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Abstract. We use 2009–2011 space-borne methane observations from the Greenhouse Gases Ob-

serving SATellite (GOSAT) to estimate global and North American methane emissions with 4◦×5◦

and up to 50km× 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first

evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL,

TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as5

a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias

between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global

adjoint-based inversion yields a total methane source of 539Tg a−1 with some important regional

corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary condi-

tions for an analytical inversion of North American methane emissions using radial basis functions10

to achieve high resolution of large sources and provide error characterization. We infer a US an-

thropogenic methane source of 40.2–42.7Tg a−1, as compared to 24.9–27.0Tg a−1 in the EDGAR
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and EPA bottom-up inventories, and 30.0–44.5Tg a−1 in recent inverse studies. Our estimate is sup-

ported by independent surface and aircraft data and by previous inverse studies for California. We

find that the emissions are highest in the South-Central US, the Central Valley of California, and15

Florida wetlands, large isolated point sources such as the US Four Corners also contribute. Using

prior information on source locations we attribute 29–44 % of US anthropogenic methane emis-

sions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands

contribute an additional 9.0–10.1Tg a−1.

1 Introduction20

Methane (CH4) emissions have contributed 0.97 W m−2 in global radiative forcing of climate since

pre-industrial times, second only to CO2 with 1.7 W m−2 (IPCC, 2013). As a short-lived climate

forcing agent (lifetime ∼ 10 years), methane may provide a lever for slowing near-term climate

change (Ramanathan and Xu, 2010; Shindell et al., 2012). Major anthropogenic sources include nat-

ural gas and petroleum production and use, coal mining, waste (landfills and wastewater treatment),25

livestock, and rice cultivation. Wetlands are the largest natural source. The present-day global emis-

sion of methane is 550± 60Tg a−1, constrained by knowledge of the global tropospheric hydroxyl

radical (OH) concentration from the methylchloroform budget (Prather et al., 2012). However, al-

location by source types and regions is very uncertain (Dlugokencky et al., 2011). Here we use

GOSAT space-borne observations for 2009–2011 to improve our understanding of global and North30

American methane emissions using a high-resolution inversion technique (Turner and Jacob, 2015).

The US Environmental Protection Agency (EPA) produces national emission inventories for an-

thropogenic methane, with a total of 27.0Tg a−1 in 2012 including 34 % from livestock, 29 % from

oil/gas extraction and use, 21 % from waste, and 11 % from coal mining (EPA, 2014). Inverse stud-

ies using observations of atmospheric methane concentrations suggest that the EPA inventory may35

be too low by up to a factor of 2, although they differ as to the magnitude and cause of the un-

derestimate (Katzenstein et al., 2003; Kort et al., 2008; Xiao et al., 2008; Karion et al., 2013;

Miller et al., 2013; Wecht et al., 2014a; Caulton et al., 2014). There is strong national and inter-

national interest in regulating methane emissions (President’s Climate Action Plan, 2013, 2014; Cli-

mate and Clean Air Coalition, 2014), particularly in the context of increasing natural gas exploitation40

and fracking, but uncertainty in the emission inventory makes regulation problematic.

Space-borne observations of atmospheric methane concentrations in the short wave infrared (SWIR)

are a unique resource for constraining methane emissions because of the dense and continuous

data that they provide. SWIR instruments measure column concentrations with near-uniform ver-

tical sensitivity down to the surface. Data are available from the SCIAMACHY instrument for45

2003–2012 (Frankenberg et al., 2005, 2011) and from the TANSO-FTS instrument aboard GOSAT

for 2009–present (Butz et al., 2011; Parker et al., 2011; hereafter we refer to the instrument as
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“GOSAT”). GOSAT has higher precision and pixel resolution than SCIAMACHY (0.6 % and 10km×
10 km vs. 1.5 % and 30km× 60 km) but the observations are not as dense. The GOSAT retrievals

are in good agreement with surface-based column measurements (Parker et al., 2011; Butz et al.,50

2011; Schepers et al., 2012; Fraser et al., 2013; Monteil et al., 2013; Cressot et al., 2014; Alexe

et al., 2015).

Previous inversions of methane emissions using satellite data have mainly focused on the global

scale, optimizing emissions with coarse spatial resolution (Bergamaschi et al., 2007, 2009, 2013;

Fraser et al., 2013; Monteil et al., 2013; Cressot et al., 2014; Alexe et al., 2015). This limits the55

interpretation of the results because emissions from different source types have large spatial over-

lap (Fung et al., 1991). Spatial overlap is reduced at higher resolution, thus optimizing emissions at

high spatial resolution can help improve source attribution. Wecht et al. (2014a) used SCIAMACHY

data for July–August 2004 in a higher-resolution (∼ 100km× 100 km) inversion of methane emis-

sions in North America, but they were unable to achieve such a resolution using GOSAT because of60

the sparser data (Wecht et al., 2014b).

Here we use three years (2009–2011) of GOSAT data to constrain global and North American

methane emissions with high spatial resolution, exploiting both the longer record and a new analyt-

ical inversion method where the state vector of emissions is defined optimally from a set of radial

basis functions (Turner and Jacob, 2015). We begin by evaluating the GOSAT retrievals with surface,65

aircraft, and total column observations using the GEOS-Chem chemical transport model (CTM; de-

scribed in Appendix) as an intercomparison platform. This identifies a high-latitude bias between

GOSAT and GEOS-Chem that we correct. We then use GOSAT observations to constrain global

methane sources with the GEOS-Chem model and its adjoint at 4◦×5◦ resolution, and apply the re-

sults as boundary conditions to optimize North American methane sources with up to 50km×50 km70

resolution and error characterization.

