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Abstract

We conduct analyses to assess how characteristics of observations of ozone and its
precursors affect air quality forecasting and research. To carry out this investigation
we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-
variational data assimilation system. Using this framework in conjunction with pseudo-5

observations we perform an ozone precursor source inversion and estimate surface
emissions. We then assess the resulting improvement in ozone air quality prediction.
We use an analytical model to conduct uncertainty analyses. Using this analytical tool
we address some key questions regarding how the characteristics of observations af-
fect ozone precursor emission inversion and in turn ozone prediction. These questions10

include what the effect is of choosing which species to observe, of varying amounts
of observation noise, of changing the observing frequency and the observation time
during the diurnal cycle, and of how these different scenarios interact with different
photochemical regimes. In our investigation we use three observed species scenarios:
CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical15

model was setup to simulate a range of summertime polluted environments spanning
NOx (NO and NO2) limited to volatile organic compound (VOC) limited conditions. We
find that as the photochemical regime changes, here is a variation in the relative im-
portance of trace gas observations to be able to constrain emission estimates and to
improve the subsequent ozone forecasts. For example, adding ozone observations20

to an NO2 and CO observing system is found to decrease ozone prediction error un-
der NOx and VOC limited regimes, and complementing the NO2 and CO system with
HCHO observations would improve ozone prediction in the transitional regime and un-
der VOC limited conditions. We found that scenarios observing ozone and HCHO with
relative observing noise of lower than 33% were able to achieve ozone prediction errors25

of lower than 5 ppbv (parts per billion by volume). Further, only observing intervals of 3
hours or shorter were able to consistently achieve ozone prediction errors of 5 ppbv or
lower across all photochemical regimes. Making observations closer to the prediction

2



period and either in the morning or afternoon rush hour periods made greater improve-
ments for ozone prediction: 0.2–0.3 ppbv for the morning rush hour, and from 0.3–0.8
ppbv for the afternoon relative to only 0–0.1 ppbv for other times of the day. Finally, we
made two complementary analyses that show that our conclusions are insensitive to
the assumed diurnal emission cycle and to the choice of which VOC species emission5

to estimate using our framework. These questions will address how different types of
observing platform, e.g., geostationary satellites or ground monitoring networks, could
support future air quality research and forecasting.

1 Introduction

Ozone is a hazard to human health (Mustafa, 1990; Pryor, 1992; WHO, 2013),10

plants and animals (Murphy et al., 1999; Fumagalli et al., 2001; Nali et al., 2002;
Van Dingenen et al., 2009), and a greenhouse gas (IPCC, 2007). Prediction of ozone
air quality on local and regional scales is key for providing prior warning of impend-
ing ozone exceedances (Dabberdt et al., 2004, 2006). Knowledge of the processes
that control the variability of ozone precursors is vital for understanding and predicting15

ozone air quality.
Currently, a wide variety of techniques are used to predict ozone concentrations

ranging from statistically based models (Gardner and Dorling, 2000), neural networks
(Yi and Prybutok, 1996), to prognostic models of atmospheric processes that include
data assimilation (Grell et al., 2005; Otte et al., 2005; Zhang et al., 2008; Kang et al.,20

2010; Marécal et al., 2015). For prognostic models, uncertainties result from meteorol-
ogy, the limitations of the photochemical mechanisms, wet and dry deposition, uncer-
tainties in the emissions of ozone precursors, and, for data assimilation, observation
uncertainty (Dabberdt et al., 2004, 2006). Most current statistical and data assimila-
tion air quality forecasting techniques rely primarily on surface observing networks, but25

satellite observations are increasingly coming to the fore (Lahoz et al., 2012).
Ozone pollution can develop under different polluted photochemical regimes. Under
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low to moderate levels of NOx (NO and NO2) pollution, such as can be found in rural
and suburban environments, increases in NOx lead to proportional increases in ozone,
which is why this regime is classed as NOx-limited (Trainer et al., 1987; Sillman, 1993;
Jacob et al., 1993). Under much higher levels of NOx pollution, i.e., those present in
densely populated regions, increases in NOx bring about decreases in ozone. Under5

these conditions, the only means by which ground level ozone can increase are via
increases in VOC emissions (Finlayson-Pitts and Pitts, 1997), and consequently this
regime is considered to be VOC-limited. Further, studies show that the sensitivity of
ozone to either NOx or VOCs can vary with time, e.g., during different days of the
week (Blanchard and Fairley, 2001; Blanchard and Tanenbaum, 2003). The priorities10

to monitor and observe ozone and its different precursors therefore vary according to
location and time.

Observations and models, and their combination through data assimilation, com-
prise essential tools for air quality prediction (Zhang et al., 2008; Strunk et al., 2010;
Zhang et al., 2012). Observations are an essential part of such systems, so it follows15

that their characteristics could directly affect their performance. We seek to address
this connection in our study. Given this, we will now attempt to review the relevant
characteristics of the current and planned (in the near term) state of the air quality
monitoring network in order to motivate our work and, later, to place some of our find-
ings in context.20

The US national surface air quality observing network typically observes a wide
range of chemical species. For instance, surface monitoring sites within California
(http://www.arb.ca.gov/adam/) have instruments that can measure in-situ ozone, CO,
NO2, nitrogen oxide, particulate matter with diameters of 2.5 µm and 10 µm, sulphur
dioxide (SO2), methane, total hydrocarbons, and hydrogen sulphide. The surface net-25

work is also usually able to make observations at least at hourly temporal resolution.
However, due to the spatial limitations of the surface air quality monitoring network,
space-borne remote sensing observations, which typically have greater spatial sam-
pling, are also able to support air quality research and operational air quality forecast-
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ing (Lahoz et al., 2012).
Surface station in-situ data are made at a high spatial resolution (a few meters up

to a tens of kilometres), which is typically much higher than most air quality models.
As a result, this introduces the problem of having representativity errors between the
model, which is unable to represent fine-scale variability, and the observations that can5

measure this variability. This problem therefore limits the efficacy of data assimilation
and systems need to be carefully designed to take this type of error into account.

For this study, the spatial characteristics of observations from different platforms
are not considered, but the advantages satellite data offer in terms of increased
spatial coverage have been recognised. Consequently, various studies have been10

conducted that highlight the benefits of satellite borne instruments for air quality re-
search (Arellano et al., 2006; Konovalov et al., 2006; Martin, 2008; Millet et al., 2008;
Jones et al., 2009; Bowman et al., 2009; Kurokawa et al., 2009; Dufour et al., 2010;
Duncan et al., 2010; Kopacz et al., 2010; Fishman et al., 2010). Further, satellite ob-
servations of air pollutants have been used within data assimilation models to ad-15

vance air quality research (Sandu et al., 2003a; Chai et al., 2007; Pierce et al., 2007;
Zhang et al., 2008; Parrington et al., 2009).

Excluding the issue of spatial sampling, there are considerable differences between
remote sensing observations and the existing surface observing network. Each indi-
vidual ground station is able to observe a wider range of species at the surface (see20

above) but only at a single point. On the other hand, space-based remote sensing
techniques can only observe a limited number of species that have relevance to air
quality (such as ozone, CO, NO2, SO2, CH4, glyoxal, and HCHO), have coarser hor-
izontal spatial resolution observing with a footprint ranging from several to up to tens
of kilometres, and have (with current capabilities) only limited vertical resolution and25

sensitivity to the surface or boundary layer. Also, all of the studies cited above used
instruments onboard satellites in low earth orbit (LEO). Due to the orbital configura-
tion, LEO borne instruments are only able to observe the same location on a far more
infrequent basis compared to the temporal sampling of the ground based network.
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Instruments onboard geostationary (GEO) satellites can also offer good spatial cov-
erage (at the continental and regional scale) without sacrificing temporal sampling.
This makes them potentially ideal to support future air quality research and forecast-
ing. However, in order to achieve this goal, developments must be made to improve
satellite instrument sensitivity to the boundary layer and surface gas phase composi-5

tion (Lahoz et al., 2012). Various strategies have been proposed to achieve this aim
(primarily for CO and ozone). They typically consist of either combining wavelength
bands that have been previously exploited, i.e., Ultra-Violet (UV), visible (VIS), and
IR (Infra-Red) (Landgraf and Hasekamp, 2007; Worden et al., 2007, 2010; Fu et al.,
2013; Cuesta et al., 2013), or by focusing on new wavelength bands, i.e., the Chap-10

puis bands for ozone in the visible (Zoogman et al., 2011) that offer potential novel
benefits. The UV and the Chappuis band in the visible were combined theoretically
to determine the benefit of such an approach during the development of the TEMPO
instrument (Zoogman et al., 2014) and as part of an European intiative (Hache et al.,
2014).15

As a result of the perceived benefits, several GEO missions are currently in
the various stages of planning. These include the Geostationary Coastal and
Air Pollution Events (GEO-CAPE) planned by NASA to cover the North Amer-
ican continent ((http://science.nasa.gov/earth-science/decadal-surveys/)). Sentinel
4 (http://www.esa.int/esaLP/SEM3ZT4KXMF LPgmes 0.html) is planned by ESA to20

cover Europe, and the Geostationary Environment Spectrometer (GEMS) (Lee et al.,
2009) is aimed at providing coverage of East Asia. Further, NASA’s decadal survey
and Lee et al. (2009) indicate that GEO-CAPE and GEMS will observe the following
trace gases: ozone, CO (not with GEMS), NO2, HCHO, and SO2.

GEO based observations of trace gases are therefore becoming more relevant for25

the study of air quality and for operational air quality forecasting. For the planned GEO
missions, various choices exist regarding which wavelength bands to observe in, and
these will influence the already limited range of observable species in the troposphere.
In addition, instrument design choices affect how often observations can be made, at
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what time of day, and how well. For instance, thermal infrared (TIR) based instruments
cannot measure NO2, and UV-VIS instruments cannot observe during the night time.
Thus, instrument design choices will affect the future capabilities of these missions.

