Discussions, 6, 2751–2791, doi:
10.5194/amtd-6-2751-2013, http://www.atmos-meas-tech-discuss.net/6/2751/2013/, 2013.

Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., and Nedelec,
P.: Observations of near-surface carbon monoxide from space using MOPITT multispectral
retrievals, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 115, doi:{10.1029/30

2010JD014242}, 2010.
Worden, J., Liu, X., Bowman, K., Chance, K., Beer, R., Eldering, A., Gunson, M., and Worden,

H.: Improved tropospheric ozone profile retrievals using OMI and TES radiances, GEO-

49



PHYSICAL RESEARCH LETTERS, 34, doi:{10.1029/2006GL027806}, 2007.
Yi, J. and Prybutok, V.: A neural network model forecasting for prediction of daily maximum

ozone concentration in an industrialized urban area, ENVIRONMENTAL POLLUTION, 92,
349–357, 1996.

Zhang, L., Constantinescu, E. M., Sandu, A., Tang, Y., Chai, T., Carmichael, G. R., Byun,5

D., and Olaguer, E.: An adjoint sensitivity analysis and 4D-Var data assimilation study of
Texas air quality, ATMOSPHERIC ENVIRONMENT, 42, 5787–5804, doi:{10.1016/j.atmosenv.
2008.03.048}, 1st International Conference on Atmospheric Chemical Mechanisms, Univ Calif
Davis, Davis, CA, DEC 06-08, 2006, 2008.

Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.: Real-time air quality fore-10

casting, part II: State of the science, current research needs, and future prospects, Atmo-
spheric Environment, 60, 656–676, 2012.

Zhu, C., Byrd, R., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization, ACM TRANSACTIONS ON MATHEMATICAL
SOFTWARE, 23, 550–560, 1997.15

Zoogman, P., Jacob, D. J., Chance, K., Zhang, L., Le Sager, P., Fiore, A. M., Eldering, A.,
Liu, X., Natraj, V., and Kulawik, S. S.: Ozone air quality measurement requirements for
a geostationary satellite mission, ATMOSPHERIC ENVIRONMENT, 45, 7143–7150, doi:
{10.1016/j.atmosenv.2011.05.058}, 2011.

Zoogman, P., Jacob, D. J., Chance, K., Liu, X., Lin, M., Fiore, A., and Travis, K.: Monitor-20

ing high-ozone events in the US Intermountain West using TEMPO geostationary satellite
observations, ATMOSPHERIC CHEMISTRY AND PHYSICS, 14, 6261–6271, doi:{10.5194/
acp-14-6261-2014}, 2014.

50



Table 1. Background free tropospheric concentrations of trace gases mixed into the boundary
layer in the photochemical model.

Chemical Species Background Mixing Ratio

Ozone 30 ppbv
NO 100 pptv
NO2 50 pptv
CO 80 ppbv
CH4 1.76 ppm

NMHCs 100-200 pptv each

Table 2.
::::::
Values

:::
of

:::
the

::::::::
different

:::::::::::
parameters

::::
and

::::::::::
emissions

:::::
used

:::
in

:::
the

::::::::::::::
photochemical

::::
box

::::::
model.

:::::
The

:::::::::
emissions

::::
are

::::::
shown

:::::
with

:::
the

::::::::::::::
corresponding

:::::
units

::
of

::::::::::
molecules

::::::::
m−2s−1.

::::::
Since

:::
k(t)

:::
is

:::::
1.89,

:::
the

::::::::
average

::::::::::
emissions,

:::::
E(t),

::::
are

::
a

:::::
factor

::
of
:::::

1.89
::::::
larger

::::
than

:::
ei.::::

For
::::::::
E(t)NO,

:::
the

:::::
value

::::::
shown

:::::::
outside

:::
of

:::
the

::::::::
brackets

:::
is

:::::::::
equivalent

:::
to

::::
xNO::

=
::
1,

::::
and

::::
the

::::::
values

::
in
::::

the
::::::::
brackets

::::::
denote

:::
the

::::::
range

::
in

::::
the

:::::::::
emissions

::::
that

:::::
arise

::::
from

::::::
using

:::
the

:::
full

::::::
range

::
of

::::
xNO:::::::::

(0.5-2.5).