2 GOSAT observations and bias correction

GOSAT (Kuze et al., 2009) was launched in January 2009 by the Japan Aerospace Exploration

Agency (JAXA). Methane abundance is determined by analysis of the spectrum of backscattered

solar radiances in the SWIR near 1.6 µm. Data are available from April 2009 on. GOSAT is in Sun-75

synchronous low earth orbit with an equator overpass of 12:45–13:15 LT. The instrument observes

five cross-track nadir pixels (three cross-track pixels after August 2010) with a footprint diame-

ter of 10.5 km, a cross-track spacing of about 100 km, an along-track spacing of 90–280 km, and

a 3 day revisit time. We use the version 4 proxy methane retrievals from Parker et al. (2011) that

pass all quality flags (http://www.leos.le.ac.uk/GHG/data/styled/index.html). The retrievals provide80

a weighted column average dry-mole fraction of CH4, XCH4
, with averaging kernels to describe the

vertical weighting. The averaging kernels show near-uniform vertical sensitivity in the troposphere
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and decreasing sensitivity above the tropopause (see Butz et al., 2010). The estimated single-retrieval

precision is scene-dependent and averages 13.3ppbv or 0.8 % (Parker et al., 2011).

Figure 1 shows the mean methane concentrations for June 2009–December 2011 observed by85

GOSAT and used in this work. There are 590 675 global observations including 74 687 for the North

American window of our high-resolution inversion. The GOSAT sampling strategy of consistently

revisiting the same locations provides a high density of observations over the sampled locations

but the coverage is not continuous (gray areas in Fig. 1). There are data over oceans from Sun

glint retrievals (Butz et al., 2011) but not in the Parker et al. (2011) product used here. Methane90

concentrations are highest over East Asia where rice, livestock, and fossil fuels contribute large

sources. They are also high over the eastern US. Low concentrations over elevated terrain (Tibetan

Plateau, western US) reflect in part a larger relative contribution of the stratosphere to the column-

average mixing ratio. We see from Fig. 1 that relevant spatial differences in methane mixing ratio

for our inversion are of the order of 10 ppbv. With a mean single-scene instrument precision of95

13.3ppbv, reducible by temporal or spatial averaging, GOSAT cannot resolve day-to-day variability

of emissions but can strongly constrain a multi-year average.

Previous studies have validated the GOSAT data with surface-based FTIR methane column abun-

dances from the Total Carbon Column Observing Network (TCCON; Wunch et al., 2011). These

studies have generally found GOSAT retrievals to be within their stated precisions (Parker et al.,100

2011). Schepers et al. (2012) pointed out that a full validation of the GOSAT retrievals would re-

quire a more extensive validation network than is available from TCCON. Satellite observations by

solar backscatter tend to be subject to high-latitude biases because of large solar zenith angles result-

ing in longer path lengths and higher interference with clouds. Monteil et al. (2013) did not include

a latitudinal bias correction in their inverse analysis of GOSAT data, but Cressot et al. (2014) used105

a bias correction based on the geometric air mass factor and Fraser et al. (2013) added a latitudinal

bias correction that was fitted as part of the inversion.

The Parker et al. (2011) retrieval uses CO2 as a proxy for the ligthpath to minimize common

spectral artifacts from aerosol scattering and instrument effects (Frankenberg et al., 2005; Butz et al.,

2010):110

XCH4
=

X∗CH4

X∗CO2

XCO2
(1)

where X∗CH4
and X∗CO2

are the dry-air mole fractions retrieved from GOSAT under the assumption

of a non-scattering atmosphere and XCO2 is the column-average dry-air mole fraction of CO2, esti-

mated from the LMDZ global CTM with 3.75◦×2.5◦ spatial resolution. This could lead to localized

bias in areas of concentrated CO2 sources. We determined the extent of the bias by replacing XCO2
115

in Eq. (1) with (sparser) XCO2
data from a full-physics GOSAT retrieval. This indicates a 14 ppbv

low bias in Los Angeles but much weaker biases on regional scales.
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Here we examined the consistency of GOSAT with a large body of independent surface and air-

craft measurements of methane concentrations by using the GEOS-Chem CTM with prior methane

emissions (Table 1 and Figs. A1 and A2) as an intercomparison platform. Table 2 gives summary120

comparison statistics and more details are in the Appendix (Figs. A3–A5). Global comparisons with

HIPPO II-V aircraft profiles across the Pacific (http://hippo.ornl.gov; Wofsy, 2011), the NOAA co-

operative flask sampling network (http://www.esrl.noaa.gov/gmd/ccgg/flask.php), and the TCCON

network (http://tccon.ornl.gov, GGG2014 version; Washenfelder et al., 2006; Deutscher et al., 2010;

Wunch et al., 2010, 2011; Messerschmidt et al., 2011, 2012; Geibel et al., 2012) show that GEOS-125

Chem accurately simulates the global features of the methane distribution including the meridional

gradient in different seasons with no significant bias across multiple years and seasons (Figs. A3–

A5). One would then expect similar agreement in the comparison of GEOS-Chem to GOSAT. Com-

paring GEOS-Chem at 4◦× 5◦ over North America with TCCON, the NOAA/ESRL Global Green-

house Gas Reference Network (surface flasks, tall tower network, and vertical profiles from the air-130

craft program) (http://www.esrl.noaa.gov/gmd/ccgg/flask.php; Andrews et al., 2014; Biraud et al.,

2013) show weaker correlations (R2 = 0.40–0.60) and the reduced-major-axis regression slopes

(0.67–0.75) suggest a ∼ 30% prior underestimate of North American emissions. Reduction of this

bias will provide an independent check on our inversion results.