We have demonstrated that a range of possible capabilities and characteristics exist
for both the current and planned air quality observing systems (ground and satellite5

based). Within the scope of this paper, we study how the frequency and specific tim-
ing during the day of observation, the species that get measured, and how well they
get measured affect the ability to conduct air quality research and to aid air quality
forecasting using a data assimilation system. This interaction between observation
characteristics and data assimilation system performance is interesting and needs to10

be studied. Therefore, addressing this question will be of interest to the current air
quality observing network and to the planned or future GEO air quality focused mis-
sions. In order to do this we carry out a series of sensitvity analyses using different
sets of pseudo-observations to test the influence of various observation characteristics
have upon the ability to predict ozone within an idealised model. This model consists of15

a photochemical box model, its adjoint, and a 4D-variational data assimilation system
setup to constrain ozone precursor emission uncertainties (NOx, CO, and VOCs). This
framework thereby mimics a state of the art air quality forecasting system. We conduct
an uncertainty analysis using a linear estimation technique for each of our sensitivity
tests. We are able to perform the uncertainty analysis owing to the fact that we use a20

box model because it limits the size of the matrices we solve for. Within the context
of a summertime ozone pollution episode that emerges during stagnant anticyclonic
conditions we attempt to address the following specific questions:

– How does the ability to predict ozone vary across three separate observing sce-
narios? The first uses only CO and NO2 observations (CN), the second uses25

Ozone, CO, and NO2 (OCN), and the third uses HCHO, CO, and NO2 (HCN).

– What are the effects of both observing frequency and the choice of when to ob-
serve on the prediction of ozone within our framework?
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– How does observation noise, when applied evenly onto each observation, affect
ozone prediction in our system?

– How are the results of these sensitivity tests affected by photochemical regime?
I.e., either NOx or VOC limited.

– Ignoring ozone prediction, which combination of observed species allows the best5

constraint on ozone precursor emissions?

In order to support our conclusions regarding the aims above we carry out a variety
of complementary analyses:

– To demonstrate that the 4D-variational data assimilation scheme can solve the full
non-linear retrieval of the emission parameters.10

– To test the robustness of our methodology to choices regarding our assumed
diurnal emission profile.

– To test whether the assumed VOC emission uncertainties can be represented
using different VOCs.

Section 2 describes all aspects of the methodology, section 3 describes the results from15

each of the analyses, section 4 discusses our results, section 5 details our conclusions.

2 Methodology

2.1 Overview

We use a photochemical box model run over 3 days to represent a worsening pe-
riod of ozone air quality during a stagnation event. Meteorological stagnation events20

under hot, sunlit conditions over urban areas typically lead to poor ozone air qual-
ity (Jacob et al., 1993; Valente et al., 1998). We assume that the idealised mixing and
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transport represented in the box model are sufficient to represent the meteorology dur-
ing anticyclonic conditions. For each of the different sensitivity tests that we perform
we use different sets of pseudo-observations of ozone, HCHO, CO and NO2 (see sec-
tion 2.3, and examine Fig. 3 to see an example of the pseudo-observations relative
to the true ozone state) in order to separately constrain the ozone precursor emis-5

sions with the 4D-variational data assimilation system. The ozone percursor emissions
have known a priori errors. We then make a prediction of ozone using the a posteri-
ori emissions. Within the model framework, days 1-2 represent the period over which
observations are made and the assimilation is carried out and the final day represents
the prediction and monitoring period. Within this final phase, we compare the ozone10

prediction, based upon the a posteriori emissions, to the ozone true state in order to
assess the assimilation performance. We support this assessment using a range of
statistics and diagnostics that shall be discussed shortly.

The use of 4D-variational data assimilation to solve the ozone precursor emission
inversion problem is consistent with the current state of the art in prognostic air quality15

forecast modeling development. For example, the Community Multi Scale Air Qual-
ity Modeling System, Hakami et al. (2007) and the Sulfur Transport Eulerian Model,
Zhang et al. (2008), and Elbern et al. (2007) are all developing such assimilation ca-
pabilities. Thus, our model framework is relevant to and is reflective of the current and
future direction of air quality forecasting.20

In order to establish the utility of more complex air quality forecasting systems that
might use 4D-variational data assimilation, our prototype forecasting system is demon-
strated theoretically. Since the emission inversion problem that we explore only be-
comes more complex as the model state space increases and additional sources of
uncertainty are introduced, a failure to show sufficiently reduced prediction error in this25

simplified setting would indicate that more complex systems are unlikely to fare bet-
ter. Sufficient prediction model error within our framework is therefore a necessary but
not sufficient condition for more complex 4D-variational data assimilation forecasting
systems using air quality observations to be successful.
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One other advantage of selecting a photochemical box model is that we are able
to generate a Jacobian describing the model response to emission parameter pertur-
bations, which can be used within an analytical modeling framework to conduct un-
certainty analysis. It would be very difficult to produce a Jacobian within a regional
or global chemical transport models in a timely fashion given the size of the model5

state space. Therefore we use an analytic model (derived from the photochemical box
model) that is simplified relative to the full assimilation framework. This is a linear es-
timation technique based upon Rodgers (2000). To support our analyses we calculate
the following diagnostics using this method: a posteriori ozone prediction error covari-
ance, a posteriori emission parameter error covariance, the emission averaging kernel,10

and the associated degrees of freedom of signal.
The 4D-variational data assimilation and uncertainty analysis using the linear esti-

mation are therefore complementary methods, and we use both techniques to achieve
our aim of exploring the effect of observing characteristics on ozone prediction. In
addition, we conduct a series of supporting analyses to test some of our assumptions.15

2.2 Photochemical box model

A pseudo 1-Dimensional photochemical box model was built using the Kinetic Pre-
Processor (KPP) (Damian et al., 2002; Daescu et al., 2003; Sandu et al., 2003b). The
model is not truly 1-Dimensional in the vertical because we use a parameterisation to
describe variability in the boundary layer height and mixing volume. The Rosenbrock20

solver is used to integrate the KPP generated ordinary differential equations required to
calculate trace gas concentrations (Eller et al., 2009). The photochemical mechanism
consists of 171 gas phase species and 524 chemical reactions simulating the degra-
dation of hydrocarbons from C1–C5 including isoprene and is based upon the Master
Chemical Mechanism v3.1 (Jenkin et al., 1997) (http://mcm.leeds.ac.uk/MCM/). In ad-25

dition, the model includes dry deposition for all relevant chemical species, it contains
a 2-parameter photolysis scheme, and it simulates the emission of ozone precursors
including NOx, CO, and VOCs.

10



Coastal urbanised Southern California (SC) has historically, and continues to be,
an interesting area of study for air quality owing to the large scale urbanisation and
population, the resulting anthropogenic emissions, and the meteorological conditions
during summertime that are favourable for the development of photochemical smog
conditions. We therefore set up the box model to study conditions that are analogous5

to this region and environment. Consequently, we situate the box model at at 33◦

North, run it from June 30th to July 2nd, and use an atmospheric humidity equivalent
to a volume mixing ratio of 0.0162. In addition, we use anthropogenic (NOx, CO, and
VOCs) and biogenic (isoprene) emissions that result in a range of atmospheric mixing
ratios typical for urbanised SC.10

The diurnal emission variability of anthropogenic compounds is pre-
scribed according to the National Atmospheric Emissions Inventory (NAEI)
(http://www.naei.org.uk/emissions/) for an urbanised area (see Fig. 1), and the
isoprene emission variability is parameterised to correlate to solar zenith angle offset
by 2 hours to consider both temperature and photon flux effects (Tingey et al., 1979;15

Tawfik et al., 2012). The isoprene emissions have an average daily emission of 1.7 ×
1010 molecules m2 s−1 and an afternoon peak of 4.6 × 1010 molecules m2 s−1, which
yields modelled isoprene mixing ratios less than 10 pptv (parts per trillion by volume)
typical for this region. The diurnal variability of the isoprene emissions is separate
and distinct to the anthropogenic VOCs. From now on, when we discuss VOCs we20

are referring to anthropogenic VOCs unless otherwise stated. The VOC speciation is
defined according to NAEI and the total peak emission of carbon via VOCs (excluding
isoprene) is 2.3 × 1012 carbon atoms m−2 s−1 and the average emission is 1.2 × 1012

carbon atoms m−2 s−1. These anthropogenic VOC emissions are typical for urbanised
regions. Boundary layer dynamics are described with a prescribed variability in mixing25

height ranging from 500-1500 metres and mixing between the boundary layer and free
troposphere equivalent to a constant 10% mass exchange per hour. In our model,
the vertical extent represents the full depth of the boundary layer. Background free
tropospheric concentrations of long lived species are assumed to remain constant,
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and are defined in Tab. 1.
The model is run under a range of photochemical conditions typical for urbanised

SC. This is achieved by varying the NO emissions across 9 different scenarios that
span the full range of modelled ozone response with respect to changing NOx concen-
tration (i.e., from NOx to VOC limited conditions). We use the same emissions for the5

other species across all of these different NO emission scenarios. For the purposes
of the emission inversion we define our ozone precursor emissions in a simplified form
(excluding emitted species not considered in the inversion) as

ϕi(t)=xiEi(t), i=NO,CO,VOC (1)

where xi are the time independent emission scaling factors for the emitted species,
i, and Ei(t) are the emissions with a prescribed and repeating diurnal cycle for each10

emitted species. The emission inversion solves for, xi, the time independent emission
scaling factors, which can be represented as a vector, x, for the emitted species, i, as
shown by

[x]i=xi , i=NO,CO,VOC (2)

Further, we define the true state of the emission scaling factors as xt. The variability
of ENO(t) is shown in Fig. 2 and this variability is represented by15

Ei(t) = eik(t) (3)

where k(t) is the temporal variability emission factor for all of the emitted species and
ei is the time independent emission for each species. Note then that all of the anthro-
pogenic emissions (NO, CO, and VOCs), Ei(t), share the same temporal variability.
The variability of k(t) is shown in Fig. 1 as the ’Standard Emission Variability’. Table 2
shows the values of eNO, eCO, and eVOC used in our model simulations.20

In the emission inversion calculations we represent VOC emissions via ethene emis-
sions. We selected ethene because it is a sufficiently reactive gas that is emitted in
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abundance through the course of anthropogenic activity. Thus, the adjoint sensitivities
to ethene emissions are sufficiently high to allow the 4D-var system to find adequate
solutions for the VOC emission parameter. Table 2 describes the setup of the photo-
chemical model for the range of different NO emission scenarios that we investigate,
and shows the values of k(t), and, for each species, e and E(t). Note that for E(t) the5

overbar indicates the mean value of a variable.
The NO emission scalings shown in Tab. 2 are chosen to represent a wide range

of photochemical conditions and given the VOC burden in the model, xNO emission
scalings 0.5, 0.75 and 1.0 represent NOx limited conditions, 1.25, 1.5 and 1.75 repre-
sent transitional conditions, and 2.0, 2.25, and 2.5 represent VOC limited conditions.10

The mixing ratios of NOx that result from these different NO emission factors, and the
mixing ratios of CO and HCHO that result from the CO and VOC emissions are all
summarised in Tab. 3.

