

1 **The Decrease in mid-Stratospheric Tropical Ozone Since**
2 **1991**

3

4

5

6 Gerald E. Nedoluha¹, David E. Siskind¹, Alyn Lambert², and Chris Boone³

7

8

9

10 ¹Naval Research Laboratory, Washington, D. C., USA.

11 ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

12 ³Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.

13

14 **Abstract**

15 While global stratospheric O₃ has begun to recover, there are localized regions where O₃
16 has decreased since 1991. Specifically, we use measurements from the Halogen Occultation
17 Experiment (HALOE) for the period 1991-2005 and the NASA/Aura Microwave Limb Sounder
18 (MLS) for the period 2004-2013 to demonstrate a significant decrease in O₃ near ~10 hPa in the
19 tropics. O₃ in this region is very sensitive to variations in NO_y, and the observed decrease can be
20 understood as a spatially localized, yet long term increase in NO_y. In turn, using data from MLS
21 and from the Atmospheric Chemistry Experiment (ACE), we show that the NO_y variations are
22 caused by decreases in N₂O which are likely linked to long term variations in dynamics. To
23 illustrate how variations in dynamics can affect N₂O and O₃, we show that by decreasing the
24 upwelling in the tropics, more of the N₂O can photodissociate with a concomitant increase in
25 NO_y production (via N₂O+O(¹D) → 2NO) at 10 hPa. Ultimately, this can cause an O₃ decrease
26 of the observed magnitude.

27

28 **1. Introduction**

29 The slowdown in the O₃ decline and the beginnings of recovery of the ozone layer have
30 been documented [Newchurch *et al.*, 2003; Yang *et al.*, 2006]. Monitoring of the ozone layer
31 continues to be critical in order to understand ozone recovery as the CFC burden in the
32 stratosphere decreases. A number of observational studies have quantified the global distribution
33 of changes to the O₃ layer and revealed distinct patterns and variability which show that O₃
34 trends are not spatially uniform. One consistent result is that over decadal time scales, equatorial
35 O₃ in a vertical layer near 30 km (corresponding to ~10 hPa) often varies very differently from
36 O₃ in the rest of the middle to upper stratosphere. Kyrola *et al.* [2013], using measurements from

37 the Stratospheric Aerosol and Gas Experiment (SAGE) from 1984-1997, show a general
38 decrease in O₃ which is statistically significant over much of the stratosphere, but an increase in
39 equatorial O₃ (albeit not statistically significant) in the 30-35 km region. Conversely, for the
40 period 1997-2011 *Kyrola et al.* [2013] show a general increase in O₃ from SAGE and Global
41 Ozone Monitoring by Occultation of Stars (GOMOS) measurements, but a statistically
42 significant decrease near 30 km in the tropics. *Bourassa et al.* [2014] combine SAGE
43 measurements with measurements from the Optical Spectrograph and InfraRed Imager System
44 (OSIRIS) instrument and, again splitting the data into pre- and post-1997 periods, find very
45 similar results. *Damadeo et al.* [2014] compute a SAGE trend from 1998-2005 and find a
46 positive trend near 30km in the tropics and Northern Hemisphere, but a negative trend in the
47 Southern Hemisphere at this level. Measurements from the Scanning Imaging Absorption
48 Spectrometer for Atmospheric Chartography (SCHIAMACHY) instrument for the period 2002-
49 2012, reported by *Gebhardt et al.* [2014], show a pattern similar to the 1997-2011 pattern
50 reported by *Kyrola et al.* [2013], i.e. a strong statistically significant decrease in tropical O₃ in
51 the 30-35 km region while most of the middle atmosphere shows a slight increase in O₃.
52 Finally, *Eckert et al.* [2014] using Michelson Interferometer for Passive Atmospheric Sounding
53 (MIPAS) data from 2002-2012, also show a general increase in O₃ in most regions, but find
54 statistically significant negative trends in the tropics from ~25 hPa to 5 hPa. *Eckert et al.* [2014]
55 note that increased upwelling has been suggested as an explanation for ozone decreases, but, in
56 referring to these trends, they conclude that “upwelling does not provide a sufficient explanation
57 for the negative values in the tropical mid-stratosphere.”

58 Ozone at 10 hPa over the equator is particularly sensitive to catalytic cycles involving the
59 odd nitrogen (NO_y) chemical family [*Olsen et al.*, 2001; *Brasseur and Solomon*, 1986].

60 *Ravishankara* [2009] showed that N₂O would be the dominant ozone depleting substance emitted
61 in the 21st century, and pointed out that nitrogen oxides contribute most to O₃ depletion just
62 above where the O₃ mixing ratios are the largest. *Portmann et al.* [2012] calculated the effects of
63 a surface boundary increase of 20 ppbv of N₂O (an increase expected over ~20 years in the IPCC
64 A1B scenario) on O₃. They showed that this increase in N₂O emission would lead to a global
65 mean decrease of ~0.5-0.7% in O₃ just above the peak of the ozone mixing ratio (0.1 DU km⁻¹ in
66 the 30-35 km region where O₃ has a density of ~15-20 DU km⁻¹ based on their Figure 2). In
67 mixing ratio terms this gives a rate of ~5-7 ppbv/yr. *Plummer et al.* [2010] studied O₃ changes in
68 a model including GHGs and ODSs. They ran two experiments with a faster Brewer-Dobson
69 circulation, and these two experiments showed, at 10 hPa in the tropics, a decrease in reactive
70 nitrogen and an increase in both O₃ and N₂O at 10 hPa relative to the experiments with a slower
71 circulation. Thus variations in O₃ and N₂O at 10 hPa can be either correlated or anti-correlated
72 depending upon whether they are driven primarily by circulation or by changes in N₂O entering
73 the stratosphere.

74 In addition to long-term anthropogenically driven changes, events such as the eruption of
75 Mt. Pinatubo may alter the chemistry and dynamics of the stratosphere for extended periods.
76 *Aquila* [2013] compared a reference model with a model which simulated the effect of the
77 volcanic aerosols on both chemistry and dynamics. They calculated an increase in O₃ of ~2% at
78 10 hPa in the tropics slightly more than a year after the eruption, with no strong latitudinal
79 variation. *Damadeo et al.* [2014] attempt to disentangle anthropogenically driven changes from
80 Pinatubo eruption driven changes using an aerosol based volcanic proxy.

81 Previous observational work has correlated O₃ interannual variability in the tropics near
82 10 hPa with changes in specific odd nitrogen compounds; however, these studies were only for

83 relatively short time periods compared with the O₃ studies referenced above. *Randel et al.* [2000]
84 showed that the Halogen Occultation Experiment (HALOE) observed increasing NO+NO₂
85 coincident with decreasing O₃ from 1992-1997, but that these variations leveled-off during the
86 last years of HALOE measurements which were then available (1998-2000). The rate of O₃
87 decrease from 1992-1996 was faster than 100 ppbv/yr just above 10 hPa in the tropics. The
88 HALOE measurements of NO₂ at ~10 hPa from 1993-1997 were shown to be consistent with a
89 decrease in upward transport [*Nedoluha et al.*, 1998] and increased photolysis of N₂O, the source
90 of stratospheric NO_y.