Figure 2 compares the GOSAT methane observations (XCH4
) to GEOS-Chem values sampled at135

the location and time of the observations, and with local averaging kernels applied. There is a lati-

tudinal background pattern in the difference between GEOS-Chem and GOSAT. The bias becomes

significant at latitudes poleward of 50◦. Since GEOS-Chem is unbiased in its simulation of the tro-

pospheric meridional gradient relative to the surface and aircraft data (Table 2, Fig. A3), we attribute

the high-latitude bias to errors in either the: GOSAT retrieval or GEOS-Chem stratospheric methane.140

Bias corrections that are a function of latitude or air mass factor (solar zenith angle) should be able

to correct for this. However, a bias in the GOSAT data would be expected to correlate better with

the air mass factor while a bias in the model stratosphere may correlate better with latitude. We

find latitude to be a better bias predictor based on the Bayesian information criterion (quadratic re-

gression in Fig. 2c). This suggests a potential bias in the GEOS-Chem simulation of methane in the145

polar stratosphere, which warrants further investigation with observations such as TCCON partial

columns (Saad et al., 2014; Wang et al., 2014). In any case, we remove the bias using the quadratic

regression and Fig. 2d shows the resulting mean differences between GEOS-Chem and GOSAT after

this bias correction. The differences point to errors in the GEOS-Chem prior emissions that we will

correct in the inversion.150

5

http://hippo.ornl.gov
http://www.esrl.noaa.gov/gmd/ccgg/flask.php
http://tccon.ornl.gov
http://www.esrl.noaa.gov/gmd/ccgg/flask.php


3 Global inversion of methane emissions

We use the bias-corrected GOSAT data to infer global methane emissions at 4◦× 5◦ resolution with

an adjoint-based four-dimensional variational data assimilation system (Henze et al., 2007; Wecht

et al., 2012, 2014a). The system minimizes a cost function (J ) with Gaussian errors,

J (x) = 1

2
(y−Kx)TS−1O (y−Kx)+

1

2
(xa−x)TS−1a (xa−x) (2)155

Here xa is the vector of prior emissions (see Table 1 and Fig. A1), y is the vector of GOSAT

observations, K= ∂y/∂x is the Jacobian matrix of the GEOS-Chem methane simulation used as

forward model, and Sa and SO are the prior and observational error covariance matrices respectively.

The state vector consists of scaling factors for emissions at 4◦× 5◦ resolution for June 2009–

December 2011. The prior emissions are mainly from the EDGARv4.2 inventory for anthropogenic160

sources (European Commission, 2011), and Pickett-Heaps et al. (2011) for wetlands. Table 1 gives

a summary and further details are in the Appendix. The error covariance matrices are taken to be

diagonal, implying no error correlation on the 4◦× 5◦ grid. We assume 50 % error variance on the

prior for 4◦× 5◦ grid cells as in Monteil et al. (2013).

Observational error variances are estimated following Heald et al. (2004) by using residual stan-165

dard deviations of the differences between observations and the GEOS-Chem simulation with prior

emissions, as shown in Fig. 2b. This method attributes the mean bias on the 4◦× 5◦ grid to errors in

emissions (to be corrected by the inversion) and the residual error to observational error (including

contributions from instrument retrieval, representation, and model transport errors). If the resulting

observational error variances are less than the local retrieval error variances reported by Parker et al.170

(2011) then the latter are used instead. This is the case for 58 % of the observations, implying that

the observational error is dominated by the instrument retrieval error.

The GEOS-Chem forward model and its adjoint are as described by Wecht et al. (2014a). We

optimize methane emissions from 1 June 2009 to 1 January 2012. The forward model is initialized

on 1 January 2009 with concentrations from Wecht et al. (2014a). There is no significant global bias175

in the simulation, as discussed above. The 5-month spin-up allows for the establishment of gradients

driven by synoptic motions and effectively removes the influence of the initial conditions.

Figure 3 shows the prior and posterior 2009–2011 emissions. We evaluated the posterior emis-

sions in a GEOS-Chem forward simulation by comparison with the global independent observa-

tional datasets of Table 2. The prior simulation showed high correlation and little bias. The posterior180

simulation shows similar results. The increase in mean bias relative to the TCCON data is not sig-

nificant. As pointed out above, the global data sets mainly test the global emissions and large-scale

meridional gradients. Since we used them previously to justify a bias correction in the comparison

between GEOS-Chem and GOSAT, they do not provide a true independent test of the inversion

results. Nevertheless, we see that the inversion does not degrade the successful simulation of the185

background meridional gradient in the prior GEOS-Chem simulation.
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The total posterior methane emission is 539Tg a−1, unchanged from the prior (537Tg a−1). This

source is within the 548+21
−22Tg a

−1 range of current estimates reported by Kirschke et al. (2013) and

IPCC (2013). However, we find large regional differences compared to the prior. Emissions from

China are revised downward by 50 % from 29.2 to 14.7Tg a−1, consistent with Bergamaschi et al.190

(2013) who find that EDGARv4.2 Chinese coal emissions are too large. This overestimate in Chinese

methane emissions is also seen by Bruhwiler et al. (2014) who assimilated the 2000–2010 NOAA

surface observations into CarbonTracker using an ensemble Kalman filter. Emissions in India are

also too high, while emissions in Southeast Asia are too low. Emissions from wetlands in central

Africa are too high. Emissions in northern South America are too low. Corrections in North America195

are discussed in the next section.