2.3 Forecasting framework and 4D-variational data assimilation

Several NOx emissions scenarios are simulated to cover a wide range of photochemical15

conditions (xNO=0.5-2.5). Each emission scenario is represented mathematically as
a forward model, F(x,t), which represents the concentrations as a function of time
evaluated emissions, x. Depending on the scenario, either pseudo-observations of CO,
NO2, O3, or HCHO are used in various combinations (see Fig. 3 for a representation of
the ozone pseudo-observations relative to the true state for ozone). In order to derive20

the pseudo-observations the model true state is sampled at 3 hourly intervals in the
standard scenarios (used as default unless specified) and at intervals between 1 and
24 hours in scenarios characterizing the impact of observing frequency on prediction
error. The sampled species concentrations are then combined with an additive noise
model to generate the pseudo-observations, y, represented by25

y=F(x,t)+n (4)
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where n is the noise

n=F(x)×β×ϵ (5)

and where F(x) is the average species concentration (values shown in Tab. 4), β is the
noise scaling factor, and ϵ is a random number with a normalised Gaussian distribution,
with a standard deviation of 1, and a mean of zero. The modelled concentrations for all
species and times resulting from F(x) can be represented as a vector, q,5

q=F(x,t) (6)

or for specific species, z, at time, t, as qz(x,t),

qz(x,t)= [F(x,t)]z (7)

where z can be O3, NO2, CO or HCHO. We define a priori emission scaling factors,
xa, with specified errors relative to xt (Tab. 5 provides a summary of the values of x
used for both xt and xa), which are combined with the model to yield the a priori model
state, F(xa). Note that within our framework the a priori is also the initial guess.10

The assimilation is started at the first iteration with the forward model using the initial
guess and is thus described as F(xa) after one iteration. A cost function, which is a
scalar, J(x), is then evaluated

J(x)=
1

2
((y−F(x))TS−1

n (y−F(x))+
1

2
(x−xa)

TS−1
a (x−xa)) (8)

where Sa is the a priori constraint matrix and Sn is the observation error covariance
(where the superscript T indicates the transpose). The 4D-variational data assimilation15

method seeks the solution for x, x̂, that minimizes J(x)

x̂=min
x

J(x) (9)
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such that the gradient of the cost function with respect to x is zero if the solution x̂ is
equal to the true state, xt, (though this is never fully achieved)

∇xJ =KTS−1
n (y−F(x̂))−S−1

a (x̂−xa)= 0 (10)

where K is the Jacobian matrix (see Eq. 15) describing the forward model re-
sponse to perturbations to the emission parameters, and ∇xJ is the adjoint sensi-
tivity (Daescu et al., 2003; Sandu et al., 2003b), calculated by the Rosenbrock solver5

(Eller et al., 2009), which indicates the sensitivity of the cost function to the emission
parameters. The cost function and its adjoint sensitivities are passed to the quasi-
Newton L-BFGS algorithm (Zhu et al., 1997). The L-BFGS algorithm iteratively deter-
mines the optimal state of x, x̂, that minimizes the difference between the model and
observations subject to the a priori constraints.10

Using the estimated emissions, x̂, the forward model, F(x̂), provides the air quality
prediction of the ozone concentration, qO3(x,t), on the afternoon of the 3rd day of the
simulation during the prediction and monitoring period. The relevance of qO3(x,t) to
the prediction and monitoring period is shown in Fig. 3.

Figure 2 shows how the a priori emissions, xa, relate to the true emissions xt, and15

the a posteriori emissions, x̂, after the 4D-variational data assimilation, as well as the a
priori, the true and the a posteriori ozone levels (i.e., qO3(xa,t), qO3(xt,t), and qO3(x̂,t),
respectively). The left panel of Fig. 2 shows the a priori emission error for NO emissions
and the right panel shows the a posteriori NO emission error. The a posteriori emission
parameter error can be defined more generally as a vector x̃.20

x̃= x̂−xt (11)

Figure 3 provides an example representation of the pseudo-observation ozone predic-
tion, qO3(x̂,t), relative to the true state, qO3(xt,t), during the prediction and monitoring
period on the third day. In Fig. 3 D represents the a posteriori ozone prediction error at
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time, tµ (tµ is 3pm on day 3 during the prediction and monitoring period), defined by

D= qO3(x̂,t
µ)−qO3(xt,t

µ) (12)

In Fig. 3 G represents the a priori ozone prediction error defined by

G= qO3(xa,t
µ)−qO3(xt,t

µ) (13)

The air quality prediction error over the entire prediction and monitoring period for each
of the species, z, can be defined as a vector, q̃

[q̃z]j = qz(x̂,tj)−qz(xt,tj) ,j=3,6......21,24 (14)

where j is the hour of day on the 3rd day during the prediction and monitoring period.5

2.4 Uncertainty analysis

2.4.1 Overview

The uncertainty analysis has two foci: the evaluation of the performance of the emis-
sions estimates and an estimation of the a posteriori ozone prediction error. Note that
there is a direct synergy between these two analyses since uncertainties in the emis-10

sions estimate directly impact upon ozone prediction uncertainty. The diagnostics that
we calculate in the analysis of the emissions uncertainties include the a posteriori emis-
sion parameter error, the emission averaging kernel matrix, and the emission inversion
degrees of freedom of signal.

2.4.2 The Jacobian Matrix15

The Jacobian matrix can be used to help characterize the variance of x̃ and q̃. There-
fore it is advantageous to determine K. Within our framework, each element of K rep-
resents the forward model response, ∂qz(x,t)/∂xi, at time, t, and for observed species,
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z, to perturbations in emissions of species, i, in the case of the OCN scenario (using
pseudo-observations of ozone, CO, and NO2) it is defined by

K=



∂qO3(x,t1)/∂xNO ∂qO3(x,t1)/∂xCO ∂qO3(x,t1)/∂xVOC

∂qO3(x,t2)/∂xNO ∂qO3(x,t2)/∂xCO ∂qO3(x,t2)/∂xVOC

. . .

. . .

. . .
∂qO3(x,tNt)/∂xNO ∂qO3(x,tNt)/∂xCO ∂qO3(x,tNt)/∂xVOC

∂qCO(x,t1)/∂xNO ∂qCO(x,t1)/∂xCO ∂qCO(x,t1)/∂xVOC

∂qCO(x,t2)/∂xNO ∂qCO(x,t2)/∂xCO ∂qCO(x,t2)/∂xVOC

. . .

. . .

. . .
∂qCO(x,tNt)/∂xNO ∂qCO(x,tNt)/∂xCO ∂qCO(x,tNt)/∂xVOC

∂qNO2(x,t1)/∂xNO ∂qNO2(x,t1)/∂xCO ∂qNO2(x,t1)/∂xVOC

∂qNO2(x,t2)/∂xNO ∂qNO2(x,t2)/∂xCO ∂qNO2(x,t2)/∂xVOC

. . .

. . .

. . .
∂qNO2(x,tNt)/∂xNO ∂qNO2(x,tNt)/∂xCO ∂qNO2(x,tNt)/∂xVOC



=
∂F(x,t)

∂x
(15)

where K has dimensions Ni × N . Ni is the number of species in the emission factor
state vector, x and is thus always three. We define N as the total number of observa-
tions for all species5

N =Nt×Ny (16)

where Nt is the number of points in time the model perturbations are sampled and Ny

is the number of species whose perturbations are used in the Jacobian. In the case of
17



Eq. 15 y = O3, CO and NO2 therefore Ny = 3. y includes HCHO in the HCN scenario.
Figure 4 plots columns of the Jacobian and it shows that ozone is more sensitive to

changes in emissions during the afternoon, and that CO and NO2 respond to changes
in emissions during the rush hour periods.

The key assumption in using the Jacobian is that changes in the emissions can be5

described approximately by (Rodgers, 2000)

F(x)−F(x+δx)≈Kδx (17)

this assumption has been validated using finite differencing (results not shown) to com-
pare to solutions derived from the right side of Eq. 17.

2.4.3 Emission error characterization

We calculate various statistics to determine the emission estimation performance.10

First, we determine the a posteriori emission parameter error covariance, which is
defined by (Rodgers, 2000)

E
[
x̃x̃T

]
=(S−1

a +KTS−1
n K)−1 (18)

Next, we calculate the emission averaging kernel defined by

A=(S−1
a +KTS−1

n K)−1KTS−1
n K (19)

and the degrees of freedom of signal that is calculated via

d.o.f.=Tr(A) (20)

where both of these diagnostics provide information on the resolution of the emission15

retrieval, i.e., the ability of the estimate to uniquely distinguish between the emissions
of individual species. The notation Tr(A) indicates the trace of a matrix. While the
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diagonals of A represent the sensitivity of x̂i to xi the d.o.f. represents the number of
separate emission parameters that can be uniquely retrieved.

2.4.4 Ozone prediction error characterization

Using the a posteriori emission error we can determine the a posteriori ozone predic-
tion error during the prediction period. In order to do this we need to define a new Jaco-5

bian matrix, K
′
, that defines the forward photochemical response during the prediction

and monitoring period (day 3) to perturbations in the emissions. Thus, K and K′ sim-
ply differ because K describes the model response during the observation period as
opposed to the prediction and monitoring period. Each element of K

′
is ∂qz(x,tj)/∂xi

where j is the index of time denoting when the model is sampled on the 3rd day. The10

a posteriori ozone prediction error covariance for the 3rd day can be determined by

E
[
q̃q̃T

]
=K′E

[
x̃x̃T

]
K′T (21)

2.5 Summary of Experiments

We describe all of the experiments that we perform for the uncertainty analysis (Section
3.1) in Tab. 6. In each experiment we test a range of different observation character-
istics using different parameters. To give an example, for the CN observing scenario15

we test the model forecast uncertainties across the nine values of xNO (i.e., 0.5 – 2.5
with increments of 0.25) and for eight different levels of observing error, β = 0.01–5
(equivalent to 1%, 5%, 10%, 25%, 50%, 100%, 250%, and 500% relative error). Thus,
we perform 72 separate tests for this experiment and for the OCN and HCN scenarios
as well. However, for the experiment comparing HCN and OCN we carry out three20

separate tests where we scale HCHO observation noise relative to the other species.
We test three different scalings: 50% lower, the same, and 50% higher noise.

