1 Regional differences in Chinese SO₂ emission control efficiency

2 and policy implications

3 Qianqian Zhang^{1,2}, Yuxuan Wang^{1,3,4}, Qiao Ma^{1,2}, Yu Yao¹, Yuanyu Xie¹, Kebin He² 4 ¹Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth 5 System Science, Institute for Global Change Studies, Tsinghua University, Beijing, 6 China 7 ²School of Environment, Tsinghua University, Beijing, 100084, China 8 ³Department of Marine Sciences, Texas A&M University at Galveston, Galveston, 9 TX, 77553, USA. 10 ⁴Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 11 77843, USA. 12 13 *Correspondence to:* Yuxuan Wang (yxw@tsinghua.edu.cn) 14 15 16

17 Abstract

SO₂ emission control has been one of the most important air pollution policies in 18 19 China since 2000. In this study, we assess regional differences in SO_2 emission control efficiencies in China through the modeling analysis of four scenarios of SO₂ 20 emissions, all of which aim at reducing the national total SO₂ emissions by 8% or 2.3 21 Tg below the 2010 emissions level, the target set by the current 12th Five-Year Plan 22 (FYP) (2011-2015), but differ in the spatial implementation. The GEOS-Chem 23 chemical transport model is used to evaluate the efficiency of each scenario on the 24 25 basis of four impact metrics: surface SO₂ and sulfate concentrations, population-weighted sulfate concentration (PWC), and sulfur export flux from China 26 to the Western Pacific. The efficiency of SO_2 control (β) is defined as the relative 27 change of each impact metric to a 1% reduction of SO₂ emissions from the 2010 28

29	baseline. The S1 scenario, which adopts a spatially uniform reduction of SO ₂
30	emissions in China, gives a β of 0.99, 0.71, 0.83, and 0.67 for SO_2 and sulfate
31	concentrations, PWC, and export flux, respectively. By comparison, the S2 scenario,
32	which implements all the SO ₂ emissions reduction over North China (NC), is found
33	most effective in reducing national-mean surface SO ₂ and sulfate concentrations and
34	sulfur export fluxes, with β being 1.0, 0.76 and 0.95 respectively. The S3 scenario of
35	implementing all the SO ₂ emission reduction over South China (SC) has the highest β
36	in reducing PWC (β = 0.98) because SC has the highest correlation between
37	population density and sulfate concentration. Reducing SO ₂ emissions over Southwest
38	China (SWC) is found to be least efficient on the national scale, albeit big
39	within-region benefits. The difference in β by scenario is attributable to the regional
40	difference in SO ₂ oxidation pathways and source-receptor relationship. Among the
41	three regions examined here, NC shows the largest proportion of sulfate formation
42	through gas phase oxidation, which is more sensitive to SO ₂ emission change than
43	aqueous oxidation. In addition, NC makes the largest contribution to inter-regional
44	transport of sulfur within China and to the transport fluxes to Western Pacific. The
45	policy implication is that China needs to carefully design a regionally specific
46	implementation plan of realizing its SO ₂ emissions reduction target in order to
47	maximize the resulting air quality benefits not only for China but for the downwind
48	regions, with emphasis on reducing emissions from NC where SO ₂ emissions have
49	decreased at a slower rate than national total emissions in the previous FYP period.

 SO_2 is the precursor of ambient sulfate, which is a major component of particulate 51 matter with dynamic diameter less than 2.5 µm (PM_{2.5}) and makes up about 20-35% 52 of total PM_{2.5} mass (Pathak et al., 2009). SO₂ emissions from China contribute about 53 25% of global SO₂ emissions and 50% of Asian emissions (Streets et al., 2003; Lu et 54 al., 2011). Since 2000, the Chinese government has made great efforts in controlling 55 SO₂ emissions in order to reduce atmospheric PM concentrations and acid deposition. 56 A 10% SO₂ emission reduction target was set in both the tenth Five-Year Plan (10th 57 FYP, 2000-2005) and the 11th FYP (2006-2010). While SO₂ emissions increased about 58 28% during the 10th FYP (Schreifels et al., 2012), by the end of the 11th FYP China 59 has achieved the goal of 10% SO₂ emission reduction in 2010 relative to the 2005 60 61 level (Lu et al., 2011). Itahashi et al. (2012a) reported that aerosol optical depths (AOD) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) 62 over East Asia showed an increase from 2001 to 2005 and then a decrease until 2010, 63 consistent with the reported trend of SO₂ emissions from China. 64

In 2012, PM_{2.5} was introduced into China's ambient air quality standard by the Ministry of Environmental Protection (MEP). In response to the increasingly severe haze pollution, the Action Plan on Prevention and Control of Air Pollution was delivered by the Central Government of China in September 2013. Aiming to improve air quality across China in the next five to ten years, the Action Plan calls for more efforts to reduce emissions from the heavily polluted regions in East China (22 °-42 °N, 110 °-122 °E). The Action Plan requires that by 2017, PM_{2.5} concentrations should decrease by 25% over the Beijing-Tianjin-Hebei region, 20% over the Yangtze River
Delta, and 15% over the Pearl River Delta. While the Action Plan presents guidelines
and advice for energy consumption and cleaner production, like other laws and
regulations in China there is no specific emission control target for primary PM or its
gaseous precursors for the whole country or by specific regions.

The purpose of this study is to assess the regional differences in SO₂ emission 77 control efficiency in China and discuss the implications for future emission control 78 strategies. We choose four impact metrics to evaluate the efficiency of different 79 80 scenarios of SO₂ emissions reduction. The first two metrics are surface concentrations of SO₂ and sulfate. The GEOS-Chem chemical transport model is used to quantify the 81 response of SO₂ and sulfate concentrations to changes in SO₂ emissions. Since public 82 83 health is an important issue of concern for PM2.5, the third metric is population-weighted sulfate concentration at the surface. SO₂ emissions from China 84 also have significant impacts on air quality and public health of foreign regions due to 85 86 long-range transport. Park et al. (2004) suggested that trans-Pacific transport of sulfate accounts for 30% of sulfate background in the U.S. Itahashi et al. (2012b) reported 87 that central eastern China is the dominant source region for sulfate aerosols over Oki 88 Island during two air pollution events in July 2005. Previous studies have recognized 89 90 the Western Pacific as the predominant transport pathway of air pollution exported from China (Heald et al., 2006; Fairlie et al., 2010; Li et al., 2010a; He et al., 2012). 91 92 Given the global impact of changing Chinese emissions, it is important to understand the response of pollution outflow to different emission control strategies in China. 93

94 Therefore, the fourth metric is the outflow flux of sulfur from China to the Western95 Pacific.

96 Within the context of currently available emission control plans in China, we design four different spatial realizations of reducing China's total SO₂ emissions by 8% 97 or 2.3 Tg below the 2010 emissions level, which is the target set by the current 12th 98 FYP (2011-2015). In the first scenario SO_2 emissions are reduced uniformly by 8% 99 over China, while in the other three scenarios the emissions reduction is implemented 100 over three different regions which make the largest contributions to the national SO_2 101 102 emissions and have highest sulfate concentrations: North China (NC, 33°-42°N, 110°-122°E), South China (SC, 22°-33°N, 110°-122°E), and Southwest China (SWC, 103 23 °-33 °N, 102 °-110 °E) (Figure 1). Since sulfate aerosols exhibit regionally specific 104 105 formation and transport characteristics (Wang Y et al., 2013a), the response of a given impact metric to the same amount of SO₂ emission reduction is expected to differ by 106 region. 107

It is clear that the target of 8% reduction of Chinese SO_2 emissions is far from sufficient to meet the goal of reducing $PM_{2.5}$ concentrations set by the Action Plan (Wang Y et al., 2013a). However, there is no other specific target of SO_2 emissions available in current Chinese policies to serve as an alternative reference point. Since our study focuses on the regional difference in emission control efficiency, we choose an 8% perturbation of total SO_2 emissions that is large enough to capture the regional difference.

