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Abstract  8 

 9 

The feasibility of extracting wind information from stratospheric ozone observations is tested 10 

using ensemble Kalman filter (EnKF) data assimilation (DA) and a global shallow water model 11 

that includes advection of an ozone-like tracer. Simulated observations are created from a truth 12 

run (TR) that resembles the Northern Hemisphere winter stratosphere with a polar vortex 13 

disturbed by planetary-scale wave forcing. Ozone observations mimic sampling of a polar-14 

orbiting satellite, while geopotential height observations are randomly placed in space and time. 15 

EnKF experiments are performed assimilating ozone, height, or both, over a 10 day period. The 16 

DA is also implemented using two different pairs of flow variables: zonal and meridional wind 17 

(EnKF-uv) and streamfunction and velocity potential (EnKF-ψχ ). Each experiment is tuned for 18 

optimal localization length, while the ensemble spread is adaptively inflated using the TR. The 19 

experiments are evaluated using the maximum wind extraction potential (WEP). Ozone-only 20 

assimilation improves winds (WEP = 46% for EnKF-uv, and 58% for EnKF-ψχ ), but suffers 21 

from spurious gravity wave generation. Application of nonlinear normal mode initialization 22 

(NMI) greatly reduces the unwanted imbalance and increases the WEP for EnKF-uv (84%) and 23 

EnKF-ψχ  (81%). Assimilation of only height observations also improved the winds (WEP = 24 

60% for EnKF-uv, and 69% for EnKF-ψχ ), with much less imbalance compared to the ozone 25 

experiment. The assimilation of both height and ozone performed the best, with WEP increasing 26 

to ~87% (~90% with NMI) for both EnKF-uv and EnKF-ψχ , demonstrating that wind extraction 27 

from ozone assimilation can be beneficial even in a data-rich environment. Ozone assimilation 28 
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particularly improves the tropical winds, which are not well constrained by height observations 1 

due to lack of geostrophy. 2 

1. Introduction 3 

A key missing component of the global observing system (GOS) is measurement of the three-4 

dimensional global wind (World Meteorological Organization, 2000). Upper air wind 5 

observations from radiosondes, pilot reports, and cloud and water vapor feature-tracking leave 6 

large gaps, particularly in the tropics, Southern Ocean, and in most of the stratosphere and 7 

mesosphere. Spaceborne Doppler Wind Lidar (DWL) has been proposed as the potential 8 

“missing link” in the GOS (Baker, 2014). When placed in low earth orbit, DWL can provide 9 

daily global wind profiles throughout the troposphere and lower stratosphere (National Research 10 

Council, 2007). The Atmospheric Dynamics Mission (ADM-Aeolus) (Stoffelen et al., 2005), will 11 

provide a proof-of-concept of this capability. However, the measurements will be limited to a 12 

single line-of-sight wind component, altitudes below ~26 km, and simple along-track (as 13 

opposed to sweeping or conical) sampling. While future spaceborne DWL missions may provide 14 

improved observing capabilities, the technical challenges make this a very difficult and 15 

expensive solution to the problem of inadequate wind observations.   16 

Another potential source of dynamical information comes from assimilation of trace gas (tracer) 17 

observations in a 4-D data assimilation system (DAS) that dynamically couples tracer and wind. 18 

The investigation of algorithms to extract wind information from tracers started with 1-D and 2-19 

D simulations by Daley (1995, 1996) and Riishøjgaard (1996). These studies showed that wind 20 

information could be extracted from tracer observations when the continuity equation was 21 

coupled to the dynamical equations via either a 4D-Var algorithm or an extended Kalman filter 22 

(EKF). Extensions to the full 3-D atmosphere were performed in 4D-Var experiments by Peuch 23 

et al. (2000), Semane et al. (2009), and Allen et al. (2013). These further supported the potential 24 

of tracer assimilation to benefit the winds, but also highlighted limitations due to paucity of 25 

observations, insufficient data quality, and inadequate modeling of tracers in the forecast model, 26 

as well as phenomenological limitations due to geophysical variability.  27 

Assimilation of infrared and microwave humidity channels from geostationary and polar-orbiting 28 

satellites has been shown to benefit tropospheric analyses and forecasts in the European Centre 29 
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for Medium-Range Weather Forecasts (ECMWF) 4D-Var system (Andersson et al., 2007; 1 

Peubey and McNally, 2009). Peubey and McNally (2009) isolated the mechanisms whereby 2 

geostationary clear-sky radiances can impact the wind analyses in 4D-Var and showed that the 3 

dominant factor involves adjustment of the wind field to match observed humidity features (the 4 

so-called “tracer advection effect”). However, attempts to assimilate stratospheric ozone using 5 

4D-Var algorithms and the resultant dynamical coupling have previously resulted in problems in 6 

operational numerical weather prediction (NWP) (Han and McNally, 2010; Dragani and 7 

McNally, 2013). These assimilation challenges led Allen et al. (2014) to re-examine the 8 

stratospheric tracer-wind problem at a more fundamental level using 4D-Var assimilation studies 9 

with a shallow water model (SWM) coupled to the tracer continuity equation. This idealized 10 

system allowed Allen et al. (2014) to probe the limits of wind extraction from assimilation of 11 

three readily-measured long-lived tracers: ozone (O3), nitrous oxide (N2O), and water vapor. It 12 

was shown that assimilation of global hourly tracer data was sufficient to analyze the horizontal 13 

wind components to a high degree of accuracy (~0.3 m s
-1

 random error for O3 and N2O).  14 

While 4D-Var couples tracers and dynamical variables through the tangent linear model and its 15 

adjoint, the initial background error covariance normally does not include tracer-wind 16 

correlations (these correlations develop implicitly over the assimilation window). This limitation 17 

may be overcome by using an ensemble Kalman filter (EnKF) in which the error covariance 18 

between tracer and wind is explicitly calculated by the ensemble statistics. Milewski and Bourqui 19 

(2011) assimilated ozone and temperature profiles in an EnKF system using a 3-D model at 20 

relatively low resolution (spectral triangular truncation T21). They showed that background error 21 

covariances are able to propagate information from the observed variables to wind. In particular, 22 

assimilation of either ozone or temperature observations in a polar-orbiting sampling pattern 23 

significantly improved the wind analysis. Another approach to enhancing the tracer-wind 24 

interaction within 4D-Var is to blend the static covariance with a flow-dependent ensemble 25 

covariance. This hybrid 4D-Var method is becoming increasingly popular at operational NWP 26 

centers (Buehner et al., 2010; Bonavita et al., 2012; Clayton et al., 2013; Kuhl et al., 2013; Kleist 27 

and Ide, 2015). We are developing a hybrid system within the SWM framework to study tracer-28 

wind interaction, which we plan to present in a follow-up paper.   29 
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In this paper, we take a similar approach to Milewski and Bourqui (2011), except that we use the 1 