91 The present study extends the previous observational studies with a combination of 21
92 years of ozone data from the UARS HALOE and the Aura Microwave Limb Sounder (MLS)
93 measurements, plus nitrogen species data from HALOE, MLS and the Atmospheric Chemistry
94 Experiment (ACE). Our results confirm the existence of the 10 hPa tropical ozone trend
95 anomaly and link it to a correspondingly consistent local change in the nitrogen species which
96 affect O₃. The resulting rate of change in O₃ and in the nitrogen species is an order-of-magnitude
97 faster than changes predicted from model calculations based upon changes in anthropogenic
98 emissions.

99

100 **2. Measurements from HALOE, Aura MLS, and ACE**

101 We make use of measurements from the HALOE, MLS, and the Fourier transform
102 spectrometer measurements from ACE. HALOE measurements of O₃, NO, and NO₂ are
103 available from 1991-2005. HALOE used the solar occultation technique which provided ~28-30
104 profiles per day in two latitude bands, one at sunrise and one at sunset. The latitude bands
105 drifted daily so that near global latitudinal coverage was provided in both sunrise and sunset

106 modes five times over the course of a year. The trends in the HALOE O₃ measurements have
107 been compared against SAGE II (*Nazaryan et al.*, 2005) and differences have been found to be
108 on the order of less than 0.3% per year in a majority of latitude bands at 25, 35, 45, and 55 km.

109 MLS measurements of O₃ and N₂O are available since 2004. MLS measurements are
110 available over a global range of latitudes on a daily basis. The stratospheric O₃ product has been
111 validated by *Froidevaux, et al.* [2008]. The N₂O measurements have been validated by *Lambert,*
112 *et al.* [2007].

113 Since 2004 ACE has been measuring O₃, N₂O, and the nitrogen species that constitute the
114 bulk of NO_y (NO, NO₂, HNO₃, and N₂O₅). As a solar occultation instrument it, like HALOE,
115 provides ~28-30 profiles per day in two latitude bands, one at sunrise and one at sunset. The
116 ACE O₃ measurements have been validated by *Dupuy et al.* [2009], and the NO and NO₂
117 measurements were validated by *Kerzenmacher et al.* [2008].

118

119 **2.1 The Solar Cycle and Linear Trend Calculations**

120 In cases where species are affected by the solar cycle, one of the challenges in
121 interpreting decadal scale trends in the stratosphere is separating these trends from solar cycle
122 induced variations. Model studies provide some guidance as to the expected solar cycle
123 variations in the species of interest. *Egorova et al.* [2005] used the SOCOL Chemistry Climate
124 Model (CCM) and found that at 30 km O₃ was higher at solar maximum when compared to solar
125 minimum, but that the difference was <3%. The N₂O mixing ratio at 30 km from 30°S-30°N was
126 found to be no more than 2% higher at solar minimum compared to solar maximum, and no more
127 4% from 30°N-60°N and 30°S-60°S. Schmidt et al. [2010] used the HAMMONIA general
128 circulation and chemistry model, and found an equatorial O₃ sensitivity of ~1.4+/-0.4%/100 solar

129 flux units (sfu), where the difference between the 1989 solar max and the 1986 solar min is 166
130 sfu. The study of *Remsberg and Lingenfelser* [2010] shows a 3% ozone maximum-minimum
131 response to the solar cycle at \sim 35 km (\sim 7 hPa) from the SAGE II measurements, with results
132 from the HALOE measurements and from model calculations showing a smaller ozone response
133 to the solar cycle. As discussed in *Hood and Soukharev* [2006], NO_y in the upper stratosphere is
134 also affected by the solar cycle. They place an upper limit of \sim 10% on the solar cycle variations
135 in NO_y in the tropical mid-stratosphere. The model calculations in *Egorova et al.* [2005] show
136 an NO₂ solar cycle variation of $<1\%$, and *Nedoluha et al.* [1998] show a similarly small variation
137 from the CHEM2D model (*Bacmeister et al.*, 1998).

138 Throughout this study we will calculate trends based on a function including terms to fit
139 the annual, semi-annual, QBO, plus a constant term and a linear trend term. The QBO terms
140 were calculated using the Center for Climate Prediction 30 hPa and 50 hPa winds anomalies
141 obtained from www.cpc.ncep.noaa.gov/data/indices/. In addition to these terms we have
142 calculated trends from the HALOE measurements both with and without the inclusion of a solar
143 cycle term, where the solar cycle fit is calculated using the Mg II values obtained from the
144 Laboratory for Atmospheric and Space Physics (LASP) Interactive Solar Irradiance Datacenter
145 at lasp.colorado.edu/lisird. We will only show HALOE trend calculations where a solar cycle
146 term has been included, but we have compared trends with and without the solar cycle term and
147 found that the results are similar.

148 The MLS measurement time series used here extends from 2004-2014, and therefore
149 clearly does not extend over a full solar cycle. The linear trend calculations from MLS
150 measurements which will be shown cover the period August 2004 to May 2013. Because Solar
151 Cycle 24 is particularly weak the Mg II values in 2013 are comparable to those in 2004, so solar

152 effects are unlikely to cause a trend in the MLS dataset used here. In order to provide an estimate
153 of the uncertainty in the trend which is introduced by the presence of a solar cycle we will show
154 some MLS results both with and without the inclusion of a solar cycle term. We will show that
155 in the region of greatest interest, near the tropics at \sim 10 hPa, the MLS trends appear to be nearly
156 insensitive to the presence of a solar cycle.

157

158 **2.2 Measurements of O₃, 1991-2014**

159 In Figure 1 we show the annual median O₃ anomalies from 5°S-5°N as measured by both
160 HALOE and Aura MLS at 10 hPa. This figure also shows that the O₃ decrease at 10 hPa has
161 occurred gradually over the period shown. There have been numerous studies combining O₃
162 timeseries from multiple satellites to derive long-term trends (e.g. *Jones et al.*, 2009; *Kyrola et*
163 *al.*, 2013), and there are several projects underway to provide long-term data records of
164 stratospheric composition, so we will not attempt here to produce a combined HALOE-MLS O₃
165 timeseries for trend calculations. The MLS timeseries anomalies shown have simply been offset
166 by a shift in mixing ratio so that the anomaly point for 2005 (which covers data taken during the
167 period July 2004 through June 2005) agrees with the HALOE anomaly at that point. The
168 anomalies are calculated by fitting annual and semi-annual cycles to each dataset separately and
169 then calculating annual median differences from this fit. The annual anomaly is sampled four
170 times per year so that each point represents an anomaly over either January-December, April-
171 March, July-June, or October-September. Each measurement is therefore included in four data
172 points in the figure. Having removed the annual cycle, the primary variation in O₃ in this region
173 is caused by the QBO. In addition to these QBO variations there is a clear decrease in O₃ over
174 the 21 years shown.

175 An estimate of the uncertainty in these annual medians can be obtained from the standard
176 deviation of the individual anomalies. The average value of $\sigma/n^{1/2}$ for the annual median
177 HALOE O₃ anomalies is 0.026 ppmv. The last annual anomaly has the largest uncertainty with
178 $\sigma/n^{1/2}=0.056$ ppmv. For the MLS, which has many more measurements, the largest annual
179 median uncertainty calculated by this method is 0.0027 ppmv.

