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 10 

Abstract 11 

While previous research helped to identify and prioritize the sources of error in air-quality 12 

modeling due to anthropogenic emissions and spatial scale effects our knowledge is limited on 13 

how these uncertainties affect climate forced air-quality assessments. Using as reference a 10yr 14 

model simulation over the greater Paris (France) area at 4km resolution and anthropogenic 15 

emissions from a 1km resolution bottom-up inventory, through several tests we estimate the 16 

sensitivity of modeled ozone and PM2.5 concentrations to different potentially influential factors 17 

with a particular interest over the urban areas. These factors include the model horizontal and 18 

vertical resolution, the meteorological input from a climate model and its resolution, the use of a 19 

top-down emission inventory, the resolution of the emissions input and the post-processing 20 

coefficients used to derive the temporal, vertical and chemical split of emissions. We show that 21 

urban ozone displays moderate sensitivity to the resolution of emissions (~8%), the post-22 

processing method (6.5%) and the horizontal resolution of the air quality model (~5%) while 23 

annual PM2.5 levels are particularly sensitive to changes in their primary emissions (~32%) and 24 

the resolution of the emission inventory (~24%). The air quality model horizontal and vertical 25 

resolution have little effect on model predictions for the specific study domain. In the case of 26 

modelled ozone concentrations, the implementation of refined input data results in a consistent 27 

decrease (from 2.5% up to 8.3%), mainly due to inhibition of the titration rate by nitrogen oxides. 28 

Such consistency is not observed for PM2.5. In contrast this consistency is not observed for PM2.5. 29 

In addition we use the results of these sensitivities to explain and quantify the discrepancy between 30 

a coarse (~50km) and a fine (4km) resolution simulation over the urban area. We show that the 31 
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ozone bias of the coarse run (+9ppb) is reduced by ~40% by adopting a higher resolution emission 1 

inventory, by 25% by using a post-processing technique based on the local inventory (same 2 

improvement is obtained by increasing model horizontal resolution) and by 10% by adopting the 3 

annual emission totals of the local inventory. The bias of PM2.5 concentrations follows a more 4 

complex pattern with the positive values associated with the coarse run (+3.6μg/m3), increasing or 5 

decreasing depending on the type of the refinement. We conclude that in the case of fine particles 6 

the coarse simulation cannot selectively incorporate local scale features in order to reduce its error.  7 

 8 

1 Introduction 9 

Recent epidemiological findings stress the need to resolve the variability of pollutant 10 

concentrations at urban scale. The International Agency for Research on Cancer recently classified 11 

outdoor air pollution as a “leading environmental cause of cancer deaths” (Loomis et al., 2013) 12 

while new findings reveal that living near busy roads substantially increases the total burden of 13 

disease attributable to air pollution (Pascal et al., 2013). Research on future projections of air-14 

quality should be addressed primarily at such scale especially given the fact that the efforts to 15 

mitigate air-pollution are more intense in areas where the largest health benefits are observed 16 

(Riahi et al., 2011).  17 

Climate and atmospheric composition are related through a series of physical and chemical 18 

mechanisms and atmospheric feedbacks. A significant portion of the published literature on this 19 

issue uses global scale models to focus on the impact of climate on tropospheric ozone at global 20 

or regional scales (Brasseur et al., 1998; Liao et al., 2006; Prather et al., 2003; Szopa et al., 2006; 21 

Szopa and Hauglustaine, 2007). More recent studies have integrated advanced chemistry schemes 22 

capable of resolving the variability of pollutant concentrations at regional scale, which spans from 23 

several hours up to a few days, with chemistry transport models (CTMs) (Colette et al., 2012, 24 

2013; Forkel and Knoche, 2006, 2007; Hogrefe et al., 2004; Katragkou et al., 2011; Kelly et al., 25 

2012; Knowlton et al., 2004; Lam et al., 2011; Langner et al., 2005, 2012; Nolte et al., 2008; Szopa 26 

and Hauglustaine, 2007; Tagaris et al., 2009, Zanis et al., 2011). Global models with a typical 27 

resolution of a few hundreds of kilometers and regional CTMs used at resolutions of a few tens of 28 

kilometers – and their parameterization of physical and chemical processes make them inadequate 29 

for modeling air-quality at urban scale (Cohan et al., 2006; Forkel and Knoche, 2007; Markakis et 30 



3 

 

al., 2014; Sillman et al., 1990; Tie et al., 2010; Valari and Menut, 2008; Valin et al., 2011; Vautard 1 

et al., 2007).  2 

The challenge we face is how to model climate forced atmospheric composition with CTMs at fine 3 

resolution over urban areas, where emission gradients are particularly sharp, without introducing 4 

large errors due to emissions and meteorology related uncertainties as well as to CTMs numerical 5 

resolution. In the absence of plume-in-grid parameterization, emissions in CTMs are instantly 6 

mixed within the volume of model grid-cells before chemical reaction transport and mixing take 7 

place. When the volume of these cells is large compared to the characteristic time scale of these 8 

processes, sub-grid scale errors occur such as over-dilution of emissions leading to unrealistic 9 

representation of urban scale chemistry such as ozone titration. The resolution of meteorological 10 

modeling is another issue: Leroyer et al. (2014) argue that only high-resolution meteorological 11 

modeling can correctly capture the urban heat island, also Flagg and Taylor (2011) showed that 12 

high-resolution modeling is very much dependent on the resolution of the surface layer input data.  13 

Another key issue is the representativeness of top-down emission inventories over cities. The 14 

starting point of these inventories is annual totals for families of pollutants at continental, regional 15 

or national scale that are temporally and spatially downscaled based on proxies such as land-use 16 

and population data, activity-dependent time profiles and chemical speciation to provide gridded 17 

hourly emission fields suitable for modeling with CTMs. It has been shown that these inventories 18 

cannot adequately portray the plethora and complexity of the anthropogenic emissions over large 19 

cities (Gilliland et al., 2003; Markakis et al., 2010, 2012; Russell and Dennis, 2000). In Markakis 20 

et al. (2014) we showed that ozone formation occurs under a VOC-limited chemical regime in the 21 

10-year simulations that used the bottom-up emission inventory. This result is consistent with 22 

previous studies over the Paris area (Beekmann and Derognat, 2003; Beekmann and Vautard, 23 

2010; Deguillaume et al., 2008). On the contrary, when the regional top-down inventory was used 24 

instead, ozone formation occurred under a NOx-limited chemical regime. Such a discrepancy is 25 

critical when mitigation scenarios are investigated because they may lead to controversy when 26 

studying the ozone response in the future. As shown in Markakis et al. (2014) regional scale 27 

modeling and the use of top-down emissions can result to higher future reductions than the urban 28 

scale modeling using bottom-up emissions. Other challenges stem from the fact that emission 29 

projections are mostly based on scenarios developed to represent changes at global scale and are 30 

rarely suited for assessment at regional let alone urban scales. Long-term projections are 31 
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constrained by the evolution of large scale energy supply and demand and the link between global 1 

and regional scale projections is a laborious task (Kelly et al. (2012)). 2 

The major caveat of simulating regional scales at high resolution is the enormous computational 3 

demands and that is particularly relevant to climate studies where the simulated periods extend 4 

over several decades. To fill the gap between regional and city-scale assessments we need to 5 

combine in a single application the advantages of each scale; on one hand the high spatial coverage 6 

(but with low resolution) and on the other a good representation of emissions over cities. To 7 

achieve this goal we need to understand the major sources of error and their respective impact on 8 

climate forced atmospheric composition simulations at urban scale.   9 

This study builds on the previous work of Markakis et al. (2014) where a qualitative comparison 10 

was accomplished between an urban (local) and a regional scale simulation over Paris. The aim of 11 

the present study is to disentangle modeling errors of climate forced air-quality studies over finer 12 

scales due to different factors such as emission and meteorological input as well as the CTM’s 13 

horizontal and vertical resolution. We use as reference run a 10yr long simulation (1996-2005) 14 

over the Ile-de-France region in France (IdF) at 4km resolution, using the high-resolution (1km) 15 

bottom-up emission inventory of the region’s environmental agency (AIRPARIF, 2012). 16 

Boundary conditions for this run are taken from a regional scale simulation at 0.5º over Europe, 17 

where the ECLIPSE top-down emissions were used (Klimont et al., 2013, 2015). We carry out 18 

several sensitivity tests to quantify the impact of an envelope of effects such as a) meteorology 19 

from a climate model versus reanalysis data; b) the spatial resolution of the meteorological input; 20 

c) the air-quality model vertical resolution, especially close to the surface; d) bottom-up versus 21 

top-down emissions; e) AIRPARIF versus EMEP post-processing information (temporal, vertical 22 

and chemical split) of emissions to provide appropriate fluxes on the air-quality modeling mesh 23 

grid f) the resolution of the emission input g) the CTM’s horizontal resolution. We aim to point 24 

out the most influential parameters of model configuration to help improve regional scale climate 25 

change assessments.  26 

 27 

2 Materials and methods28 

2.1 Meteorological and air-quality models’ setup 29 

The IdF region is located at 1.25–3.58° east and 47.89–49.45° north with a population of 30 

approximately 11.7 million, more than two million of which live in the city of Paris (Fig. 1). The 31 
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area is situated away from the coast and is characterized by uniform and low topography, not 1 

exceeding 200 m above sea level. 2 

In order to simulate air-quality in the study region we employ a dynamical downscaling approach: 3 

at first the IPSL-CM5A-MR global circulation model (Dufresne et al., 2013) is used to derive 4 

projections of the main climate drivers (temperature, solar radiation etc.) using the RCP-4.5 dataset 5 

of greenhouse gas emissions (van Vuuren et al., 2011). Global climate output is downscaled with 6 

the Weather Research and Forecasting (WRF) mesoscale climate model (Skamarock and Klemp, 7 