SWM forecast model (at T42 resolution), and we assimilate ozone and height (in lieu of 2 

temperature for the SWM) observations, both separately and together, to examine whether value 3 

is added by assimilating ozone observations into a system already constrained by other 4 

observations. The SWM has been used in both 4D-Var (Courtier and Talagrand, 1990; 5 

Polavarapu et al., 2000; Jung et al., 2014) and EnKF (Kepert, 2009, 2011) experiments, since it 6 

provides a sufficiently complex system to simulate the key physical relations of the horizontal 7 

flow, including both slow balanced and fast unbalanced modes. As explained by Kepert (2009), 8 

the SWM provides a severe test for assimilation, since the weak dissipation will not remove 9 

imbalances introduced in the analysis; they will rather accumulate with time. 10 

One of the goals of the current study is to probe the limits of ozone-wind extraction in an EnKF 11 

system. To accomplish this, it is necessary to quantify (and remove, if possible) spurious 12 

imbalance generated from noisy observations and imperfect modeling of background error 13 

covariances. A wide range of studies has been performed to examine balance in the context of 4-14 

D data assimilation. For example, Neef et al. (2006, 2009) investigated balance with a low-order 15 

Lorenz-type model with the EKF and EnKF. Imbalance within SWM-DAS systems was 16 

analyzed in both 4D-Var (Courtier and Talagrand, 1990; Polavarapu et al., 2000) and EnKF 17 

(Kepert, 2009, 2011) using digital filter and nonlinear normal mode initialization techniques. 18 

Mitchell and Houtekamer (2002) considered the influence of covariance localization on balance 19 

with a 3-D dry, global, primitive-equation model. In all of these studies, imbalance was shown to 20 

be a serious issue in 4-D DAS. None of these studies was designed to examine balance in the 21 

context of the tracer assimilation problem, however. As part of this study we attempt to isolate 22 

and to the extent possible remove imbalance in order to minimize the analysis errors and to 23 

determine the extent to which the wind can be constrained by ozone observations.  24 

The layout of the paper is as follows. Section 2 describes the SWM-DAS, including the forecast 25 

model, the EnKF, and the normal mode initialization procedure. Section 3 describes the 26 

experimental design and the error diagnostics. Section 4 presents the results and discussion from 27 

the three assimilation experiments, and conclusions are provided in Sect. 5. 28 
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2. Model description 1 

2.1 Forecast model 2 

The forecast model is a spectral SWM based on the vorticity-divergence formulation in Sect. 2a 3 

of Ritchie et al. (1988), with the inclusion of fourth-order semi-implicit diffusion applied to the 4 

vorticity, divergence, and geopotential. A spectral advection equation is coupled to the SWM, 5 

solving for the mixing ratio of a passive tracer as a function of time using the same fourth-order 6 

diffusion operator. We call the combined four equation system the shallow water model with 7 

tracer (SWM
T
). The system is run at triangular truncation T42, with model fields saved on the 8 

Gaussian grid (128 longitudes × 64 latitudes, for a grid resolution of ~2.8° at the equator). The 9 

discretization uses a leap-frog time integration and a semi-implicit approximation for terms that 10 

produce gravity waves (Ritchie, 1988). To restart the model after assimilating data, an Euler 11 

forward time stepping method is applied. The global mean geopotential height H is specified to 12 

be 10 km, resulting in a gravity wave speed ( gH , where g is the earth’s gravitational 13 

acceleration) of 313 m s
-1

. To avoid numerical instability due to gravity waves, a short model 14 

time step of 120 s is used for all SWM
T
 forecasts. The diffusion coefficient is set to 5.0×10

15
 m

4
 15 

s
-1

, which provides an e-folding damping for the highest wavenumber of approximately one day.  16 

2.2 Ensemble Kalman filter  17 

To assimilate data into the SWM
T
 system, we use the “perturbed observations” EnKF 18 

(Houtekamer and Mitchell, 1998; Evenson, 2003). The system solves for ensN  analysis states 19 

using the Kalman filter equation for the state vector x  of size stateN  . 20 

 
iii dxx ens

ba K+=   (1)  

where a and b superscripts indicate analysis and background, and ens1 Ni K= is an index for 21 

ensemble member. b

ixyd H−= ii  is the vector of innovations for member i, iy  is the vector of 22 

perturbed observations, and H is the (linear) observation operator.  The ensemble-based Kalman 23 

gain matrix is defined as follows 24 

 [ ] 1Tb

ens

Tb

ensens

−
+= RHHPHPK   (2)  

with the ensemble background error covariance calculated by  25 
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Here the overbar indicates the ensemble mean and R is the observation error covariance matrix. 1 

The background state is calculated using the non-linear SWM
T
 forecast model M, subject to 2 

initial conditions 3 

 ( ) ( )[ ]   1

bb

−= nini tMt xx  (4)  

where n is an index for model time ( nt ). Note that the SWM
T
 time step (120 s) is less than the 4 

analysis time step (20 min), such that there are 10 forecast model time steps between analyses. 5 

At each analysis time, which corresponds to the end of the 20-minute background forecast, all 6 

the observations at that time are assimilated simultaneously as a single batch. 7 

 8 

The EnKF analysis equation can be solved using different combinations of state variables. In this 9 

study, we compare results using zonal wind, meridional wind, height, and ozone [ ]qzvu ,,,x =  10 

(the EnKF-uv system) and streamfunction, velocity potential, height, and ozone [ ]qz ,,,x χψ=  11 

(the EnKF-ψχ  system). The latter combination was shown by Kepert (2009) to result in better 12 

balance of increments in a SWM-EnKF system with Schur product localization (discussed 13 

further below). We will test this for the SWM
T
 system with ozone and height observations.  14 

 15 

To avoid filter divergence, we apply a state space covariance inflation factor (Anderson, 2007) to 16 

the background ensemble before assimilating observations. The background ensemble 17 

perturbations ( bb xx −i ) are multiplied by a scalar factor ξ  to produce the inflated background 18 

ensemble  19 

 ( )   bbbinf b, xxxx +−= ii ξ
,
 

(5)  

which alters the background error covariance (Eq. 3), but leaves the background ensemble mean, 20 

bx , unchanged. The inflation factor is designed to alter the global average SPREAD to match 21 

the global Root Mean Square Error (RMSE) of either the vector wind (for EnKF-uv) or the 22 

streamfunction (for EnKF-ψχ ). The RMSE and SPREAD for vector wind are defined as  23 
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where V  represents the magnitude of the vector wind (V ) and TR indicates the truth run 2 