We inferred the contributions from different source types to our posterior emissions by assuming

that the prior inventory correctly partitions the methane by source type (see Appendix and Table 1)

in each 4◦× 5◦ grid cell. This does not assume that the global distribution of source types is correct

in the prior, only that the local identification of dominant sources is. We find only modest changes200

to the global partitioning by source types, with the exception of coal and rice, partly reflecting re-

gional offsets. For example, wetland emissions increase globally by only 5Tg a−1 but decrease by

24Tg a−1 in the African wetlands while increasing by 10Tg a−1 in northern South America.

4 North American inversion of methane emissions

We optimize methane emissions over North America by using the nested GEOS-Chem simulation205

at 1
2
◦× 2

3
◦ horizontal resolution (∼ 50km× 50 km) over the North American window in Fig. 1.

Time-dependent boundary conditions for this nested simulation are from the global model at 4◦×5◦

horizontal resolution using the posterior emissions derived above. We only solve for the spatial

distribution of emissions, assuming that the prior temporal distribution is correct (aseasonal except

for wetlands and open fires, see Appendix).210

Following Turner and Jacob (2015), the dimension of the emissions state vector for the nested

North American inversion is optimally reduced from the native 1
2
◦× 2

3
◦ resolution (n= 7366) in

order to (1) improve the observational constraints on individual state vector elements and (2) en-

able an analytical inversion with full error characterization. This is done by aggregating similar state

vector elements with a Gaussian mixture model (Bishop, 2007). We find that an optimal reduction215

with negligibly small aggregation error can be achieved using 369 radial basis functions (RBFs) with

Gaussian kernels. The RBFs are constructed from estimation of the factors driving error correlations

between the native resolution state vector elements including spatial proximity, correction from one

iteration of an adjoint-based inversion at 1
2
◦× 2

3
◦ resolution, and prior source type distributions. In-

cluding the correction from the adjoint-based inversion allows us to account for sources not included220

in the prior. Each 1
2
◦× 2

3
◦ native-resolution grid square is projected onto an aggregated state vector
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using the RBFs. This preserves native resolution where needed (in particular for large point sources)

and aggregates large regions where emissions are uniformly small.

Our optimal estimate of North American emissions was obtained by analytical solution to Eq. (2)

(cf. Rodgers, 2000), using the Jacobian matrix K constructed column by column for the aggregated225

state vector. This analytical approach provides the posterior covariance matrix Ŝ and averaging ker-

nel matrix A as part of the solution and thus fully characterizes the errors and information content

of the inversion results.

The observational error covariance matrix is assumed diagonal with terms specified as the larger

of the residual error variance and the retrieval error variance, same as for the global inversion. The230

prior error covariance matrix is assumed diagonal because the radial basis functions are designed

to capture spatial correlations in the emissions. We assume 100 % error on emissions at the native
1
2
◦× 2

3
◦ resolution. For RBFs encompassing larger spatial regions we assume that the error is reduced

following the central limit theorem:

Sa,{i,i} =
sa√∑
jwi,j

(3)235

where Sa,{i,i} is the ith diagonal of Sa, sa is the prior uncertainty at the native resolution (100 %),

and the summation is for the weights of the ith RBF over all 1
2
◦× 2

3
◦ grid squares (index j). This error

reduction assumes that the errors on the native-resolution grid cells are independent and identically

distributed, which may be overly optimistic. We examined the sensitivity to this assumption by

conducting an alternate inversion with a relative error of 30 % for all state vector elements, similar to240

the approach taken by Wecht et al. (2014a) using a hierarchial clustering method for the state vector.

Figure 4 shows the prior and posterior 2009–2011 emissions. Total posterior emissions in North

America (Table 1) are 44 % higher than the prior, with large increases in the South-Central US and

weak decreases for the Canadian wetlands. Contiguous US emissions are 52Tg a−1, 70 % higher

than the prior. The broad correction patterns are consistent with the coarse global results in Fig. 3245

that used a completely different inversion method. Our sensitivity inversion assuming 30 % prior

error on all state vector elements yields the same North American and contiguous US totals to within

3 %.

We evaluated the posterior emissions in a GEOS-Chem simulation over North America by com-

parison to the independent observations from Table 2. We find great improvement in the ability of the250

model to reproduce these observations, as illustrated by the scatterplots of Fig. 5. The reduced-major-

axis (RMA) regression slopes improve from 0.72 to 1.03 for the NOAA/ESRL tall tower network,

from 0.75 to 0.94 for the NOAA/ESRL aircraft profiles, and from 0.67 to 1.01 for the NOAA surface

flasks.

Another independent evaluation of our posterior emissions is the estimate for California. Califor-255

nia’s methane emissions have been extensively studied with aircraft and ground-based observations

over the past few years in order to address statewide greenhouse gas regulation targets (Zhao et al.,
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2009; Wunch et al., 2009; Hsu et al., 2010; Peischl et al., 2012; Wennberg et al., 2012; Jeong et al.,

2012, 2013; Peischl et al., 2013; Santoni et al., 2014; Wecht et al., 2014b). Figure 6 shows that our

posterior emissions are 20 % higher than the EDGARv4.2 prior inventory for the state of California260

and 50 % lower for the Southern California Air Basin (SoCAB). Other studies constrained with dense

aircraft and ground-based observations are consistent with ours. Our estimate for SoCAB could be

biased low due to an underestimate of local CO2 in the GOSAT retrieval (see Sect. 2). Wecht et al.

(2014b) previously found that GOSAT observations were not sufficiently dense to constrain methane

emissions in California. However, they only used a 2 month record and tried to constrain emissions at265
1
2
◦× 2

3
◦ resolution, incurring large smoothing error. By using a longer time record and an optimally

defined state vector we achieve much better success.