2008) over Europe at a 0.44o horizontal resolution grid (details on these simulations can be found 8 

in Kotlarski et al. (2014)). For the purpose of the sensitivities presented in the paper we also 9 

employ meteorology driven by ERA reanalysis data at two resolutions; 0.11o and 0.44o (Vautard 10 

et al., 2013). The vertical resolution of the meteorological input consists of 31 σ-p layer extending 11 

to 500hPa. 12 

Pollutant concentrations at global scale are modeled with the LMDz-INCA chemistry model 13 

(Hauglustaine et al., 2004, 2013) forced with RCP-4.5 emissions. These concentration fields are 14 

downscaled at regional scale with the CHIMERE (2013a version) off-line chemistry-transport 15 

model (http://www.lmd.polytechnique.fr/chimere) in two steps: initially at 0.44º resolution grid 16 

(~50 km) over Europe (EEA, 2104) and subsequently at 4km resolution over the IdF region. The 17 

nesting scheme is presented in Fig. 1. CHIMERE is a cartesian mesh-grid model including gas-18 

phase, solid-phase and aqueous chemistry, biogenic emissions modeling with the MEGAN model 19 

(Guenther et al., 2006), dust emissions (Menut et al., 2005) and resuspension (Vautard et al., 2005). 20 

Gas-phase chemistry is based on the MELCHIOR mechanism (Lattuati, 1997) which includes 21 

more than 300 reactions of 80 gaseous species. The aerosols model species are sulfates, nitrates, 22 

ammonium, organic and black carbon and sea-salt (Bessagnet et al., 2010) and the gas-particle 23 

partitioning of the ensemble Sulfate/Nitrate/Ammonium is treated by the ISORROPIA code 24 

(Nenes et al., 1998) implemented on-line in CHIMERE. CHIMERE is been benchmarked in the 25 

past in a number of model inter-comparison experiments (see Menut et al. (2013a) and references 26 

therein).  27 

For the reference run at urban scale (hereafter REF), we use the same model setup as in Markakis 28 

et al. (2014): the modeling domain has a horizontal resolution of 4 km and consists of 39 grid cells 29 

in the west-east direction, 32 grid cells in the north-south direction and 8 σ-p hybrid vertical layers 30 

from the surface (999hPa) up to approximately 5.5 km (500hPa) with the surface layer being 25m 31 
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thick. The configuration of the reference run represents the best compromise between local scale 1 

emission data and the high computational demand of a long-term simulation at fine resolution. 2 

 3 

2.2  Climate and emissions 4 

The RCP-4.5 long-term scenario of greenhouse gases, used as global scale predictor of present-5 

time climate, displays a 20% GHG emission reduction for Europe, constant population at about 6 

575 million inhabitants and mid-21st century change in global radiative forcing by 4 W/m2, 7 

increasing to 4.5 W/m2 by 2065 and stabilizing thereafter. The RCP-4.5 also includes century-long 8 

estimates of air pollutant emissions and aerosols and was used to drive the LMDz-INCA 9 

simulations at the global scale. The choice of the RCP-4.5 was dictated by the availability of 10 

chemical simulations on the regional scale.  11 

The regional scale simulations for the present-time (2010) employ an emission database developed 12 

in the framework of the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived 13 

Pollutants) project (Klimont et al., 2013; 2015) implementing emission factors from GAINS 14 

(Amann et al., 2011). Present-time emissions (as areas sources) are compiled by the International 15 

Institute for Applied Systems Analysis (IIASA) and as regards Europe they include the results of 16 

the work undergone in the UNECE Convention on Long-Range Transboundary Air Pollution 17 

(CLRTAP). The emission estimates are available at a 0.5o x 0.5o resolution grid.  18 

Present-time (2008) emission estimates for the IdF region are also available in hourly basis over a 19 

1km resolution grid. This emission inventory is compiled by the Ile-de-France environmental 20 

agency and combines a large quantity of city-specific information (AIRPARIF, 2012) based on a 21 

bottom-up approach. The spatial allocation of emissions is either source specific (e.g., locations of 22 

point sources) or completed with proxies such as high-resolution population maps and a detailed 23 

road network. The inventory includes emissions of CO, NOx, Non-methane Volatile Organic 24 

Compounds (NMVOCs), SO2, PM10 and PM2.5 with a monthly, weekly and diurnal -source 25 

specific- temporal resolution. Emissions from point sources are inputted as area emissions in the 26 

model and the grid cells containing those sources adopt a vertical distribution across model layers 27 

which varies in time-dependent from several meteorological variables such as temperature and 28 

wind inputted in a plume-rise algorithm (Scire et al., 1990). Consequently the distribution of 29 

emissions among different activity sectors reveals that in the IdF region the principal emitter of 30 

NOx, on annual basis, is the road transport sector (50%), for NMVOCs the use of solvents (50%) 31 
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and for fine particles the residential sector (37%). The raw data of the 1km resolution emissions 1 

were aggregated to the 4km resolution modeling grid. 2 

 3 

2.3  Data and metrics for model evaluation 4 

Model results from the different sensitivity runs are compared against observational data for O3, 5 

NO, NO2 and PM2.5. Pollutant concentrations measured at 29 sites of the air-quality network of 6 

AIRPARIF (17 urban, 4 suburban and 8 rural) are compared to first-layer modeled concentrations 7 

on the grid-cells containing the corresponding monitor sites. To benchmark model performance 8 

we use the skill score S which is based on the equations of Mao et al. (2006): 9 

  10 

𝑆 =
1

2
(1 − |

𝐵𝐼𝐴𝑆

𝑀𝐺𝐸
| + |

𝑀𝐺𝐸

𝑅𝑀𝑆𝐸
|)             (1) 11 

 12 

where MGE represents the absolute mean gross error and RMSE the root mean square error. A 13 

skill score close to 1 is indicative of an unbiased model with no significant errors present, but in 14 

the case of biased results this rating masks the information on the magnitude of the bias and the 15 

corresponding error. For this reason, alongside S, we employ the mean normalized bias (MNB) 16 

and mean normalized gross error (MNGE) as regards ozone evaluation and the Mean Fractional 17 

Bias (MFB) and Mean Fractional Error (MFE) as regards PM2.5 (EPA, 2007). 18 

We extract these metrics from the daily concentration values and not the decade average bearing 19 

in mind that this is not typical for runs forced by climate simulations but for operational forecast 20 

evaluation. We should note here, that it is reasonable to expect lower scores than those achieved 21 

in operational forecast analysis due to the presence of climate biases (Colette et al., 2013; Menut 22 

et al., 2013a). As in Markakis et al. (2014) we aim to evaluate our simulations by utilizing metrics 23 

that are time averaged on a scale finer than a climatological one. 24 

 25 

2.4 Description of the sensitivity simulations 26 

Through a number of test cases we study the ability of the model to predict present-time decadal 27 

air-quality with respect to emission and meteorological input as well as the CTM’s horizontal and 28 

vertical resolution. For that purpose we conduct five sets of 10yr long simulations (1996-2005) 29 

over a 4km resolution grid covering the IdF region (see Table 1). In all our comparisons we use as 30 

a measure of sensitivity of modeled ozone and PM2.5 the absolute difference between the mean of 31 
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daily averaged concentrations (|∆c|) as well as the absolute change in the skill score S. For ozone 1 

we also compare the MNB, MNGE and for PM2.5 the MFB and MFE. All scores are calculated to 2 

represent an average of all urban, suburban or rural stations. For PM2.5 for which only observations 3 

from urban stations are available we represent the results for summer, winter and in annual basis 4 

of urban stations.  5 

The first sensitivity case focuses on the climate bias due to the meteorological forcing. It is well 6 

established that ozone and certain particulate matter species are sensitive to temperature changes 7 

(Fiore et al., 2012; Im et al., 2011, 2012; Jacob and Winner, 2009; Megaritis et al., 2014). Menut 8 

et al. (2003) using an adjoint model studied the sensitivity of ozone concentrations at the afternoon 9 

peak to numerous model processes and inputs for a typical summer episode in Paris and found that 10 

temperature and wind speed were the most influential parameters to the observed changes. For our 11 

test we utilize meteorological input that stems from a WRF run employing ERA40 reanalysis data 12 

over a 0.44º resolution regional scale grid (ERA05) and compare with the REF simulation utilizing 13 

climate model meteorology. Both configurations share identical emission inventories (AIRPARIF) 14 

and vertical resolution (8 σ-p layers). Modeled meteorological fields are further interpolated over 15 

the 4km-resolution IdF grid for the air-quality simulation. We note here, that interpolating the 16 