(described in Sect. 3.1). For streamfunction (ψ ) the RMSE and SPREAD are defined as  3 
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The inflation factor is defined as either SPREADRMSE VVV /=ξ or SPREADRMSE ψψξψ /= . While the 5 

inflation factor is calculated using only the wind or streamfunction, it is applied to the entire state 6 

vector for each ensemble member using Eq. (5). The calculations of RMSE and SPREAD are not 7 

area-weighted, and therefore may be somewhat biased to match the higher latitudes, since the 8 

Gaussian grid is used. This tuning takes a similar approach to the 4D-Var simulations of Allen et 9 

al. (2014) in which the background error variances were modified to match the global RMSE of 10 

the tracer and wind components. This adaptive tuning provides a flexible way to examine how 11 

the system behaves over a wide range or parameters, without needing to separately tune the 12 

inflation factor for each case. It is of course not practical in an operational setting, since the true 13 

state is unknown, but for this idealized study it works well to prevent filter divergence.  14 

 15 

To avoid spurious long-range correlations, localization is applied to the background error 16 

covariance. We apply the elementwise (Schur product) approach (e.g., Houtekamer and Mitchell, 17 

2001) using Eq. (4.10) of Gaspari and Cohn (1999). The localization matrix S is applied directly 18 

to the background error covariance so the gain matrix becomes 19 

 [ ] 1Tb

ens

Tb

ensens

−
+= RHPHSHPSK oo  . (10)  
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To illustrate the ozone-wind interaction in the SWM
T
-EnKF system, Fig. 1 shows the ensemble 1 

mean analysis increments densK  for assimilation of a single ozone observation at 120°E 2 

longitude, 40°N latitude for the EnKF-uv and EnKF-ψχ  systems. For the EnKF-ψχ , we convert 3 

the increments to wind increments after the analysis step. Specification of the initial 100-member 4 

ensemble for this system will be discussed in Sect. 3. The positive ensemble mean ozone 5 

innovation ( d = 0.21 parts per million by volume, ppmv) results in a positive ozone increment in 6 

the vicinity of the observation with maximum of 0.11 ppmv. Since the height correlates 7 

positively with ozone, a positive height increment also occurs (maximum of 84 m). Note that the 8 

ozone and height increments are similar for both systems, since these variables are unchanged; 9 

slight differences are due to differences in tuning of the background error covariances. The wind 10 

increments are very different, however. While both show anticyclonic circulation around the 11 

positive height increment, the winds are much stronger in the EnKF-ψχ . As explained by Kepert 12 

(2009, 2011) the weakening of the winds in the EnKF-uv is due the effects of localization, which 13 

acts to decrease the local balance. As shown below, this adversely affects the system by 14 

generating spurious gravity waves.  15 

2.3 Normal mode initialization 16 

In general, analysis increments may project onto both slow balanced modes and fast unbalanced 17 

modes. Unless there is sufficient information in the background error covariance to distribute 18 

increments in a balanced way, the unbalanced modes will enter the system, and it may be 19 

difficult to remove these modes with limited observations (Neef et al., 2006, 2009). To quantify 20 

the imbalance in the SWM-EnKF, we use a nonlinear normal mode initialization (NMI) 21 

procedure (Machenhauer, 1977), which has been used in NWP to reduce the impact of inertia 22 

gravity waves caused by imbalance in the analysis increments (e.g., Kleist et al., 2009). While 23 

digital filter initialization (e.g., Fillion et al., 1995) is more commonly used in NWP today, NMI 24 

allows discrimination between the gravity wave and rotational wave modes, which is very useful 25 

in the SWM context. Kepert (2009) used NMI to analyze imbalance caused by localization in the 26 

SWM-EnKF framework, and showed that while gravity waves can be reduced by judicious 27 

choice of balance constraints, some initialization may still be necessary in the EnKF (see also the 28 

discussion in Lorenc, 2003).   29 

 30 
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For example, the single-observation increments in Fig. 1 result in unbalanced motions in both 1 

versions of the SWM
T
 system. Figure 2 shows the divergence anomalies due to the single-2 

observation increments. These anomalies propagate radially outward from the observation 3 

location, as seen in these maps at 2 h intervals. Maps at later times (not shown) indicate that 4 

these oscillations propagate around the globe in ~1.5 days, consistent with waves traveling at the 5 

gravity wave phase speed of this system. The EnKF-ψχ  increments result in smaller divergence 6 

fields than the EnKF-uv; the maximum divergence anomaly at 1200 s for the EnKF-ψχ  is ~13% 7 

of that caused by the EnKF-uv, consistent with less imbalance. However, initialization may still 8 

be necessary in both systems to remove this spurious gravity “noise.”  9 

 10 

To “initialize” the system (i.e., apply NMI to the analysis state vector), we first need the normal 11 

modes (NM) of the SWM system. These were calculated using the formulation outlined in 12 

Hogan et al. (1992). The resulting NM frequencies are shown in Fig. 3 as a function of zonal 13 

wavenumber and mode type. Negative (positive) wavenumbers indicate westward (eastward) 14 

propagating modes. These modes are separated into westward and eastward gravity wave (GW) 15 

and westward rotational wave (RW) modes. To balance the GW modes, we apply the 16 

Machenhauer (1977) condition, which reduces the time tendencies of the complex amplitudes of 17 

the modes. We apply five iterations to solve the nonlinear balance equation using a single 120 s 18 

time step for the calculation of the tendencies. We choose a linear cutoff frequency of 1.0 day
-1

, 19 

which attempts to balance all traveling modes except for one eastward wave 1 GW mode (see 20 

Fig. 3a).  21 

 22 

In this study, we apply NMI to the ensemble mean analyzed fields only as a post-processing 23 

diagnostic to quantify the degree of imbalance. The goal is to tune the EnKF system to minimize 24 

unwanted imbalance, without having to rely on applying NMI within the DAS. One reason to 25 

avoid initialization in the EnKF cycling is that it fails to distinguish real and spurious gravity 26 

waves, and can therefore potentially move the system away from the truth. Another reason is that 27 

running NMI in the EnKF would involve initializing each ensemble member separately, since 28 

different modes may be excited in each member due to the perturbed observations, which adds 29 

significantly to the computational expense. In principle, if the unbalanced modes do not interact 30 

much with the balanced components of the flow, then it should not matter whether the balancing 31 
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is done before or after the assimilation. Williamson and Temperton (1981), using a multilevel 1 

global grid-point model, showed that forecasts made with initialized data produced virtually 2 

identical results to forecasts with uninitialized data followed by initialization. This suggests that 3 

the high-frequency GW do not interact much with the low-frequency RW, but rather can be 4 

largely considered “noise” in the system that can, in principle, be filtered out. To test whether 5 

this is true for the system run here, we compared results using NMI cycling and NMI post-6 

processing for the optimal runs of the three experiments examined in Sect. 4. Differences in wind 7 

extraction potential (defined in Sect. 3) were ~1% or less for all runs, except for height only 8 

assimilation with the EnKF-uv system, which showed an improvement of 5% for NMI cycling 9 

over NMI post-processing. Assimilation of height observations is likely more sensitive to GW 10 

noise, which impacts the height directly, while the tracer is only indirectly impacted via the 11 

divergent component of the wind, which is small compared to the rotational wind. 12 