180 In Figure 2 we show the linear trend in the global HALOE ozone measurements from
181 1991-2005. Remsberg [2008] show a quite similar figure (their Figure 13) for linear trends in
182 HALOE O₃, but in %/decade. They found that the trends near 10 hPa from ~25°S to ~25°N had
183 a confidence interval of >90% for their partial tank order correlations (Remsberg et al., 2001).
184 The trend is negative (i.e. O₃ is decreasing) near ~10 hPa with the most negative values
185 occurring in the tropics. Most of this study will focus primarily on the causes of this O₃ decrease
186 in this region. In general the results are very similar whether or not a solar cycle is included in
187 the fit, but the local tropical minimum at ~4 hPa does not appear when such a term is not
188 included.

189 HALOE measurements ceased in 2005, and Aura MLS has been providing O₃
190 measurements since 2004. In Figure 3 we show the linear trend in O₃ as measured by MLS.
191 MLS shows that the negative ozone trend in the tropics near ~10 hPa continued from August
192 2004 to June 2013. Inclusion of the most recent MLS data (from July 2013 to Sept. 2014) does
193 not result in a qualitative change in Figure 3, but does reduce the magnitude of the measured
194 trends. Again, the O₃ linear trends shown in Figure 3 have been calculated with a solar cycle
195 included in the fit, but the results are very similar with and without a solar cycle term. Several
196 other datasets have also shown decreasing O₃ near 10 hPa in the tropics. *Kyrola et al.* [2013] has
197 shown a decrease for 1997-2011 from SAGE and GOMOS, *Gebhardt et al.* [2014] for 2002-

198 2012 using measurements from SCIAMACHY, and *Eckert et al.* [2014] for 2002-2012 using
199 MIPAS measurements. There is some overlap between the negative HALOE O₃ trend (1991-
200 2005) and the positive SAGE O₃ trend shown by [Kyrola *et al.*, 2013] (1984-1997). Given the
201 excellent agreement between SAGE II and HALOE trends [e.g. *Nazaryan et al.*, 2005], and the
202 eruption of Mt. Pinatubo near the middle of the 1984-1997 timeseries, we expect this difference
203 between the 1984-1997 and 1991-2005 trends is caused by a real change in O₃ trends in the
204 tropical 10 hPa region in between 1991 and 1997.

205 While Figure 1 shows a general decrease in O₃ at 10 hPa over the entire HALOE
206 measurement period, and Figure 3 shows that this trend continued into the MLS measurements
207 period, such trends do not always persist over such extended periods. For example, away from
208 the tropics the 1991-2005 HALOE and 2004-2013 MLS trends near 10 hPa show clear,
209 hemispherically dependent, differences. Whereas the HALOE trends show a decrease in O₃ at
210 all latitudes near 10 hPa, the MLS trends show a sharp increase in O₃ at Southern mid-latitudes,
211 and a smaller decrease at similar pressure levels in Northern mid-latitudes.

212 Just as the HALOE and MLS trends show clear differences away from the tropics, they
213 also show clear differences in the tropics at other levels. The 1991-2005 HALOE trend shows an
214 increase in tropical O₃ near 30 hPa, but this is dominated by the strong increase from ~1991-
215 1999, followed by a period of stability in this region from 1999-2005. The MLS O₃
216 measurements suggest that this period of stability near 30 hPa continues through 2013. However
217 *Gebhardt et al.* [2014] do show statistically significant O₃ increases in the 2002-2012
218 SCIAMACHY measurements below 30 km with two local maxima, one near 22 km and one near
219 27 km, while *Eckert et al.* [2014] show an O₃ increase from 2002-2012 near 22 km (~50 hPa)
220 but a decrease near 27 km (~25 hPa) from the MIPAS measurements. In their 1984-1997 O₃

221 trends *Kyrola et al.* [2013] show an increase at 24 km, but a much larger decrease at 21 km.
222 Thus, while several measurements show decadal scale tropical trends near 10 hPa, such trends to
223 not appear to be common near 30 hPa, nor at other latitudes near 10 hPa.

224

225 **2.3 The Effect of Changes in Nitrogen Species on Ozone**

226 As noted above, O₃ in the tropical mid-stratosphere is particularly sensitive to changes in
227 NO_y which result from photodissociation and oxidation of N₂O [*Olsen et al.*, 2001], and long-
228 term *increases* in anthropogenic N₂O emission are expected to play a significant role in causing
229 future *decreases* in O₃ [*Portman et al.*, 2012]. However, N₂O is also a sensitive indicator of
230 upward transport and, as we show below, these variations in transport lead to a positive, not
231 negative correlation between N₂O and O₃. Figure 4 presents the correlation between MLS N₂O
232 and O₃ from 2004-2013. These correlations are calculated by first finding a zonal monthly
233 median for each year of MLS data and then subtracting from each of these the average MLS
234 monthly median for that month. Note the strongly positive correlation precisely where the
235 observed long term trends indicate ozone decreases. Figure 5 presents monthly median MLS
236 N₂O and O₃ data from 5°S-5°N at 10 hPa. The positive correlation between N₂O and O₃ is clearly
237 present on seasonal and interannual timescales and rules out an anthropogenic increase in N₂O as
238 the cause of the long term ozone decreases we observe.

239 This positive correlation between N₂O and O₃ in the tropical middle stratosphere can be
240 readily understood in the context of the relationship between N₂O, NO_y and O₃. This is
241 demonstrated in Figure 6 which presents ACE measurements of O₃, N₂O and the species which
242 make up the bulk of NO_y at 30 km (~10 hPa) from 10°S-10°N. While ACE does not provide the
243 daily measurement coverage in the tropics obtained by MLS, it does measure all of the species

244 relevant to the nitrogen chemistry which determines O_3 near ~ 10 hPa in the tropics. Like MLS,
245 ACE shows a strong positive correlation between N_2O and ozone. ACE also shows the expected
246 anticorrelation resulting from the chemistry of O_3 and NO_y . Figure 6c shows the anti-correlation
247 between NO_y and N_2O without which the correlation between N_2O and O_3 would not exist. This
248 anti-correlation of N_2O and NO_y can be understood as a coupled chemical/dynamical effect.
249 During periods when upward transport is slower, more N_2O at a given altitude is dissociated,
250 thus producing more NO_y at that altitude. We thus conclude that over the period of the MLS
251 measurements the effect of changes in transport on N_2O in this region on NO_y and hence O_3
252 dominate any increase in N_2O due to changing tropospheric emissions.

253 As indicated in Section 2.1, the MLS instrument has been operational for less than a full
254 solar cycle; hence for tropical trend calculations we show results both with and without the
255 inclusion of a solar cycle term. In Figure 7 we show the calculated profiles as a function of
256 pressure as derived from eight (constant term, two annual terms, two semi-annual terms, two
257 QBO terms, and a linear trend) and nine (including a solar cycle) parameter fits to the monthly
258 median MLS measurements. Figure 7 shows the profiles (the constant terms from the fits) in
259 addition to the linear trend and the net effect of 8 years of such a trend (2004-5 vs. 2012-13).
260 The O_3 trend results are in good agreement with those shown by *Gebhardt et al.* [2013] for
261 August 2004-April 2012, where the fastest decreasing trend in MLS O_3 is $\sim 7\%/\text{decade}$.
262 *Gebhardt et al.* [2013] show that the MLS trends in O_3 are not statistically different from those
263 observed by SCIAMACHY or OSIRIS. While the inclusion of the solar cycle term fit clearly
264 does affect the linear trend at some levels, it does not alter the qualitative result that O_3 and N_2O
265 both show a statistically significant decrease over a similar range of pressures near 10 hPa. This

266 further reinforces the conclusion that this decrease in O_3 is caused by an increase in NO_y
267 (resulting from increased dissociation of N_2O) during this period.