115

The paper is organized as follows. Section 2 describes the model and the

evaluation of model results by observations. In Section 3 we present the different reduction scenarios of SO_2 emissions in China and analyze the regionally different responses of the selected impact metrics to those scenarios. Section 4 analyzes sulfate formation and sulfur transport by region to understand the mechanisms behind the regional difference of SO_2 emission control efficiency, followed by sensitivity tests of our results. The concluding remarks are presented in Section 5.

- 122 **2.** Model description and evaluation
- 123 **2.1 Model description**

We use the GEOS-Chem chemical transport model version 9-01-01 to simulate 124 the coupled aerosol-oxidant chemistry on the global and regional scale. The model is 125 126 driven by the assimilated meteorological data from the Goddard Earth Observation System (GEOS) with 6-hour averaged winds, temperature, cloud and convective mass 127 flux, and 3-hour averaged surface quantities and mixing depths. Here we use the 128 nested-grid capability of GEOS-Chem with a 0.5×0.667 ° horizontal resolution over 129 East Asia, which was originally described by Wang Y (2004) and Chen et al. (2009). 130 The global simulation with a horizontal resolution of $4 \times 5^{\circ}$ is used to provide 131 boundary conditions for the nested-grid domain. 132

The sulfate-nitrate-ammonium (SNA) aerosol simulation coupled to the HO_X -NO_X-VOC-ozone gas chemistry was originally developed by Park et al. (2004). Emitted SO₂ in the model is oxidized to sulfate by hydroxyl radicals (OH) in the gas phase and by hydrogen peroxide (H₂O₂) and ozone (O₃) in the aqueous phase. The gas-particles equilibrium of aerosols is calculated using the ISOROPIA II (Fontoukis
and Nenes, 2007) aerosol equilibrium model. The aerosols are removed through dry
and wet deposition.

The Global Emission Inventory Activity (GEIA) inventory (Benkovitz et al., 140 1996) is used in the global simulation, which is overwritten by the NEI05 inventory 141 over the US, the EMEP inventory over Europe, and the INTEX-B inventory over East 142 Asia (Wang Y et al., 2013a). For the nested-grid simulation, the Multi-resolution 143 Emission Inventory for China (MEIC) for the year 2010 is adopted over China (He, 144 145 2012) and emissions over the rest of East Asia are taken from the INTEX-B emission inventory. The MEIC inventory uses an improved technology-based methodology to 146 estimate anthropogenic emissions from China, including emissions of SO₂, NO_X, NH₃, 147 148 BC, OC, NMVOCs, CO, CO₂, and fine and coarse mode PM. The MEIC inventory for the 1990 has an open access dataset period from 2010 149 to (http://www.meicmodel.org), providing monthly emission data in the horizontal 150 resolution of 0.25×0.25 °, 0.5×0.5 ° and 1×1 °. The MEIC emission inventory has 151 been shown to provide good estimation of total emissions with some uncertainties in 152 the spatial allocations for the fine grid resolutions within cities (Wang L. et al., 2014). 153 According to the MEIC inventory, SO₂ emissions from China are 28.4 Tg in 2010 154 155 (Figure 1).

156 **2.2 Model evaluation**

The GEOS-Chem simulation of sulfate and PM_{2.5} over China has been evaluated
by Wang Y et al. (2013a; 2014) and Lou et al. (2014). Wang Y et al. (2013a) indicated

159	that the GEOS-Chem model had a good performance in simulating sulfate
160	distributions ($R^2 = 0.64 \sim 0.79$) and concentrations (mean bias of -10%) in East Asia.
161	Lou et al. (2014) reported a higher correlation between simulated and observed sulfate
162	$(R^2 = 0.86)$, but a larger model bias (-41%) which may be partly due to the fact that
163	they used a uniform factor of 0.6 to infer sulfate concentrations in $PM_{2.5}$ from those in
164	observed PM_{10} concentrations. Wang Y et al. (2014) further evaluated the model
165	performance in reproducing the concentrations and the spatiotemporal patterns of
166	PM _{2.5} over China during a severely polluted month of January 2013. The model
167	shows a good correlation of 0.6 with PM _{2.5} spatial distributions but underestimates the
168	concentrations of $PM_{2.5}$ and sulfate over North China during a severe haze period,
169	which is largely explained by underestimated emissions from this heavily polluted
170	region. The sulfate underestimation is further attributed to the heterogeneous reaction
171	of SO ₂ on pre-existing aerosols that are deliquescent under the condition of higher
172	relative humidity during the severe haze period (Wang Y et al., 2014). In this study we
173	extend the previous model evaluation by using four additional datasets over China: (1)
174	AOD retrieved from MODIS for January, July, and annual mean of 2010; (2) SO ₂
175	total columns retrieved by the Ozone Monitoring Instrument (OMI) satellite
176	instrument; (3) sulfate concentrations observed at three surface sites in China: the
177	Miyun site (40°29'N, 116 °47'N) in NC, the Jinsha site (29 °38'N, 114 °12'N) in SC
178	(Zhang et al., 2014), and the Chengdu site (30 39'N, 104 2'N) in SWC (Tao et al.,
179	2014); (4) monthly wet deposition fluxes at 5 sites from January 2009 to December
180	2010, which are from the Acid Deposition Monitoring Network in East Asia (EANET,

181 <u>http://www.eanet.asia/</u>). Locations of all the surface sites used in this study are
182 displayed in Figure 2a.

183 The spatial distributions of AOD over China for annual mean, January and July of 2010 from MODIS (top) and the model (bottom) are displayed in Figure 3. The 184 model shows a strong spatial correlation (R > 0.6) with MODIS AOD. Both the model 185 and MODIS indicate higher annual mean AOD in North and South China and a shift 186 of the highest AOD values from central China in January to NC in July. The model 187 has a positive bias of more than 10% for the annual, January, and July mean AOD 188 189 levels over China as a whole. There is an obvious positive bias of the model over North China, with an overestimation of 26% and 20%, respectively, for the annual and 190 January mean. The model shows a higher correlation (0.73) and smaller bias (12%)191 192 over North China in July. The model bias over South China and Southwest China is comparatively smaller and negative at -3% for SC and -1% for SWC. The positive 193 bias of AOD in North China is due to the overestimates of nitrate concentrations 194 (Wang Y et al., 2013a) and overestimation of dust emissions from the 195 196 Taklimakan-Gobi area which are transported to this region (Wang et al., 2012).

Figure 4 compares annual-mean total SO₂ column densities from OMI and GEOS-Chem for 2010. Compared to AOD, satellite-derived SO₂ columns provide a more direct evaluation of sulfur simulation in the model since SO₂ is the direct precursor of sulfate. The original horizontal resolution of the Level 3 OMI data is 0.25×0.25 °, and the GEOS-Chem simulation has a resolution of 0.5×0.667 °. We regridded both OMI and modeled SO₂ columns to $1 \times 1^{\circ}$ resolution for comparison.