::::::
Model

:::::::
variable

: :::::::::
Parameter

::
or

:::::::::
Emission

:::::
Value

::::
k(t)

::::
1.89

::::
xNO :::

0.5,
:::::
0.75,

::::
1.0,

:::::
1.25,

::::
1.5,

:::::
1.75,

::::
2.0,

:::::
2.25,

:::
2.5

:

::::
eNO :::

4.8
::
×

:::::
1010

:::::::::
molecules

::::::::
m−2s−1

:::
eCO :::

2.6
::
×

:::::
1012

:::::::::
molecules

::::::::
m−2s−1

::::
eVOC :::

4.3
::
×

:::::
1010

:::::::::
molecules

::::::::
m−2s−1

::::::
E(t)NO :

9
::
×
:::::
1010

::::
(4.5

::
×

::::
1010

:
-
::::
2.3

::
×

:::::
1011)

::::::::::
molecules

:::::::
m−2s−1

::::::
E(t)CO ::

5×
:::::
1012

:::::::::
molecules

::::::::
m−2s−1

:::::::
E(t)VOC :::

8.2
::
×

:::::
1010

:::::::::
molecules

::::::::
m−2s−1
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Table 3.
:::::::::
Simulated

::::::
range

::
in

:::::
NOx::::::

mixing
::::::

ratios
::::
that

::::::
result

:::::
from

:::
the

::::::::
different

::::::::::::::
photochemical

:::::::::
scenarios

:::::
using

::::::::
different

::::
xNO:::::::::

(0.5-2.5).
::::::

Also
::::::
shown

::::
are

::::
the

:::::::
ranges

::
of

::::
CO

::::
and

:::::::
HCHO

::::
that

:::::
result

::::
from

::::::::::
emissions

::
of

::::
CO

::::
and

::::::
VOCs,

:::::::::::
respectively.

:::::::::
Chemical

:::::::
Species

: ::::::::
Modelled

:::::::
Mixing

:::::
Ratio

::::::
Range

:

::::
NOx: :::

4.0
:
-
::::
24.0

:::::
ppbv

:::
NO

:
1

:
-
:::::
11.3

::::
ppbv

::::
NO2: :

3
:
-
:::::
16.9

::::
ppbv

:::
CO

:::
590

:
-
::::
820

:::::
ppbv

::::::
HCHO

: :::
6.5

:
-
::::
8.1

:::::
ppbv

Table 4. Values of F(x) used to calculate y. The overbar indicates that this represents the
mean value.

F(x̂) Mixing Ratio

Ozone 44.4 ppbv
CO 620 ppbv
NO2 6.5 ppbv

HCHO 3.9 ppbv
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Table 5. Values of x and xa ::
(in

::::::
terms

::
of

::::::::
unitless

::::::::
emission

:::::::
scaling

:::::::
factor)

:
used in the 4D-

variational data assimilation model.

x xa

NO CO VOC NO CO VOC

0.5 1.0 6.5 0.475 0.95 0.1
0.75 - - 0.7125 - -
1.0 - - 0.95 - -

1.25 - - 1.1875 - -
1.5 - - 1.425 - -

1.75 - - 1.8375 - -
2.0 - - 2.1 - -

2.25 - - 2.3625 - -
2.5 - - 2.625 - -
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Table 6.
:::
List

::::
and

::::::
details

::
of

:::
all

::
of

:::
the

::::::::::::
experiments

::::::
carried

:::
out

:::
as

::::
part

::
of

:::
the

:::::::::::
uncertainty

::::::::
analysis.

:::
The

:::::::::::
experiment

::::::
details

:::::::
include

::::
the

::::::::
observed

::::::::
species,

::::
xNO:::::::::

emission
::::::
factors

:::::
(see

::::
Tab.

::
2

:::
for

:::
the

:::
full

::::
list),

:::
the

:::::::::::
observation

::::::
noise,

::
β,

::::
and

::::
the

:::::::::
observing

::::::::::
frequency.

::::
The

::
8

:::::::
different

:::::::
values

::
of

::
β

:::
are

::::
0.01,

:::::
0.05

:
,
::::
0.1,

:::::
0.25,

::::
0.5,

::::
1.0,

::::
2.5,

::::
and

::::
5.0.