268 As was shown in Figure 2, HALOE measurements showed a decrease in O_3 from 1992-
269 2005 at 10 hPa from $5^{\circ}S$ - $5^{\circ}N$. While HALOE did not provide measurements of N_2O , and did not
270 provide the full complement of NO_y species that is available from ACE, it did provide
271 measurements of two of the key odd-nitrogen species, NO and NO_2 .

272 In Figure 8 we show annual median HALOE anomalies in O_3 alongside those of
273 $NO+NO_2$. Because $NO+NO_2$ has a strong diurnal component (unlike the set of NO_y
274 measurements provided by ACE), the anomalies for both species are calculated separately for
275 sunrise and sunset measurements. We have multiplied the sunset $NO+NO_2$ measurements by 0.4
276 so that they fit onto the same scale as the sunrise measurements. The average (maximum) $\sigma/n^{1/2}$
277 value for sunrise $NO+NO_2$ is 0.064 ppbv (0.082 ppbv), while for the sunset measurements
278 (before multiplication by 0.4) it is 0.122 ppbv (0.22 ppbv). For the O_3 sunrise measurements the
279 average (maximum) $\sigma/n^{1/2}$ value is 0.045 ppmv (0.064 ppmv), while for the sunset measurements
280 it is 0.049 ppmv (0.081 ppmv).

281 Figure 8 shows that $NO+NO_2$ generally was increasing over the course of the HALOE
282 measurements and that this increase tracked the ozone decrease, both on a year-to-year timescale
283 (dominated by the quasi-biennial oscillation, QBO) and over the full 1992-2005 time period.
284 There is a slight (~3-month) apparent phase-lag between the sunset and sunrise $NO+NO_2$
285 measurements from ~1998-2003 which is not apparent in the O_3 anomalies and for which we
286 have no explanation. With the exception of this feature, the general consistency between the
287 QBO driven variations in O_3 and $NO+NO_2$, and the trend which is apparent in both the O_3 and
288 $NO+NO_2$ measurements, provides added confidence that the decrease in O_3 and the increase in

289 NO+NO₂ measured by HALOE from 1992-2005 are both correct and, further, are coupled. As
290 we concluded from the MLS measurements from 2004-2013, this change suggests a slowdown in
291 upward transport in this region from 1992-2005. Note, this is consistent with the results of
292 *Nedoluha et al.* [1998] who interpreted the decreases in upper stratospheric CH₄ from 1992-1996
293 as linked with a simultaneous increase in NO₂ at 30 km. Our results here extend that early result
294 to encompass the entire 13 year UARS mission.

295 In Figure 9 we show the calculated linear trends in the HALOE O₃ and NO+NO₂
296 measurements. As in Figure 8 we separate the HALOE sunrise and sunset measurements, and
297 calculate trends for four separate measurements: sunrise and sunset O₃ and sunrise and sunset
298 NO+NO₂. Encouragingly, despite having very different vertical profiles, the shape of the sunrise
299 and sunset NO+NO₂ trend profiles are very similar. The O₃ sunrise and sunset trends also agree
300 well, and the pressure level of the minimum of the observed decrease in these O₃ measurements
301 corresponds closely with the maximum in the observed increase in the NO+NO₂ measurements.

302

303 **3. Model Calculations**

304 In order to better understand the changes in the observed species we have employed the
305 two-dimensional chemical transport model (CHEM2D) (*Bacmeister et al.*, 1998). The model
306 includes parameterized gravity wave and planetary wave drag and is ideal for understanding
307 tracer transport and the response of the global middle atmospheric circulation to external
308 forcings. Compared with those earlier studies, the present model has an improved vertical
309 resolution (1 km instead of 2 km). CHEM2D's most recent applications have included
310 simulating the solar cycle variations of polar mesospheric clouds (*Siskind et al.*, 2005) and

311 studying the response of stratospheric ozone to both the solar cycle and the tropical quasi-
312 biennial oscillation (*McCormack et al.*, 2007)

313 We will show results from two model runs, each of which has been integrated for 12
314 years to ensure stability from year-to-year. Since the goal of the model was to test whether
315 dynamical changes would affect N_2O , NO_y , and O_3 at the equator, we introduced a very simple
316 perturbation. The two models differ only in that, in one case, we added a small heat source of
317 0.3 K/day, centered at 18 km at the equator, similar to Experiment 7 of *Bacmeister et al* (1998).
318 In addition, we recognize that the model differences shown represent two equilibrium solutions
319 while the calculated trends show the effects of an atmosphere changing over time. Nonetheless,
320 a comparison of these two models can serve as an indication whether it is possible to reproduce
321 the observed changes in the measured species with a dynamical perturbation.

322 Figure 10 shows the change in N_2O , NO_y , and O_3 at the equator resulting from this
323 dynamical perturbation. The absolute values for these three species at 10 hPa are in very good
324 general agreement with those shown in Figure 6 from the ACE measurements. The N_2O
325 chemistry is relatively simple, and N_2O at all levels is lower for the case of the slower tropical
326 ascent which offers more time for dissociation. At 10 hPa the case with the slower ascent shows
327 ~22 ppbv less N_2O . Unlike the measurements, however, the N_2O in the model changes over a
328 deep layer, covering the entire pressure range from 50-1hPa.

329 The calculated equatorial N_2O changes shown in Figure 10 correspond with calculated O_3
330 and NO_y profile changes which are in the same sense and general magnitude as the observations.
331 Thus the calculation with lower N_2O yields increased NO_y due to increased oxidation. via
332 $\text{N}_2\text{O} + \text{O}(1\text{D}) \rightarrow 2\text{NO}$; the baseline model with ~22 ppbv less N_2O shows an increase of ~1.3
333 ppbv in NO_y , so $\Delta\text{NO}_y/\Delta\text{N}_2\text{O} \sim 0.065$. This is similar to the $\Delta\text{NO}_y/\Delta\text{N}_2\text{O}$ in the ACE

334 measurements in Figure 6c, which is ~.075. Regarding ozone, the baseline model with less
335 heating and 1.3 ppbv greater NO_y shows about ~0.26 ppmv less O_3 at 10 hPa. This yields a
336 $\Delta\text{O}_3/\Delta\text{NO}_y$ of ~200 which is on the order of, but somewhat less than, the observed $\Delta\text{O}_3/\Delta\text{NO}_y$
337 from the ACE measurements (which is closer to ~330). We can also directly compare the
338 calculated quantity $\Delta\text{O}_3/\Delta\text{N}_2\text{O}$ in the model and in the ACE and MLS measurements; here we
339 also get a somewhat reduced ozone response compared with the observations. Whereas the
340 model shows a $\Delta\text{O}_3/\Delta\text{N}_2\text{O}$ of ~12, ACE and MLS both show $\Delta\text{O}_3/\Delta\text{N}_2\text{O}$ ~25). About 25% of
341 this difference is because the model $\Delta\text{NO}_y/\Delta\text{N}_2\text{O}$ sensitivity is slightly less than observed. Also,
342 since our approach towards diurnal averaging requires a specific of a single night-to-day ratio
343 (cf. *Summers et al.*, 1996) it is possible that we are underestimating the diurnally averaged
344 response of O_3 to NO_x chemistry, which varies strongly with the time of day. Nevertheless, the
345 qualitative agreement between the model and the ACE and MLS measurements supports the idea
346 that the observed O_3 change can be caused by a dynamical perturbation.