0.44o resolution meteorology over the 4km resolution CHIMERE grid adds a source of uncertainty 17 

in modeled pollutant concentrations, but due to the flat topography of the area and as shown in 18 

previous research studies in the same region, increasing the resolution of the meteorological input 19 

does not improve model performance (Menut et al., 2005; Valari and Menut, 2008). To study the 20 

impact of the resolution of the input meteorology here, we conduct a second sensitivity run where 21 

meteorological input stems from a WRF simulation using ERA40 reanalysis data over a finer 22 

resolution mesh with grid spacing of 0.11º (ERA01) and compare with the ERA05 run. 23 

The third sensitivity test addresses the issue of the CTM’s vertical resolution (VERT). A previous 24 

sensitivity analysis conducted with the same air-quality model showed only small changes in 25 

modeled ozone and PM10 concentrations over the IdF region due to increase in the CTM’s vertical 26 

resolution (Menut et al., 2013b). On the other hand Menut et al. (2003) showed that vertical 27 

diffusivity was one of the most influential parameters to the observed daily peak concentrations of 28 

ozone for a typical summertime episode in IdF. Here, we undertake a similar analysis but in a 29 

climate modeling framework, where enhanced meteorological bias is expected. VERT implements 30 

a 12 vertical σ-p layers instead of 8. The major difference between the two configurations (REF 31 
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vs. VERT) is not the number of layers but the depth of the first model layer, which is reduced from 1 

20 to 8 m in VERT. We note that because the WRF meteorology (resolved in 31 layers) is 2 

interpolated to the CTM’s vertical grid, technically, increasing the number of vertical layers in 3 

CHIMERE from 8 to 12 will result in a refinement of the meteorological input used for the 4 

chemical simulations as well. 5 

The fourth sensitivity case estimates the discrepancy in modeled ozone and PM2.5 concentrations 6 

between two runs where emission totals stem from different inventories, namely the local 7 

AIRPARIF inventory and the ECLIPSE regional-scale dataset. In Menut et al. (2003) it was shown 8 

that the sensitivity of ozone concentrations in the afternoon peak hour due to surface emissions 9 

was the second largest after the sensitivity associated with meteorology. In Markakis et al. (2014) 10 

we compared the two approaches as for their ability to correctly represent ozone photo-chemical 11 

production under typical anticyclonic summer conditions and also found important differences. In 12 

the present work we push the analysis a step further and quantify model response to the emission 13 

input over longer timescales. For this purpose we compile a new 4km resolution emission dataset 14 

over the IdF domain (ANN) in which annual emission fluxes match the ECLIPSE emissions (0.5o 15 

resolution) but are downscaled spatially and temporally to obtain 4km-resolution and hourly 16 

emissions based on the local scale information implemented in the bottom-up approach of the 17 

AIRPARIF emission inventory. The same approach is applied on the chemical speciation of the 18 

inventory’s pollutants to obtain emissions for all the species required by the CTM’s chemical 19 

mechanism. Therefore the only difference amongst the two runs stem from the use of different 20 

annual quantified emission fluxes for the region (Table 1). To give a sense of the discrepancies 21 

between the two inventories over IdF we compare the annual domain-wide fluxes of NOx, 22 

NMVOCs and PM2.5 (Fig. 2). NMVOCs emissions are considerably higher in the ECLIPSE 23 

inventory while NOx emissions are lower than AIRPARIF. In terms of photochemical ozone 24 

production, this makes ECLIPSE more favourable of NOx-limited conditions than the bottom-up 25 

AIRPARIF inventory, which is consistent with the findings of Markakis et al. (2014). Fine particle 26 

emissions are 2.4 times more in ECLIPSE, which probably stems from the use of a population 27 

proxy to spatially allocate wintertime emissions from wood-burning. We note here, that the interest 28 

of comparing the two emission inventories is strictly to quantify the added value of implementing 29 

local scale information in city-scale climate studies and not by any means to compare qualitatively 30 
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the two datasets. It should be made clear that ECLIPSE dataset is not meant to accurately represent 1 

emissions at such fine scales. 2 

In the fifth sensitivity case we study the impact of the post-processing methodology e.g., the 3 

process followed in order to split the annual emission totals into hourly emission fluxes for all the 4 

species and vertical layers required by the air-quality model. Menut et al. (2012a) showed that 5 

model performance improves when time-variation profiles developed on the basis of observations 6 

are applied for the temporal allocation of emissions instead of the EMEP coefficients. Mailler et 7 

al. (2013) found that model results are highly sensitive to the coefficients used for the vertical 8 

distribution of emissions. Makar et al. (2014) investigated the response of modeled concentrations 9 

to the refinement of the spatial and temporal allocation of input emissions and found that the model 10 

was as sensitive to these improvements as to the vertical mixing parameterization. Also they 11 

conclude that the temporal distribution of emissions in particular, could be very important in stable 12 

urban atmospheres and that this sensitivity is reduced with increased mixing conditions. For our 13 

test emission totals must match between the two emission datasets. We compile a new emission 14 

dataset (POST) where the ECLIPSE annual totals are spatially (both horizontally and vertically) 15 

and temporally downscaled on the 4km-resolution IdF grid. This procedure is based on coefficients 16 

extracted from the ECLIPSE post-processed inventory which in turn derive from the EMEP model. 17 

Comparing between the POST and ANN runs (Table 1) we can model the impact on pollutant 18 

concentrations of integrating a bottom-up approach in regional emission modeling. 19 

Finally the impact of model horizontal resolution is a crucial issue for air-quality modeling. As 20 

regards urban ozone there are plentiful studies on the effect of model resolution refinement with 21 

an overall tendency to show improvement of the model’s quality when increasing resolution from 22 

about 30-50km to 4-12km (Arunachalam et al., 2006; Cohan et al., 2006; Tie et al., 2010; Valari 23 

and Menut, 2008). On the other hand reports are scarce for fine particles: Punger and West. (2013) 24 

show that increasing the resolution from 36km to 12km improved the 1h daily maximum 25 

concentrations but not the daily average, Stroud et al. (2011) reported better agreement of fine 26 

particles of organic origin with measurements from a modeling exercise at a 2.5km resolution 27 

domain over a 15km resolution domain while Queen and Zhang. (2008) also show improvement 28 

but their results include the effect of increasing the resolution of the meteorological input as well. 29 

Valari and Menut. (2008) showed that the impact of the resolution of emissions on modeled 30 

concentrations of ozone may be higher than the model resolution itself. This question has not yet 31 
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been raised in the framework of climate driven atmospheric composition modeling at the local 1 

scale. In our study we disentangle the impact of the resolution of the emission dataset from the 2 

effect of model resolution itself by conducting two more tests. In the first test we employ the 0.5º 3 

resolution simulation (REG hereafter) from which all aforementioned simulations take their 4 

boundary conditions. We also compile the AVER database which uses as a starting point the 5 

modeled concentrations at 4km resolution from the POST run spatially averaged over the 0.5o grid-6 

cells of the REG resolution mesh. REG vs. AVER (see Table 1) can provide information on the 7 

influence of model resolution while comparing AVER against POST provides the sensitivity to 8 

the resolution of the emission inventory. 9 

 10 

3 Model evaluation 11 

3.1 Evaluation of present-time meteorology 12 

There are three WRF simulations involved in the study: i) climate model driven meteorology 13 

downscaled from a global scale climate model (MET_CLIM); ii) meteorology from reanalysis 14 

datasets at 0.5º resolution (MET_ERA05) and iii) meteorology downscaled from reanalysis data 15 

at 0.11º (MET_ERA01). In this section we present a short evaluation of these datasets comparing 16 

model results against surface observations from seven meteorological monitoring sites existing in 17 

the domain. We note here, that from these monitors only one is located inside the highly urbanized 18 

city of Paris. A thorough evaluation of the reanalysis dataset in Europe may be found in Menut et 19 

al. (2012b).  20 

The mean wintertime (DJF) and summertime (JJA) modeled and observed daily average values 21 

are compared for four different meteorological variables relevant for air-quality, namely 2m-22 

temperature, 10m-wind speed, relative humidity and total precipitation (Table 2). A strong positive 23 

bias is observed in modeled wind speed for both MET_CLIM and MET_ERA05 meteorology 24 

especially during the winter period. Such a bias, consistent with previous studies (see e.g., Jimenez 25 

et al. (2012) for WRF or Vautard et al. (2012) for other models), is expected to enhance pollutants’ 26 

dispersion and lead to less frequent stagnation episodes. The bias is stronger for the MET_CLIM 27 

dataset than for the MET_ERA05. A systematic wet bias in both summertime and wintertime 28 

precipitation is observed for the two datasets. This can significantly reduce PM concentrations 29 

through rain scavenging (Fiore et al., 2012; Jacob and Winner, 2009). MET_ERA05 fields provide 30 

a better representation of precipitation especially in wintertime where the bias is reduced by a 31 
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factor of more than 2 compared to MET_CLIM. Summertime temperature is adequately 1 

represented in the climate dataset whereas a wintertime weak cold bias (-0.3oC) is observed. A 2 

strong hot bias during the winter is found for the reanalysis meteorology. A warmer climate can 3 

increase ozone formation through thermal decomposition of PAN releasing NOx (Sillman and 4 