The spatial distribution of SO₂ column densities from GEOS-Chem correlates well 203 with those from OMI, with the correlation coefficient being 0.79, 0.73 and 0.64 for 204 205 NC, SC and SWC, respectively. Compared with the OMI SO₂ retrievals, GEOS-Chem simulated SO₂ columns are 6% higher in NC, 2% higher in SC and 8% lower in SWC. 206 The discrepancy between the modeled and OMI SO₂ is within $\pm 10\%$ for all the three 207 regions, indicating an overall good simulation of SO₂ by the GEOS-Chem model. 208 Wang Y et al. (2014) reported a 50% underestimate of SO₂ emissions from North 209 China by the GEOS-Chem model for an extremely polluted month of January 2013. 210 211 Since we used a different bottom-up inventory with higher SO₂ emission from NC and simulated a different year, we did not find evidence that SO₂ emissions were 212 underestimated in winter 2010. 213

214 The simulated and observed surface sulfate concentrations at the three surface sites are compared in Figure 5. Weekly-mean sulfate concentrations from January to 215 June 2010 are shown for the Miyun site (Figure 5a). The model agrees well with the 216 observed variability with a correlation of 0.75, and it shows a small positive bias of 217 4%. Wang Y et al. (2013a) reported a correlation of 0.7 and overestimation of 15% of 218 the model in comparison with the Miyun observations in 2007, using an old version of 219 model and a different anthropogenic emission inventory for China. Similar to Wang Y 220 et al. (2013a), we find here that the model cannot capture the sawtooth-like variation 221 of sulfate during late spring and summer at the Miyun site, which is caused by the 222 223 model's weakness in simulating large precipitation and high wind speeds at the local scale (Zhang L. et al., 2012). Observations at the Jinsha and Chengdu site are 224

collected from published literature. Jinsha is a regional background site located in SC
(Zhang et al., 2014) and the sampling period was from March 2012 to March 2013.
Chengdu is an urban site (Tao et al., 2014) located in SWC and sulfate concentrations
were collected during January, April, July and October in 2011. The model has an
annual mean bias of 5% at the Jinsha site (Figure 5b) and -8% at the Chengdu site
(Figure 5c), with higher seasonal biases partly due to the fact that the simulation and
measurements are for different years.

Figure 2b displays the scatter plot of simulated versus observed monthly-mean sulfate wet deposition fluxes from January 2009 to December 2010 at 5 EANET sites in China (Figure 2a). The model reproduces the annual-mean sulfate wet deposition fluxes with a high correlation of 0.83 and small negative bias of -9%. Seasonally, the model tends to overestimate sulfate wet deposition fluxes in the winter (bias = 30%; R = 0.63), but underestimate them in other seasons (R = 0.8 ~ 0.88, biases =-10% ~ -19%).

239 In summary, through comparison of the model results with satellite-derived AOD and SO₂ columns, surface sulfate observations at three surface sites located in 240 each region, and sulfate wet deposition fluxes for 5 sites in China, we conclude that 241 the model has some capability to reproduce the spatial and temporal distributions of 242 sulfate over China with a small to moderate bias. While the model performance of 243 sulfate and SO₂ simulation differs by site and season, the annual-mean model biases 244 245 are all within $\pm 10\%$ for the three regions of interest and thus not expected to affect the comparison of the emission scenarios. 246

247 **3.** Efficiency of SO₂ emission control strategies

248 **3.1 Simulation scenarios**

In this study, one standard simulation using the 2010 MEIC inventory of Chinese 249 emissions and four sensitivity simulations with different SO₂ emission reduction 250 scenarios (S1 - S4) are conducted, which are described in Table 1. The standard 251 simulation is carried out for the period from January 2009 to December 2010, with the 252 first year for spin up and the next year for analysis. SO₂ emissions from China in 2010 253 are 28.4 Tg in the standard simulation. All the emission scenarios have an 8% (2.3 Tg) 254 reduction in national total SO₂ emissions below their 2010 level, following the goal of 255 the 12th FYP, but they differ in the spatial distributions of those reductions. In the S1 256 scenario, the 8% emission reduction is implemented uniformly over the whole country; 257 in the S2, S3, and S4 scenario, the 2.3 Tg reduction of SO₂ emissions is implemented 258 by decreasing regional emissions from three sub-regions of China which make the 259 largest contributions to the national total emissions and have highest sulfate 260 concentrations (Zhang X. Y. et al., 2012; Wang Y et al., 2013a). The three regions are 261 North China (NC, S2 scenario), South China (SC, S3) and Southwest China (SWC, 262 S4). The region definitions are shown in Figure 1. Since the baseline emissions from 263 the three regions are different, the percentage of the emission reduction differs by 264 region, being 21.3%, 29.5% and 48.9% of the baseline emissions from NC, SC and 265 SWC, respectively. A 3-month initialization is conducted for each of the emission 266 reduction scenarios. 267

268

Following Lamsal et al. (2011) and Zhang et al. (2014), we define a relationship

between the change of an impact metric (X) and the change of SO₂ emissions (E): 269 $\frac{\Delta X}{x} = \beta \times \frac{\Delta E}{E}$, where ΔX is the change in the metric, with X being surface SO₂ or 270 271 sulfate concentrations, population-weighted sulfate concentration, or sulfur outflow fluxes from China to Western Pacific,; $\frac{\Delta X}{X}$ is the relative change of the metric; ΔE is 272 the change of SO₂ emissions; $\frac{\Delta E}{E}$ is the relative emission change, which is 0.08 for all 273 the emission reduction scenarios on the national scale; and β is a unitless term 274 describing the relative changes of the metrics of concern in response to a 1% change 275 in SO₂ emissions. We call β the efficiency factor, and it is used to compare the 276 277 sensitivity of each metric to SO₂ emission changes between different emission reduction scenarios. The larger β , the larger impact SO₂ emission change will have on 278 the related metrics. β tends to be ≤ 1 because the relative rate of change in sulfate will 279 280 not exceed that of SO₂ emissions. Considering that the emission reduction is regional-specific in S2-S4 scenarios, a regional-specific efficiency factor $\beta_{r,A-B}$ is also 281 defined: $\left(\frac{\Delta X}{X}\right)_B = \beta_{r,A-B} \times \left(\frac{\Delta E}{E}\right)_A$, where A denotes the region where emissions are 282 283 reduced, and B denotes the region where the impact is evaluated. For example, $\beta_{r,NC-SC}$ of sulfate denotes the sensitivity of sulfate concentration change over SC to SO_2 284 emission reduction over NC. Here the regional $\frac{\Delta E}{E}$ is 0.08 for all the regions in S1, 285 0.213 for NC in S2, 0.295 for SC in S3, and 0.489 for SWC in S4 scenario. Since the 286 287 S1 scenario does not have a regional-specific reduction in emissions, the regional sensitivity factor is simply $\beta_{r,B}$. All the β and $\beta_{r,A-B}$ are displayed in Figure 6. 288

3.2 Response of surface SO₂ and sulfate concentrations

290

In the S1 scenario, a uniform 8% of reduction in SO₂ emissions (totally 2.3Tg)

over China results in a 7.9% and 5.7% decrease of SO₂ and sulfate concentration, 291 respectively, and the corresponding national mean efficiency factor β is 0.99 for SO₂ 292 293 and 0.71 for sulfate (Figure 6a). Sulfate efficiency factor is smaller than that of SO_2 , indicating the nonlinear response of sulfate to SO₂ emission change due to chemistry 294 and transport. The reduction of regional-mean sulfate concentration ranges from 6.2% 295 in SC ($\beta_{r, SC} = 0.78$) to 7.2% in NC ($\beta_{r, NC} = 0.9$). The regional efficiency factors of 296 sulfate over NC, SC and SWC are all greater than the national-mean value, indicating 297 higher emission control efficiency for sulfate by reducing SO₂ emissions from regions 298 299 with higher emissions. Seasonally, sulfate concentration decrease is smaller in winter than summer at all three regions, indicating that SO₂ emission changes have larger 300 influence on sulfate in summer. 301