Section 3.2 is dedicated to sensitivity studies using the full 4D-var data assimilation
forecast system. In Section 3.2.1 we demonstrate the ability of the 4D-var data assim-
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ilation forecast system to forecast ozone when using the three observation scenarios
CN, OCN, and HCN. For these experiments we use observations made at three hour
intervals, and using β=0.1.

Next, in section 3.2.2, we define a range of different k(t) scenarios in order to probe
the emission solution and ozone forecast sensitivity to the assumed diurnal emission5

variability. These alternative k(t) scenarios and the ’Standard Emission Variability’
are shown in Fig. 1. In each test we perform the 4D-var data assimilation forecast
using the alternative k(t) scenario while still assuming that the ’Standard Emission
Variability’ is representative of the true state. We perform this test using the OCN
scenario, observing at three hour intervals, and β=0.1.10

When conducting the VOC emission inversion we represent VOC emission uncer-
tainties as ethene emission uncertainties (rather than a more diverse range of VOCs).
In section 3.2.3 we test that assumption using a sensitivity analysis by assuming VOC
emission errors for ethane instead of ethene. Again, we perform this test for the OCN
scenario, observing at a three hour frequency, and β=0.1.15

3 Results

3.1 Uncertainty analyses

3.1.1 Assessing observations of CO, NO2, ozone, and HCHO and the influence
of observation error

3.1.1.1 Emission error characterization and ozone prediction error20

In this section we examine the choice of which species to observe in order to best
constrain the emissions and improve the ozone prediction, and we look at the three
scenarios CN, OCN, and HCN in order to do this. Table 6 describes the parameter
space we sample in each of these scenarios and it describes other important aspects
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of the forecast system setup, i.e., the values of xNO and β, and the pseudo-observation
observing frequency.

These results include the a posteriori ozone prediction error (calculated by Eq. 21)
and the a posteriori emission parameter error (calculated by Eq. 18). We limit our
analysis of the observed species to ozone, CO, NO2, and HCHO because these gases5

are monitored by both ground stations and satellites.
Figure 5 presents the a posteriori ozone prediction errors across the complete range

of parameter space and, in each panel, the results from the three observing scenarios.
All of the scenarios exhibit similar general behaviour in the derived a posteriori ozone
prediction errors: a first maximum in ozone prediction uncertainty in the NOx limited10

scenarios (xNO=0.5–0.75), with a consistent minimum in ozone prediction error in the
transition region that is both NOx and VOC limited (xNO=1.0–1.75), and a second larger
maximum in ozone prediction uncertainty in the VOC limited regime (xNO=2–2.5). Sce-
nario CN (observing only CO and NO2) yields the highest a posteriori ozone prediction
uncertainties of the three scenarios across the range of NO emission scenarios. The15

inclusion of ozone and HCHO observations in the OCN and HCN scenarios, respec-
tively, reduces the a posteriori ozone prediction uncertainties compared to those from
the CN scenario. Scenarios OCN and HCN both show significant improvement in the
VOC limited emission scenarios (xNO = 2.0–2.5) with each outperforming the CN sce-
nario by up to 2.4 ppbv. Scenarios OCN and HCN diverge from one another when20

(xNO = 2.0), which represents the lowest xNO factor that is still VOC limited. In this
case, scenario OCN outperforms scenario HCN by up to 1.4 ppbv. Under NOx lim-
ited conditions (xNO =0.5–1.0), the OCN scenario a posteriori ozone prediction errors
show a strong improvement relative to the CN scenario (2.6 ppbv), and a slightly more
modest improvement relative to the HCN scenario (1.9 ppbv).25

We will now focus on explaining these differences in the a posteriori ozone prediction
error highlighted above. To gain further insight into this behaviour Figs. 6 and 7 show
the a posteriori error for xNO and xVOC. Note that the a posteriori error for xCO (not
shown) is invariant with respect to the photochemical regime and is therefore unable to
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explain any of the observed variability of ozone prediction error over varying xNO.
Figure 6 shows that scenario HCN is able to reduce xVOC a posteriori errors over the

largest range of NO emission scenarios, followed by scenario OCN, and scenario CN.
This reduction in VOC emission uncertainty in scenario HCN explains why it shows
reduced a posteriori ozone prediction error (by up to 2.4 ppbv) compared to the CN5

scenario under VOC limited conditions. Despite HCHO observations overall providing
a better constraint on VOC emission uncertainties under all conditions this improved
constraint only leads to lower a posteriori ozone prediction error compared to the OCN
scenario in the transition region regimes (xNO= 1.0–1.75) (see Fig. 8 central plot), and
under the most VOC limited conditions (xNO >2.0). The exception to this behaviour10

occurs at xNO = 2.0; despite the HCN scenario showing lower xVOC a posteriori errors
compared to the OCN scenario the HCN scenario shows higher a posteriori ozone
prediction error. This occurs because the a posteriori ozone prediction error is also
sensitive to the a posteriori NO emission uncertainties under VOC limited conditions,
and ozone is better than HCHO at constraining the NO emission uncertainties.15

Figure 7 illustrates that the OCN scenario exhibits the smallest a posteriori NO emis-
sion parameter errors compared to any of the other observing scenarios. This is par-
ticularly pronounced under VOC limited and NOx limited conditions. Therefore, ozone
is better able to constrain NO emission uncertainties as compared with HCHO un-
der all photochemical conditions, which is because ozone is always more sensitive to20

changes in NO emissions than HCHO. Note, in the case of VOC limited conditions,
ozone is anticorrelated to NO emissions. As a direct result of this, the OCN scenario
ozone a posteriori prediction errors are 2.5 ppbv and 1.9 ppbv lower than the CN and
HCN scenarios, respectively, while under NOx limited conditions. Under VOC limited
conditions, the OCN scenario shows a posteriori ozone prediction errors that are 2.425

ppbv lower than for the CN scenario. The improved estimation of the NO emissions
in the OCN scenario compared to the HCN scenario only lead to reduced a posteriori
ozone prediction errors (by 1.4 ppbv) for the xNO = 2.0 emission case (see Fig. 8).
This one exception is because VOC emissions errors dominate the ozone prediction
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uncertainty for the other VOC limited cases.
We now briefly explore the benefits of combining all four of the observed species

(CO,NO2, ozone, and HCHO) to make the HOCN scenario. This scenario can im-
prove ozone prediction errors by up to 2.9 ppbv and 3.1 ppbv under NOx and VOC
limited conditions, respectively, compared to the CN scenario. Combining ozone and5

HCHO observations slightly improves ozone prediction errors by up to 0.3 ppbv and
0.8 ppbv under NOx and VOC limited conditions, respectively, compared to the OCN
scenario. The differences between the ozone and HCHO combined scenario and the
OCN scenario under VOC limited conditions further highlight the potential for HCHO
observations to improve ozone prediction errors under the most VOC limited conditions.10

Until now, we have not directly discussed the impact of CO observations or of the
resolution of CO emission uncertainties within the assimilation framework. We do not
show a figure here, but a posteriori CO emission uncertainties are almost invariant with
respect to photochemical regime and to the observing scenario (CN, OCN, or HCN).
However, the a posteriori CO emission uncertainties increase from 1×10−5 to 0.1 as15

the observing noise increases from β = 0.01 to β = 1.0, respectively. According to the
sensitivity of ozone to xCO in the Jacobian K′, these relatively low levels of CO emission
uncertainty would only lead to perturbations in ozone of 0.5 ppbv at most. For the case
with the highest amount of noise, β = 5.0, the a posteriori CO emission uncertainty
reaches 1.1. Again, using K′, we can estimate that this larger level of CO emission20

uncertainty could lead to about a 5 ppbv perturbation in ozone. Therefore, only the β
= 5.0 noise scenario leads to large enough a posteriori CO emission uncertainties that
can have a significant effect on a posteriori ozone prediction errors.

3.1.1.2 Sensitivity Test for Degraded HCHO Observations

The standard HCN scenario described above assumes that the relative observing25

errors for HCHO are the same as for the other gases. However, within the context of
satellite observations, the quality of HCHO observations are likely to be degraded rela-
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tive to ozone, for instance. This is likely due to the relative magnitude of the absorption
cross-sections and interferences from other absorbing gases. We therefore perform
a sensitivity test whereby we apply an upward scaling factor to the β of HCHO to in-
crease it by 50% relative to the other observed gases in the standard HCN scenario
(see the experiment ’comparison between HCN and OCN’ in Tab. 6 for further details5

). Figure 8 shows that scenario HCN only has lower a posteriori ozone prediction un-
certainties over the full range of NO emission scenarios under the optimistic scenario
of lower HCHO observation uncertainties (β of HCHO is set to be 50% lower than that
of ozone), and that in the other scenarios, that we assume would be closer to reality,
scenario HCN only out performs scenario OCN in the transition region and for the most10

VOC sensitive regimes. Under the assumptions of lower ozone observing uncertainty
OCN out performs scenario HCN in the NOx and VOC limited regimes by up to 1.9
ppbv.

3.1.1.3 Averaging Kernel and Degrees of Freedom of Signal

Following from Section 3.1.1.1, we now characterize the emission estimate using the15

emission averaging kernel and degrees of freedom of signal diagnostics. The emission
averaging kernel ( Eq. 19) represents the sensitivity of the retrieved emission parame-
ters along the diagonal, i.e., for a particular species, i, to changes in the real emission
parameter for species, i. This analysis is carried out for the CN, OCN, and HCN sce-
narios (refer to Tab. 6 for details). Figure 9 shows the respective diagonals of the20

emission averaging kernel (for xVOC and xNO) varying in a manner consistent with the
a posteriori parameter errors as shown in Figs. 6 and 7. A comparison of the lower
panels indicates that the NO emission parameter estimate using the OCN observing
scenario is more sensitive to the true state of the NO emission parameter under both
NOx limited and VOC limited conditions than any of the other observing scenarios. The25

top panels show that the VOC parameter estimate shows the highest sensitivity to the
true state of the VOC emission parameter using the HCN observing scenario.
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Consistent with the averaging kernel the emission inversion degrees of freedom of
signal (see Eq. 20, results not shown) indicates that the HCN scenario is better able
to retrieve and resolve the 3 separate emission parameters compared to the OCN
scenario. This is because HCHO provides a better constraint on VOC emissions over
a wider range of xNO and β. However, ozone in general constrains ozone precursor5

emissions across a wider variety of emission parameters, specifically for xNO, which
allows ozone observations to yield better a posteriori ozone prediction errors. The
OCN scenario shows a decrease in the degrees of the freedom of signal under NOx

limited conditions due to the lack of sensitivity of the retrieval to the VOC emission
parameter when using these observations.10

3.1.2 Observing time and observing frequency

We now examine the sensitivity of the ozone prediction error to the removal of obser-
vations at different times during the day. Refer to the ’observing time experiment’ in
Tab. 6 for details. Since the first observations are made at 00:00 local time, this means
practially that we run our tests by removing observations at 00:00, 03:00, 06:00 (all15

local time) and so on until each observation within the entire observing window (the
first two days of simulation) has been tested.