Samson, 1995). RH is generally well represented in both cases.  5 

Finally we notice that the finer resolution reanalysis dataset (MET_ERA01) is not able to reduce 6 

the observed domain-wide biases of the coarse meteorological run with the exception of specific 7 

locations such as the Montsouris station in Paris where the bias in wintertime precipitation and 8 

wind speed bias is reduced by 22% and 40% respectively.   9 

 10 

3.2 Evaluation of the reference simulation (REF) 11 

Mean modeled daily surface ozone and the daily maximum of 8-hour running means (MD8hr) are 12 

compared against surface measurements in urban, suburban and rural stations (Fig. 3a). The results 13 

presented are averaged over the ozone period (April-August). We also use odd oxygen 14 

Ox=O3+NO2-0.1*NOx (Sadanaga et al., 2008) as an indicator of the efficiency of the model to 15 

represent photochemical ozone build-up. Contrary to O3, the concentration of Ox is conserved 16 

during the fast reaction of ozone titration by NO and is therefore, a useful metric for the evaluation 17 

of the photochemical ozone build-up by ruling out titration near high NOx sources (Vautard et al., 18 

2007).  19 

The model performs well in the urban areas capturing the mean daytime ozone levels (bias 20 

+1.8ppb) while Ox is also accurately represented with an underestimation of only 4.1%, illustrating 21 

the efficiency of the model to reproduce both daytime formation and titration of urban ozone. The 22 

bias in daytime average is smaller and less than 1ppb. The Ox bias in daily averages is similar to 23 

the daytime one, suggesting underestimation of nighttime titration. This is consistent with other 24 

studies using CHIMERE (Szopa et al., 2009; Van Loon et al., 2007; Vautard et al., 2007). Model 25 

benchmark ratings show a high skill score (0.78) while MNB and MNGE are +20.6 and 38.9 26 

respectively. 27 

We observe an overestimation of mean daytime suburban ozone (+5ppb). The small bias in Ox 28 

(+0.6ppb) suggests that the problem stems from the representation of local titration and more 29 

specifically daytime titration; the daily average ozone bias drops to +3.9ppb while Ox is accurately 30 

represented in this case (-0.2ppb). Suburban stations present the lowest skill score (0.63) compared 31 
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to urban and rural. Model performance over rural stations is adequate, with an overestimation in 1 

mean daily ozone of 8.2% (bias=+2.8ppb) and a good skill score (0.73). The two major downwind 2 

locations in the IdF domain which present the lowest biases (less than 0.1ppb and 1.1ppb for the 3 

south-west and north-east directions respectively). The bias of the daytime average reaches 4 

+2.1ppb.  5 

Ozone daily maxima in the urban and rural stations are underestimated by 10% (-4.2ppb) and 7% 6 

(-3.2ppb) respectively but we consider the magnitude of the underestimation small given the 7 

climate framework of the simulation. Daily average ozone is better represented than daily maxima, 8 

highlighting model sensitivity to accumulated errors (Valari and Menut, 2008). Modeled peak 9 

concentrations are particularly sensitive to temperature compared to the daily averages as shown 10 

in Menut at al. (2003). This could also be due to the fact that 4km is still an insufficient model 11 

resolution. 12 

The evaluation of PM2.5 (Fig. 3b) shows a good representation of daily average levels during 13 

wintertime where the highest annual concentrations are presented (bias less than 1μg/m3). In 14 

annual basis the bias is also small while a larger underestimation is predicted for the summertime 15 

season (bias=2.8μg/m3). The latter can be due to underestimation of summertime emission fluxes 16 

(resuspension emissions are not considered in our simulations) and underestimation of secondary 17 

organic aerosols formation (Hodzic et al., 2010; Markakis et al., 2014; Solazzo et al., 2012). The 18 

overestimation in wind and precipitation also contributes to the observed PM underestimation. 19 

Wintertime and annual statistics show a high skill score. Interestingly in wintertime and in annual 20 

basis the site located in downtown Paris presents the lowest bias (<0.3 μg/m3). Overall the results 21 

indicate that the fine scale setup is able to predict the main patterns of ozone and fine particle 22 

pollution in the area.  23 

 24 

4. Sensitivity cases 25 

4.1 Sensitivity to climate model driven meteorology (REF vs. ERA05) 26 

This case study estimates the discrepancy between an air-quality model run where regional 27 

meteorology is downscaled with WRF from reanalysis data (ERA05) and a simulation where 28 

meteorology is downscaled from a global scale climate model (REF). The wet bias in MET_CLIM 29 

meteorology is significantly reduced with meteorology from reanalysis data (Sect. 3.1). This is 30 

expected to have a significant role in the modeled PM concentrations. Another influential factor is 31 
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the colder bias found in summertime temperature in the MET_ERA05 dataset. This could lead to 1 

decreased reaction rates, less biogenic emissions and consequently to less ozone. The lower bias 2 

in 10m wind speed under MET_ERA05 is bound to increase surface concentrations through 3 

reduced dispersion. We also compare the average modeled boundary layer height (PBL) for the 4 

summer and winter periods between the two datasets: PBL is reduced by 5% and 12% in summer 5 

and winter respectively (not shown) when reanalysis data are used instead of climate model output. 6 

This may result in less dilution of emissions and therefore higher surface concentrations for 7 

primary emitted species, such as PM and NOx.  8 

Comparing the results of the two air-quality model runs for ozone (Fig. 4a and Table 3) we find 9 

only a small sensitivity to using meteorology from a climate model or reanalysis data over all three 10 

types of monitor sites (|∆c|~1ppb or 3.4%).  The small improvement of model performance with 11 

the reanalysis dataset (ozone decreases through higher NOx emissions following the PBL scheme 12 

described above) is due to the fact that titration is more realistically represented in ERA05 (the 13 

difference is Ox between the two runs is negligible). The response of urban daily maximum values 14 

to the meteorological dataset is also negligible (|∆c|=0.1ppb or 0.3%). 15 

Wintertime PM2.5 concentrations, on the contrary show a large sensitivity to the meteorological 16 

dataset. The change in the daily average concentrations is 3.1μg/m3 (17.6%) while summertime 17 

levels remain unchanged (Table 3). Focusing on the annual averages, the small underestimation 18 

observed in the REF run turns into small overestimation in the ERA05 run (|∆c|=1.4μg/m3 or 19 

9.4%). The use of the reanalysis data leads to a strong overestimation of wintertime concentrations 20 

(Fig. 4b), which stems directly from the reduction (and improvement) of precipitation by a factor 21 

of 2 in the meteorology from reanalysis. This leads to the conclusion that the small bias observed 22 

in the REF simulation during wintertime (Fig. 4b) could be due model error compensation such as 23 

unrealistically high precipitation and possible inhibition of vertical mixing or overestimation of 24 

wintertime emissions. The scores suggest a slight deterioration in model performance when 25 

passing from meteorology from a climate model to reanalysis meteorology in both winter and 26 

summer but improvement when focusing on the annual statistics.  27 

We conclude that using climate model driven meteorology has a small impact on modeled ozone 28 

whereas larger sensitivity is observed for wintertime PM2.5 levels due to the accuracy of modeled 29 

precipitation. 30 

 31 
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4.2  Sensitivity to the resolution of the meteorological input (ERA01 vs. ERA05) 1 

Here we model the sensitivity of modeled ozone and PM2.5 concentrations to the resolution of the 2 

meteorological input (Fig. 5 and Table 3). Daily average ozone shows a very weak response over 3 

urban and rural sites (|∆c|<0.4ppb or <0.8%) and daily urban maxima improve slightly with the 4 

ERA01 run (|∆c|=0.4ppb or 1%). At the suburban area the impact, though small (|∆c|=1.4ppb or 5 

4.3%), is definitely higher than over urban or rural sites. Ox change at the suburban area (not 6 

shown) is much weaker compared to ozone (|∆c|~0.5ppb or 1.2%) showing that the increase in the 7 

resolution of meteorology has an impact on the representation of ozone titration leading to 8 

improved model performance. The skill score over suburban sites increases by 9% while NMB 9 

improves by 22% from 26.1 in ERA05 to 20.3 in ERA01. Interestingly, the response of suburban 10 

ozone to the resolution of the meteorological input is the strongest modeled sensitivity for this 11 

variable amongst all studied cases.  12 

Weak sensitivities are modeled for PM2.5 (Table 3) during summertime (|∆c|=0.3 μg/m3 or 3.4%) 13 

and on annual basis (|∆c|=0.6μg/m3 or 4%), but stronger during the winter season (|∆c|=1.3 μg/m3 14 

or 6.8%). In fact, wintertime statistics suggest that model bias actually increases with the 15 

refinement of the meteorological grid as a consequence of the reduced modeled precipitation (less 16 

scavenging),  and PBL by 20% (weaker dispersion) in MET_ERA01 compared to the climate 17 

model driven meteorology (Sect. 3.1). Again, this points to the same error compensation scheme 18 

described in the REF vs. ERA05 comparison (Sect. 4.1). 19 

We conclude that the resolution of the meteorological input has a small impact on modeled ozone 20 

while moderate sensitivity is observed for suburban ozone and wintertime PM2.5. Never the less 21 

this result could reflect the local area’s characteristics (flat terrain, situated away from the coast) 22 

confirming previous studies (Menut et al., 2005; Valari and Menut, 2008). In regions with more 23 

complex topography or close to the coast the resolution of the meteorological input could have a 24 

profound effect on the simulated meteorological conditions (Leroyer et al., 2014). We note here 25 

that the refinement in the resolution of the meteorological model from 0.5o to 0.1o may not be 26 

sufficient for the CTM to simulate noticeable concentration responses. For example Leroyer et al. 27 