::::::
These

:::::::::
fractional

:::::
errors

::::
are

:::::::
relative

::
to

:::
the

::::::::
average

:::::::
species

::::::
mixing

::::::
ratios

:::::
over

:::
all

::
of

::::
the

::::::::::::::
photochemical

:::::::::
scenarios

:::::
(see

::::
Tab.

:::
4).

:::::
The

::::::::::
observing

::::::
noises

:::
are

::::::::
identical

:::
for

::::::
each

::::::::::
compound

:::::
within

::
a
:::::::::
particular

:::::::::
scenario

::::::
unless

:::::::::
otherwise

:::::::
stated.

::
All

:::
of

:::
the

:::::::
results

::::
from

::::::
these

:::::::::::
experiments

::::
are

:::::::::
described

::
in

::::::::
Section

::::
3.1.

::::
We

::::
also

:::::::
include

:::::
short

:::::
notes

::::::::::
describing

:::::
other

::::::::
aspects

::
of

::::
the

::::::::::::
experiments.

:::::
The

:::::
table

:::::::::
includes

:
a
::::

list
::
of

::::
the

:::::::
precise

:::::::
sections

::::::
where

::::
the

:::::::
different

::::::::::::
experiments

:::
are

::::::::::
discussed.

Experiment Section Observed xNO Observation Observing Special
Species Scenarios Noise (β) Frequency Notes

CN 3.1.1.1 CO and NO2 9 xNO scenarios 8 β values 3 hours
and 3.1.1.3 (0.5-2.5) (0.01–5.0)

OCN 3.1.1.1 Ozone, 9 xNO scenarios 8 β values 3 hours
and 3.1.1.3 CO and NO2 (0.5-2.5) (0.01–5.0)

HCN 3.1.1.1 HCHO, 9 xNO scenarios 8 β values 3 hours
and 3.1.1.3 CO and NO2 (0.5-2.5) (0.01–5.0)

HOCN 3.1.1.1 HCHO, ozone, 9 xNO scenarios 8 β values 3 hours Results not
CO and NO2 (0.5-2.5) (0.01–5.0) shown in a figure

Comparison between 3.1.1.2 HCHO, ozone, 9 xNO scenarios 8 β values 3 hours Three different
HCN and OCN CO and NO2 (0.5-2.5) (0.01–5.0) scenarios tested each
(EHCN - EOCN ) using different HCHO

observation noise

Observing frequency 3.1.2 Ozone, 9 xNO scenarios β=0.25 6 frequencies tested:
experiment CO and NO2 (0.5-2.5) 1, 3, 6, 12, 18, and 24 hours

Observing time 3.1.2 Ozone, 9 xNO scenarios β=0.25 3 hours 16 different scenarios
experiment CO and NO2 (0.5-2.5) tested. Observations are

removed at different
times in each case
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Table 7. Initial peak ozone predictions, true state peak ozone, initial guess ozone prediction
error, and prediction error across the full range of xNO ::::

(xNO::
is
:::
in

:::::
terms

:::
of

:::::::
unitless

:::::::::
emission

::::::
scaling

::::::
factor)

:
and the three observing scenarios CN, OCN and HCN. The ozone values and

absolute differences in ozone mixing ratio are listed for 3pm during the final day of the prediction
model. Figure 3 shows what E

:
D

:
and G represent.

xNO Scenario qO3(xa,t
µ) (ppbv) qO3(xt,t

µ) (ppbv) G D (ppbv) D (ppbv) D (ppbv)
(ppbv) Scenario CN Scenario OCN Scenario HCN

0.5 72.7 79.3 -6.6 -6.3 -0.4 -1.0
0.75 81.3 89.7 -8.4 -8.3 -0.5 -0.7
1.0 85.2 96.3 -11.1 -4.5 -0.6 -0.5

1.25 85.5 100.3 -15.1 -3.3 -0.6 -0.3
1.5 79.7 101.5 -21.8 -4.2 -0.5 -0.1

1.75 66.1 98.7 -32.6 2.2 0.3 0.2
2.0 52.8 89.0 -36.2 1.9 0.3 0.2

2.25 43.6 73.0 -29.4 1.4 0.3 0.2
2.5 37.1 58.8 -21.7 1.0 0.3 0.2
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Table 8. The a posteriori xVOC error resulting from the 4D-variational data assimilation. The
table shows the variability of the a posteriori VOC emission error