Figure 4 (top right panel) shows the averaging kernel sensitivities for the North American methane

emission inversion, defined as the diagonals of the averaging kernel matrix. The inversion has 39 de-

grees of freedom for signal (DOFs), meaning that we can exactly constrain 39 pieces of information270

in the distribution of methane emissions. This information is spread over the continent and mixed

with prior constraints as described by the averaging kernel matrix. We can use the averaging kernel

sensitivities in Fig. 4 to determine which regions are most responsive to the inversion. These include

California, the Canadian wetlands, and the Southeast and Central US. Large isolated point sources

such as the US Four Corners (a large source of coalbed methane at the corner of Arizona, New275

Mexico, Colorado, and Utah) are also strongly sensitive to the inversion.

We see from Fig. 4 that the prior underestimate of North American methane emissions is largely

due to the Central US, the Canadian Oil Sands, Central Mexico, California, and Florida. Various

large point sources such as the US Four Corners also contribute. We also find regions where the prior

is too high including the Hudson Bay Lowlands, SoCAB, and parts of Appalachia. This suggests280

that oil/gas and livestock emissions are higher than given in EDGARv4.2 while coal emissions are

lower. The overestimate in SoCAB is likely because EDGARv4.2 uses urban and rural population

as a spatial proxy for landfills and waste water (Wunch et al., 2009). The underestimate in Florida is

most likely due to wetland sources.

As with the global inversion, we infer the contributions from different methane source types by285

assuming that the prior inventory correctly attributes the source types in a given 1
2
◦× 2

3
◦ grid cell.

Again, this does not assume that the prior distribution is correct, only that the identification of locally

dominant sources is correct. Results are shown in Fig. 7. We see that the increase relative to the prior

is mainly driven by anthropogenic sources. This can be compared to the US EPA anthropogenic

inventory (EPA, 2014), which is based on more detailed bottom-up information than EDGARv4.2290

but is only available as a national total. We find an anthropogenic source for the contiguous US of

40.2–42.7Tg a−1, as compared to 27.0Tg a−1 in the US EPA inventory. The largest differences are

for the oil/gas and livestock sectors. Depending on the assumptions made regarding the prior error,

oil/gas emissions from our inversion are 13–74 % higher than the EPA estimate and contribute 17–
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26% of contiguous US methane emissions. Livestock emissions are 36–85 % higher than the EPA295

estimate and contribute 24–33 % of contiguous US methane emissions. Waste and coal emissions

are also higher in our posterior estimate than in the EPA inventory.

5 Comparison to previous inverse studies

Several past inverse analyses have estimated methane emissions in the contiguous US with differing

conclusions, in particular the work of Miller et al. (2013) and Wecht et al. (2014a). Miller et al.300

(2013) used in situ observations for 2007–2008 from ground stations and aircraft. They found the

EPA inventory to be underestimated by a factor of 1.5 nationally with the largest underestimates in

fossil fuel source regions. This is in contrast to Wecht et al. (2014a) who used July–August 2004

observations from SCIAMACHY. They found that the EPA inventory was underestimated by only

10 %, with the major discrepancy being livestock emissions underestimated by 40 %.305

Our continental-scale inversion yields a total US methane emissions of 52.4Tg a−1 and anthro-

pogenic source of 42.8Tg a−1. The general spatial pattern of the posterior emissions is similar to

those of Miller et al. (2013) and Wecht et al. (2014a) but the total methane emissions found here are

more similar to Miller et al. (2013) who found US total and anthropogenic emissions of 47.2 and

44.5Tg a−1. The corresponding values obtained by Wecht et al. (2014a) are 38.8 and 30.0Tg a−1,310

significantly lower.

Our work finds a larger natural methane source in the contiguous US than Miller et al. (2013), who

used a fixed prior wetland source of 2.7Tg a−1 that was subtracted from the measurements. Our

prior and posterior emissions are 5.9 and 9.0–10.1Tg a−1, respectively, mostly located in Louisiana

and Florida and more consistent with Wecht et al. (2014a). Quantifying the wetlands source is im-315

portant because it subtracts from the anthropogenic source estimate inferred from the inversion. In

particular, our anthropogenic source of methane in the contiguous US would be larger than that of

Miller et al. (2013) if we had not corrected for the larger wetland source.

Kort et al. (2014) found the Four Corners to be the largest single methane source in the continen-

tal US (0.59Tg a−1) on the basis of SCIAMACHY observations and TCCON observations, with320

a magnitude 3.5 times larger than EDGARv4.2 and 1.8 times larger than reported by the US EPA

Greenhouse Gas Reporting Program (EPA, 2014). This is in contrast to Miller et al. (2013) who

found the US Four Corners to be overestimated in EDGARv4.2 but only had weak constraints for

that region. Our work finds methane emissions from the US Four Corners to be 0.45–1.39Tg a−1

and 3–9 times larger than in the EDGARv4.2 inventory, consistent with the finding of Kort et al.325

(2014).

Miller et al. (2013) attributed most of the underestimate in the US EPA methane inventory to fos-

sil fuel while Wecht et al. (2014a) attributed it to livestock. We find in our inversion that the source

attribution is highly dependent on the specification of the prior error covariance matrix, as shown in
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Fig. 7. Our standard inversion that adjusts the prior error for the RBF weights (Eq. 3) attributes 31 %330

of US anthropogenic emissions to oil/gas and 29 % to livestock, so that most of the EPA underesti-

mate is for oil/gas. However, an inversion without this prior error adjustment (error bars in Fig. 7)

finds the underestimate to be mainly from livestock. This is because the RBFs associated with live-

stock emissions tend to cover larger areas of correlated emissions than the point sources associated

with oil/gas. An inversion with equal error weighting for different state vector elements will tend to335

favor correction of the larger elements associated with livestock. With current prior knowledge it is

thus difficult to conclusively attribute the US EPA underestimate to oil/gas or livestock emissions.