302 In the S2 scenario, SO₂ emissions from NC are reduced by 21.3%, equivalent to a reduction of 2.3 Tg or 8% of the national total, while emissions from the rest of the 303 country remain unchanged. SO₂ concentration decrease is 19.6% for NC (β_r) 304 _{NC-NC}=0.92), 2.5% for SC ($\beta_{r, NC-SC}$ =0.08), and 0.9% for SWC ($\beta_{r, NC-SWC}$ =0.04). The 305 annual-mean efficiency factor is 1.0 for national mean surface SO₂. The S2 scenario 306 results in a 14.4%, 4.9% and 3.0% decrease of annual-mean sulfate concentrations 307 over NC, SC, and SWC, respectively. β for national mean sulfate concentration is 0.76, 308 309 larger than that in S1 (0.71). The regional sulfate efficiency factors (β_r) to SO₂ emission change over NC are: $\beta_{r, NC-NC} = 0.68$, $\beta_{r, NC-SC} = 0.23$, and $\beta_{r, NC-SWC} = 0.14$ 310 311 (Figure 6b and c). The $\beta_{r, NC-NC}$ of both SO₂ and sulfate in the S2 scenario is smaller than $\beta_{r, NC}$ in S1, because the S1 scenario includes reduced transport of SO₂ and sulfate 312

resulting from decreased emissions outside NC. The fact that $\beta_{r, NC-SC}$ and $\beta_{r, NC-SWC}$ 313 are both significantly larger than zero indicates the important impact of NC emissions 314 315 on SO₂ and sulfate concentrations over other regions by way of inter-regional transport. The fact that $\beta_{r, NC-SC}$ is 64% larger than $\beta_{r, NC-SWC}$ provides a clear indication 316 that SO₂ emissions from NC has a larger influence on SO₂ and sulfate concentrations 317 over SC than those over SWC (Figure 6c). The inter-regional efficiency factors (β_r . 318 NC-SC and $\beta_{r, NC-SWC}$) for sulfate is much larger than those for SO₂ reflecting the longer 319 atmospheric lifetime of sulfate. 320

321 In the S3 scenario in which SO₂ emissions from SC are reduced by 2.3 Tg or 29.5%, the efficiency factor is 0.94 and 0.69 for national mean SO₂ and sulfate 322 concentration, respectively, both smaller than the corresponding values in S1 and S2. 323 324 For SO₂, there is a 25.1% decrease of SO₂ concentrations over SC and the corresponding $\beta_{r, SC-SC}$ is 0.85. Because of the short lifetime of SO₂ in the atmosphere, 325 the SO₂ inter-regional efficiency factors are much smaller ($\beta_{r, SC-NC} = 0.08$, and $\beta_{r, SC-NC}$ 326 $_{SC-SWC} = 0.04$). Sulfate concentrations decrease by 14.8% over SC, and the 327 corresponding efficiency factor $\beta_{r, SC-SC}$ is 0.50. Compared with $\beta_{r, NC-NC}$ of 0.68 in S2, 328 the lower $\beta_{r, SC-SC}$ in S3 indicates that sulfate over SC is less sensitive to within-region 329 SO₂ emission change than that over NC. The regional efficiency factor of sulfate over 330 NC to changing SC emissions ($\beta_{r, SC-NC}$) is 0.14 for the annual mean, lower than $\beta_{r, SC-NC}$) 331 _{NC-SC} of 0.23 derived from S2. Seasonally, SO₂ emissions from SC have a larger 332 333 influence on sulfate over NC in summer ($\beta_{r, SC-NC} = 0.16$) than winter ($\beta_{r, SC-NC} = 0.11$), because of different prevailing wind directions in the two seasons. Sulfate 334

concentrations over SWC have a small sensitivity to changing SO₂ emissions from SC, with a $\beta_{r, SC-SWC}$ of only 0.05.

The S4 scenario, which reduces SO₂ emissions from SWC by 48.9%, has the least effect on national mean sulfur (both SO₂ and sulfate) concentration ($\beta = 0.91$ for SO₂ and 0.68 for sulfate). Sulfate concentrations over SWC have a relatively small efficiency factor to within-region SO₂ emission changes with the $\beta_{r, SWC-SWC}$ of 0.50. $\beta_{r,}$ swc-NC and $\beta_{r, SWC-SC}$ are both less than 0.05 for sulfate, indicating the limited impact of SO₂ emissions on other regions due to the terrain of Sichuan Basin.

343 To summarize the above analysis of the four emission scenarios, we find that among the three regions selected, national mean surface concentrations of both SO₂ 344 and sulfate are most sensitive to SO₂ emission changes from NC. SO₂ emissions from 345 346 NC are 36% and 129% higher than those from SC and SWC, respectively. Because of the short lifetime of SO₂, reducing SO₂ emissions from one region has a small effect 347 on SO₂ concentrations over the other regions, and thus the national-mean SO₂ 348 349 concentration is most sensitive to SO₂ emissions from NC. Sulfate over NC shows the largest sensitivity to within-region emission changes ($\beta_{r, NC-NC} = 0.68$, compared with 350 $\beta_{r, SC-SC}$ of 0.50 and $\beta_{r, SWC-SWC}$ of 0.50). Sulfate has a longer atmospheric lifetime than 351 SO₂ and can be transported over long distance. SO₂ emission reductions over NC thus 352 have the largest influence on sulfate over adjacent regions with $\beta_{r, NC-SC}$ and $\beta_{r, NC-SWC}$ 353 the largest among the regional efficiency factors of inter-regional transport. As a result, 354 355 the national-mean β of sulfate is the highest in the S2 scenario (0.76), followed by S1 (0.71), and the mechanism to explain this regional difference will be further discussed 356

in Section 4. The above analysis indicates that a nationwide uniform reduction of SO_2 emissions may not be the most effective way to reduce surface SO_2 and sulfate concentrations, and SO_2 emission reduction over NC should receive a higher priority in the national policies.

361 3.3 Response of population-weighted sulfate concentration

Compared with the area-mean sulfate concentration, the population-weighted 362 sulfate concentration (PWC) is a better metric to reflect the public exposure to 363 atmospheric sulfate aerosols because it considers the spatial heterogeneity of 364 365 population distribution. The PWC is calculated for each province or region by two steps (Stedman et al., 2002): first multiplying the surface sulfate concentration by the 366 population data for individual model grids, then summing up the values of all grids 367 368 within a province or region and dividing the sum by the total population to get the PWC for each province or region. The population data over China were adopted from 369 SEDAC (SocioEconomic Data Applications Center. 370 and 371 http://sedac.ciesin.columbia.edu/data/collection/gpw-v3) for the year 2010. The original population data from the SEDAC database is at the resolution of about 5 km x 372 5 km ((1/24) \times (1/24)). We regridded them to the resolution of 0.5 \times 0.667 ° to match 373 with that of the sulfate concentrations from the model. 374

The annual mean sulfate concentrations and provincial PWC are displayed in Figure 7. Higher sulfate concentrations and PWCs occur over the east and southwest part of China, in accordance with the spatial distribution of anthropogenic SO₂ emissions (c.f. Figure 1). The annual mean sulfate concentration is highest over SWC

(9.9 μ g m⁻³), followed by NC (9.7 μ g m⁻³) and SC (8.1 μ g m⁻³). The annual mean 379 PWC over NC, SC and SWC is 11.2 μg m^-3, 9.8 μg m^-3 and 12.7 μg m^-3, respectively. 380 The highest provincial PWC is the Sichuan province (including Chongqing) in SWC 381 and the Hubei province in SC. The correlation between sulfate concentration and 382 population density is stronger over SC and SWC than that over NC. As a result, SWC 383 and SC exert higher weightings in the PWC metric than in the area-mean 384 concentration metric. 385

The effects of the four emission scenarios on PWC in China are summarized in 386 387 Table 2. The S3 scenario shows the largest decrease of PWC, with an 8.3% reduction in mean PWC of the three regions and 7.8% for the whole country. The S2 scenario 388 has the second-largest impact, with the corresponding change of 7.6% and 7.5% 389 390 respectively. The efficiency factor of the national mean PWC is highest in S3 (0.98) and lowest in S1 (0.81). This regional difference indicates that SO₂ emission 391 reductions in SC (i.e., S3) is the most effective way to reduce human exposure to 392 393 ambient sulfate aerosols, while the national-mean scenario (S1) is the least effective.