::
(in

::::::
terms

::
of

::::::::
unitless

::::::::
emission

::::::
scaling

::::::
factor)

:
both with observing scenario and NO emission factor. Errors are represented as

absolute errors of xVOC.

x̂VOC - xVOC

xNO Scenario CN Scenario OCN Scenario HCN

0.5 -6.4 0.40 8.5× 10−2

0.75 9.1 0.33 5.0× 10−2

1.0 -2.7 -0.01 3.3× 10−2

1.25 -1.6 9.87 -2.6× 10−2

1.5 -1.7 2.71 -3.6× 10−2

1.75 0.77 0.21 2.4× 10−2

2.0 0.54 0.20 3.3× 10−2

2.25 0.40 0.18 4.5× 10−2

2.5 0.35 0.18 4.8× 10−2
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Table 9. Results from a study exploring the sensitivity of the 4D-variational data assimilation
forecast of peak ozone to varying assumptions regarding, k(t), the diurnal variability of ozone
precursor emissions. Note that in each scenario the cumulative daily emission burden remains
constant for each scenario and thus each scenario has identical E(t). The overbar indicates
that this represents the mean value. The table shows (in ppbv) the modeled

::::::::
modelled

:
ozone

for each alternative k(t) scenario, the differences in true state peak ozone between these alter-
native k(t) scenarios and the standard k(t) scenario, and the absolute

:::::
errors

::
of

::::
the a posteriori

ozone prediction errors
::::::::::
predictions of these alternative k(t) scenarios relative to both the stan-

dard and alternative k(t) scenario true states. All of the ozone mixing ratios are listed for 3pm
during the final day of the prediction and monitoring period.

Assumed k(t) Alternative Alternative Emission Alternative Ozone Alternative
Scenario Emission Scenario True State - Prediction Ozone Prediction

Scenario Standard Emission - Standard True - Alternative
(ppbv) Scenario True State (ppbv) True State (ppbv)

State (ppbv)

Constant 92.5 2.8 4.0 0.7
Sine Wave 97.6 7.9 8.8 0.5
Saw-Tooth 100.3 10.6 9.7 -1.4
Offset -1 93.8 4.2 4.7 0.1
Offset -2 98.9 9.0 9.2 -0.2
Offset +1 86.2 -3.5 -4.9 -1.4
Offset +2 83.5 -6.2 -8.6 -2.4

57



Fig. 1. The various different profiles of the temporal variability emission factor, k(t), used in the
analysis of the emission solution sensitivity to diurnal emission variability. The red dashed and
the solid black lines indicate the alternative and standard emissions variabilities, respectively.
The different profiles of variability are indicated at the top of each panel in bold text.
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Fig. 2. A schematic showing how both the a priori and a posteriori emissions relate to the
true emissions of NO, and the modeled

::::::::
modelled

:
peak afternoon ozone that results from these

emission variabilities. Note that the same emission variability is used for all of the anthro-
pogenic chemical species emitted in the model. The a priori and a posteriori emissions are
scaled relative to the true emissions and these differences can be characterized as being due
to different emission scaling factors (i.e., xNO) for the a priori, a posteriori and true emissions.
The black solid, green dashed and red dashed lines show the truth, a posteriori, and a priori
emissions, respectively.
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Fig. 3. A representation of the ozone prototype forecasting framework and the 4D-variational
data assimilation results for scenario OCN with β=0.1. The observation period covers the first
48 hour period of the assimilation during which time pseudo observations are made (at a fre-
quency of every 3 hours in this case) and are used within the assimilation. The observations
are used to constrain the emissions of ozone precursors, which in turn allows the forecasting
model to produce the a posteriori ozone prediction. During the prediction and monitoring pe-
riod the model true state now plays the monitoring role allowing comparisons to be made to
the ozone forecast. The a posteriori ozone prediction represents the forecast for ozone con-
centrations one day in the future. E

::
D represents the a posteriori prediction model error and

G represents the a priori and intitial guess prediction error. The black solid line, red solid line,
green dashed line, and blue diamonds represent the truth, a priori, a posteriori, and pseudo
observations, respectively.
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Fig. 4. These plots show the columns of the Jacobian matrix, K, that correspond to the per-
turbations of the three observed species in scenario OCN. Ozone is shown on the left, CO
in the middle, and NO2 on the right. This Jacobian is for the xNO = 1.25 emission scenario.
The shaded area represents observations made during the night. NO2 observations made
using visible remote sensing instruments can only function during the daytime, so there is no
need to include a row in the Jacobian corresponding to night time NO2 observations. The
blue, green