This limitation could be addressed by a better prior knowledge of the spatial distribution of source

types or by the use of correlative information (e.g., observations of ethane originating from oil/gas)

in the inversion.340

6 Conclusions

We used 31 months of GOSAT satellite observations of methane columns (June 2009–December

2011) to constrain methane emissions at high spatial resolution in North America with an inversion

based on the GEOS-Chem chemical transport model. We first conducted a global adjoint-based in-

version at 4◦×5◦ resolution and used the resulting optimized fluxes as dynamic boundary conditions345

for a nested inversion with resolution up to 50km× 50 km over North America.

We began by evaluating the GOSAT observations with a large ensemble of aircraft and surface data

(HIPPO, NOAA/ESRL surface flasks, NOAA/ESRL aircraft, TCCON), using GEOS-Chem as an

intercomparison platform. This revealed a high-latitude bias in the GEOS-Chem polar stratospheric

methane (or possibly in the GOSAT data) that we corrected for the purpose of the inversion. The350

aircraft and surface data were subsequently used as an independent check of our inversion results.

Our global GOSAT inversion finds a total methane source of 539Tg a−1 with 39 % from wet-

lands, 22 % from livestock, 12 % from oil/gas, 12 % from waste, 8 % from rice, and 6 % from coal.

Comparison to the EDGARv4.2 inventory used as a prior for the inversion indicates that Chinese

coal emissions are a factor of 2 too large, consistent with the findings of Bergamaschi et al. (2013)355

and Bruhwiler et al. (2014). We find large regional corrections to the EDGARv4.2 inventory includ-

ing a 10Tg a−1 increase of the wetland emissions in South America and a 10Tg a−1 increase of

rice emissions in Southeast Asia.

Our North American continental-scale inversion used an emission state vector optimally defined

with radial basis functions (RBFs) to enable analytical inversion with full error characterization360

while minimizing aggregation error (Turner and Jacob, 2015). In this manner we could resolve large

point sources at a resolution of up to 50km×50 km while aggregating regions with weak emissions.

Our posterior anthropogenic methane source for the contiguous US is 40.2–42.7Tg a−1, compared

to 25.0Tg a−1 in EDGARv4.2 and 27.9Tg a−1 in the US EPA national inventory. Differences are

11



particularly large in the South-Central US. Our posterior inventory is more consistent with indepen-365

dent surface and aircraft data and with previous studies in California. On the basis of prior emission

patterns we attribute 22–31 % of US anthropogenic methane emissions to oil/gas, 29–44 % to live-

stock, 20 % to waste, and 11–15 % to coal. There is in addition a 9.0–10.1Tg a−1 wetlands source.

Our work confirms previous studies pointing to a large underestimate in the US EPA methane

inventory. This underestimate is attributable to oil/gas and livestock emissions, but quantitative sep-370

aration between the two is difficult because of spatial overlap and limitations of the observing system

and prior estimates. We find that either oil/gas or livestock emissions dominate the correction to prior

emissions depending on assumptions regarding prior errors. This limitation could be addressed in the

future through better specification of the prior source distribution using high-resolution information

on activity rates, and through the use of correlated variables in the inversion.375

Appendix: GEOS-Chem description and evaluation with independent data

We use the v9-01-02 GEOS-Chem methane simulation (http://acmg.seas.harvard.edu/geos/index.

html; Wecht et al., 2014a) driven by Goddard Earth Observing System (GEOS-5) assimilated me-

teorological data for 2009–2011 from the NASA Modeling and Assimilation Office (GMAO). The

GEOS-5 data have a native horizontal resolution of 1
2
◦× 2

3
◦ with 72 pressure levels and 6h tem-380

poral resolution (3h for surface variables and mixing depths). The results presented here are from

nested simulations at the native 1
2
◦× 2

3
◦ resolution over North America (10–70◦ N, 40–140◦W) and

global simulations at 4◦× 5◦ resolution. Dynamic boundary conditions for the nested simulations

are obtained from the global simulations. Methane loss is mainly by reaction with the OH radical.

We use a 3-D archive of monthly average OH concentrations from Park et al. (2004). The resulting385

atmospheric lifetime of methane is 8.9 years, consistent with the observational constraint of 9.1±0.9
years (Prather et al., 2012).

Prior 2009–2011 emissions for the GEOS-Chem methane simulation are from the EDGARv4.2

anthropogenic methane inventory (European Commission, 2011), the wetland model from Ka-

plan (2002) as implemented by Pickett-Heaps et al. (2011), the GFED3 biomass burning inven-390

tory (van der Werf et al., 2010), a termite inventory and soil absorption from Fung et al. (1991),

and a biofuel inventory from Yevich and Logan (2003). Wetlands emissions vary with local temper-

ature, inundation, and snow cover. Open fire emissions are specified with 8h temporal resolution.

Other emissions are assumed aseasonal. Table 1 lists global, North American, and contiguous US

emissions. Figures A1 and A2 show the spatial distributions of the global and North American prior395

emissions for the five largest source types.