394

3.4 Response of sulfur outflow to the Pacific

Previous studies have found that pollution outflow from East Asia to the Pacific 395 peaks in spring (Chin et al., 2007; Clarisse et al., 2011), while winter is also a 396 significant contributor to the annual outflow flux (Feng et al., 2007). We calculate 397 the sulfur flux to Western Pacific in each scenario for the winter and spring seasons. 398 The transport flux is evaluated at the boundary of 123 °E and 22 °N - 42 °N within the 399 troposphere and the sulfur flux includes both SO₂ and sulfate. We define eastward flux 400

as positive. The sulfur fluxes for both seasons are positive, indicating net export of 401 sulfur compounds from China to the Western Pacific. Figure 8a displays the seasonal 402 fluxes of each scenario. The standard simulation gives a flux of 490 kt S month⁻¹ in 403 winter and 450 kt S month⁻¹ in spring. Compared with the standard simulation, the S1 404 scenario shows a 5.4% decrease of sulfur flux in winter and 5.3% in spring, with the 405 mean value of β being 0.67 for average fluxes of the two seasons. The S2 scenario 406 shows the largest sulfur flux decrease of 7.2% in winter and 8.0% in spring and mean 407 β of 0.95, indicating that SO₂ emission control over NC has the strongest effects on 408 409 reducing sulfur fluxes to the Western Pacific. The S3 and S4 scenarios have a much smaller impact compared to S1 and S2, and the S3 scenario results in the least 410 response ($\beta = 0.50$). This can be explained by the contribution of each region to the 411 412 transport fluxes, which will be discussed in Section 4.2.

In summary, the comparison between the different spatial-realizations of the 413 same amount of SO₂ emission reduction for China reveals different impacts not only 414 415 by region but also by the impact metrics of choice. Reducing SO₂ emissions over NC results in the highest efficiency in reducing surface sulfur concentration in China as a 416 whole with an efficiency factor of 1.0 for SO₂ and 0.76 for sulfate as well as in 417 reducing transport of sulfur to the Western Pacific with the mean β of 0.95. On the 418 other hand, the sensitivity of population-weighted sulfate concentration is highest in 419 the S3 scenario ($\beta = 0.98$), so SO₂ emission control in SC is most effective to reduce 420 421 human exposure to sulfate aerosols over China.

422 **4.** Regional differences in sulfur chemistry and transport

To better understand mechanistically the regional differences in the efficiency factors presented in Section 3, we investigate in this section the regional differences in the conversion of SO_2 to sulfate and inter-regional transport of the major sulfur compounds (SO_2 and sulfate) on the basis of GEOS-Chem model outputs. Sensitivity tests of our findings to meteorology and emissions are also presented.

428

4.1 SO₂ conversion to sulfate

We have presented in Section 3.2 that the sensitivity of sulfate concentrations to 429 local SO₂ emission changes differs from region to region, and the regional efficiency 430 431 factor of SO₂ emission control is larger in NC ($\beta_{r, NC-NC}$) than other regions (i.e., $\beta_{r, NC-NC}$) sc-sc and $\beta_{r, SWC-SWC}$). Here we attribute this difference to regional characteristics of 432 sulfate chemistry using the GEOS-Chem model. As described in Section 2.1, in the 433 model SO₂ is oxidized by OH to form sulfate in the gas phase, or by H₂O₂ and O₃ in 434 the aqueous phase. The two pathways are the main source of atmospheric sulfate. The 435 direct oxidation of SO₂ by O₂ catalyzed by transition metals (Alexander et al., 2009) 436 437 and the heterogeneous reaction of SO₂ on pre-existing aerosols (Wang Y. et al., 2014) 438 are not included in the current simulation. Globally aqueous phase oxidation plays a larger role than gas phase oxidation in sulfate formation (Unger et al., 2006), while 439 their relative contributions vary regionally and seasonally. In the standard simulation, 440 aqueous phase oxidation of SO₂ contributes 45%, 64% and 73% to sulfate over NC, 441 SC and SWC, respectively. The lower atmospheric humidity and stronger NO_X 442 443 emissions over NC are two important factors responsible for the higher percentage of gas phase SO₂ oxidation in this region. H₂O₂ oxidation makes up more than 90% of 444

aqueous phase oxidation for all the three regions. Barth and Church (1999) reported a more than 80% contribution of aqueous phase oxidation to sulfate over Southeast China. Increasing emissions of NO_X and hydrocarbons from China since the 1990s are expected to increase the relative importance of gas phase oxidation for sulfate (Berglen et al., 2004; Unger et al., 2006), which explains the lower fraction of aqueous oxidation in our study.

Table 3 presents the relative changes of SO₂ emissions, SO₂ oxidation rate (gas 451 and aqueous phase and their total), and sulfate concentrations in the regional-specific 452 453 scenarios (S2-S4) compared with the standard simulation. Reducing SO₂ emissions has different influences on gas and aqueous oxidation. Over all three regions, the 454 relative decrease of gas phase oxidation is greater than that of aqueous oxidation, so 455 456 the region with a higher contribution from gas phase oxidation will show a larger sensitivity of sulfate to SO₂ emissions reduction; in our study, NC is the region with 457 the largest fraction of gas phase oxidation. Adopting the relationship between the 458 impact metric and SO₂ emission changes defined in Section 3, we derive the regional 459 sensitivity of SO₂ oxidation to be 0.76 for NC (S2), larger than that of 0.67 for SC (S3) 460 and 0.64 for SWC (S4), explaining the larger response of sulfate over NC to 461 within-region SO₂ emissions than the other two regions. 462

463 SO₂ emission changes affect both gas- and aqueous-phase oxidation processes, 464 but the magnitude of the influence depends on whether the process is SO₂-limited or 465 not. In most-polluted areas with high NO_X emissions (like China), the aqueous 466 oxidation tends to be oxidants limited rather than SO₂-limited because of the impact

of high-NO_X concentrations on OH, H₂O₂, and O₃. Previous sensitivity studies 467 (Berglen et al., 2004) have found that the gas-phase oxidation is more limited by SO₂. 468 469 Therefore, SO₂ emission change will have a stronger impact on gas phase oxidation than aqueous phase oxidation and this explains why when SO_2 emissions decrease, the 470 relative decrease of gas phase oxidation is larger than that of aqueous phase oxidation. 471 Since the proportion of gas phase oxidation in NC (55%) is much larger than that in 472 SC (36%) and SWC (27%), the total SO₂ oxidation rates in NC is more sensitive to 473 SO₂ emission changes than those over SC and SWC. 474

475 **4.2 Su**

4.2 Sulfur transport

The decrease of sulfate concentrations for each region is less than the extent that 476 can be attributed to within-region SO₂ oxidation and the difference is due to the 477 478 transport of sulfur between regions. To further separate the impact of within-region vs. inter-regional transport on sulfate concentrations by region, we conducted additional 479 model experiments in which SO₂ emissions from NC, SC and SWC are zeroed off 480 481 separately. The difference of sulfate concentrations between the standard simulation and each of the zeroing-off model experiments represents the contribution of SO₂ 482 emissions from the corresponding region with zero emissions. The resulting 483 decomposition of monthly mean sulfate concentrations by SO₂ source region is 484 displayed in Figure 9 for NC, SC, and SWC separately. 485

For the annual average, within-region SO₂ emissions contribute 68% of sulfate concentrations over NC (Figure 9a), followed by 15% from SC emissions. Seasonally, contributions from SC emissions on NC sulfate range from 10% during winter to 17%

during summer. SO₂ emissions from SWC have a small influence (4%) on sulfate over 489 NC, and the remaining 13% of sulfate over NC is from other source regions. For SC 490 (Figure 9b), only 59% of sulfate comes from SO₂ emitted within SC. NC is an 491 important source region for sulfate over SC, contributing 23% annually and ranging 492 from 11% in winter to 30% in summer. Transport from SWC has a very small 493 contribution of only 4%. For SWC, within-region emissions provide 61% of sulfate 494 (Figure 9c), while transport from NC and SC contributes 10% and 8%, respectively, 495 with the remaining 21% from other source regions. The combined contribution of 496 497 inter-regional transport among the three regions is 19%, 27%, and 18% to sulfate over NC, SC, and SWC, respectively. The shorter lifetime of sulfate over SC and SWC 498 makes it harder to transport over long distances to downwind regions, so among all 499 500 the inter-regional transport of sulfate examined here, SO₂ emissions from NC exert the largest impacts to sulfate concentrations in other regions, contributing 23% and 10% 501 to sulfate over SC and SWC, respectively. This explains why $\beta_{r, NC-SC}$ and $\beta_{r, NC-SWC}$ 502 derived from the S2 scenario are larger than the regional sensitivity factors of 503 inter-regional transport in other emission scenarios. As a result, for a given amount of 504 SO₂ emission reduction in China, implementing it over NC is found most effective in 505 getting the largest benefit of reducing surface sulfate concentrations over China as a 506 507 whole.