 13 

To illustrate the influence of NMI post-processing, Fig. 4 shows the true divergence along with 14 

the analyzed divergence with and without NMI for a sample field two days into an ozone 15 

assimilation run. Whereas the true divergence is rather smooth, the uninitialized divergence 16 

shows considerable noise. After applying NMI, the analyzed divergence looks much more like 17 

the truth, indicating that the noise was due largely to spurious unbalanced modes. We note that 18 

this rather large improvement from application of NMI is partly illustrating sensitivities in the 19 

SWM. Whereas in a full NWP system, physical and radiative processes may dampen the gravity 20 

waves, in the SWM with weak diffusion, the waves can remain in the system for a long time, 21 

unless assimilated data are at sufficient sampling frequency and precision to resolve the waves.    22 

3. Experimental design 23 

3.1 Truth run  24 

The truth run (TR) is designed to simulate Northern Hemisphere (NH) winter conditions in the 25 

middle stratosphere (the same TR was used in the 4D-Var tracer assimilation study by Allen et 26 

al., 2014). The initial conditions for the SWM
T
 include zero meridional wind and a zonally-27 

symmetric zonal wind that varies with latitude (ϕ ) as ( ) ( )ϕϕ 2sinmaxuu =  in the NH and is zero 28 

in the Southern Hemisphere (SH), with 60max =u  m s
-1

. The geopotential height is specified 29 
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using the gradient wind balance with a global mean height of 10 km. The initial ozone is 1 

calculated using Aura Microwave Limb Sounder (MLS) ozone data (Waters et al., 1999; Livesey 2 

et al., 2011). The data are selected for a period with weak planetary wave activity (1-15 March 3 

2011) and are interpolated to the 850 K isentropic level (approximately 32 km altitude or 10 4 

hPa), representative of middle stratosphere conditions. The zonal mean and time mean mixing 5 

ratio as a function of latitude was calculated for this period and interpolated to the Gaussian grid. 6 

The ozone is treated as passive (i.e., no chemical source/sink) and there is no radiative 7 

interaction between ozone and dynamics. Note that in the TR there are no “restarts,” since it is a 8 

continuous free-running SWM
T
 forecast. Therefore, an assimilation cycling run, which restarts 9 

with a forward Euler step after each 20-minute analysis cycle, would produce a slightly different 10 

result from the free-running forecast (which uses leap-frog time integration for all steps after the 11 

initial Euler step), even if no data were assimilated. We could, in principle, stop and restart the 12 

TR with a forward Euler step at the regular analysis time intervals, as was done in Kepert (2009); 13 

however, test runs performed with and without restarts in the TR resulted in negligible 14 

differences.  15 

 16 

To create a realistic scenario of the NH winter stratosphere, the TR is forced by the bottom 17 

topography being raised and lowered to simulate planetary-scale waves (as in Norton, 1994). A 18 

mountain of height 1250 m is created with a 20 day cycle (4 days ramping up, 12 days constant, 19 

and 4 days ramping down). The mountain is a zonal wave 1 feature that peaks at 45°N. The 20 

topography is turned off after 20 days. Since the assimilation period corresponds to days 20-30 21 

of this TR, there is no surface topography during the assimilation. NH maps of the ozone and 22 

height fields for the TR are provided in Fig. 5a-f. On day 20, a strong anticyclone (indicated by 23 

“H”) is present near 180° longitude, resembling an “Aleutian High,” with elevated ozone values. 24 

The polar vortex (indicated by “L”), identified by low ozone, is displaced off the pole into a 25 

comma shape. Over the next 10 days, the “Aleutian High” diminishes in strength and the vortex 26 

moves over the pole. Strong ozone advection occurs throughout this period. For example, a long 27 

tongue of lower ozone mixing ratio forms around a secondary anticyclone centered near 60°E 28 

longitude on day 28. This dynamical scenario produced by topographic wave forcing in the 29 

SMW
T
 provides a realistic representation of the final stages of a stratospheric minor warming 30 

(Limpasuvan et al., 2004). In the SH (Fig. 5g-l), a strong anticyclone is centered just off the pole 31 
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on day 20. This anticyclone (“H”) propagates westward around the pole, making one cycle over 1 

this 10 d period. A weaker cyclone (“L”) also propagates westward around the pole opposite to 2 

the anticyclone. The ozone is advected along with these features, with relatively high (low) 3 

ozone in the anticyclone (cyclone). The westward flow in the SH is consistent with the easterly 4 

summer flow in the middle stratosphere (Andrews et al., 1987). Additional maps of potential 5 

vorticity and ozone for this TR are provided in Fig. 2 of Allen et al. (2014). 6 

3.2 Observations 7 

Observations are simulated by sampling the TR ozone and height fields using a bi-linear 8 

interpolation in latitude and longitude. Gaussian random error is then added with a specified 9 

standard deviation (SD). The error SD for ozone was set to 0.08 ppmv, which is 1% of the initial 10 

global mean, while the height error SD was set to 50 m. The height error can be approximately 11 

related to stratospheric temperature error by using a climatological estimate of the equator-to-12 

pole gradient of temperature with respect to geopotential height in the NH winter middle 13 

stratosphere of ~5 K km
-1

. Using this conversion factor, 50 m error corresponds to ~0.25 K. Both 14 

the ozone and height errors are smaller than those of any current operational instrument. The 15 

goal here is not to evaluate an actual observing system, but to demonstrate ozone-wind extraction 16 

in an idealized system. The observation errors are assumed to be uncorrelated, so the observation 17 

error covariance R  is diagonal with elements given by the square of the error SDs. 18 

 19 

Two sampling methods are performed (see Fig. 6). For ozone, the observation locations are taken 20 

from real ozone observations from the Aura MLS polar-orbiting satellite (sampling frequency of 21 