We evaluated GEOS-Chem with surface-based (NOAA/ESRL, TCCON), tower (NOAA/ESRL),

and aircraft (HIPPO, NOAA/ESRL) observations of methane concentrations for 2009–2011, both

as indirect validation of the GOSAT data and as an independent check on our inversion results. See
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main text for references for these observations. We convolve GEOS-Chem with the TCCON averag-400

ing kernels and priors before comparison with TCCON observations. Figure A3 uses observations

from the NOAA cooperative flask network and from the HIPPO data across the Pacific to evalu-

ate the global burden and latitudinal gradient in GEOS-Chem. Figure A4 uses observations from

the NOAA/ESRL Global Greenhouse Gas Reference Network and the TCCON column network

for a more specific evaluation of the model over North America. Figure A5 shows corresponding405

scatterplots and Table 2 gives summary statistics. Discussion of the results is given in the text.
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Table 1. 2009–2011 methane emissionsa.

Source Type Contiguous US North America Global

Prior Posteriorb Prior Posteriorb Prior Posterior

Total 31.4 51.3–52.5 63.3 88.5–91.3 537 539

Wetlands 5.9 9.0–10.1 20.4 22.9–23.7 164 169

Livestock 8.9 12.6–17.0 14.5 20.0–25.7 111 116

Oil/Gas 5.4 8.7–13.4 10.8 15.5–22.3 69 67

Wastec 5.5 8.0–8.5 9.7 13.4–14.5 60 65

Coal 4.0 4.7–6.5 4.3 5.0–6.8 47 30

Rice 0.4 0.8–0.9 0.5 0.9–1.0 38 45

Open Fires 0.1 0.1 1.0 0.9 17 16

Otherd 1.1 1.6–1.7 2.2 3.0–3.3 31 32

Naturale 7.5 9.8–11.1 25.0 25.1–26.2 176 181

Anthropogenicf 25.0 40.2–42.7 41.9 62.3–66.2 361 358

aEmissions are in Tg a−1. Prior emissions are mainly from EDGARv4.2 for anthropogenic sources and

Pickett-Heaps et al. (2011) for wetlands (see Appendix).
bRange from two inversions with different assumptions for prior error (see text).
cIncluding landfills and waste water.
dIncluding fuel combustion, termites, and soil absorption.
eIncluding wetlands, open fires, termites, and soil absorption.
f Including livestock, oil/gas, waste, coal, rice, and fuel combustion.

Zhao, C. F., Andrews, A. E., Bianco, L., Eluszkiewicz, J., Hirsch, A., MacDonald, C., Nehrkorn, T., and Fis-

cher, M. L.: Atmospheric inverse estimates of methane emissions from Central California, J. Geophys. Res.-

Atmos., 114,D16302, doi:10.1029/2008jd011671, 2009.675
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Table 2. GEOS-Chem comparison to 2009–2011 suborbital methane observationsa.

Observations R2 Slopeb Mean Biasc

Prior Posterior Prior Posterior Prior Posterior

Global

HIPPO (II-V) 0.94 0.94 0.97 0.95 4.2 4.4

TCCON 0.82 0.83 0.94 0.98 6.4 8.1

NOAA/ESRL Surface Flasks 0.66 0.66 1.08 1.04 16.1 14.1

North America

NOAA/ESRL Tall Tower Network 0.40 0.48 0.72 1.03 −13.3 3.1

NOAA/ESRL Aircraft Program 0.54 0.61 0.75 0.94 −0.2 6.7

NOAA/ESRL Surface Flasks 0.60 0.67 0.67 1.01 −5.6 7.1
aGEOS-Chem at 4◦× 5◦ resolution globally and 1

2
◦× 2

3
◦ resolution for North America, using either prior emissions (Table 1

and Figs. A3 and A4) or posterior emissions optimized with the inversion. Further details on the comparisons are in Figs. A3–A5.

NOAA observations are from the NOAA/ESRL Greenhouse Gas Reference Network. References for the observations are given in

the text.
bSlope (in ppbv ppbv−1) is from a reduced-major-axis (RMA) regression.
cMean bias is the mean difference (in ppbv) between model and observations.

1750 1775 1800 1825 (ppbv)

1700 1750 1800 1850 (ppbv)

GOSAT (06/2009 – 12/2011)

Figure 1. Mean GOSAT observations of the weighted column-average methane dry-mole fraction (XCH4 ) for

June 2009–December 2011, globally and for North America. The data are version 4 proxy methane retrievals

from Parker et al. (2011) that pass all quality flags (http://www.leos.le.ac.uk/GHG/data/styled/index.html).
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Figure 2. Comparison of the GOSAT observations from Fig. 1 to the GEOS-Chem model with prior emissions.

The top panels show the mean bias and residual SD for the model-satellite difference. The bottom left panel

shows the model-satellite difference as a function of latitude for individual observations along with the data

density (contours), and a quadratic regression (red line; x in degrees latitude, y in ppbv) as estimate of the bias.

The regression excludes grid squares with residual SD in excess of 20ppbv as model bias in prior emissions

could dominate the difference. The bottom right panel is the same as top left but using the bias correction from

the bottom left panel.
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Figure 3. Optimization of methane emissions for 2009–2011 at 4◦ × 5◦ horizontal resolution using GOSAT

observations. The panels show prior emissions, posterior emissions, and the ratio between the two.
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Figure 4. Methane emissions in North America in 2009–2011. The left panels show the prior and posterior

emissions and the bottom right panel shows the scaling factors. The top right panel shows the diagonal elements

of the averaging kernel matrix for the methane emission inversion. The degrees of freedom for signal (DOFS)

is the trace of the averaging kernel matrix.
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Figure 5. Evaluation of the GOSAT inversion of methane emissions for North America with independent data

sets. The scatterplots show comparisons of GEOS-Chem ( 1
2
◦ × 2

3
◦ resolution) methane concentrations with

observations from the NOAA/ESRL tall tower network (red), NOAA/ESRL aircraft program (blue), and the

NOAA/ESRL surface flask network (orange), using prior emissions (top) and posterior emissions (bottom). The

1 : 1 lines (dashed) and reduced-major-axis (RMA, solid) linear regressions are also shown. RMA regression

parameters are shown inset and correspond to the statistics of Table 2.
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Figure 6. Methane emissions for the state of California (top) and for the Southern California Air Basin (SoCAB;

bottom). Our posterior emissions (“this work”) are compared to prior emissions (EDGARv4.2) and to previous

inverse estimates constrained by surface and aircraft observations. SoCAB is defined following Wennberg et al.