Figure 10 shows a posteriori ozone prediction errors are most sensitive to the re-
moval of observations during the day particularly during the high emission periods in
the morning and afternoon rush hours and particularly so during the period of ele-20

vated ozone in the afternoon. The timing and magnitude of the sensitivity and its peak
to observation removal varies according to the 9 NO emission scenarios as well. In
the more NOx limited scenarios, xNO=0.5–1.0, the sensitivity to observation removal is
distributed relatively evenly over the entire day. In the VOC limited regimes, xNO=1.75–
2.5, the sensitivity to observation removal is more tightly distributed within the afternoon25

period and peaks between 3pm and 6pm even showing a broad maximum out to 8pm
under the most VOC limited conditions. The temporal variability of the maximum sen-
sitivity to observation removal with changing photochemical regime is due to the timing
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of afternoon peak ozone concentrations. This is because across all of the photochem-
ical regimes maxima in ozone sensitivity to perturbations in emissions coincide with
the daytime peak ozone concentration (see Fig. 4). Observations made during these
key periods are therefore better able to constrain the emissions uncertainties. Ozone
concentrations peak later in the afternoon under more VOC limited conditions com-5

pared to the NOx limited conditions thus explaining some of the variability in maximum
sensitivity to observation removal with changing photochemical regime.

Next, we address how observing frequency will affect the ozone prediction error.
We run a series of sensitivity tests using a variety of observing frequencies ranging
from once a day to once every hour. Table 6 provides a complete description of the10

’observing frequency experiment’. We carry out these tests across the full range of
NO emission scenarios (xNO= 0.5–2.5 with increments of 0.25), and with β = 0.25.
Figure 11 shows how a posteriori ozone prediction errors vary with changing observing
frequency. Increasing observing frequency causes the largest decreases in a posteriori
ozone prediction uncertainty in the VOC limited regime and to a lesser extent in the NOx15

limited regime due to the sensitivity of ozone prediction error to unresolved emission
parameter errors in those regimes.

3.2 Supporting sensitivity analyses

3.2.1 4D-variational data assimilation

We now demonstrate the performance of the 4D-variational data assimilation. Our 4D-20

var framework solves the non-linear estimation problem whereby it optimizes the ozone
precursor emissions and then estimates a posteriori ozone mixing ratios (the forecast).
We run the system across the full range of photochemical conditions (xNO=0.5–2.5)
and for the CN, OCN and HCN scenarios whilst assuming low levels of observational
error (β=0.1) represented in the observation error covariance matrix.25

The results shown in Tab. 7 indicate that scenarios OCN and HCN yield acceptable
prediction error under these idealised conditions (β=0.1) within this prototype frame-
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work for all photochemical conditions. The more limited success of scenario CN (ob-
servations of CO and NO2) is due to the lower sensitivity of CO and NO2 observations
to the emissions of VOCs across all NOx emission scenarios, and of the low sensitivity
of CO observations to the emissions of NO. The magnitude of the adjoint sensitivities
guides the L-BFGS algorithm (Zhu et al., 1997) to the global minimum. In cases where5

the adjoint sensitivities are low, e.g., in VOC limited conditions using the CN scenario,
the optimization routine may only be able to find a non-global minimum, which leads to
larger a posteriori emission factor errors, x̂−xt.

Table 7 indicates that there is variability of a posteriori peak ozone prediction error
over changing photochemical regime and xNO for each observing scenario CN, OCN,10

and HCN. This variability with xNO is due in part to the variations in modelled ozone
sensitivity to the different ozone precursor emission parameters, ∂qO3(x,t)/∂xi, and
the a posteriori emission parameter errors (i.e., x̂−xt). Generally, large sensitivity of
predicted ozone to the emissions of ozone precursors, ∂qO3(x,t)/∂xi, combined with
unresolved ozone precursor emission parameter errors can lead to larger a posteriori15

peak ozone prediction errors. For instance, in the NOx limited regimes (xNO= 0.5-1.0)
large residual error in the element of x̂ corresponding to NO emissions would lead to
large a posteriori ozone errors.

One example of this phenomenon occurs in the case of photochemically VOC lim-
ited scenarios (i.e., xNO=1.75-2.5). Table 8 shows the variability of a posteriori VOC20

emission errors with xNO and observing scenario. For observing scenario CN there is
large unresolved error in xVOC (Tab. 8) as in this case the size of the adjoint sensitivities
is insufficient to guide the L-BFGS algorithm to the global minimum and the solutions
represent local minima. This leads to larger a posteriori ozone prediction error as com-
pared to scenarios OCN and HCN (see Tab. 7), which are better able to resolve errors25

in VOC emissions.
There are also examples where ozone precursor emissions are poorly resolved, but

this has only minimal impact on the ozone prediction error, D. This occurs for the OCN
scenario when xNO ranges from 1.25 to 1.5. For these cases the unresolved error on
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xV OC is larger than for many other situations. Again, this occurs because the L-BFGS
algorithm is only able to find a local minima. However, in these instances, the relatively
low sensitivity of ozone to xV OC means that the resulting ozone prediction errors are
relatively low as well.

Thus, there are a rather complex set of factors interacting to cause these resulting5

a posteriori prediction errors and the analysis of the results is limited to identifying
relationships between the observing scenario, the photochemical regime, the adjoint
sensitivities and the resulting ozone a posteriori prediction error. This demonstrates
the utility of the analytical model in allowing a far more in-depth analysis. Overall, the
4D-variational data assimilation framework seems capable of resolving emission un-10

certainties and in turn reducing ozone prediction error. This successful demonstration
of the framework is a necessary but not sufficient condition for systems based upon
more complex photochemical models to have ozone predictive skill.

3.2.2 Examining day-to-day variability and probing emission solution sensitiv-
ity to diurnal emission variability15

We investigate the sensitivity of the forward photochemical model ozone mixing ratios,
obtained via the 4D-var ozone prediction and the 4D-var emissions estimate, to a range
of assumed emission diurnal profiles. We use the following profiles selected arbitrar-
ily to test the model sensitivity: constant, sine wave, square wave, and offsets of the
existing profile by 1 and 2 hour shifts both forward and backward in time (see Fig. 1).20

These alternative emission profiles are taken to represent the new true state, xt, (using
xNO=0.75) and are used to generate the pseudo-observations (using β=0.1). We then
attempt the assimilation using the pseudo-observations generated from the alternative
emission scenarios whilst assuming that the emissions temporal variability is the stan-
dard variability. The alternate emission profiles test the robustness of the 4D-variational25

data assimilation method to diurnal uncertainty in the emissions.
Table 9 indicates that the forward model shows peak ozone mixing ratios diverging

from the base case run (standard assumed emission variability with xNO=0.75) by up to
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10.6 ppbv and that the forward model ozone mixing ratios are sensitive to the assump-
tion of the diurnal emission variability. In addition, Tab. 9 shows that the 4D-variational
data assimilation is able to achieve a posteriori peak ozone prediction errors of up to
2.4 ppbv relative to the true state, as defined by the perturbed scenario, despite us-
ing the unperturbed diurnal emission scenario as its emission variability. Although we5

only show the differences in the maximum ozone mixing ratios, this behaviour is re-
produced in the ozone mixing ratios at other times during the sunlit day. This further
confirms our general findings from these tests. Despite the relative success of the a
posteriori peak ozone prediction (only a maximum ozone prediction error of 2.4 ppbv)
under these more challenging conditions the assimilation performs poorly in terms of10

the a posteriori emission factor error. Errors range up to 0.46 (18-92%), 0.17 (17%),
and 7.0 (108%) for xNO, xCO, and xVOC (relative to true scaling factors of 0.5-5.0, 1.0,
and 6.5, respectively) and thus emission inversion success is strongly affected by er-
rors in the assumed diurnal variability of ozone precursor emissions. In summary, we
demonstrate forward model ozone sensitivity to perturbations in the diurnal variability15

of ozone precursor emissions, relative insensitivity of the 4D-variational data assimila-
tion a posteriori prediction error to mismatches in the assumed versus observed diurnal
variability of ozone precursor emissions, and sensitivity of the emissions inversion suc-
cess to mismatches in the assumed versus true emissions variability.

3.2.3 Emission inversion and ozone predictive skill sensitivity to VOC species20

selection

We conducted a sensitivity test whereby we represent VOC emission uncertainties
with uncertainties in the emission of ethane, which is a less reactive VOC compared to
ethene. We found that that the VOC emission inversion is severely degraded by build-
ing the Jacobian by perturbing xethane as opposed to xethene across the three scenarios.25

The a posteriori xVOC parameter error relaxes to our chosen a priori of 1.5 to within
1 significant figure for most of the scenarios explored. However, this does not affect
ozone prediction error since the degraded VOC emission uncertainty is mitigated by
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the lower reactivity of ethane compared to ethene. As a result, the sensitivity of ozone
to that uncertainty is therefore lower.

4 Discussion and Conclusions

We addressed a set of key questions to determine how characteristics of observations
of ozone and its precursors affect one’s ability to constrain ozone precursor emissions5

and consequently to predict ozone when using an idealised prognostic air quality model
coupled to a data assimilation framework. These questions consisted of which species
to observe, how well to observe them, how often to make observations, when to make
them during the diurnal cycle, and how soon to observe before making a prediction.
Further to this, we were interested in how the answers to these questions changed10

according to varying photochemical regime (from NOx to VOC limited conditions for
ozone formation). These questions are relevant to determining, in a very coarse way,
how the various observing platforms (i.e., LEO and GEO satellites) and ground moni-
toring networks are able to support air quality research and forecasting.