347 While the model runs do support the suggestion that the changes in O_3 and N_2O observed
348 near the equator at ~10 hPa can be caused by a dynamical perturbation, we do note that this
349 particular dynamical perturbation also shows large differences in other regions where the
350 measured trends are small and/or vary in a temporally different manner than do the tropical 10
351 hPa measurements. No doubt a number of dynamical changes affected N_2O over the period
352 1991-2013, and these variations drove changes in NO_x and in turn O_3 . What we conclude here is
353 that, because of changes in transport, the N_2O which arrived in this region experienced
354 significantly more dissociation in 2013 than in 2004, and, based on inferences from the HALOE
355 O_3 and NO_x measurements, that this trend was also present throughout much of the HALOE
356 measurement period. We note that there is a burgeoning literature debating the possibility of

357 changes in the stratospheric circulation [cf. *Butchart*, 2014 and references therein]. The results
358 presented here may serve as a useful constraint for these analyses of long term stratospheric
359 variability.

360

361 **4. Summary**

362 Ozone measurements from HALOE and MLS show a long-term decrease in O_3 in the
363 tropical mid-stratosphere near the peak of the O_3 mixing ratio. O_3 in this region is very sensitive
364 to variations in NO_y , and the observed decrease in O_3 can be understood in terms of the effects of
365 increasing NO_y . From MLS and ACE measurements we conclude that the NO_y variations are the
366 result of a decrease in N_2O from 1992-2012 resulting from changes in the dynamics over this
367 period. Using a 2D model, we show that a perturbation of the dynamics results in changes in
368 N_2O , NO_y , and O_3 which are qualitatively consistent with the observed trends. In future it would
369 be interesting to study N_2O , NO_y , and O_3 variations in this region in more sophisticated 3D
370 models.

371 A feature of particular interest for future work is the increase in O_3 observed in the
372 Southern Hemisphere mid-stratosphere by MLS. Both the overall increase in O_3 in this region as
373 well as the short-timescale variations are well correlated with changes in N_2O , suggesting that
374 this O_3 variation is also dynamically controlled.

375

376 **Acknowledgments.** This project was funded by NASA under the Upper Atmosphere Research
377 Program, by the Naval Research Laboratory, and by the Office of Naval Research. Work at the
378 Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract
379 with the National Aeronautics and Space Administration. MLS and HALOE data are available

380 from the NASA Goddard Earth Science Data Information and Services Center
381 (acdsc.gsfc.nasa.gov). ACE-FTS data is available at www.ace.uwaterloo.ca.

382

383 **References**

384 Aquila, V., et al, The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo
385 at Southern and Northern Midlatitudes (2013), *J. Atmos. Sci.*, 70, 894-900.

386 Bacmeister, J. T., D. E. Siskind, M. E. Summers, and S. D. Eckermann, (1998) Age of air in a
387 zonally averaged two-dimensional model, *J. Geophys. Res.*, 103, D10, 11263-11288.

388 Bourassa, A E., D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyro, C. A. McLinden, C.
389 E. Sioris, and C. Z. Roth (2014), Trends in stratospheric ozone derived from merged SAGE II
390 and Odin-OSIRIS satellite observations, *Atmos. Chem. Phys.*, 14, 6983–6994, 2014.

391 Brasseur, G. P. and S. Solomon (1986), *Aeronomy of the Middle Atmosphere*, D.Reidel press.

392 Butchart, N., The Brewer-Dobson circulation (2014), *Rev. Geophys.*, 52, 157–184,
393 doi:10.1002/2013RG000448.

394 Damadeo, R. P., J. M. Zawodny, and L. W. Thompson (2014), Reevaluation of stratospheric
395 ozone trends from SAGE II data using a simultaneous temporal and spatial analysis, *Atmos.*
396 *Chem. Phys.*, 14, 13455–13470, 2014.

397 Dupuy, E., et al. (2009), Validation of ozone measurements from the Atmospheric Chemistry
398 Experiment (ACE), *Atmos. Chem. Phys.*, 9, 287–343, 2009.

399 Eckert, E., et al. (2014), Drift-corrected trends and periodic variations in MIPAS IMK/IAA
400 ozone measurements, *Atmos. Chem. Phys.*, 14, 2571–2589, 2014.

401 Egorova, T., et al. (2005), Influence of solar 11-year variability on chemical composition of the
402 stratosphere and mesosphere simulated with a chemistry-climate model, *Advances in Space*
403 *Research* 35 (2005) 451–457.

404 Froidevaux, L., et al. (2008), Validation of Aura Microwave Limb Sounder stratospheric ozone
405 measurements, *J. Geophys. Res.*, 113, D15S20, doi:10.1029/2007JD008771.

406 Gebhardt, C., et al. (2014), Stratospheric ozone trends and variability as seen by SCIAMACHY
407 during the last decade, *Atmos. Chem. Phys.*, 14, 831–846, 2014.

408 Jones, A., et al., (2009), Evolution of stratospheric ozone and water vapour time series studied
409 with satellite measurements, *Atmos. Chem. Phys.*, 9, 6055–6075, 2009.

410 Kerzenmacher, T., et al. (2008), Validation of NO₂ and NO from the Atmospheric Chemistry
411 Experiment (ACE), *Atmos. Chem. Phys.*, 8, 5801–5841, 2008.

412 Kyrola, E., et al. (2013), Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and
413 trend analysis of the vertical distribution of ozone, *Atmos. Chem. Phys.*, 13, 10645–10658,
414 2013

415 Lambert, A., et al. (2007), Validation of the Aura Microwave Limb Sounder middle atmosphere
416 water vapor and nitrous oxide measurements, *J. Geophys. Res.*, 112, D24S36,
417 doi:10.1029/2007JD008724

418 McCormack, J. P. D. E. Siskind, and L. L. Hood, Solar-QBO interaction and its impact on
419 stratospheric ozone in a zonally averaged photochemical transport model of the middle
420 atmosphere (2007) *J. Geophys. Res.*, 112, D16109, doi:10.1029/2007JD008369.

421 Nazaryan, H., M. P. McCormick, and J. M. Russell III (2005), New studies of SAGE II and
422 HALOE ozone profile and long-term change comparisons, *J. Geophys. Res.*, 110, D09305,
423 doi:10.1029/2004JD005425.

424 Nedoluha, G. E., et al. (1998), Changes in upper stratospheric CH₄ and NO₂ as measured by
425 HALOE and implications for changes in transport, *Geophys. Res. Lett.*, 25, 987–990.