(2012) as the domain 33.5◦–34.5◦ N, 117◦–119◦ W.
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Figure 7. Methane emissions in the contiguous US. The left panel shows our best estimates of total and anthro-

pogenic emissions (“this work”) compared to the prior (EDGARv4.2 for anthropogenic sources, Pickett-Heaps

et al. (2011) for wetlands) and the previous inverse studies of Wecht et al. (2014a) and Miller et al. (2013). The

right panel partitions US anthropogenic emissions by source types and compares our results (“this work”) to

EDGARv4.2 and to the 2012 EPA inventory (EPA, 2014). Error bars on sectoral emissions for our results are

defined by the sensitivity inversion with 30 % prior uncertainty for all state vector elements.
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1 10 100 (nmol m-2 s-1)

Total: 537 Tg a-1 Wetlands: 164 Tg a-1

Livestock: 111 Tg a-1 Oil/Gas: 69 Tg a-1

Waste: 60 Tg a-1 Coal: 47 Tg a-1

Figure A1. Prior 2009–2011 methane emissions used in the GEOS-Chem global simulation at 4◦ × 5◦ resolu-

tion, and contributions from the top 5 sources.
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Total: 63.3 Tg a-1 Wetlands: 20.4 Tg a-1

Livestock: 14.5 Tg a-1 Oil/Gas: 10.8 Tg a-1

Waste: 9.7 Tg a-1 Coal: 4.3 Tg a-1

1 10 100 (nmol m-2 s-1)

Figure A2. Same as Fig. A1 but for North America with 1
2
◦ × 2

3
◦ resolution.
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Figure A3. Global evaluation of the GEOS-Chem methane simulation at 4◦ × 5◦ resolution (using prior emis-

sions) with observations from the NOAA/ESRL surface flask network (top left panel colored by latitude) and

HIPPO aircraft deployments. The central panel shows 3-month running medians for 2009–2011 of the dif-

ference between GEOS-Chem and the flask data in different latitudinal bands. The gray line is for all of the

observations. Error bars for the running medians are offset from the lines for clarity. Latitudinal profiles across

the Pacific for the four HIPPO deployments over the period are also shown: in those panels the symbols repre-

sent the pressure-weighted tropospheric average concentrations and the vertical bars are the SD. Stratospheric

air is excluded based on an ozone–CO concentration ratio larger than 1.25 (Hudman et al., 2007). Bottom right

panel shows the HIPPO flight tracks.
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Figure A4. North American evaluation of the GEOS-Chem methane simulation at 4◦ × 5◦ resolution (using

prior emissions) with TCCON (top), NOAA/ESRL aircraft program (middle), and NOAA/ESRL surface flask

network (bottom) observations over North America. Left panels show 3-month running medians for 2009–2011

of the difference between GEOS-Chem and the observations in different latitudinal bands and for all the data

(gray line). Right panels show the location of the observations. All values are in ppbv.

30



1700 1750 1800 1850 1900 1950 2000
1700

1750

1800

1850

1900

1950

2000

HIPPO
y = 105 + 0.94x  (R 2 = 0.94)

1700 1750 1800 1850 1900 1950 2000
1700

1750

1800

1850

1900

1950

2000
HIPPO II
HIPPO III
HIPPO IV
HIPPO V

HIPPO
y = 47 + 0.98x  (R 2 = 0.92)

G
EO

S−
C

he
m

 M
et

ha
ne

 C
on

ce
nt

ra
tio

n 
(p

pb
v)

Observed Methane Concentration (ppbv)

Prior Emissions Posterior Emissions

1650 1700 1750 1800 1850 1900
1650

1700

1750

1800

1850

1900

TCCON
y = 114 + 0.94x  (R 2 = 0.82)

Karlsruhe

Garmisch

Saga

Four Corners

Park Falls

JPL2011

Bremen

Lamont

Orleans

Darwin

Bialystok

Lauder125HR
Lauder120HR

1650 1700 1750 1800 1850 1900
1650

1700

1750

1800

1850

1900

TCCON
y = 45 + 0.98x  (R 2 = 0.83)

1700 1800 1900 2000 2100 2200 2300
1700

1800

1900

2000

2100

2200

2300

Surface Flasks
y = -54 + 1.04x  (R 2 = 0.66)

1700 1800 1900 2000 2100 2200 2300
1700

1800

1900

2000

2100

2200

2300

Surface Flasks
y = -137 + 1.08x  (R 2 = 0.66)

Figure A5. Scatterplot comparison of GEOS-Chem at 4◦ × 5◦ resolution to independent observations. Left

column uses prior emissions and right column uses posterior emissions. Individual points show comparisons

for individual observations, averaged over the GEOS-Chem grid resolution in the case of the aircraft data.

The 1 : 1 (dashed) and reduced-major-axis (RMA, solid) regression lines are shown. Summary statistics are

also given in Table 2. Different colors correspond to different sites (TCCON), latitudinal bands (flasks), and

deployments (HIPPO) shown in Fig. A3.
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