We used a framework consisting of a photochemical box model using idealised me-15

teorology, its adjoint, and a 4D-variational data assimilation system setup to constrain
ozone precursor emission uncertainties (NOx, CO, and VOCs). The photochemical
box model used idealised meteorology that represented stagnant summer weather
conditions. Using linear analysis to assess the framework’s prediction uncertainties
we carried out a series of sensitivity analyses to test the performance of the forecast-20

ing framework under a range of different observing scenarios. This consisted of using
various sets of pseudo-observations. We examined the effect of changing which four
species were observed (CO, NO2 and HCHO, CO, and NO2), of varying the observa-
tion noise, of changing the observing frequency, and of changing the time during the
day when observations are made.25

We were able to demonstrate that the 4D-var framework was able to constrain ozone
precursor emissions and consequently that it was able to reduce ozone prediction un-

30



certainties and provide an adequate ozone forecast under the idealised conditions that
we used. This therefore demonstrated our frameworks relevance to future air qual-
ity forecasting systems that might utilize state of the art assimilation and observations
made using either the ground station network or from orbiting satellites. Clearly, more
difficulties and challenges remain before such a framework could be used in a real-5

world setting, such as how to incorporate averaging kernels of satellite retrievals into
the assimilation system or accounting for representativity errors. Also, using the linear
analysis to estimate the prediction uncertainties, we were able to derive a series of
general conclusions that are discussed below.

4.1 The Effect of Changing the Observed Species10

Our results show that the variability of ozone prediction error with both photochemical
regime and observing species scenario (CN, OCN and HCN) is complex and no single
observed species is ideal for all photochemical conditions.

Under NOx limited conditions ozone prediction error is strongly controlled by the a
posteriori NO emission errors and therefore observations of NO2 and ozone would be15

highly advantageous. Ozone provides a particularly good constraint upon NO emis-
sions under very NOx limited and VOC limited conditions. The value of NO2 observa-
tions in constraining NO emissions improves as the NOx lifetime increases under the
somewhat less NOx limited conditions (xNO = 1.0 - 1.25). Much of the troposphere is
in fact highly NOx limited outside of the most polluted areas (Duncan et al., 2010).20

Under VOC limited conditions ozone prediction error is sensitive to both a posteriori
xNO (due to the anticorrelation of ozone to NOx) and xVOC errors and thus observa-
tions of ozone, HCHO and NO2 allow significant improvements in ozone prediction
error. Assimilating ozone, therefore, allows constraints to be placed upon VOC and
NO emission uncertainties. HCHO provides an excellent constraint upon reactive VOC25

emissions, which due to their reactivity are more relevant to air quality compared to
less reactive VOCs. NO2 provides an excellent constraint upon NO emissions under
VOC limited conditions; more than under NOx limited conditions due to the longer NOx
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lifetime. Despite the fact that large geographical portions of the US are NOx limited
a disproportionately large percentage of the population lives within or are exposed to
ozone arising from VOC limited conditions due to the significant extent of urbanization
within the US. Large urbanized areas of the South West of the US that lack significant
native vegetative biomass typically have a larger VOC limited regime that extends over5

the urban as well as sub-urban areas. In contrast, US cities in the East are located in
regions with often dense vegetative biomass, e.g., Atlanta, and thus the VOC limited
region is far more geographically limited to the urban centre itself. Therefore, improving
ozone predictive skill within VOC limited conditions will not yield forecasting improve-
ments over a wide geographical area but will yield improvements within certain regions10

with large populations.
Our findings with respect to the utility of NO2 and HCHO observations for constrain-

ing NOx and VOC emissions, respectively, and in turn for improving ozone estimation
are broadly consistent with the findings of Zhang et al. (2008), which used satellite
observations of NO2 and HCHO in conjunction with 4D-variational data assimilation15

to solve for NO2 and HCHO emissions and to improve the model’s ozone estimation.
One should note, however, that our work goes further by demonstrating how the effi-
cacy of NO2 and HCHO observations varies according to photochemical regime. Sim-
ilar to Elbern et al. (2000) and Elbern et al. (2007), we demonstrate the use of ozone
in this regard. Our work offers an extension to Elbern et al. (2000) and Elbern et al.20

(2007) by considering the photochemical regime and by considering other observa-
tions simultaneously.

Note that the statements above regarding the need to constrain NO and VOC emis-
sions under NOx and VOC limited conditions, respectively, are consistent with expec-
tations since ozone is more sensitive to both sets of emission uncertainties under the25

respective conditions. Further, the use of ozone to constrain either NOx or VOC emis-
sions in either of the respective photochemical regimes is fully consistent with existing
theory relating to ozone control strategies (Sillman, 1993) and our understanding of
factors controlling ozone at regional and continental scales (Jacob et al., 1993). This
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was one motivation for us to explore this problem.
There is one further advantage to observations of ozone and HCHO made under

VOC limited conditions. Often, plumes of NOx polluted and VOC limited air can be
exported from regions that are VOC limited into areas that are NOx limited, and this
can lead to significant temporal variability in the photochemical regime in the regions5

surrounding an urban centre. Therefore, observations of HCHO and ozone in addition
to NO2 observations could help to understand such events and in turn reduce ozone
prediction errors.

We have indirectly performed a sensitivity test to see if CO observations affect ozone
a posteriori prediction errors. We can address their potential impact within the OCN10

scenario by examining the Jacobian matrix (see Fig. 4). This shows that ozone is rel-
atively insensitive to perturbations in CO emissions and, therefore, also to a posteriori
CO emission uncertainties. In fact, it appears that only the β = 5.0 noise scenario has
sufficiently large a posteriori CO emission error to cause significant a posteriori ozone
prediction error (about 5 ppbv). The Jacobian predicts perturbations in CO associated15

with such emission error to be over 700 ppbv. Such large changes in CO mixing ratios
can occur in reality in urban areas from the influence of wildfires. For instance, CO
mixing ratios were as high as 10 ppmv during the 2010 summer as a direct result of
the rare and extreme fire events occurring in Russia that summer (?). Episodic pertur-
bations of only 700 ppbv are therefore more likely to result from the more frequent and20

less severe wildfire events that occur within Europe on an annual basis.

4.2 Observation Error

We now make some broad conclusions regarding the observation uncertainties. Both
the OCN and standard HCN scenarios achieve a posteriori ozone prediction errors of
2.4-6.1 ppbv and 1.9-6.3 ppbv, respectively, when absolute errors equivalent to 33%25

of the average over polluted regions were used. Even though the OCN and HCN
scenarios compared favourably to one another in terms of their a posteriori ozone
prediction errors, when we considered more realistic observational noise on the HCHO
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observations, the performance of the HCN scenario was degraded to 2.2-6.9 ppbv
(33% noise level). In comparison, for the same noise level, the CN scenario achieved
ozone prediction errors of 2.5-8.4 ppbv. Only when the noise level was reduced to 25%
were the OCN and HCN scenarios able to achieve ozone prediction errors of 5 ppbv
or less. At 10% noise ozone prediction errors of less than 2.5 ppbv were consistently5

attained for both OCN and HCN. This strongly points towards there being a good payoff
in forecast accuracy with reducing observation error. Further work in a 3D framework
would be required in order to determine how these ozone forecast errors translate into
the context of real air quality forecasting. For instance, it might be possible to calculate
the probability of detection or false alarm rate statistics similar to the work carried out10

by Hache et al. (2014).
Connecting this to real instrument profiles and real observations, and how these

might perform in a real assimilation system, is beyond the scope of this study. The
furthest we can take this point is to note that the resulting prediction uncertainties for a
particular observation noise scenario are optimistic and represent the lowest error that15

could be expected. This is because of reduced complexity in our model’s representa-
tion of its spatial domain and its meteorology and because of the way we represented
the errors on our observations, which in reality would be more complex.

4.3 Temporal considerations

Concerning the temporal sampling of observations, there is strong sensitivity of ozone20

prediction error to observation removal in the daytime, particularly in the afternoon,
and therefore observations made during the day present greater returns in terms of im-
proved forecasting ability. The NOx limited regimes favour observations made through-
out the day with increased observing density close to 3pm. The VOC limited regimes
favour a greater concentration of observations within the afternoon even up to 6pm25

in the most VOC limited cases. These differing results for the two different photo-
chemical regimes are consistent with existing knowledge of photochemistry and NOx

lifetime. The main underlying factors controlling this are the changing time at which
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ozone peaks and the time of day that emissions occur that contribute to that peak.
Under VOC limited conditions ozone peaks later in the day due to the reduced ozone
lifetime and the slower recovery of HOx radicals (suppressed by NOx) that occurs after
the night time period. The NOx limited scenarios also show a smaller peak in the morn-
ing. This smaller peak is present due to the observations of ozone and NO2 during the5

morning rush hour that better allow NOx emissions to be constrained. The presence of
the smaller peak also indicates that peak afternoon ozone concentrations are sensitive
to the morning rush hour emissions of NOx; this is possible due to the longer ozone
lifetime present under NOx limited conditions.