(2014) (see also references therein) observed that substantial changes in vertical and horizontal 28 

transport in an urban environment occurred mostly in the transition from resolutions of 2.5km to 29 

1km and even higher (250m). 30 

  31 
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4.3  Sensitivity to the resolution of the CTM’s vertical grid (REF vs. VERT) 1 

This study addresses the impact of the resolution of the CTM’s vertical mesh and more specifically 2 

of the thickness of the first CTM layer, on modeled ozone and PM2.5 concentrations (Fig. 6). Mean 3 

daily ozone is practically insensitive to the refinement of the vertical mesh at the urban, suburban 4 

and rural areas (Table 3). Similarly, maximum ozone at the urban area changes by only 0.5ppb 5 

(1.4%) with increased bias in the VERT run. Changes in summertime and annual modeled PM2.5 6 

concentrations are also small, while the wintertime daily average shows some weak sensitivity 7 

(|∆c|=0.5μg/m3 or 2.2%). Scores are hardly affected.  8 

Interestingly, the impact of the refinement of the vertical grid on daily averaged Ox is much 9 

stronger that on ozone: Ox, changes by 0.9ppb in the urban and suburban areas. The change in Ox 10 

is reasonable since in VERT, NOx emissions are released within a surface layer thinner by 60% 11 

compared to REF (from 20m to 8m) leading to higher NOx concentrations. That should normally 12 

affect titration which is the driver of urban ozone concentrations. The fact that ozone remains 13 

insensitive to the change in NOx concentrations suggests that some other modeled processes 14 

counteracts titration. To further investigate this issue we study the change in dynamical processes 15 

such as vertical mixing and dry deposition. We extract the vertical diffusion coefficient Kz (m
2/s) 16 

and dry deposition rates (g/m3) for ozone, NO2 and PM2.5 for all grid cells that include an urban 17 

monitor site and look how modeled sensitivities change as a function of these parameters (Fig.7).  18 

NO2 concentrations increase with the refinement of the first vertical layer of the CTM for all 19 

vertical mixing conditions (Fig. 7a). However it is only under low vertical mixing (1< Kz<5 m2/s) 20 

that ozone sensitivity becomes positive (Fig. 7b). Under stronger turbulence (Kz > 5 m2/s), the 12-21 

layer setup leads to higher first-layer NO2 concentrations (stronger titration) leading to negative 22 

values for ozone sensitivity (such conditions account for the 93% of the simulated period). On the 23 

other hand the refinement of the vertical mesh primarily affects NO2 deposition rates which 24 

accelerate by 14.3% but leaving ozone deposition rates unaffected. We may assume that under low 25 

mixing conditions, the increased deposition rate of NO2 slows down the increase in NO2 26 

concentration due to the emission effect and dynamical processes become more influential than 27 

titration. As a result the surface layer is enriched in ozone by getting mixed with air from higher 28 

atmospheric layers (Menut et al., 2013b). 29 

For almost the entire Kz range, PM2.5 concentrations increase with VERT (Fig. 7c). This is due to 30 

the fact that emissions are released in smaller volumes as discussed above. On the other hand, here 31 
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too, the refinement of the vertical resolution of the CTM, enhances deposition rate. These two 1 

conflicting effects explain the small impact of the CTM’s vertical resolution on PM2.5 2 

concentrations.  3 

We conclude that both ozone and PM2.5 sensitivities to the refinement of the vertical mesh are 4 

small. Our analysis suggests that in both cases this is the result of two competing processes, either 5 

titration against vertical mixing (ozone) or emission versus deposition (PM2.5). Although in the 6 

Ile-de-France area (low topography) the overall effect is insignificant, it may not be the case in 7 

other regions with more complex topography.  8 

 9 

4.4 Sensitivity to the annual emission totals (REF vs. ANN) 10 

This case study compares modeled concentrations between two runs where annual emission totals 11 

stem from either the AIRPARIF inventory (REF) or the ECPLISE dataset (ANN). Changes in 12 

modeled urban daily average ozone concentrations are small (|∆c|=0.8ppb or 2.5%) with the 13 

regional inventory (ECLIPSE) to tend to increase the bias of the REF run (Fig.8a and Table 3). 14 

This is due to the fact that when passing from the AIRPARIF to the ECLIPSE inventory (see also 15 

Fig. 2) NOx emissions decrease (weakening titration) and NMVOCs increase (intensifying 16 

production). This is also seen in the weaker sensitivity of Ox (0.4ppb or 1%) suggesting that the 17 

main reason for the improvement brought about by the use of the local inventory (REF run) is due 18 

to a better representation of the ozone titration process. At the suburban area, the sensitivity is 19 

larger (|∆c|= 1.1ppb or 3.2%) and of the same order of magnitude as the sensitivities to climate 20 

model driven meteorology and to the resolution of the meteorological input. The weaker change 21 

in suburban Ox (|∆c|=0.1ppb or 0.3%) suggests that this area benefits more than the urban area 22 

from the improvement in the titration process. The skill score associated to the REF run is also 23 

higher by 8% (Fig. 8a). Changes in daytime averages at both urban and suburban areas are similar 24 

to those in the daily averages suggesting that modeled sensitivity stems mainly from daytime 25 

titration. Rural ozone is practically unaffected (|∆c|= 0.3ppb or 1%). It is noteworthy that the 26 

absolute change in modeled ozone concentrations is in the order of 1ppb or less despite the large 27 

differences in ozone precursors’ emissions between the local and the regional inventory.   28 

Changes in the daily average fine particle concentrations in summertime, wintertime and in the 29 

annual basis are much stronger than ozone (|∆c|=4.1μg/m3 or 33%, 6.6μg/m3 or 33.8% and 30 

5.5μg/m3 or 31.9% respectively). PM2.5 concentrations modeled with the ANN run are significantly 31 
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higher than those modeled with the REF run (Fig. 8b). Wintertime bias in ANN reaches +5.8μg/m3 1 

showing that fine particle emissions from the ECLIPSE inventory are overestimated (see also Fig. 2 

2). The main source of primary wintertime PM2.5 emissions over the IdF region as well as in Paris 3 

in the ANN run is wood burning (see discussion in Sect. 2.4), which is unrealistic for a city like 4 

Paris and stems directly from the use of the population proxy to spatially allocate national totals 5 

over the finer scale. This is consistent to the fact that the summertime bias in the ANN run is much 6 

lower (+1.4μg/m3). In fact, in this case the ANN bias is even smaller than the REF bias (-2.8μg/m3) 7 

enhancing our hypothesis that summertime fine particle emissions in the AIRPARIF inventory are 8 

underestimated (see also Sect. 2.1). The skill score in REF is higher than in ANN in wintertime 9 

and lower in summertime.   10 

We conclude that ozone sensitivity to the annual emission totals is low but strong for fine particles.  11 

 12 

4.5  Sensitivity to emission post-processing (ANN vs. POST) 13 

Here we use identical annual totals but two different methods for their vertical and temporal 14 

allocation to obtain hourly fluxes over the 4km-resolution domain as well as different matrices for 15 

their chemical speciation. The ANN dataset uses the AIRPARIF bottom-up approach whereas the 16 

EMEP methodology is applied to the POST dataset. To compile the ANN inventory we had to 17 

extract the post-processing coefficients of the bottom-up inventory and apply them on the 18 

ECLIPSE annual totals. This procedure though was not emission source-sector oriented and this 19 

inconsistency definitely affects model results. On the other hand the post-treatment of the 20 

(sectoral) raw emissions in large-scale applications are typically based on sectoral coefficients that 21 

don’t link back to the same quantified emissions either. For example in the regional application 22 

used this study (REG) the sectoral ECLIPSE raw emissions quantified in SNAP level are treated 23 

with the respective sectoral coefficients that stems from the EMEP inventory having a very 24 

different synthesis of sub-SNAP sources from that of ECLIPSE. Therefore when we compare 25 

ANN with POST we consider that what we observe is the bias of this inconsistency in regional 26 

modeling. The question raised is: what is the benefit of adopting a bottom-up post-processing for 27 

regional scale air-quality modeling?. 28 

The effect on ozone concentrations over the urban area is considered moderate (|∆c|=1.9ppb or 29 

6.4%) (Fig. 9a and Table 3). Model bias is reduced from +4.5ppb in POST to +2.6ppb in ANN. 30 