~3450 observations per day). For height, pseudo-random sampling in space and time is 22 

performed to approximate the global coverage provided by microwave and infrared radiance 23 

sensors. For each successive height observation, the sampling occurs at one of 3840 24 

latitude/longitude points on an icosahedral equal-area grid. This allows the observations to not be 25 

too clumped together and provides a way to scale upward to a global equal area grid sampling, as 26 

was used in Allen et al. (2013). We choose the average data frequency for the height 27 

observations to be the same as the MLS sampling frequency (~3450 per day). In time, the height 28 

observations occur randomly over 10 days. For both observation types, the observation time is 29 
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assigned to the nearest 20 min interval (0, 20, or 40 min). Since the analysis is performed 1 

sequentially every 20 minutes, time-interpolation is not necessary for observations.  2 

3.3 Assimilation experiments 3 

 4 

We use 100 ensemble members for all experiments in this paper. The initial ensemble 5 

perturbations are generated by sampling the TR fields at 6 h intervals (starting day 21, 0 h) and 6 

then removing the ensemble mean. The assimilation experiments begin 20 days into the TR (day 7 

20, 0 h), with the initial ensemble defined as the ensemble perturbations added to the TR field 8 

that is offset 6 h from the initial time (i.e., day 20, 6 h), which serves as the initial ensemble 9 

mean and defines the initial analysis. This initial 6 h offset, or mismatch, between the TR and the 10 

initial background fields is the source of the initial background error. In Sect. 4 we present 11 

results from three different experiments: (1) ozone only, (2) height only, and (3) ozone and 12 

height. For each experiment, assimilation runs were done for both EnKF-uv and EnKF-ψχ  using 13 

localization lengths from 1000 to 8000 km, in 500 km increments (note that ozone only 14 

experiments failed to converge at the maximum localization length of 8000 km). Tuning the 15 

length separately for each experiment and EnKF is necessary, since the DA responds differently 16 

depending on the field(s) observed and the analysis variables used. For each experiment we use 17 

the same localization length for all state variables. Further optimization may occur by applying 18 

different localization functions to different variables, but this is beyond the scope of this first 19 

study on tracer-wind interaction using the EnKF. Since inflation is automatically adjusted in a 20 

self-consistent manner with the TR, it does not require tuning. Post-processing with NMI was 21 

also performed for each run. We note here that the same forecast model is used for the TR and 22 

for the assimilation experiments (i.e., “identical twin” experiments), making results overly 23 

optimistic. 24 

3.4 Error metrics 25 

To diagnose the results, several error metrics are examined, including the global RMSE (area-26 

weighted) of the u, v, z, and q, along with the Wind Extraction Potential (WEP). Allen et al. 27 

(2014) defined WEP as a normalized diagnostic of the impact of tracer assimilation on the 28 

dynamics. The WEP is determined by first calculating the analyzed RMSE of the vector wind as 29 

a function of latitude ( )ϕ  and time ( )t : 30 
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is RMSE of the zonal wind calculated around a latitude circle containing NLON longitude ( λ ) 3 

grid points and TR refers to the truth run (the RMSE of the meridional wind, RMSEv , is calculated 4 

similarly). The latitude dependence is shown explicitly here, since we will examine errors as a 5 

function of latitude in Sect. 4. The percentage difference in vector wind error relative to the 6 

initial error is then calculated, 7 
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and WEP is defined as the area-weighted global average of this quantity, calculated using  8 

 
( ) ( ) ∑∑=

ϕϕ

ϕϕϕ coscos WEP DIFF tVt , ,  (14)  

where the summation is over all latitudes. 9 

 10 

A WEP value of 100% indicates the analysis equals the truth (i.e., ( ) 0RMSE =tV ,ϕ ). Although 11 

WEP is relative to the initial error, and therefore will vary from one experiment design to 12 

another, it provides a useful normalized number for quantitative comparison between runs using 13 

the same initial error. In this paper, all experiments start with the same initial vector wind error 14 

with a global mean value, ( ) -1

RMSE s m 4.550 =V
~

, so WEP can be compared directly among all 15 

runs (tilde refers to the global area-weighted mean). As a rule of thumb, an approximate 16 

conversion from WEP to wind component error can be derived by assuming RMS wind errors do 17 

not vary with latitude and assuming zonal and meridional wind errors are equal. This results in 18 

the following approximation 19 

 ( ) ( ) ( )[ ].~~ /100WEP10RMSERMSE tutu −×=   (15)  
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The initial global mean zonal wind RMSE, ( )0RMSEu~ ,  is ~3.3 m s
-1

, so WEP values of 50, 60, 70, 1 

80, and 90 correspond to approximate wind component errors of 1.65, 1.30, 1.00, 0.66, and 0.33 2 

m s
-1

, respectively.  3 

 4 

Experiment errors are generally presented as the “final” error of the 10 day simulations. To 5 

reduce random noise, the final errors are calculated as the average values over the last 24 h of 6 

each simulation. To estimate the statistical uncertainty in the final errors, Experiment 3 was 7 

repeated ten times with different random observation perturbations, with a localization of 3500 8 

km. The SD of the final values was ~0.5% for WEP, ~0.02 m s
-1

 for the wind components,  ~0.4 9 

m for height, and ~0.002 ppmv for ozone. The results in Table 1 are presented with the number 10 

of significant digits that reflect the uncertainties determined from this test.  11 

 12 

The final diagnostic is designed to measure the amount of gravity wave “noise” in the system, 13 

also called “imbalance.” Imbalance is defined here using the uninitialized height uninitz  and 14 

initialized height initz (i.e., after NMI has been applied). As with WEP, we first calculate the 15 

RMS difference between these two fields as a function of latitude 16 

  17 

 ( ) ( ) ( )[ ] NLON2

inituninitRMS ∑ −=
λ

ϕλϕλϕ tztztz ,,,,, ,  
(16)  

and then we calculate the area-weighted global mean,  18 

 
( ) ( ) ∑∑=

ϕϕ

ϕϕϕ coscosImbalance RMS tzt ,  .  (17)  

We note here that the TR used in this paper contains negligible gravity wave amplitudes at 19 

frequencies higher than 1.0 day
-1

. The imbalance calculated by applying NMI to the TR is less 20 

than 1 m.  So any imbalance greater than ~1 m is due to spurious GW generation. 21 
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4. Results and discussion 1 

4.1 Experiment 1: ozone only 2 

In this section, we examine the performance of the SWM
T
-EnKF system when ozone data are 3 

assimilated alone. Figure 7 shows time series of error diagnostics for the two “optimal” runs 4 

from Experiment 1 (tuning of the covariance localization to determine the optimal run is 5 

described later in this section). Results are presented both for uninitialized (solid lines) and 6 

initialized (NMI, dotted lines) output. The uninitialized WEP steadily increases before leveling 7 

off at final values of ~46% for EnKF-uv and ~58% for EnKF-ψχ , with corresponding wind 8 

component errors of ~1.6 m s
-1

 and ~1.3 m s
-1

. Most of the improvement occurs during the first 9 

five days. After applying NMI to these runs, the inititialized WEP increases significantly for both 10 

systems, indicating that imbalance is limiting the wind improvement and error reduction.  11 