We demonstrate that the ozone prediction error is sensitive to the frequency of ob-10

servation. We show that ozone prediction errors vary between negligible to up to 12.5
ppbv as the observing frequency varies between once per hour to once per day, re-
spectively. The ozone prediction error is maximised within either the NOx limited or
VOC limited regimes. We find very similar levels of ozone prediction error for the sce-
narios that observe once every hour and every three hours (1.8-3.2 ppbv compared15

to 2.2-4.8 ppbv, respectively), and that ozone prediction errors greater than 5 ppbv
only emerge for observing scenarios using a frequency of six hours or more. The fact
that our forecasting system performs best using observations made at a frequency of
three hours or less highlights the temporal sampling advantage posed by the ground
observation network relative to observing systems with lower observing frequency, i.e.,20

a satellite in LEO configuration.
It is likely that there is an effect on ozone prediction error due to the interaction

between observing frequency and observing time. Figure 10 implies that observing
scenarios measuring at the same frequency could yield different prediction errors due
to when they actually sampled during the diurnal cycle. However, in each test we made25

at a particular observing frequency the observations were made at a fixed specific
set of times, and so our work does not address this issue. We do think that this is
relevant to evaluating different types of observing scenario, and we would therefore
like to explore this problem in a future paper.
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4.4 Implications for emission inversion

Aside from the relevance of these results to air quality forecasting and research in gen-
eral, we believe these results are also relevant for emission and flux estimation via
inversion methologies. Our prototype framework is very similar to other work using 4D-
variational data assimilation methologies (Elbern et al., 2000, 2007; Henze et al., 2009;5

Stavrakou et al., 2009; Kopacz et al., 2010) using chemistry transport models that have
focused on emission inversion. Much of the emission inversion performance shown in
this study is driven by the photochemistry, and it is reasonable to suppose that some
of our results are relevant to future work conducted using 4D-variational data assimi-
lation in emission inversion studies. Note too that Kalman filter methods can also be10

used in this application and we should expect that the performance of this method will
be similarly affected by photochemistry. From this premise, we recommend that emis-
sion inversion studies for NOx utilize both observations of NO2 and ozone since ozone
observations add information to the xNO estimation under both strongly positively and
negatively NOx limited conditions and NO2 observations constrain emission parameter15

uncertainties the most under the more VOC limited conditions. Thus, these two obser-
vations are complementary to each other. Likewise, for emission inversions of VOCs
we recommend observations of HCHO and ozone since HCHO observations can con-
strain VOC emission uncertainties under a wide variety of photochemical conditions
and ozone can constrain VOC emission uncertainties under VOC limited conditions.20

Previous studies have shown that NO2 (Konovalov et al., 2006; Zhang et al., 2008;
Muller and Stavrakou, 2005) and HCHO (Stavrakou et al., 2009; Millet et al., 2006,
2008; Palmer et al., 2003, 2006; Zhang et al., 2008) observations can constrain NOx

and VOC emissions, respectively. Although one could have inferred that combin-
ing ozone observations with either NO2 or HCHO observations would be benefi-25

cial, we have shown that it could be highly advantageous, which is consistent with
Miyazaki et al. (2012).

It should be noted that the conclusions regarding VOC emission inversion are sen-
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sitive to our choice of representing VOC emission uncertainties with ethene. The suc-
cess of the VOC emission inversion is significantly limited by solving for ethane instead
of ethene emission uncertainties. This is due to the lack of impact on secondary chem-
ical species such as HCHO. This is one reason why previous emission inversion mod-
eling studies have focused on constraining reactive VOCs like isoprene (Millet et al.,5

2006, 2008; Palmer et al., 2003, 2006).
Concerning CO, all of the observing scenarios (CN, OCN, and HCN) performed

equally well at constraining CO emission uncertainties since all these scenarios in-
cluded observations of CO. The Jacobian for CO with respect to CO emission pertur-
bations shown in Fig. 4 clearly shows a strong sensitivity of CO to changes in its own10

emissions. On the other hand, Fig. 4 shows much lower sensitivity of CO to the emis-
sions of NO or VOCs. These results are fully consistent with expectations due to the
relatively low reactivity of CO and its potential to produce ozone on short timescales
and of the lack of a strong chemical connection between NOx levels and resulting CO
concentrations. In the latter case, there is a link due to the way that NOx can perturb15

OH, but due to the relative unreactivity of CO this leads to only weak sensitivity in the
Jacobian. Consistent with this, there have already been several studies that use obser-
vations of CO to constrain CO emissions (Muller and Stavrakou, 2005; Kopacz et al.,
2010; Arellano et al., 2006).

In the supporting sensitivity analysis probing emission solution sensitivity to diur-20

nal emission variability we demonstrate that emission inversions are potentially highly
sensitive to the assumed variability of the emissions and that even perfect observations
would lead to such errors. In our system such emission inversion errors would be hard
to characterize in the absence of any information regarding the true state of the emis-
sions variability. We recommend that such uncertainties should be considered and25

characterized in emissions inversion studies. Currently diurnal emission variabilities
are determined in the process of building bottom-up emission inventories. Although
our prototype assimilation system can only currently solve for time independent scaling
factors it could be modified to solve for time dependent scaling factors and the diurnal
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emissions variability. Future assimilation forecasting systems should also possess this
ability to solve for time dependent emission scaling factors. Observations that ade-
quately capture the diurnal variability of pollutants will be essential to making this leap
from time independent solutions to time dependent solutions.

4.5 Implications for GEO and LEO satellites5

In the previous sections we have motivated the potential utility of surface or boundary
layer ozone, CO, NO2, and HCHO observations either in the context of improving ozone
forecasting or for emission inversions. Ground station networks that implicitly sample
boundary layer air are already in place across the American and European continents.
However, only one of the current generation of LEO satellite instruments (MOPITT)10

possesses a reliable means of attaining unique instrument sensitivity to the boundary
layer for these gases (Worden et al., 2013). If future GEO stationary satellite instru-
ments (GEO-CAPE/TEMPO, GEMS, and Sentinel-4) wish to fully take advantage of
their simultaneous potential for excellent coverage and temporal sampling and wish to
fully contribute to state of the art ozone air quality forecasting, then attaining sensitivity15

to the boundary layer is essential and should be a high priority aim.
The heightened importance of observations made during the morning and mid to

late afternoon raises the question of whether making more targeted observations, for
instance made during the morning and evening rush hours, would be able to sup-
port ozone forecasting even further. There are various observing systems that would20

be able to provide this capability, such as several combined LEO missions or ground
stations or a GEO mission with increased temporal sampling capability during those
periods. Investigating these questions in the future would be of interest to us and the
broader scientific community.

Our forecasting system is better able to improve the ozone prediction using obser-25

vations made during the day as opposed to the night. In the context of satellites, and
remembering that our idealised case ignores the effects of transport, this indicates that
instruments capable of observing during the night, such as those observing in the TIR,
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do not offer a significant advantage over instruments restricted to making measure-
ments during the day time. Of course, if the effects of transported pollution were to
be considered, such as the night time mixing of ozone between the boundary layer
and free troposphere, then making observations during the night could offer additional
utility by improving the estimated contribution to the pollution made by this process.5

For instance, this could provide advance warning of the trajectory of a pollution plume.
This is therefore a limitation of this work that we are not able to explore such effects
using a model with only idealised meteorology.

Our forecasting system (and the emission inversion) performs best using observa-
tions made at a frequency of three hours or less. This highlights the temporal sampling10

advantage posed by satellites in a GEO configuration as opposed to those in LEO. Cur-
rently, the proposed observing frequencies for the future GEO missions (Lahoz et al.,
2012) and the current ground monitoring network are at least at one hour. LEO satel-
lites, on the other hand, cannot attain high frequency sampling without a large number
of satellites being employed (Lahoz et al., 2012). In isolation, a single LEO satellite15

with a sampling frequency of between 1 and 16 days is perhaps inadequate for the
purpose of constraining precursor emissions at the regional scale or for supporting air
quality forecasting. Another consideration is that observing frequencies of three hours
or more might not be adequate for studying the diurnal cycle of pollutants and for fore-
casting systems that use 3D-var, for instance, to update ozone concentrations. Note20

that the nature of our framework for performing these tests (i.e., a box model using only
idealised meteorology) places limitations on our conclusions such that the performance
of the higher frequency observing scenarios (3 hours or less) may be too optimistic.
Thus, observing at three hours may be too insufficient to constrain ozone precursor
emissions.25
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Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Bene-

dictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman,

43



A., Curier, R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H., Emili, E., Enge-
len, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly,
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Table 1. Background free tropospheric concentrations of trace gases mixed into the boundary
layer in the photochemical model. NMHCs indicate non-methane hydrocarbons.

Chemical Species Background Mixing Ratio

Ozone 30 ppbv
NO 100 pptv
NO2 50 pptv
CO 80 ppbv
CH4 1.76 ppm

NMHCs 100-200 pptv each

Table 2. Values of the different parameters and emissions used in the photochemical box
model. The emissions are shown with the corresponding units of molecules m−2s−1. Since
k(t) is 1.89, the average emissions, E(t), are a factor of 1.89 larger than ei. For E(t)NO, the
value shown outside of the brackets is equivalent to xNO = 1, and the values in the brackets
(same units) denote the range in the emissions that arise from using the full range of xNO

(0.5-2.5).

Model variable Parameter or Emission Value

k(t) 1.89
xNO 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5
eNO 4.8 × 1010 molecules m−2s−1

eCO 2.6 × 1012 molecules m−2s−1

eVOC 4.3 × 1010 molecules m−2s−1

E(t)NO 9 × 1010 molecules m−2s−1 (4.5 × 1010 - 2.3 × 1011)
E(t)CO 5× 1012 molecules m−2s−1

E(t)VOC 8.2 × 1010 molecules m−2s−1
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Table 3. Simulated range in peak NOx mixing ratios that result from the different photochemical
scenarios using different xNO (0.5-2.5). Also shown are the ranges of peak CO and HCHO that
result from emissions of CO and VOCs, respectively.

Chemical Species Modelled Peak Mixing Ratio Range

NOx 4.0 - 24.0 ppbv
NO 1 - 11.3 ppbv
NO2 3 - 16.9 ppbv
CO 590 - 820 ppbv

HCHO 6.5 - 8.1 ppbv

Table 4. Values of F(x) used to calculate y. The overbar indicates that this represents the
mean value.

F(x̂) Mixing Ratio

Ozone 44.4 ppbv
CO 620 ppbv
NO2 6.5 ppbv

HCHO 3.9 ppbv
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Table 5. Values of x and xa (in terms of unitless emission scaling factor) used in the 4D-
variational data assimilation model.

x xa

NO CO VOC NO CO VOC

0.5 1.0 6.5 0.475 0.95 0.1
0.75 - - 0.7125 - -
1.0 - - 0.95 - -

1.25 - - 1.1875 - -
1.5 - - 1.425 - -

1.75 - - 1.8375 - -
2.0 - - 2.1 - -

2.25 - - 2.3625 - -
2.5 - - 2.625 - -
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Table 6. List and details of all of the experiments carried out as part of the uncertainty analysis.
The experiment details include the observed species, xNO emission factors (see Tab. 2 for the
full list), the observation noise, β, and the observing frequency. The 8 different values of β are
0.01, 0.05 , 0.1, 0.25, 0.5, 1.0, 2.5, and 5.0. These fractional errors are relative to the average
species mixing ratios over all of the photochemical scenarios (see Tab. 4). The observing
noises are identical for each compound within a particular scenario unless otherwise stated.
All of the results from these experiments are described in Section 3.1. We also include short
notes describing other aspects of the experiments. The table includes a list of the precise
sections where the different experiments are discussed.