Ozone sensitivity in this case, is twice as high as the sensitivity to climate model driven 31 
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meteorology and even higher compared to the impact of annual totals. The ANN simulation is able 1 

to increase the skill score by 14% and reduce MNB by 26%. The low Ox sensitivity suggests that 2 

discrepancies are mainly due to a better representation of ozone titration. Suburban and rural ozone 3 

is practically insensitive to the post-processing technique. Even if emission totals are identical 4 

between the two configurations, ozone concentrations over the urban area are lower in the ANN 5 

run than in the POST run because ANN has more ground-layer NOx emissions than POST 6 

enhancing ozone titration. This stems from the fact that the annual emission totals are allocated in 7 

the CTM’s vertical layers very differently. Following the AIRPARIF post-processing (ANN) all 8 

urban emissions are released in the surface layer because according to the local point source 9 

emission database no major industrial units are found within the urban area. On the contrary, the 10 

regional scale post-processing (POST) does not resolve the urban from the suburban and rural 11 

areas, where industrial zones are located and assigns only 70% of the total NOx emissions over 12 

Paris in the first model layer.  13 

Another important piece of information id the diurnal variation of emissions. Although the time 14 

scale of a climate forced run largely exceeds the hourly basis we aim to illustrate how important 15 

the choice of the diurnal patterns can be to the final modeled concentrations. Fig. 10a shows the 16 

average diurnal variation of modeled and observed urban ozone for ANN and POST (for the 17 

modeled fields we use the grid cells of the monitoring sites). The two downscaling approaches 18 

compared here, apply different diurnal profiles on emissions to provide hourly fluxes. Between 19 

10:00LT and 15:00LT, ANN underestimates ozone concentrations due to too much NO emissions, 20 

enhancing titration and this is maximized in the local peak (15:00LT) where NO concentrations 21 

are overestimated by a factor of 2 (not shown). The daily maximum concentration shows the 22 

highest sensitivity in the emission post-treatment among all the presented cases (|∆c|=2.2ppb). This 23 

is consistent with Menut et al. (2003) who also found that the afternoon peak concentrations at a 24 

typical summertime episode in Paris are very sensitive to the NO emissions change. In the evening 25 

(after 15:00LT) ANN deviates from the observations faster than POST because the afternoon peak 26 

in traffic emissions is more pronounced in the AIRPARIF diurnal profile compared to that used in 27 

the ECLIPSE processing which represents an average situation of anthropogenic sources hence a 28 

smoother variation. These results indicate that the diurnal variability of modeled ozone over the 29 

urban area is very sensitive to the choice of the diurnal profile. But in the climate concept where 30 
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hourly values are timely too short to take into account, the sensitivity is considered moderate as 1 

seen in Table 3. 2 

Modeled PM2.5 sensitivity is significant for both summer and wintertime (|∆c|=3.4μg/m3 or 24.8% 3 

and 4.6μg/m3 or 18.3% respectively) (Table 3). POST wintertime bias is almost two times higher 4 

than ANN (Fig. 9b). This is because the coarse resolution annual post-processing coefficients 5 

weight towards allocating more of the annual emissions into the winter period significantly 6 

influenced by the residential sector emissions which are overstated in the ECLIPSE inventory. A 7 

late afternoon peak is modeled with ANN accounting for the traffic emissions, whereas PM2.5 8 

evening levels modeled with the POST run (after 20:00LT) are related to the residential heating 9 

activity (Fig. 10b).  10 

What we can conclude is that in a climate forced – air quality framework the model response for 11 

daily average ozone by 6.2% is rather small considering the significant differences that the two 12 

post-processing approaches prescribe for the vertical distribution of emissions and their diurnal 13 

variation. Fine particle concentrations are much more sensitive to the applied emission post-14 

processing technique. We note here, that recent work has pointed out that the sensitivity of 15 

modeled concentrations the spatiotemporal resolution of the emission inventory is model-16 

dependent (Makar et al., 2014).  17 

 18 

4.6 Sensitivity to the emission inventory resolution (POST vs. AVER) 19 

Here, we quantify the effect of the resolution of the emission input. Results show that in the urban 20 

areas this sensitivity is the most influential amongst all tests presented in this paper with ozone 21 

changes reaching 2.8ppb or 8.3% (Fig. 11a). The change in daily average Ox is smaller but 22 

comparable (|∆c|=1.2ppb or 2.9%) suggesting that ozone titration is not the only model process 23 

that is affected by the increase in the resolution of the emission dataset. The skill score and MNB 24 

improve significantly in the POST run (Table 3). Ozone precursors’ emissions from urban sources 25 

are mixed with the lower emissions from the surrounding suburban and rural areas inside the large 26 

cells of the coarse mesh-grid (AVER). This leads to lower titration rates and therefore, higher 27 

ozone levels. Therefore the increase in the resolution of the emission input leads to a reduced 28 

positive bias from +7.3ppb (AVER) to +4.5ppb (POST). AVER overestimates ozone peaks by 29 

0.8ppb while POST underestimates them by -1.2ppb. The sensitivity of ozone concentration at the 30 

hour of the afternoon peak is linked to NOx concentration at the same hour, which reaches a local 31 
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maximum due to the evening rush hour (see also Sect. 4.5). Suburban and rural ozone is less 1 

sensitive than urban (|∆c|=0.7ppb), with scores practically unchanged (Table 3). 2 

Fine particle concentrations are also very sensitive to the resolution of the emission input, 3 

especially in wintertime (|∆c|=7.1μg/m3 or 30%), with higher concentrations modeled with the 4 

refined emission inventory in POST (Table 3). Similarly to ozone this is because in the coarser 5 

inventory represented here by AVER, emissions in the high emitting areas in the city are smoothed 6 

down and diluted when averaged with emissions of the less polluted outer areas.  7 

We conclude that the resolution of the emission input is the most influential factor from all the 8 

studied cases, even more than model resolution itself. PM2.5 showed higher sensitivity than ozone 9 

concentrations. The non-linear nature of ozone chemistry suggests that it is important for the ozone 10 

precursor emissions to be concentrated correctly to the high emitting areas such as the urban 11 

centres. 12 

 13 

4.7  Sensitivity to model horizontal resolution (AVER vs. REG) 14 

Here, we study the sensitivity of ozone and PM2.5 concentrations to the CTM’s horizontal 15 

resolution. We compare the simulations of two different spatial resolutions, the AVER run 16 

(averaged over the grid-cells of the coarser grid) and the REG simulation on a grid of 0.5º 17 

resolution (Fig. 12). REG, models higher ozone concentrations than AVER over the urban area 18 

(|∆c|=1.7ppb or 4.7%). As discussed above, NOx emissions in the REG simulation are lower than 19 

in REF due to dilution in the coarser grid cells leading to lower ozone titration rates. Suburban and 20 

rural ozone has low sensitivity to model resolution (|∆c|=0.5ppb or 1.4% and 0.2ppb or 0.5% 21 

respectively) because photochemical build-up occurs at larger time and space scales compared to 22 

titration and the refinement of the model grid does not increase performance. This confirms the 23 

results in Markakis et al. (2014). The effect on modeled PM2.5 is very small with concentrations 24 

slightly higher over the finer mesh grid as a result of the lower primary emissions in REG. 25 

We may conclude that the benefit of increasing the CTM’s resolution is insignificant for both 26 

ozone and PM2.5 especially taking into account the large refinement attempted here (0.5o to 4km). 27 

 28 

5 Sources of error in regional climate forced atmospheric composition modeling 29 

In this paper we utilize simulations at two spatial scales: at urban scale over a grid of 4km 30 

resolution using the AIRPARIF bottom-up inventory of anthropogenic emissions (REF) and a 31 
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regional scale run at 0.5º resolution where emissions stem from the ECLIPSE top-down inventory 1 

(REG). Both realizations implement identical climate driven meteorology (at 0.44o resolution) and 2 

an 8-layer vertical mesh therefore are susceptible to the same sources of error due to climate model 3 

driven meteorology, the resolution of the meteorological input and the resolution of the CTM’s 4 

vertical grid. However the remaining biases presented in Table 3 over urban areas e.g., the 5 

emissions resolution, the model horizontal resolution, the annual quantified fluxes and the post-6 

processing method concern mainly the REG run. As regards ozone REG has a positive bias of 7 

9ppb over the city of Paris while the bias of REF is only +1.8ppb (Fig. 13a). The question we raise 8 

is “what are the main sources of uncertainty in regional scale climate driven air-quality simulations 9 

and how these could be eliminated or at least reduced?”. 10 

With this study we are able to identify the source of the excess of |∆c|=7.2ppb of ozone modeled 11 

with the REG run compared to REF (Table 4); 26.4% (|∆c|=1.9ppb) is related to the post-12 

processing of the annual emissions totals which are based on the EMEP factors, 11.1% 13 

(|∆c|=0.8ppb) to the annual emission totals in the ECLIPSE inventory, 23.6% (|∆c|=1.7ppb) to 14 

coarse model resolution and 38.9% (|∆c|=2.8ppb) to the coarse resolution of the ECLIPSE 15 

emission inventory. 16 

Considering the discrepancies in the inventorying methodologies used to compile the ECLIPSE 17 

and the AIRPARIF datasets (top-down vs. bottom-up), it is very interesting that the least influential 18 

factor to the urban ozone response is the annual emissions totals. It seems that the regional 19 

simulation would not benefit much from the integration of the local annual totals alone but a more 20 

important gain would stem from the application of the AIRPARIF post-processing methodology. 21 