We further quantify the contribution of each region to the transport fluxes of total sulfur (SO₂ + sulfate) to the Western Pacific for winter, spring and the mean of the two seasons (Figure 8b). NC is the largest contributor and contributes ~40% of total fluxes for each season. This explains the largest sensitivity factor of the export fluxes to NC emissions in the S2 scenario ($\beta = 0.95$). The contribution from SWC is the second largest, being 17% in spring and 24.1% in winter and a mean of 20.7% for the two seasons. Most of the export fluxes from SWC are found above the boundary layer and as such they have a small effect on surface sulfate concentrations over NC or SC. SC contributes the least (20%) to the export fluxes, resulting in the smallest sensitivity factor of sulfur export flux to the Western Pacific ($\beta = 0.50$) in the S3 scenario.

518 4.3 Robustness test

519 The chemistry of SO₂ conversion to sulfate and the transport of sulfur compounds are dependent on both meteorology and emissions. We used a single 520 year's meteorology and emissions (2010) to derive the efficiency factors. To assess 521 522 the uncertainty of our analysis to the choice of meteorology and the magnitude of emission reductions, sensitivity tests were carried out by changing the year of 523 meteorology to 2009 and by doubling the amount of SO₂ emissions reductions. The 524 national mean sensitivity factor of surface sulfate concentration, population-weighted 525 sulfate concentration and eastward transport fluxes are calculated and compared with 526 that from the S1-S4 emission reduction scenarios. 527

First, to examine the sensitivity of the model results to the meteorological fields, we conducted a series of one-year test simulations with the 2009 meteorology. In the tests, we used the same emissions as in the standard simulation and the S1-S4 scenarios. With the 2009 meteorology, the national mean SO₂ and sulfate concentration and eastward transport fluxes are also most sensitive to SO₂ emission reduction from NC (Figure 6a, green short line). The discrepancy in the value of β between simulation with 2009 and 2010 meteorology is within 5%. The efficiency factors for national mean SO₂ and sulfate concentration and sulfur flux are 1.0, 0.78 and 0.94, respectively, compared with the 1.0, 0.76 and 0.95 from the 2010 meteorology. SO₂ emission reduction in SC is most effective in reducing PWC with the national mean β of 0.94 with the 2009 meteorology, compared to the corresponding value of 0.98 from the 2010 meteorology.

Second, the magnitude of SO₂ emissions reduction is doubled in each of the 540 541 S1-S4 scenarios to check the sensitivity of model results to emissions. These tests are run for one year and with the 2010 meteorology. The efficiency factor for national 542 mean SO₂ and sulfate concentration, PWC and sulfur transport fluxes to the Western 543 544 Pacific from this test are displayed in Figure 6a with yellow short line. When SO₂ emission reduction is doubled, the national mean SO₂ and sulfate concentration, and 545 the export sulfur fluxes are also most sensitive to SO_2 emission reduction from NC, 546 547 and β for national mean PWC is the largest when SO₂ emission reduced from SC. However, there is a relatively significant decrease in the value of β , especially for 548 national mean sulfate concentration and PWC (more than 20%). This indicates that 549 SO_2 oxidation rate becomes less sensitive when SO_2 emission reduction is greater. 550

Furthermore, SO_2 emission control may accompany with changing emissions of NO_X and VOCs because these pollutants have common sources as SO₂. NO_X and VOCs are precursors of tropospheric O₃, and their emissions change can influence the concentrations of H₂O₂, O₃ and OH. While coal combustion is the dominant source of

555	SO_2 , it is not the most important source for NO_X or VOCs (transportation being
556	another equally important source for those species). In addition, the technologies used
557	to control SO_2 emissions from coal power plants cannot remove NO_X or VOCs to the
558	same extent as SO ₂ . To address the impact of changing emissions of co-emitted
559	species on SO ₂ chemistry, we conducted a third set of sensitivity tests considering the
560	extreme circumstance in which NO_X and VOCs emissions are also decreased by 8%,
561	equal to the magnitude of SO_2 emission change in the S1 scenario. The results from
562	this sensitivity test are within $\pm 2\%$ of those from S1 for all the metrics we considered.
563	For example, the decrease of national mean SO ₂ and sulfate concentrations is 7.80%
564	and 5.76%, respectively; the corresponding value is 7.90% and 5.70% from the S1
565	simulation. This indicates that the change in NO_X and VOCs emissions as a result of
566	SO ₂ emission control processes has a negligible impact on SO ₂ oxidation and as such
567	it will not affect the conclusion of this study.

In summary, we find SO₂ emissions reduction has a larger influence on gas phase 568 oxidation than aqueous phase oxidation. Because sulfate in NC has the largest relative 569 contribution from gas phase oxidation, NC shows the largest sensitivity to 570 within-region SO₂ emission changes. Besides, inter-regional transport contributes 18% 571 ~ 27% of sulfate over the three regions. SO₂ emissions from NC contribute 23% and 572 10% to sulfate over SC and SWC, respectively, which are the largest among all the 573 inter-regional transport of sulfate. This explains why $\beta_{r, NC-SC}$ and $\beta_{r, NC-SWC}$ are the 574 largest among all the efficiency factors to external emission changes (Section 3.2 and 575 Figure 6c). SO₂ emissions from NC contribute the most (~40%) to the sulfur transport 576

fluxes from China to the Western Pacific, resulting in the largest sensitivity factor (0.95) of the transport flux in the S2 scenario. Contribution from SC is the least (20%) and thus SO₂ emission reduction from SC has the least influence on the transport flux. The robustness tests demonstrate that the ranking of different scenarios are robust with respect to different meteorology year, different magnitude of SO₂ emission reduction, and changing emissions of the co-emitted species (NO_X and VOCs) as SO₂.

583

5. Conclusion and discussion

We have designed and compared model sensitivities in which the same amount of SO₂ emission reduction (2.3 Tg, 8% of total SO₂ emission from China in 2010, following the 12th FYP) is implemented uniformly in China as a whole (S1) and in three sub-regions only (NC, SC and SWC) to investigate the emission control efficiencies in different regions. The GEOS-Chem chemical transport model is used in this study to quantify the response of different concentration and flux metrics to SO₂ emissions change.