Experiment Section Observed xNO Observation Observing Special
Species Scenarios Noise (β) Frequency Notes

CN 3.1.1.1 CO and NO2 9 xNO scenarios 8 β values 3 hours
and 3.1.1.3 (0.5-2.5) (0.01–5.0)

OCN 3.1.1.1 Ozone, 9 xNO scenarios 8 β values 3 hours
and 3.1.1.3 CO and NO2 (0.5-2.5) (0.01–5.0)

HCN 3.1.1.1 HCHO, 9 xNO scenarios 8 β values 3 hours
and 3.1.1.3 CO and NO2 (0.5-2.5) (0.01–5.0)

HOCN 3.1.1.1 HCHO, ozone, 9 xNO scenarios 8 β values 3 hours Results not
CO and NO2 (0.5-2.5) (0.01–5.0) shown in a figure

Comparison between 3.1.1.2 HCHO, ozone, 9 xNO scenarios 8 β values 3 hours Three different
HCN and OCN CO and NO2 (0.5-2.5) (0.01–5.0) scenarios tested each
(EHCN - EOCN ) using different HCHO

observation noise

Observing frequency 3.1.2 Ozone, 9 xNO scenarios β=0.25 6 frequencies tested:
experiment CO and NO2 (0.5-2.5) 1, 3, 6, 12, 18, and 24 hours

Observing time 3.1.2 Ozone, 9 xNO scenarios β=0.25 3 hours 16 different scenarios
experiment CO and NO2 (0.5-2.5) tested. Observations are

removed at different
times in each case
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Table 7. Initial peak ozone predictions, true state peak ozone, initial guess ozone prediction
error, and prediction error across the full range of xNO (xNO is in terms of unitless emission
scaling factor) and the three observing scenarios CN, OCN and HCN. The ozone values and
absolute differences in ozone mixing ratio are listed for 3pm during the final day of the prediction
model. D represents the a posteriori prediction model error and G represents the a priori and
initial guess prediction error (see Fig. 3 for more details).

xNO Scenario qO3(xa,t
µ) (ppbv) qO3(xt,t

µ) (ppbv) G D (ppbv) D (ppbv) D (ppbv)
(ppbv) Scenario CN Scenario OCN Scenario HCN

0.5 72.7 79.3 -6.6 -6.3 -0.4 -1.0
0.75 81.3 89.7 -8.4 -8.3 -0.5 -0.7
1.0 85.2 96.3 -11.1 -4.5 -0.6 -0.5

1.25 85.5 100.3 -15.1 -3.3 -0.6 -0.3
1.5 79.7 101.5 -21.8 -4.2 -0.5 -0.1

1.75 66.1 98.7 -32.6 2.2 0.3 0.2
2.0 52.8 89.0 -36.2 1.9 0.3 0.2

2.25 43.6 73.0 -29.4 1.4 0.3 0.2
2.5 37.1 58.8 -21.7 1.0 0.3 0.2
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Table 8. The a posteriori xVOC error resulting from the 4D-variational data assimilation. The
table shows the variability of the a posteriori VOC emission error (in terms of unitless emission
scaling factor) both with observing scenario and NO emission factor. Errors are represented as
absolute errors of xVOC.

x̂VOC - xVOC

xNO Scenario CN Scenario OCN Scenario HCN

0.5 -6.4 0.40 8.5× 10−2

0.75 9.1 0.33 5.0× 10−2

1.0 -2.7 -0.01 3.3× 10−2

1.25 -1.6 9.87 -2.6× 10−2

1.5 -1.7 2.71 -3.6× 10−2

1.75 0.77 0.21 2.4× 10−2

2.0 0.54 0.20 3.3× 10−2

2.25 0.40 0.18 4.5× 10−2

2.5 0.35 0.18 4.8× 10−2
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Table 9. Results from a study exploring the sensitivity of the 4D-variational data assimilation
forecast of peak ozone to varying assumptions regarding, k(t), the diurnal variability of ozone
precursor emissions. Note that in each scenario the cumulative daily emission burden remains
constant for each scenario and thus each scenario has identical E(t). The overbar indicates
that this represents the mean value. The table shows (in ppbv) the modelled ozone for each
alternative k(t) scenario, the differences in true state peak ozone between these alternative
k(t) scenarios and the standard k(t) scenario, and the absolute errors of the a posteriori ozone
predictions of these alternative k(t) scenarios relative to both the standard and alternative k(t)
scenario true states. All of the ozone mixing ratios are listed for 3pm during the final day of the
prediction and monitoring period.

Assumed k(t) Alternative Alternative Emission Alternative Ozone Alternative
Scenario Emission Scenario True State - Prediction Ozone Prediction

Scenario Standard Emission - Standard True - Alternative
(ppbv) Scenario True State (ppbv) True State (ppbv)

State (ppbv)

Constant 92.5 2.8 4.0 0.7
Sine Wave 97.6 7.9 8.8 0.5
Saw-Tooth 100.3 10.6 9.7 -1.4
Offset -1 93.8 4.2 4.7 0.1
Offset -2 98.9 9.0 9.2 -0.2
Offset +1 86.2 -3.5 -4.9 -1.4
Offset +2 83.5 -6.2 -8.6 -2.4
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Fig. 1. The various different profiles of the temporal variability emission factor, k(t), used in the
analysis of the emission solution sensitivity to diurnal emission variability. The red dashed and
the solid black lines indicate the alternative and standard emissions variabilities, respectively.
The different profiles of variability are indicated at the top of each panel in bold text.
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Fig. 2. A schematic showing how both the a priori and a posteriori emissions relate to the
true emissions of NO, and the modelled peak afternoon ozone that results from these emission
variabilities. Note that the same emission variability is used for all of the anthropogenic chemical
species emitted in the model. The a priori and a posteriori emissions are scaled relative to the
true emissions and these differences can be characterized as being due to different emission
scaling factors (i.e., xNO) for the a priori, a posteriori and true emissions. The black solid, green
dashed and red dashed lines show the truth, a posteriori, and a priori emissions, respectively.
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Fig. 3. A representation of the ozone prototype forecasting framework and the 4D-variational
data assimilation results for scenario OCN with β=0.1. The observation period covers the first
48 hour period of the assimilation during which time pseudo-observations are made (at a fre-
quency of every 3 hours in this case) and are used within the assimilation. The observations are
used to constrain the emissions of ozone precursors, which in turn allows the forecasting model
to produce the a posteriori ozone prediction. During the prediction and monitoring period the
model true state now plays the monitoring role allowing comparisons to be made to the ozone
forecast. The a posteriori ozone prediction represents the forecast for ozone concentrations
one day in the future. D represents the a posteriori prediction model error and G represents
the a priori and initial guess prediction error. The black solid line, red solid line, green dashed
line, and blue diamonds represent the truth, a priori, a posteriori, and pseudo-observations,
respectively.
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Fig. 4. These plots show the columns of the Jacobian matrix, K, that correspond to the per-
turbations of the three observed species in scenario OCN. Ozone is shown on the left, CO in
the middle, and NO2 on the right. This Jacobian is for the xNO = 1.25 emission scenario. The
shaded area represents observations made during the night. NO2 observations made using
visible remote sensing instruments can only function during the daytime, so there is no need
to include a row in the Jacobian corresponding to night time NO2 observations. The blue, red,
and green solid lines represent qZ(x,t)/∂xNO, qZ(x,t)/∂xCO, and qZ(x,t)/∂xVOC, respectively.
The y axes on the left and right represent the different perturbations to x.
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Fig. 5. Ozone a posteriori prediction errors across the complete range of parameter space for
xNO (0.5–2.5) on the x axis and β (0.1–5) along the y axis with each panel presenting the results
from the three observing scenarios CN, OCN and HCN. The coloured contours represent the
a posteriori prediction error in units of ppbv. The green and red colours indicate low and high
levels of a posteriori ozone prediction error, respectively.

Fig. 6. xVOC a posteriori errors across the complete range of parameter space for xNO (0.5–
2.5) on the x axis and β (0.1–5) along the y axis with each panel presenting the results from
the three observing scenarios A–C. The coloured contours represent the a posteriori error. To
allow comparison of the error in xVOC to the true state we note that the true state is defined as
xVOC =6.5. The light blue and green colours indicate low and high a posteriori error on xVOC,
respectively.
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Fig. 7. xNO a posteriori errors across the complete range of parameter space for xNO (0.5–2.5)
on the x axis and β (0.1–5) along the y axis with each panel presenting the results from the
three observing scenarios CN, OCN and HCN. The coloured contours represent the a posteriori
error. To allow comparison of the error in xNO to the true state we note that the true state is
defined as the x axis value. The light blue and green colours indicate low and high a posteriori
error on xNO, respectively.
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Fig. 8. The difference between the scenario HCN and OCN a posteriori ozone prediction error
for a range of assumed HCHO observing error scenarios. In all of the previous analyses and
results β has been identical for all observed species, but in this sensitivity analysis we scale β
for HCHO independently from the other observed species. From left to right HCHO observing
errors are assumed to be 50%, 100%, and 150% of the observing error for the other species.
Thus the right hand panel indicates a scenario with HCHO observations to be of poorer quality
relative to the other species, and represents the difference in ozone prediction error between
the right and middle panels of Fig. 5, and the left panel indicates a rather optimistic case with
assumed HCHO observation errors to be less than the other observed species errors. The
brown and purple contour colours indicate the negative and positive differences between the
scenario HCN and OCN a posteriori ozone prediction error, respectively.
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Fig. 9. The diagonal of the emission averaging kernel for xNO on the lower row and xVOC on the
upper row. Each column represents a different observing scenario (CN, OCN, and HCN). The
x axis denotes the varying value of xNO and the y axis shows β (0.1-5). The contours represent
the varying magnitude of the diagonal of the averaging kernel matrix from 0 to 1. The purple
and light blue contour colours indicate high and low values of the diagonal of the averaging
kernel matrix, respectively.
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Fig. 10. The absolute increase in a posteriori ozone prediction error between scenario OCN
with β=0.25 and the same scenario with observations removed form specific times over the
course of 2 days (perturbed case), e.g., hour 15 on the second day indicates that no observa-
tions were included in the analytical model calculation of a posteriori ozone prediction error for
the perturbed case from 3pm on the second day. The green and black colours indicate low and
high values, respectively.
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Fig. 11. The a posteriori ozone prediction error for a variety of observation frequency scenarios
ranging from an observing frequency of 1 hour to once per day. These were calculated for sce-
nario OCN with β=0.25. The green and red colours indicate low and high levels of a posteriori
ozone prediction error, respectively.
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