The added value from both these factors would reduce the positive bias of REG by 2.7ppb. Even 22 

largest improvement comes through the better spatial representation of ozone precursors emissions 23 

in the local emission inventory (|∆c|=2.8ppb) leading to more faithful titration process; Ox levels 24 

are very close in REF and REG (Fig. 13a). It could therefore argued that without increasing model 25 

resolution of which the gain would reach only 1.7ppb, the REG simulation would benefit 26 

significantly by simply integrating the aforementioned local scale information. 27 

The difference in modeled ozone between REF and REG is much smaller over the suburban area 28 

(|∆c|=2.4ppb) and the most influential factor to this difference is the annual emission totals 29 

covering 45.8% of this difference. Finally as regards ozone one important result of this study is 30 

that in the climate-air quality framework modeled concentrations from a coarse resolution run, 31 
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well agree with the much more intensive (in terms of computational time) fine resolution run and 1 

the bias is considered of small magnitude (Fig. 13a). This is because the formation of rural ozone 2 

is a slower process than in urban areas and comparable to the characteristic transport time of 3 

precursor’s pollutants to the coarse grid cell. 4 

Focusing on the wintertime PM2.5 concentrations where the largest annual levels are observed, 5 

these are better simulated with the REF run with a bias of -0.8μg/m3 and a high skill score of 0.78 6 

compared to a strong positive bias of +3.6μg/m3 and a skill score of 0.68 with the REG run (Fig. 7 

13b). We should remind here that both runs suffer from a strong wet bias reducing significantly 8 

PM2.5 concentrations (see also Sect. 3.1). Contrary to ozone, where information from the local 9 

scale improves in all cases model performance, the resolution of the emission inventory seems to 10 

deteriorate the modeling performance of PM2.5 with increase in the bias by 7.1μg/m3. This only 11 

means that if the emission totals from ECLIPSE are used over Paris in the coarse REG application 12 

then refining the resolution will only accumulate additional emissions in the city augmenting the 13 

modeled concentrations. The remaining features have also a positive effect; model resolution 14 

reduces the bias by 0.4μg/m3, annual emission totals by 6.6μg/m3 and post-processing of the annual 15 

totals by 4.5μg/m3. This essentially means that the regional realization cannot selectively 16 

incorporate any combination of local-scale features in order to improve performance as in the case 17 

of ozone. But the results indicate that by simply integrating a bottom-up post-processing technique 18 

would result in an overall bias of the regional application of -0.9μg/m3.  19 

 20 

6 Conclusions 21 

In the present paper we assess the sensitivity of ozone and fine particle concentrations with respect 22 

to emission and meteorological input with a 10yr long climate forced atmospheric composition 23 

simulation at fine resolution over the city of Paris.  24 

As a general observation our study shows that overall ozone response is considered low to 25 

moderate while PM2.5 concentrations were generally very sensitive for the presented cases. The 26 

largest sensitivity in modeling the average daily ozone concentrations was observed in the urban 27 

areas primarily due to the resolution of the emission inventory (|∆c|=2.8ppb or 8.3%) and secondly 28 

to the post-processing methodology applied on the annual emission totals (|∆c|=1.9ppb or 6.2%). 29 

These sensitivities are attributed to changes in the titration process. When post-processing 30 

coefficients were derived from the bottom-up AIRPARIF inventory instead of EMEP, too much 31 



24 

 

ozone titration takes place at the hour of the ozone peak and the sensitivity of daily maximum 1 

reached its highest value among all the studied cases (|∆c|=2.2ppb or 5.8%). It is interesting that 2 

despite the fact that ozone precursor’s emissions are very different between the bottom-up and the 3 

top-down inventories, ozone sensitivity to the annual totals was shown to be very small 4 

(|∆c|=0.8ppb or 2.5%). Also modeled ozone is fairly insensitive to the use of climate model or 5 

reanalysis meteorology. Finally all cases of suburban and rural ozone both for average and 6 

maximum concentrations showed a sensitivity of less than 5%. 7 

Regarding PM2.5 concentrations, amongst all the presented factors, the emissions related were 8 

those shown to be the most influential. The corresponding sensitivity to the use of annual emission 9 

totals from a top-down and a bottom-up inventory reached 33% in summer, 33.8% in winter and 10 

31.9% for the daily average concentrations. This is connected to the downscaling methodology 11 

applied in the regional-scale totals of the ECLIPSE inventory; using population as proxy for their 12 

spatial allocation, leads to overestimation of particle emissions from wood-burning over the Paris 13 

area. Large sensitivity was also shown due to the resolution of the emission inventory (20.3% in 14 

the summer, 30% in the winter and 24.2% in annual basis) because the coarser inventory 15 

smoothens the sharp emission gradients over the urban area leading to less primary emissions. Fine 16 

particle concentrations were also sensitive to the applied emission post-processing technique 17 

(22.1% in summer and 16.7% in winter). Only wintertime PM2.5 concentrations were significantly 18 

affected by the meteorological related sensitivities; by 17.6% due to the use of meteorology from 19 

reanalysis instead of climate (mainly because the prescribed changes in modeled precipitation) and 20 

by 6.8% due to refinement of the meteorological grid.  21 

Both ozone and PM2.5 are little sensitive to the CTM’s vertical resolution (changes of less than 22 

2.2%). Nevertheless we provide evidence that this low sensitivity may be the result of 23 

counteracting factors such as ozone titration, dry deposition and vertical mixing, too much 24 

dependent on local topography to be able to generalize for other regions. We also note the weak 25 

sensitivity of modeled concentrations to the increase in the CTM’s and the meteorological model’s 26 

horizontal resolution at least for the area and the range of resolutions studied here. 27 

Excluding the sensitivities having the smallest impact (roughly less than 2%, see Table 3) we 28 

observe a very consistent trend in ozone concentration: daily average and maximum ozone 29 

decrease as input data become more refined, namely passing from climate meteorology to 30 

reanalysis, increasing the resolutions of the horizontal and vertical CTM grid, of meteorology, of 31 
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emissions and by using bottom-up emissions and post-processing instead of top-down. This 1 

decrease in ozone concentrations, from 2.5% up to 8.3%, is observed mainly in the urban and 2 

suburban areas and in all cases stems from enhanced NOx emission fluxes in the surface-layer 3 

leading to titration inhibition. Trends and the underlying changes in emissions are highly variable 4 

for PM2.5 with increase in concentrations that may be as low as 2% or as high as 30% for climate 5 

meteorology and resolution of the vertical mesh and also cases where concentration decreases in 6 

a wide range of values from 3% up to 34% (annual emissions, model resolution) depending on the 7 

season. 8 

To fill the gap between regional and city-scale assessments we have to combine in a single 9 

application the advantages of regional and local scale applications; the low resolution (but high 10 

spatial coverage) from one hand and the good representation of emissions (but limited area of 11 

coverage) on the other. The results of this study move towards that goal and can be used in order 12 

to identify the main sources of error in regional scale climate forced air-quality modeling over the 13 

urban areas. These biases could be taken into account in policy relevant assessments.    14 

The difference in modeled daily average ozone between the local and regional application over the 15 

urban areas (|∆c|=7.2ppb) is attributed to several sources of error: 38.9% is related to the resolution 16 

of the emission inventory, 26.4% stems from the post-processing of national annual emission 17 

totals, 23.6% is due to model resolution (4km or 0.5o) and 11.1% is associated to the annual 18 

emissions used as starting point for the compilation of the anthropogenic emission dataset. 19 

Although the greatest benefit in the regional-scale modeling seems to come through the increase 20 

in the resolution of the emission inventory, simpler actions may be also meaningful, such as the 21 

integration of the locally developed annual totals and the downscaling coefficients derived from 22 

the existing bottom-up modeling systems which combined could reduce the bias of the regional 23 

application by 37.5%. We note here that PM2.5 levels in the urban regions are likely mostly 24 

controlled by primary emissions; increasing the emissions inventory resolution will concentrate 25 

the PM2.5 emissions into a smaller spatial extent of the urban area (the reverse side of the artificial 26 

dilution issue taking place at coarse resolution); if the emissions totals are themselves biased high, 27 

then the resulting error will only become apparent at higher resolution. Therefore, the emissions 28 

resolution may be showing that the emissions totals are too high, and this only becomes apparent 29 

at high resolutions. 30 
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As regards PM2.5 modeling our study shows that the regional realization cannot selectively 1 

incorporate any combination of local-scale features in order to improve performance as in the case 2 

of ozone. The simulation at regional scale (REG) predicts an excess of 3.6μg/m3 during wintertime 3 

compared to the fine scale simulation (REF) showing a bias of -0.8μg/m3 and this is attributed to 4 

the allocation of wood-burning emissions over the Paris area. Therefore, the most influential factor 5 

for PM2.5 modeling is the resolution of the emission input (REG-REF=+7.1μg/m3). But the 6 

implementation of the refined emission resolution of the local inventory alone would not benefit 7 

the regional simulation (which would increase the overall bias to 10.7μg/m3), neither the 8 

implementation of the annual emissions of the bottom-up inventory alone (REG-REF=-6.6μg/m3) 9 

which would generate an overall negative bias of 3μg/m3. A simpler action would be to integrate 10 

the post-processing bottom-up technique (REG-REF=-4.5μg/m3) giving an overall bias in REG of 11 