 12 

The uninitialized height error for EnKF-uv levels out at ~61 m, while for EnKF-ψχ , the 13 

uninitialized height error reaches ~43 m. Much of the height error can be attributed to GW 14 

generated in the system. Figure 7e shows that the imbalance starts near zero, but increases as 15 

GW are introduced into the system. For EnKF-uv, the imbalance rises rapidly over the first two 16 

days until it nearly matches the uninitialized height error. After this time, the further growth of 17 

GW is likely restrained by the weak dissipation in the SWM
T
 system. For EnKF-ψχ , the 18 

imbalance grows more slowly, but is still close to the uninitialized height error at the end. 19 

Because the uninitialized height error and imbalance are still increasing at the end of 10 days, 20 

this suggests that the GW have not saturated for EnKF-ψχ . Application of NMI results in 21 

dramatically reduced height errors for both systems. There is an ~1 day oscillation in the 22 

initialized height errors, which is largely due to the one traveling eastward GW mode that is not 23 

initialized, which is present in the TR. The decreasing amplitude of the oscillation with time 24 

suggests that this mode is being resolved by the system through the ozone-wind extraction.  25 

 26 

The ozone errors (Fig. 7f) show a sharp decrease over the first day, followed by a gradual 27 

decline. Although the errors in the dynamical variables have leveled out by day 10, the ozone 28 

errors appear to still be declining. Both runs show final ozone errors less than the observation 29 

error of 0.08 ppmv. As a global consistency check of the EnKF solution, we also calculated  30 
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 [ ] ( )-11Tb

ens

T2 NOBS×+=
−

dd RHHPχ ,  (18)  

where d  is the ensemble mean innovation and NOBS is the number of observations. For a well-1 

tuned system, this “chi-squared” diagnostic should equal one (Ménard et al., 2000). Since the 2 

SPREAD is tuned to match a subset of the elements of the state vector rather than the entire state 3 

vector, we do not expect 2χ  to be exactly one, but it should be relatively close, at least in the 4 

time-average. For these experiments, 2χ  (not shown) starts out slightly high, but levels out to a 5 

time-mean (averaged from 2-10 days) of 0.99 for EnKF-uv and 0.97 for EnKF-ψχ .  6 

 7 

In Fig. 8, the analysis errors are projected onto the GW and RW modes. As expected from the 8 

imbalance calculations, the uninitialized EnKF-uv has much larger GW error due to larger 9 

imbalance in the increments. However, the EnKF-uv has slightly smaller RW errors. This is 10 

consistent with the initialized EnKF-uv having slightly larger WEP than the initialized EnKF-ψχ  11 

(Fig. 7a). This difference may be partly due to background error estimation biases caused by the 12 

ψχ -localization, as discussed in Kepert (2009). These biases will either overweigh or 13 

underweigh the background at different scales, resulting in a suboptimal solution. We could try 14 

to correct for this effect by altering the observation error covariance as in Kepert (2009), but this 15 

does not account for the scale dependence of the bias. The situation in our case is also 16 

complicated by the adaptive inflation, which uses different state variables in EnKF-uv and 17 

EnKF-ψχ .  18 

 19 

Figure 9 (column 1) presents several global error diagnostics versus localization length (L) for 20 

Experiment 1. We define the “optimal” runs for each experiment as those that maximize WEP. 21 

These are indicated by squares (triangles) for uninitialized (initialized) results in Fig. 9a and are 22 

also listed in Table 1. In Fig. 9a and b the uninitialized WEP and zonal wind errors (meridional 23 

wind errors are very similar and are not shown) exhibit strong dependence on L, with maximum 24 

WEP occuring at L = 1500 km for EnKF-uv and L = 2500 km for EnKF-ψχ . The optimal EnKF-25 

ψχ  run results in larger WEP and smaller wind error compared EnKF-uv, which would appear to 26 

favor the choice of ψχ  or uv. However, EnKF-ψχ  is much more sensitive to variations in L, 27 

with WEP values actually becoming negative at small and large L.  28 
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 1 

Figure 9c shows a height error minimum at L = 2000 km for uninitialized EnKF-ψχ , while for 2 

uninitialized EnKF-uv the height error increases monotonically with L. The increase of height 3 

error with L is driven by the increase of imbalance with L, as seen in Fig. 9d. This increase in 4 

imbalance with longer L when assimilating only ozone observations is a new finding, which is 5 

opposite to the tendency of localization to create imbalance when assimilating dynamical 6 

observations, as will be shown in Experiment 2 and discussed by Mitchell et al. (2002) and 7 

Kepert et al. (2009, 2011). It is likely that ozone observations cause increased imbalance with L 8 

due to spurious ensemble correlation between ozone and the dynamical variables at large 9 

distances, which are projected onto the gravity modes. Up to L = 4000 km, the EnKF-uv has 10 

larger imbalance than EnKF-ψχ , which is consistent with the single-observation simulations. 11 

The ozone errors (Fig. 9e) show a broad minimum, with the EnKF-uv providing slightly better 12 

values at all L. 13 

 14 

After application of NMI, for both EnKF-uv and EnKF-ψχ  the wind and height errors are 15 

smaller and WEP is larger at all values of L. The ozone error does not change, since the NMI is 16 

applied only to the dynamical fields. The initialized results show WEP maximizing at ~84% for 17 

EnKF-uv and ~81% for EnKF-ψχ  (see triangles on Fig. 9a). The length scales corresponding to 18 

these values increase to 2000 km for EnKF-uv and 3500 km for EnKF-ψχ , suggesting the 19 

correlations at larger lengths are more reliable. That EnKF-uv outperforms EnKF-ψχ  when NMI 20 

is applied is consistent with Kepert (2009), who showed that EnKF-uv (with NMI) resulted in 21 

smaller height and wind errors than the EnKF-ψχ  (with NMI) due to background error 22 

estimation biases caused by the ψχ -localization.  23 

 24 

Up to this point, we have examined globally-averaged analysis errors. To determine regional 25 

impact, we also examine how the errors vary with latitude for Experiment 1, shown in Fig. 10 26 