426 Newchurch, M. J., Yang, E.-S., Cunnold, D. M., Reinsel, G. C., Zawodny, J. M., and Russell III,
427 J. M.: Evidence for slowdown in stratospheric ozone loss: first stage of ozone recovery (2003),
428 J. Geophys. Res., 108, 4507, doi:10.1029/2003JD003471, 2003.

429 Olsen, S. C., C. A. McLinden, and M. J. Prather, (2001) Stratospheric N₂O-NO_y system: Testing
430 uncertainties in a three-dimensional framework, J. Geophys. Res., 106, D22, 28771-28784

431 Plummer, D. A., et al. (2010), Quantifying the contributions to stratospheric ozone changes from
432 ozone depleting substances and greenhouse gases, Atmos. Chem. Phys., 10, 8803–8820, 2010.

433 Portmann, R. W., J. S. Daniel, and A. R. Ravishankara (2012), Stratospheric ozone depletion due
434 to nitrous oxide: influences of other gases, Phil. Trans. R. Soc. B (2012) 367, 1256–1264
435 doi:10.1098/rstb.2011.0377

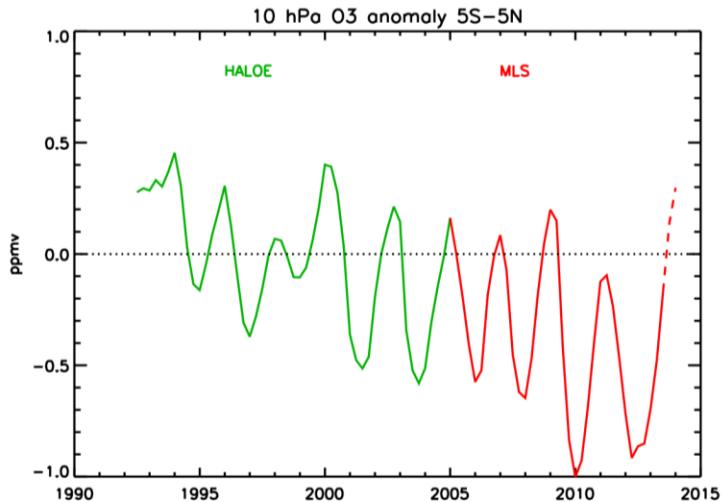
436 Randel, W. J., et al. (2000), Interannual changes in stratospheric constituents and global
437 circulation derived from satellite data, in Atmospheric Science Across the Stratopause,
438 Geophys. Monogr. Ser., vol. 123, pp. 271– 285, AGU, Washington, D. C., 2000.

439 Ravishankara, A. R., et al., (2009), Nitrous Oxide (N₂O): The dominant ozone-depleting
440 substance emitted in the 21st century, Science 326, 123, DOI: 10.1126/science.1176985

441 Remsberg, E. E., P. P. Bhatt, and L. E. Deaver (2001), Ozone changes in the lower stratosphere
442 from the halogen occultation experiment for 1991 through 1999, J. Geophys. Res., 106, 1639 –
443 1653, doi:10.1029/2000JD900596.

444 Remsberg, E. E. (2008), On the response of Halogen Occultation Experiment (HALOE)
445 stratospheric ozone and temperature to the 11-year solar cycle forcing, J. Geophys. Res., 113,
446 D22304, doi:10.1029/2008JD010189.

447 Remsberg, E. and G. Lengenfelser (2010), Analysis of SAGE II ozone of the middle and upper
448 stratosphere for its response to a decadal-scale forcing, *Atmos. Chem. Phys.*, 10, 11779–
449 11790, 2010.

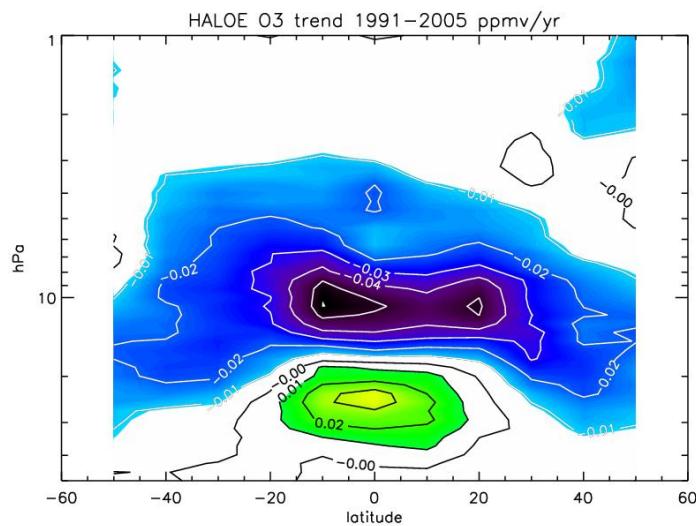

450 Schmidt, H., G. P. Brasseur, and M. A. Giorgetta (2010), Solar cycle signal in a general
451 circulation and chemistry model with internally generated quasi-biennial oscillation, *J.*
452 *Geophys. Res.*, 115, D00I14, doi:10.1029/2009JD012542.

453 Siskind, D. E., M. H. Stevens and C. R. Englert (2005) A model study of global variability in
454 mesospheric cloudiness, *J. Atm Solar Terr Phys.*, 67, 501-513.

455 Summers, M. E., D. E. Siskind, J. T. Bacmeister, R. R. Conway, S. E. Zasadil, and D. F. Strobel,
456 (1997) Seasonal variation of middle atmospheric CH₄ and H₂O with a new chemical-
457 dynamical model, *J. Geophys. Res.*, 102, D3, 3503-3526.

458 Yang, E.-S., Cunnold, D. M., Salawitch, R. J., McCormick, M. P., Russell III, J. M., Zawodny, J.
459 M., Oltmans, S., and Newchurch, M. J. (2006): Attribution of recovery in lower stratospheric
460 ozone, *J. Geophys. Res.*, 111, D17309, doi:10.1029/2005JD006371, 2006.

461

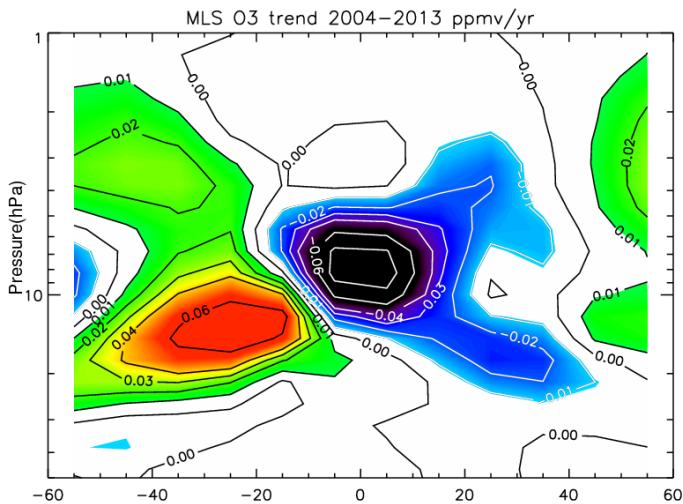


462

463 **Figure 1 - Annual median ozone anomalies at 10 hPa 5°S-5°N from HALOE (green; HALOE data is actually**
 464 **shown on its native grid at 30 km, which is ~10 hPa) and MLS (red). Annual anomalies are shown four times**
 465 **per year; hence each measurement is included in four datapoints. The MLS anomalies have been shifted by a**
 466 **constant mixing ratio so that the HALOE and MLS annual anomalies for 2005 (covering the period July**
 467 **2004-June 2005) agree. The MLS data from July 2013 onwards is indicated dashed in order to indicate that**
 468 **this data will not be used in any of the linear trend calculations to be shown.**