National mean and inter-regional efficiency factors (β and β_r) are defined as the percentage change of the concerned metrics caused by a 1% decrease of SO₂ emission changes. The metrics include surface SO₂ and sulfate concentrations, the population-weighted sulfate concentration and sulfur transport from China to the Western Pacific. SO₂ emission reduction from NC (S2 scenario) has the largest influence on national mean SO₂ concentration with the efficiency factor of 1.0. The S2 scenario is also most effective in reducing the mean sulfate concentration over

China as a whole with the highest national-mean β of 0.76, which can be explained in 598 two aspects. On one hand, SO₂ oxidation in gas phase is found to be more sensitive to 599 600 the change of SO₂ emissions than aqueous phase oxidation, and NC is the region with the largest fraction of gas phase SO₂ oxidation. This makes sulfate over NC most 601 sensitive to within-region emission changes with the largest efficiency factor ($\beta_{r, NC-NC}$ 602 = 0.68, $\beta_{r, SC-SC}$ =0.5, $\beta_{r, SWC-SWC}$ = 0.50). On the other hand, comparison of 603 inter-regional sulfate transport reveals that SO₂ emissions from NC exert the largest 604 impacts to sulfate concentrations in other regions (23% for SC and 10% for SWC). 605 606 This leads to $\beta_{r, NC-SC}$ and $\beta_{r, NC-SWC}$ being the largest among the regional efficiency factors of inter-regional transport. 607

Among the three regions, NC contributes most (~40%) to the transport fluxes of 608 609 sulfur from China to the Western Pacific, so the Western Pacific region will benefit most from SO₂ reduction in NC with the mean β of 0.95. Contribution from SC is the 610 least among the three regions studied here, resulting in the smallest efficiency factor 611 612 of sulfur export flux to the Western Pacific ($\beta = 0.50$) in the S3 scenario. We also find that SO₂ emission control in SC is most effective to reduce human exposure to sulfate 613 aerosols over China as a whole, as indicated by the highest sensitivity of 614 population-weighted sulfate concentration in the S3 scenario ($\beta = 0.98$). The 615 efficiency factors and their spatial differences are found to be robust and not 616 dependent on the year of meteorology, the magnitude of SO₂ emissions change or the 617 change in emissions of co-emitted NO_X and VOCs. 618

619

Based on the analysis above, we recommend that a nationwide uniform reduction

of SO₂ emissions may not result in the largest emission control efficiency. 620 Considering that NC makes the largest contribution to inter-regional transport of 621 sulfur within China and to the transport fluxes to the Western Pacific, SO₂ emission 622 reduction over NC should receive a higher priority in the national policies in order to 623 maximize the air quality benefits for China and downwind regions. However, from 624 2006 to 2010 (the 11th Five-Year Plan period), SO₂ emissions from NC have 625 decreased at a much slower rate than the national total emissions. Based on the MEIC 626 inventory, total SO₂ emissions from China were 9.4% lower in 2010 than 2006, and 627 emissions from NC, SC and SWC have decreased by 4.7%, 16.1% and 23.1%, 628 respectively, during the same period. The relative reduction of SO₂ emissions in NC is 629 thus one third or less of that for the other two regions and is only half of the reduction 630 631 at the national mean level. This indicates that China has not prioritized SO₂ emission control in NC in the past. Our study suggests this should be corrected in the future in 632 order to maximize the benefits of SO₂ control. 633

634

Acknowledgement: This research was supported by the National Key Basic Research
Program of China (2014CB441302), the CAS Strategic Priority Research Program
(Grant No. XDA05100403), and the Beijing Nova Program (Z121109002512052). We
thank the free use of surface measurements from EANET, AOD data from MODIS
and SO₂ columns data from OMI.

641 **References:**

- Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed
 oxidation of atmospheric sulfur: Global implications for the sulfur budget, J.
 Geophys. Res., 114, D02309, doi:10.1029/2008JD010486, 2009.
- Barth, M. C., and Church, A. T.: Regional and global distributions and lifetimes of
 sulfate aerosols from Mexico City and southeast China, J. Geophys. Res., 104(23),
 30231-30239, 1999.
- Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarras ón, L., Dignon, J., Voldner, E. C.,
 Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global gridded inventories of
 anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239–
 29253, doi:10.1029/96JD00126, 1996.
- Berglen, T. F., Berntsen, T. K., Isaksen, I. S. A., and Sundet J. K.: A global model of
 the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, J.
 Geophys. Res., 109, D19310, doi:10.1029/2003JD003948, 2004.
- Chen, D., Wang, Y., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.:
 Regional CO pollution and export in China simulation by the high-resolution
 nested-grid GEOS-Chem model, Atmos. Chem. Phys., 9, 3825–3839,
 doi:10.5194/acp-9-3825-2009, 2009.
- Chin, Mian, Diehl, T., Ginoux, P., and Malm, W.: Intercontinental transport of
 pollution and dust aerosols: implications for regional air quality, Atmos. Chem.
 Phys., 7, 5501-5517, doi:10.5194/acp-7-5501-2007, 2007.
- Clarisse, L., Fromm, M., Ngadi, Y., Emmons, L., Clerbaux, C., Hurtmans, D., and
 Coheur, P.-F.: Intercontinental transport of anthropogenic sulfur dioxide and other
 pollutants: An infrared remote sensing case study. Gephys. Res. Lett., 38, L19806,
 doi:10.1029/2011GL048976, 2011.
- Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A.,
 and Zhang, L.: Impact of nimeral dust on nitrate, sulfate, and ozone in transpacific
 Asian pollution plumes, Atmos. Chem. Phys., 10, 3999-4012,
 doi:10.5194/acp-10-3999-2010, 2010.
- Feng , J., Guo, Z., Chan, C. K., and Fang, M.: Properties of organic matter in PM_{2.5} at
 Changdao Island, China a rural site in the transport path of the Asian Continental
 outflow. Atmos. Environ., 41: 1924-1935, 2007.
- Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient
- thermodynamic equilibrium model for K^+ -Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻
- -H₂O aerosols. Atmos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007,
 2007.
- Heald., C. L., Jacob, D. J., Park, R. J., Alexander, B., Fairlie, T. D., Yantosca, R. M.,
 and Chu, D. A.: Transpacific transport of Asian anthropogenic aerosols and its
 impact on surface air quality in the United Stades, J. Geophys. Res., 111, D14310,
 doi: 10.1029/2005JD006847, 2006.
- He, H., Li, C., Loughner, C. P., Li, Z., Krotkov, N. A., Yang, K., Wang, L., Zheng, Y.,
 Bao, X., Zhao, G., and Dickerson, R. R.: SO₂ over central China: Measurements,
 numerical simulations and the tropospheric sulfur budget, J. Geophys. Res., 117,
 D00K37, doi:10.1029/2011JD016473, 2012.

- He, K. B.: Multi-resolution Emission Inventory for China (MEIC): model framework
 and 1990–2010 anthropogenic emissions, International Global Atmospheric
 Chemistry Conference, 17–21, September, Beijing, China, 2012.
- Itahashi, S., Uno, I., Yumlmoto, K., Irie, H., Osada, K., Fukushima, H., Wang, Z., and
 Phara, T.: Interannual variation in the fine-mode MODIS aerosol optical depth and
 its relationship to the changes in sulfur dioxide emissions in China between 2000
 and 2010, Atmos. Chem. Phys., 12, 2631 2640, doi:10.5194/acp-12-2631-2012,
 2012a.
- Itahashi, S., Uno, I., Kim, S.: Source contributions of sulfate aerosols over East Asia
 estimated by CMAQ-DDM, Environ. Sci. Technol., 46, 6733-6741, 2012b.
- Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris,
 C. E., Chance, K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite
 observations for timely updates to global anthropogenic NOX emission inventories,
 Geophys. Res. Lett., 38, L05810, doi: 10.1029/2010GL046476, 2011.
- Li, C., Krotkov, N. A., Dickerson, R. R., Li, Z, Yang, K., and Chin, M.: Transport and
 evolution of a pollution plume from northern China: A satellite-based case study, J.
 Geophys. Res., 115, D00K03, doi:10.1029/2009JD012245, 2010a.
- Lou, S., Liao, H., and Zhu, B.: Impacts of aerosols on surface-layer ozone
 concentrations in China through heterogeneous reactions and changes in photolysis
 rates, Atmos. Environ., 85, 123-138, 2014.
- Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous
 aerosol emissions in China and India, 1996-2010, Atmos. Chem. Phys., 11, 9839 –
 9864, doi:10.5194/acp-11-9839-2011, 2011.
- Manktelow, P. T., Mann, G. W., Carslaw, K. S., Spracklen, D. V., and Chipperfield, M.
 P.: Regional and global trends in sulfate aerosol since the 1980s, Geophys. Res.
 Lett., 34, L14803, doi:10.1029/2006GL028668, 2007.
- Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R.M., and Chin, M.: Natural transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys, Res., 109, D15204, doi:10.1029/2003JD004473, 2004.
- Roelofs, G-J., Lelieveld, J., and Ganzeveld, L.: Simulation of global sulfate
 distribution and the influence on effective cloud drop radii with a coupled
 photochemistry-sulfur cycle model, Tellus, 50B, 224-242, 1998.
- Schreifels, J. J., Fu, Y., and Wilson, J. E.: Sulfur dioxide control in China: policy
 evolution during the 10th and 11th Five-Year Plans and lessons for the future.
 Energy Policy, 48(2012) 779-789, 2012.
- Stedman, J. R., Grice, S., Kent, A., and Cooke, S.: GIS-based models for ambient PM
 exposure and health impact assessment for the UK, J. Phys. Conf. Ser., 151(1):
 012002, doi:10.1088/1742-6596/151/1/012002, 2002.
- Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., and
 Hsu, S.-C.: PM2.5 pollution in a megacity of southwest China: source
 apportionment and implication, Atmos. Chem. Phys., 14, 8679-8699,
 doi:10.5194/acp-14-8679-2014, 2014.
- 728 Unger, N., Shindell, D. T., Koch, D. M., and Streets, D. G.: Cross influences of ozone