(column 1). The initial wind errors (black lines in Fig. 10a and b) are largest in the NH tropics 27 

and midlatitudes and near the North Pole (global maps of initial wind and height errors are 28 

provided in Fig. 3 of Allen et al., 2014). After assimilating ozone, the uninitialized wind errors 29 

are reduced at most latitudes. Small increases in uninitialized zonal wind error occur near 70°S 30 
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and 70°N. That the tropical bias has been removed is important, since the tropical winds are not 1 

as well constrained in the stratosphere by radiance observations alone. The uninitialized height 2 

errors (Fig. 10c) are more uniform after ozone assimilation, and show slight improvement in 3 

some regions. However, uninitialized height errors have also increased over large portions of the 4 

globe, particularly for EnKF-uv. This is due largely to the imbalance generated by the ozone 5 

observations. Results with NMI (dotted lines on Fig. 10a-c) show reduced height (and wind) 6 

errors at all latitudes compared to the original analyses, due to removal of spurious GW. Ozone 7 

errors (Fig. 10d) are also reduced at all latitudes in this ozone assimilation experiment, with 8 

slightly larger errors in the tropics.  9 

4.2 Experiment 2: height only 10 

We now examine the results of Experiment 2, when only height data are assimilated. For both 11 

EnKF-uv and EnKF-ψχ , Fig. 9 (column 2) shows that WEP initially increases and wind errors 12 

decrease with less localization (larger L), with optimal values occurring at L = 5000 km for 13 

EnKF-uv and L = 7000 km for EnKF-ψχ , followed by a slight degradation at larger lengths. The 14 

EnKF-ψχ  generally performs better than EnKF-uv. The minimum wind errors are ~1.3 m s
-1

 for 15 

EnKF-uv and 1.0 m s
-1

 for EnKF-ψχ , which are reasonable values for a well-constrained 16 

stratospheric analysis. For example, Hertzog et al. (2004) compared NH stratospheric analyses 17 

with observations from long-duration ballon flights and calculated error SDs of the zonal wind 18 

components of ~1.3 m s
-1

 for ECMWF and ~1.9 m s
-1

 for NCEP, when the observations were 19 

low-pass filtered to remove the variance due to inertia-gravity waves.  20 

 21 

The biggest difference between Experiments 1 and 2 is that assimilation of height observations 22 

results in much less imbalance (note different vertical scales in Fig. 9d and 9i). The imbalance, 23 

like the wind and height errors, generally decreases with less localization, which is opposite to 24 

what occurred in Experiment 1. However, this is consistent with previous studies that have 25 

examined balance in the EnKF in the context of assimilation of dynamical variables (e.g., 26 

Mitchell et al., 2002). This result provides a caution that while reducing the localization may 27 

reduce imbalance for some observations, it may increase imbalance when assimilating ozone. 28 

Applying NMI to the analyses results in almost no change to the WEP and wind errors, but does 29 

improve the height errors, particularly for EnKF-uv. 30 
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 1 

The errors as a function of latitude for Experiment 2 are shown in Figure 10 (column 2). The 2 

wind errors (Fig. 10e and f) are largest in the tropics and decrease towards the poles. This is 3 

expected, since the height is more strongly correlated with wind in the extratropics due to 4 

geostrophic balance. In the tropics this balance breaks down, and it is more difficult for the 5 

EnKF to correct the winds with height observations alone. The analyzed height errors (Fig. 10g) 6 

are markedly reduced from the initial errors, with slightly larger values in the extratropics. 7 

Experiment 2 also improves the ozone, but only by a small amount (Fig. 10h). The small ozone 8 

improvement is in the extratropics, likely due to more accurate winds that drive ozone advection. 9 

4.3 Experiment 3: ozone and height 10 

The final experiment examines the value of adding ozone assimilation to the analyses produced 11 

by the height only assimilation. The results as a function of L are shown in Fig. 9 (column 3). 12 

This experiment results in the smallest errors and highest WEP values, confirming that ozone 13 

and height observations provide complimentary information to the DA system.  Large WEP 14 

values occur for a broad range of L, indicating that the results are not very sensitive to the choice 15 

of localization length. The lowest uninitialized wind errors occur at L = 3500 km for both EnKF-16 

uv and EnKF-ψχ , and the maximum uninitialized WEP (~87%) is larger than when either ozone 17 

or height are assimilated separately. The application of NMI slightly increases the optimal WEP 18 

to ~90% for both systems.  19 

 20 

The uninitialized height error and imbalance for Experiment 3 (Fig. 9m and n) show broad 21 

minima, which reflects the combined tendencies of the height observations to increase imbalance 22 

at small L and the ozone observations to increase imbalance at large L. The imbalance remains 23 

relatively low in these experiments (< 20 m for L < 5000 km), with the EnKF-uv showing 24 

somewhat higher values than EnKF-ψχ . The error in initialized height (dashed lines of Fig. 9m) 25 

does show a significant decrease, suggesting that there is some GW noise in Experiment 3, but it 26 

is much less than when ozone is assimilated alone. It appears that combining height observations 27 

with ozone observations reduces the GW that would otherwise be generated by the ozone 28 

observations alone.  29 

 30 
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The errors as a function of latitude for the optimal results from Experiment 3 are presented in 1 

Fig. 10 (column 3). Wind errors are quite small (< 0.5 m s
-1

) across the globe, with the primary 2 

benefit occurring in the tropics, where wind errors are much less than either Experiment 1 or 2. 3 

The ozone in Experiment 3 is also better than Experiment 1. Having a better background ozone 4 

field (due to better winds) allows more efficient use of the ozone observations. This likely 5 

provides a positive feedback in the system that enhances the ozone impact. The addition of ozone 6 

also tends to flatten height errors with latitude. Application of NMI does not impact the wind 7 

errors very much, but does reduce the height errors as seen in Fig. 10k.   8 

 9 

Additional experiments (not shown) were performed with a much smaller height error SD of 10 10 

m. Decreasing the height error for height-only assimilation increased the maximum WEP to 84% 11 

for EnKF-uv and 89% for EnKF-ψχ . The impact of adding ozone assimilation in these 12 

experiments was also positive, increasing the maximum WEP to 92% for EnKF-uv and 91% for 13 

EnKF-ψχ , with most of the wind improvements occurring in the tropics. These results suggest 14 

that even in a very well-tuned system, high quality ozone observations can, in principle, improve 15 

the winds. 16 

5. Conclusions 17 

 18 

The EnKF DA is able to employ cross-correlations between state variables in the ensemble 19 

background states to couple tracer and dynamical variables. This study examined several aspects 20 

of extraction of wind information from EnKF ozone assimilation using a shallow water model 21 

(SWM) coupled with ozone advection. Three sets of experiments were performed that 22 

assimilated ozone, geopotential height, or both. Modest improvements to the winds were 23 

observed when either ozone or height were assimilated separately. Final WEP values of 46% 24 

(58%) were obtained for ozone and 60% (69%) for height with the EnKF-uv (EnKF-ψχ ) system. 25 