469

470

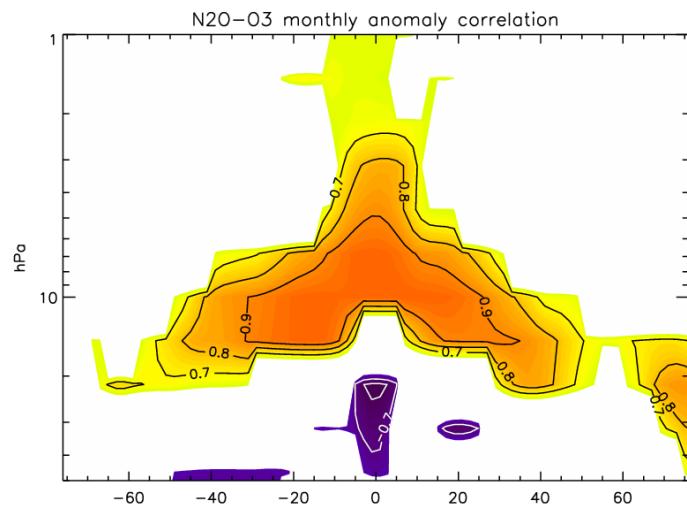

471

472 **Figure 2 - The calculated linear trend in HALOE ozone for 1991-2005. The HALOE data has been sorted**
473 **into eleven 10° latitude bins from 55°S to 55°N. Regions where the magnitude of the trend is <0.01 ppmv/year**
474 **are indicated in white.**

475

476

477



478

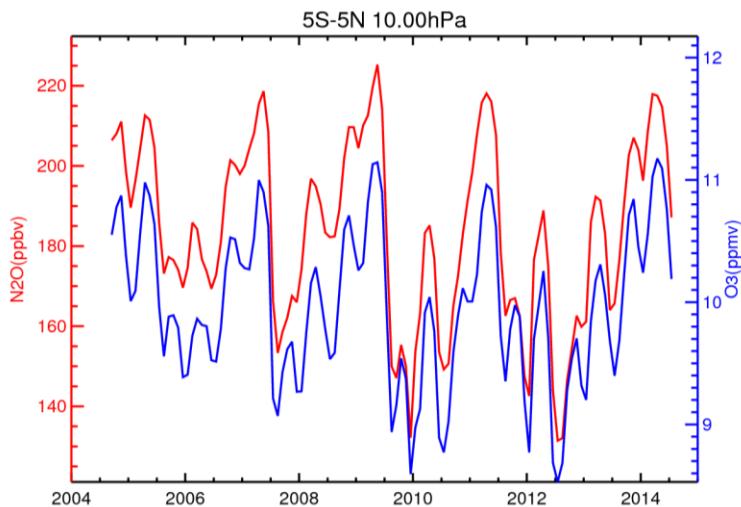
479 **Figure 3 – The O₃ linear trend calculated from MLS data from August 2004- May 2013. Contour lines are**
480 **shown at +/-0.01, 0.02, 0.03, 0.04, 0.06, 0.08 ppmv/yr. The MLS data has been sorted into twelve 10° latitude**
481 **bins from 60°S to 60°N. Regions where the magnitude of the trend is <0.01 ppmv/year are indicated in white.**

482

483

484

485

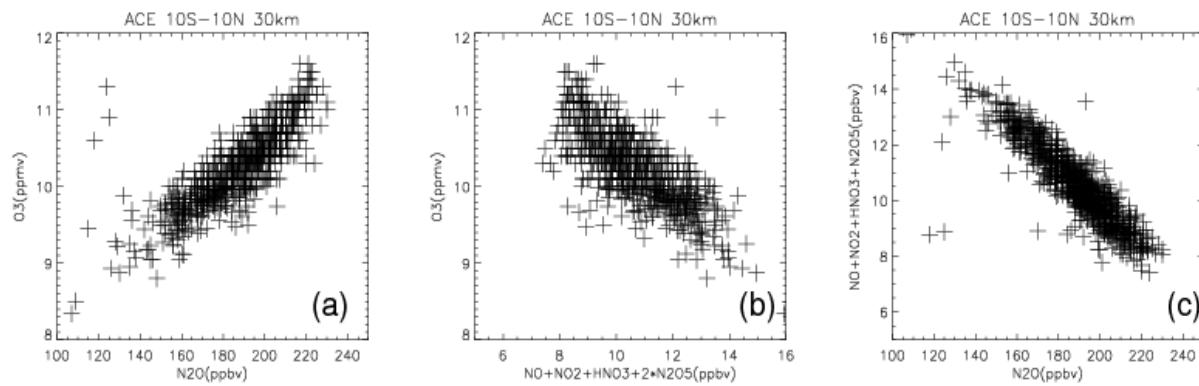

486 **Figure 4 – Correlation coefficients between N_2O and O_3 calculated from monthly median anomalies from**
487 **MLS data as a function of latitude and pressure. Results are shown for regions where the correlation (or**
488 **anti-correlation) is >0.6 .**

489

490

491

492

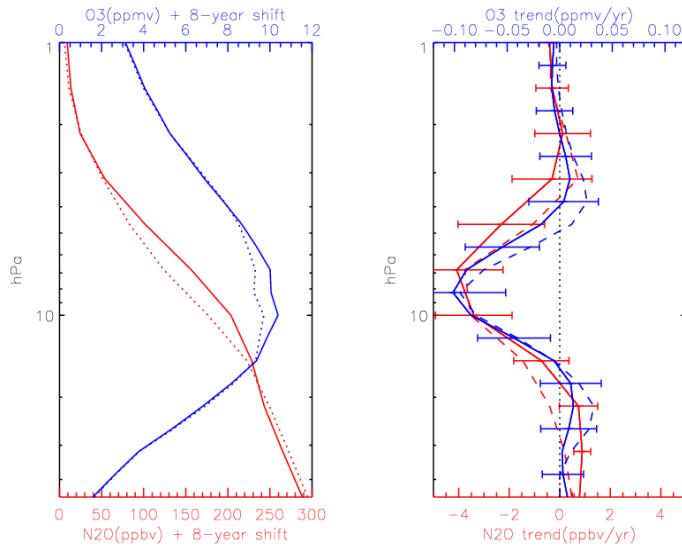

493

494 **Figure 5 – Monthly median N₂O (red) and O₃ (blue) mixing ratios at 10 hPa from MLS measurements**
495 **between 5°S and 5°N.**