-0.9μg/m3.  12 
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Table 1. Parameterization of the different sets of simulations presented in the paper. Changes with 1 

respect to the REF case are marked in red. Changes with respect to a simulation other than REF 2 

are marked in green. 3 

 Annual 

emission 

totalsa 

Air-

quality 

model 

resolution 

Emission 

inventory 

resolution 

Emission 

post-

processingb 

climate/reanalysis  

meteorology and 

resolution 

Number of 

layers in 

air-quality 

model 

REF AIRPARIF 4km 4km Bottom-up RCP-4.5 (0.44o) 8 

REGc ECLIPSE 0.5º 0.5º Top-down RCP-4.5 (0.44o) 8 

Sensitivity simulation 

ERA05 AIRPARIF 4km 4km Bottom-up ERA (0.44º) 8 

ERA01d AIRPARIF 4km 4km Bottom-up ERA (0.11º) 8 

VERT AIRPARIF 4km 4km Bottom-up RCP-4.5 (0.44o) 12 

ANN ECLIPSE 4km 4km Bottom-up RCP-4.5 (0.44o) 8 

POSTe ECLIPSE 4km 4km Top-down RCP-4.5 (0.44o) 8 

AVERf ECLIPSE 4km 0.5º Top-down RCP-4.5 (0.44o) 8 

a The resolution of the emission inventory of AIRPARIF is 1km (aggregated to 4km for the 4 

purpose the local simulations) and the ECLIPSE inventory 50km.  5 

b Temporal, vertical allocation and chemical speciation. 6 

c This simulation is used as boundary conditions for all local scale simulations. 7 

d The ERA01 simulation is compared with the ERA05 not with the REF. 8 

e The POST simulation is compared with the ANN not with the REF. 9 

f This is not a standalone simulation. Concentrations modeled at 4km resolution with the POST 10 

run are averaged spatially to match the cells of REG (0.5º resolution simulation). AVER results 11 

are compared to REG to quantify the effect of model resolution and with POST to quantify the 12 

effect of the resolution of the emission inventory. 13 

 14 

 15 

 16 

 17 
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Table 2. Observed and modeled daily average meteorological variables over the Ile-de-France 1 

region. MET_CLIM dataset stems from a climate model and MET_ERA05, MET_ERA01 from 2 

reanalysis data at 0.5o and 0.1o resolution respectively. Absolute model bias is given in parenthesis.  3 

Variable Obs MET_CLIM MET_ERA05 MET_ERA01 

Summer (JJA)     

T2 (oC) 19.19 19.14 (-0.05) 18.28 (-0.91) 18.19 (-1.0) 

WS10 (m/s) 2.9 4.0 (+1.1) 3.8 (+0.9) 3.8 (+0.9) 

RH (%) 69.1 68.1 (-1.0) 68.3 (-0.8) 67.3 (-1.8) 

PRECIP (mm/day) 0.076  0.108 (+0.032) 0.097 (+0.021) 0.098 (+0.022) 

Winter (DJF)     

T2 (oC) 4.3      4.0 (-0.3) 6.0 (+1.7) 5.8 (+1.3) 

WS10 (m/s) 3.6      6.2 (+2.6) 5.7 (+2.1) 5.5 (+1.9) 

RH (%) 85.0     80.3 (-4.7) 79.7 (-5.3) 79.5 (-5.5) 

PRECIP (mm/day) 0.069  0.112 (+0.043) 0.089 (+0.02) 0.087 (+0.018) 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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Table 3. Absolute difference (and percentage in parenthesis) between daily averaged ozone (ppb) 1 

and PM2.5 (μg/m3) from two climate forced air-quality runs. The most influential factor for each 2 

sensitivity test is marked in bold. 3 

Ozone Urban Suburban Rural 

Climate meteo (REF vs. ERA05) 1.0 (3.4%) 1.1 (3.2%) 0.9 (2.5%) 

Meteo. resolution (ERA05 vs. ERA01) 0.2 (0.6%) 1.4 (4.3%) 0.3 (0.8%) 

Vertical resolution (REF vs. VERT) 0.3 (1.2%) <0.1 (0.2%) <0.1 (1.5%) 

Annual emis. totals (REF vs. ANN) 0.8 (2.5%) 1.1 (3.2%) 0.3 (1.0%) 

Emission post-proc. (ANN vs. POST) 1.9 (6.4%) 0.1 (0.4%) <0.1 (0.02%) 

Emission resolution (POST vs. AVER) 2.8 (8.3%) 0.7 (1.9%) 0.2 (0.5%) 

Model resolution (AVER vs. REG) 1.7 (4.7%) 0.5 (1.4%) 0.2 (0.5%) 

PM2.5 Summer Winter Annual 

Climate meteo (REF vs. ERA05) <0.1 (0.05%) 3.1 (17.6%) 1.4 (9.4%) 

Meteo. resolution (ERA05 vs. ERA01) 0.3 (3.4%) 1.3 (6.8%) 0.6 (4.0%) 

Vertical resolution (REF vs. VERT) <0.1 (0.3%) 0.5 (2.2%) <0.1 (0.2%) 

Annual emis. totals (REF vs. ANN) 4.1 (33.0%) 6.6 (33.8%) 5.5 (31.9%) 

Emission post-proc. (ANN vs. POST) 3.4 (24.8%) 4.5 (18.3%) 0.2 (0.7%) 

Emission resolution (POST vs. AVER) 2.1 (20.3%) 7.1 (30.0%) 4.3 (24.2%) 

Model resolution (AVER vs. REG) 0.4 (4.1%) 0.4 (1.9%) 0.7 (0.5%) 
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Table 4. Top row presents the coarse resolution application (REG) model bias of the April-August 1 

average urban ozone and wintertime urban PM2.5. Subsequently, marked with italics the signals -2 

measured as the absolute concentration change from REG- of several refinements such as increase 3 

of resolution (model or emissions) and adaptation of annual quantified fluxes and post-processing 4 

of a bottom-up inventory. The individual signals sum up to the absolute bias found under the fine 5 

resolution simulation (REF). 6 

Ozone 
Ozone 

(ppb) 

PM2.5 

(μg/m3) 

REG (50km) +9.0 +3.6 

Model resolution -1.7 -0.4 

Emissions resolution -2.8 +7.1 

Annual emission totals -0.8 -6.6 

Emissions post-processing -1.9 -4.5 

REF (4km) +1.8 -0.8 

 7 
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1 

Figure 1. Overview of the coarse (D1 having 50km resolution) and local scale (D2, illustrated by 

the red rectangle having 4km resolution) simulation domains. In D2 the city of Paris in located in 

the area enclosed by the purple line. Circles correspond to sites of the local air-quality 

monitoring network (AIRPARIF) with red for urban, blue for suburban and black for rural. 
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Figure 2. Domain-wide annual emissions of NOx, NMVOC (left-axis) and PM2.5 (right-axis) 

from the local (bottom-up) and the regional (top down) inventory (summed across the vertical 

column). 
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Figure 3. Panel a: Scatter plots and scores of daily average ozone concentrations at urban, 

suburban and rural stations from the REF simulation. Odd oxygen (Ox) and daily maximum 

values at urban locations are also shown. Panel b: daily average PM2.5 concentrations in 

wintertime (DJF), summertime (JJA) and on annual basis over urban stations. 
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Figure 4. Scatter plots and scores for the sensitivity test on climate model driven meteorology 

for ozone and PM2.5. 
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Figure 5. Scatter plots and scores for the sensitivity test on the resolution of meteorology for 

ozone and PM2.5. 
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Figure 6. Scatter plots and scores for the sensitivity test on the CTM’s vertical resolution for 

ozone and PM2.5. 
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 1 
Figure 7. Difference in average daily simulated NO2 (a), ozone (b) and PM2.5 (c) 

concentrations between VERT (12 vertical layers) and REF (8 vertical layers) at urban areas 

per range of Kz (bins of 1 m2/s). Positive differences indicate that the refined vertical mesh 

leads to increased pollutant concentration and vice versa. The occurrence of sensitivity values 

within each Kz range is also provided. 
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Figure 8. Scatter plots and scores for the sensitivity test on the annual emission totals for ozone 

and PM2.5. 
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Figure 9. Scatter plots and scores for the sensitivity on the post-processing (temporal analysis 

and chemical speciation) technique applied on the annual emission totals for ozone and PM2.5. 
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Figure 10.  Mean diurnal variation of (a) ozone concentrations averaged over the  April-August 

period and (b) wintertime PM2.5 concentrations in the urban area. 
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Figure 11. Scatter plots and scores for the sensitivity test on the resolution of the emission 

inventory for ozone and PM2.5. 
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Figure 12. Scatter plots for the sensitivity test on model resolution for ozone and PM2.5. 
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Figure 13. Panel a: Scatter plots of daily average ozone concentrations at urban, suburban and rural 

stations from the REF and REG simulations. The odd oxygen (Ox) and daily maximum at urban 

locations is also shown. Panel b: daily average PM2.5 concentrations in wintertime (DJF), summertime 

(JJA) and on annual basis over urban stations. 

 