- and sulfate precursor emissions changes on air quality and climate, PNAS, vol. 103,
 no. 12, 4377-4380, 2006.
- Wang, J., Xu, X., Henze, D. K., Zeng, J., Ji, Q., Tsay, S-C., and Huang, J.: Top-down
 estimate of dust emissions through integration of MODIS and MISR aerosol
 retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802,
 doi:10.1029/2012GL051136, 2012.
- Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang,
 Q.: The 2013 severe haze over the southern Hebei, China: model evaluation, source
 apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151-3173,
 doi:10.5194/acp-14-3151-2014, 2014.
- Wang, Y., McElroy, M. B., Jacob, D. J., and Yantosca, R. M.: A nested grid
 formulation for chemical transport over Asia: Applications to CO, J. Geophys. Res.,
 109, D22307, doi:10.1029/2004JD005237, 2004.
- Wang, Y., Zhang, Q. Q., He, K., Zhang, Q., and Chai, L.: Sulfate-nitrate-ammonium aerosols over China: response to 2000-2015 emission changes of sulfur dioxide, nitrogen oxide, and ammonia, Atmos. Chem. Phys., 13, 2635 – 2652, doi:10.5194/acp-13-2635-2013, 2013a.
- Wang, Y., Zhang, Q. Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang, Q.,
 Philip, S., and Xie, Y.: Enhanced sulfate formation during China's severe winter
 haze episode in January 2013 missing from current models, J. Geophys. Res., 119,
 10425-10440, doi:10.1002/2013JD021426, 2014.
- Zhang, F., Cheng, H. R., Wang, Z.-W., Lv, X.-P., Zhu, Z., Zhang, G., and Wang, X.:
 Fine particles (PM_{2.5}) at a CAWNET background site in Central China: Chemical composition, seasonal variations and regional pollution events. Atmos. Environ. 86, 193-202, doi:10.1016/j.atmosenv.2013.12.008, 2014.
- Zhang, H., Wu, S., Huang, Y., and Wang, Y.: Effects of stratospheric ozone recovery
 on photochemistry and ozone air quality in the troposphere. Atmos. Chem. Phys, 14,
 4079-4086, doi:10.5194/acp-14-4079-2014, 2014.
- Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
 van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen deposition to the United
 States: distribution, sources, and processes, Atmos. Chem. Phys., 12, 4539-4554,
 doi: 10.5194/acp-12-4539-2012, 2012.
- Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun,
 J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability,
- 763 chemical signature, regional haze distribution and comparisons with global aerosols,
- Atmos. Chem. Phys., 12, 779 799, doi:10.5194/acp-12-779-2012, 2012.
- 765

	Simulation scenario standard		SO ₂ emission (Tg)			
	scenario	description	China	NC	SC	SWC
	standard	Standard, 2010 inventory	28.4	10.8	7.8	4.7
	S1	SO ₂ emission is reduced uniformly across China	26.1	9.9	7.2	4.3
	51	by 8% (2.3 Tg)				
	S2	Implement 2.3 Tg SO ₂ reduction on NC, emission	26.1	8.5	7.8	4.7
		from other regions unchanged				
	S3	Implement 2.3 TgSO ₂ reduction on SC, emission	26.1	10.8	5.5	4.7
		from other regions unchanged				
	S4	Implement 2.3 TgSO ₂ reduction on SWC,	26.1	10.8	7.8	2.4
		emission from other regions unchanged				
769 770						
772						

768 Table 1: simulation scenarios and SO₂ emission in each study

773 Table 2: change in population-weighted sulfate concentrations, μg m⁻³

		Difference with the standard simulation			
	standard simulation	S1	S2	\$3	S 4
NC+SC+SWC	10.9	-6.7%	-7.6%	-8.3%	-7.1%
China	9.7	-6.6%	-7.5%	-7.8%	-6.9%

	50.		SO ₂ conversion		Sulfata	
	emission	Gas phase Aqueous phase		total	concentration	
NC (S2)	-21.3%	-20.6%	-10.4%	-16.1%	-14.4%	
SC (S3)	-29.5%	-22.6%	-17.1%	-19.9%	-14.8%	
SWC (S4)	-48.9%	-41.8%	-30.1%	-31.4%	-24.5%	

Table 3: percentage changes of SO₂ conversion to sulfate and sulfate concentration over NC,

779 SC and SWC in response to within-region SO₂ emission changes:

785 Figure 1. SO₂ emissions from China in the year of 2010.

Figure 2. (a) Locations of observation sites. The red triangles represent sites with surface
sulfate concentration, and the green dots represent sites with sulfate wet deposition fluxes. (b)
Scatter plot of simulated versus observed sulfate wet deposition fluxes in 5 sites over China,

794 from January 2009 to December 2010.

Figure 3. Aerosol optical depth (AOD) over East Asia from MODIS for (a) 2010 annual mean,

(b) January, and (c) July, and from the GEOS-Chem model: (d) annual mean, (e) January,
and (f) July.

Figure 4. Annual mean total SO₂ columns from (a) OMI satellite instrument and (b)
GEOS-Chem simulation for the year 2010.

Figure 5. Comparison of observed (black line) and simulated (red line) surface sulfate
concentrations at (a) Miyun site with weekly sulfate concentration from January to June in
2010; (b) Jinsha site with seasonal mean sulfate concentration from Zhang et al. (2014), and
the observation year is 2012; (c) Chengdu site with monthly mean sulfate concentration from
Tao et al. (2014), the observation time is January, April, July, and October in 2011.

Figure 6. (a) Emission control efficiency factors (b) of national mean SO2 and sulfate 819 820 concentrations, population-weighted sulfate concentrations (PWC), and sulfur fluxes from China to the west Pacific in S1-S4 simulation scenarios. (b) Regional efficiency factors (β_r) of 821 sulfate concentrations over NC, SC and SWC to within-region SO₂ emission changes. (c) 822 823 Inter-regional efficiency factor by scenario. The efficiency factor of national mean sulfate concentrations, PWC, and eastward sulfur transport fluxes in the robustness sensitivity tests 824 are presented in (a): the green short line represents results from simulation with meteorology 825 for 2009, the yellow short line represents results from doubled magnitude of SO₂ emission 826 827 reduction simulation.

828 Figure 7. Annual mean sulfate concentration and population-weighted sulfate concentration

⁸³¹

Figure 8. (a) Sulfur (SO₂ + sulfate) flux at the 123 \pm , 22 °42 \mathbb{N} tropospheric plane from China to the Western Pacific, and (b) percentage contribution of NC, SC, SWC and other regions (the rest of Chinese regions as well as global influence) to sulfur (SO₂ + sulfate) transport fluxes from China to the Western Pacific.

836

837

Figure 9. Monthly and regional mean sulfate concentrations over (a) NC, (b) SC and (c) SWC, with contributions from within-region and inter-regional transport. Here "other" includes the rest of Chinese regions as well as foreign influence.