:::
red, and red

:::::
green solid lines represent qZ(x,t)/∂xNO, qZ(x,t)/∂xNO ::::::::::::

qZ(x,t)/∂xCO,
and qZ(x,t)/∂xNO:::::::::::::

qZ(x,t)/∂xVOC, respectively. The y axes on the left and right represent the
different perturbations to x

:
.
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Fig. 5. Ozone a posteriori prediction errors across the complete range of parameter space
for xNO (0.5–2.5) on the x axis and β (0.1–5) along the y axis with each panel presenting the
results from the three observing scenarios CN, OCN and HCN. The colored contours represent
the a posteriori prediction error in units of ppbv. The green and red colors indicate low and high
levels of a posteriori ozone prediction error, respectively.

Fig. 6. xVOC a posteriori errors across the complete range of parameter space for xNO (0.5–
2.5) on the x axis and β (0.1–5) along the y axis with each panel presenting the results from
the three observing scenarios A–C. The colored contours represent the a posteriori error. To
allow comparison of the error in xVOC to the true state we note that the true state is defined as
xVOC =6.5. The light blue and green colors indicate low and high a posteriori error on xVOC,
respectively.
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Fig. 7. xNO a posteriori errors across the complete range of parameter space for xNO (0.5–2.5)
on the x axis and β (0.1–5) along the y axis with each panel presenting the results from the
three observing scenarios CN, OCN and HCN. The colored contours represent the a posteriori
error. To allow comparison of the error in xNO to the true state we note that the true state is
defined as the x axis value. The light blue and green colors indicate low and high a posteriori
error on xNO, respectively.

Weekly averaged late summer and early fall ozone, CO, and NO2 variability. Data
from the months July, August and September and years 2005 though to 2008 are
included in the analysis to create the average weekly variability. These results show
persistent pattern of day to day variability for these trace gases related to the specific
day of the week. The plots on the left, center, and right show the ozone, CO, and NO25

mixing ratios, respectively.
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Fig. 8. The difference between the scenario HCN and OCN a posteriori ozone prediction error
for a range of assumed HCHO observing error scenarios. In all of the previous analyses and
results β has been identical for all observed species, but in this sensitivity analysis we scale β
for HCHO independently from the other observed species. From left to right HCHO observing
errors are assumed to be 50%, 100%, and 150% of the observing error for the other species.
Thus the right hand panel indicates a scenario with HCHO observations to be of poorer quality
relative to the other species, and represents the difference in ozone prediction error between
the right and middle panels of Fig. 5, and the left panel indicates a rather optimistic case with
assumed HCHO observation errors to be less than the other observed species errors. The
brown and purple contour colors indicate the negative and positive differences between the
scenario HCN and OCN a posteriori ozone prediction error, respectively.
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Fig. 9. The diagonal of the
::::::::
emission averaging kernel for xVOC ::::

xNO on the lower row and xNO

::::
xVOC:on the upper row. Each column represents a different observing scenario (CN, OCN,
and HCN). The x axis denotes the varying value of xNO and the y axis shows β (0.1-5). The
contours represent the varying magnitude of the diagonal of the averaging kernel matrix from
0 to 1. The purple and light blue contour colors indicate high and low values of the diagonal of
the averaging kernel matrix, respectively.
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Fig. 10. The absolute increase in a posteriori ozone prediction error between scenario OCN
with β=0.25 and the same scenario with observations removed form specific times over the
course of 2 days (perturbed case), e.g., hour 15 on the second day indicates that no observa-
tions were included in the analytical model calculation of a posteriori ozone prediction error for
the perturbed case from 3pm on the second day. The green and black colors indicate low and
high values, respectively.
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Fig. 11. The a posteriori ozone prediction error for a variety of observation frequency scenarios
ranging from an observing frequency of 1 hour to once per day. These were calculated for
scenario OCN with β=0.25. The green and red colors indicate low and high levels of a posteriori
ozone prediction error, respectively.
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