496

497

498

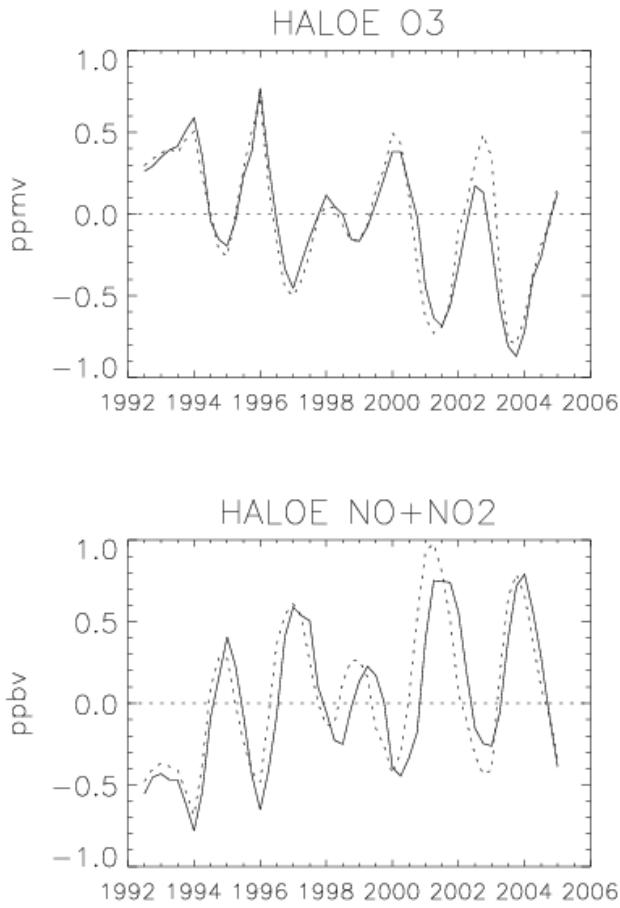

499

500 **Figure 6 – ACE measurements of O₃, N₂O, and the key members of the NO_y family,**
501 **NO+NO₂+HNO₃+2*N₂O₅.** Measurements are shown for 10°S-10°N at 30 km. Both sunrise and sunset
502 **measurements are included.**

503

504

505



506

507 **Figure 7 - Left hand panel:** Annual average MLS profiles of O₃ (blue; top scale) and N₂O (red; bottom scale)
 508 from 5°S-5°N. Shown are the constant term derived from the fit to the August 2004- May 2013 MLS
 509 measurements (solid), and the same term with an added 8-year shift (thus approximating the difference
 510 between the 2004/5 and 2012/13 MLS annual average) based on the linear trend applied over a period
 511 comparable to the length of the MLS dataset (dotted). **Right hand panel:** Linear annual trend calculated with
 512 a solar cycle term included (solid) and without a solar cycle term (dashed). Error bars (2σ) are similar for
 513 fits with and without the solar cycle, and are shown only for the former.

514

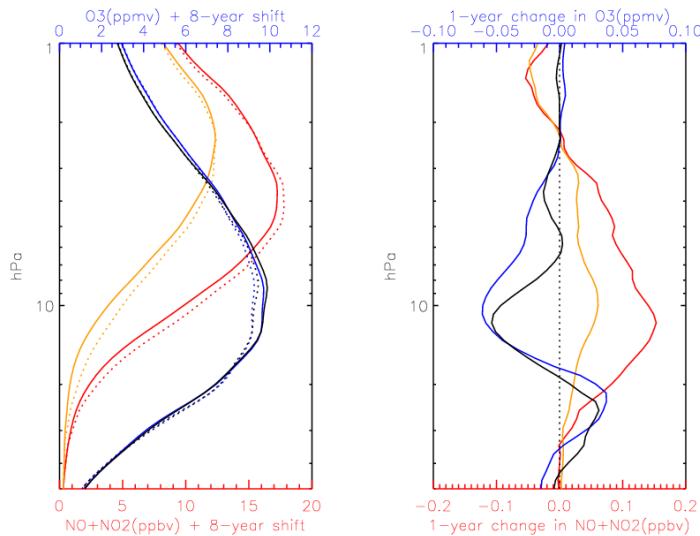
515

516

517 **Figure 8 - Annual median HALOE O₃ (top) and NO+NO₂ (bottom) anomalies at 10 hPa from 5°S-5°N.**

518 **Annual anomalies are shown four times per year, hence each measurement is included in four datapoints.**

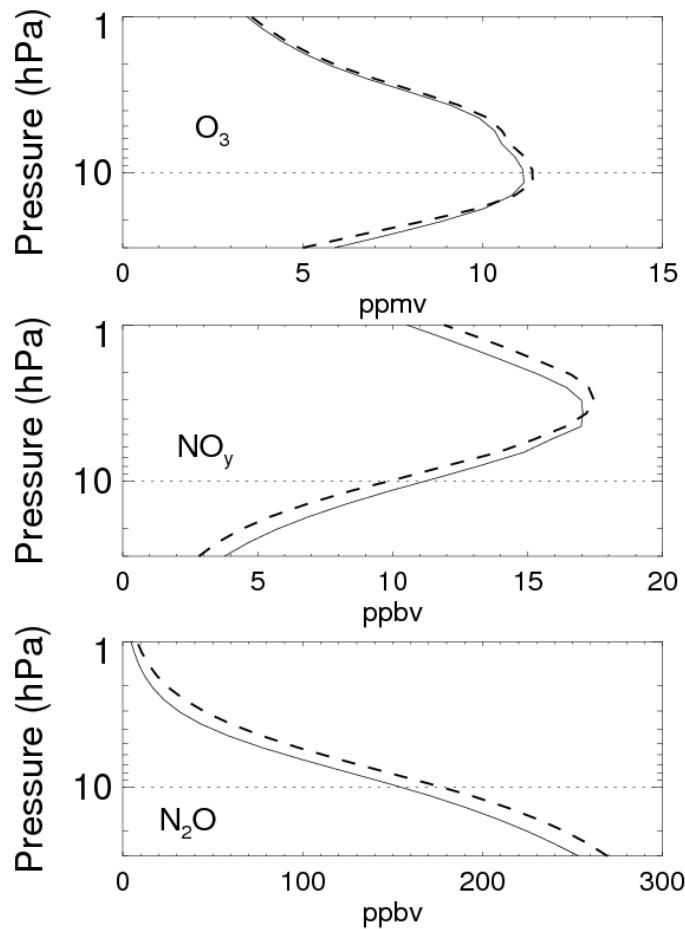
519 **Results are shown separately for sunrise (solid) and sunset (dashed). Sunset NO+NO₂ anomalies have been**
 520 **multiplied by 0.4 so that they fit on the same scale as the sunrise anomalies.**


521

522

523

524


525

526
527

528 **Figure 9 - Left hand panel:** Annual average HALOE profiles of O_3 at local sunset (blue; top scale), local
529 sunrise (black; top scale) and $NO+NO_2$ at local sunset (red; bottom scale), and local sunrise (orange; bottom
530 scale) from $5^{\circ}S$ - $5^{\circ}N$. Results are shown for the first year of HALOE measurements (solid) and with an 8-year
531 shift (to allow for comparison with Figure 7) using the annual average trend shown on the right-hand panel
532 (dashed). Right hand panel: 1-year changes based on linear trends over $5^{\circ}S$ - $5^{\circ}N$ calculated from 1991-2005.
533 Line colors are the same as in the left-hand panel.

534

538 **Figure 10 - Annual average altitude profiles of O_3 , NO_y , and N_2O for the equator. The solid curve is a**
 539 **baseline run, while the dashed curve is a simulation which includes an additional 0.3 K/day heat source in the**
 540 **lowermost stratosphere which acts to increase the tropical upwelling.**