When NMI was applied to the ozone experiment, WEP jumped to 84% (81%), showing that 26 

gravity wave noise was generating significant error. The NMI applied to the height experiment 27 

resulted in WEP increases of less than 1%, suggesting very small imbalance. 28 

 29 
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When assimilating both ozone and height, WEP rose to ~87% for both systems. Imbalance was 1 

also much less than when ozone was assimilated alone. The addition of height observations  2 

appears to reduce the gravity wave noise in the EnKF DA, thereby reducing the need for 3 

initialization. This is important, since over-filtering could be a problem if NMI is applied to the 4 

upper stratosphere/mesosphere (Sankey et al., 2007) and the tropics (Nezlin et al., 2009), where 5 

unbalanced modes play an important role in the real atmosphere (see also Koshyk et al., 1999). 6 

Applying NMI to the combined experiment resulted in a modest increase in WEP to ~90%. The 7 

greatest impact of ozone assimilation on the winds was found to occur in the tropics, which are 8 

less well constrained by height assimilation due to lack of geostrophy.  9 

 10 

This study also compared results from EnKF systems that used different flow variables. While 11 

the EnKF-uv system with ozone observations generated greater imbalance, this system was also 12 

able to more accurately determine the wind structure of the rotational wave modes. This may be 13 

due to biases in the specification of the background error covariance in the ENKF-ψχ , as 14 

discussed by Kepert (2009). As a result, when NMI was applied, the EnKF-uv performed slightly 15 

better than the EnKF-ψχ . For height assimilation, the EnKF-ψχ  performed better, due to less 16 

imbalance, while the combined assimilation of ozone and height produced similar results in the 17 

two systems. 18 

 19 

In each experiment the localization length was tuned to maximize the wind extraction. Previous 20 

studies have shown that tighter localization increases imbalance, which may be detrimental. We 21 

showed that while this was the case for height obervations, for ozone observations the imbalance 22 

actually increased with localization length. The cause is uncertain, but may be due to spurious 23 

long-range correlations between ozone and the dynamical fields, which project onto the gravity 24 

modes of the SWM.  25 

 26 

While under the ideal conditions used in this study WEP values of up to ~90% were achieved 27 

(wind component errors ~0.3 m s
-1

), there are many challenges to demonstrating that the ozone-28 

wind coupling in operational DA system can be beneficial. There are observation system 29 

challenges such as frequency, latency, precision, and bias. There are also modeling challenges 30 

such as accurate ozone transport, chemistry, and radiation. The results here were obtained with a 31 
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single-layer model, relatively low resolution (T42), and a rather simple wave-forcing scenario. 1 

Given these caveats, this study demonstrated ozone-wind interaction in the EnKF and the 2 

potential for ozone assimilation to benefit the wind analysis, particularly in the tropics.  3 

 4 

Whether 4D-Var or EnKF is better for ozone-wind extraction is still an open question. In our 5 

previous work we showed that wind extraction is feasible when assimilating globally-gridded 6 

hourly tracer data (ozone, nitrous oxide, or water vapor) within 4D-Var. Follow-up experiments 7 

(not presented here) indicate that ozone-wind extraction is also possible in 4D-Var assimilation 8 

of the ozone and height data used here. In future work, we plan to directly compare 4D-Var, 9 

EnKF, and hybrid methods for tracer-wind extraction.   10 
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 1 

Experiment 
L 

(km) 

WEP 

(%) 

u error 

(m s
-1

) 

v error 

(m s
-1

) 

z error 

(m) 

q error 

(ppmv) 

1. Ozone            

uv  1500 45.5 1.58 1.59 60.9 0.054 

ψχ  2500 57.8 1.25 1.25 42.7 0.070 

uv   (NMI) 2000 83.7 0.55 0.46 14.4 0.047 

ψχ  (NMI) 3500 80.6 0.62 0.58 12.8 0.058 

2. Height            

uv  5000 59.5 1.27 1.38 11.6 0.179 

ψχ  7000 68.8 0.96 1.05 7.8 0.150 

uv   (NMI) 5000 60.4 1.25 1.35 6.8 0.179 

ψχ  (NMI) 7000 69.1 0.95 1.04 6.1 0.150 

3. Both           

uv  3500 86.7 0.40 0.41 11.0  0.039 

ψχ  3500 87.5 0.37 0.39  8.5 0.040 

uv   (NMI) 3500 90.1 0.32 0.31  2.6 0.039 

ψχ  (NMI) 4500 89.5 0.33 0.32  2.8 0.041 

 2 

Table 1. Results for the optimal runs (i.e., maximum wind extraction potential (WEP)), for each 3 

experiment. The localization length (L) is provided along with WEP and global mean root mean 4 

square error (RMSE) for u, v, z, and q. NMI refers to normal mode initialization applied to the 5 

analysis fields. 6 

7 
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 1 

Fig. 1. Analysis increments due to assimilation of a single ozone observation (time = 1200 s) at 2 

120°E, 40°N (indicated by black dot) using EnKF-uv (top row) and EnKF-ψχ  (bottom row) with 3 

localization length L = 2000 km. Variables are given by column: zonal wind (u [m s
-1

], column 4 

1), meridional wind (v [m s
-1

], column 2), height (z [m], column 3), and ozone (q [ppmv], 5 

column 4). Red (blue) contours indicate high (low) values for each variable.  6 

7 
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 1 

Fig. 2. Divergence anomalies [10
-6

 s
-1

] due to single-observation increments (see Fig. 1) at time 2 

= 1200 s, 8400 s, 15600 s, and  22800 s for EnKF-uv (top row) and EnKF-ψχ  (bottom row). Red 3 

(blue) contours indicate high (low) values of divergence. 4 

5 
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 1 

Fig. 3. The normal mode frequencies [day
-1

] for the spectal SWM at triangular truncation T42 as 2 

a function of zonal wavenumber (m) for the first six values of the meridional wavenumber l = n - 3 

|m|, where n is the total wavenumber. Positive (negative) values of m indicate eastward 4 

(westward) motion. Modes are separated into (a) eastward and westward gravity wave (GW) 5 

modes, and (b) rotational wave (RW) modes. There are no rotational modes for positive m (see 6 

section 2.3). The cutoff frequency (1.0 day
-1

) for the NMI is indicated by the dotted line. Note 7 

that the frequency scales are different for the two plots for easier viewing.  8 
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 1 

Fig. 4.  Divergence [10
-6

 s
-1

] maps for the (a) truth run (TR), (b) uninitialized analysis, and (c) 2 

initialized analysis from day 2 of Experiment 1 with EnKF- uv  and localization length L = 2000 3 

km. For each plot, red (blue) contours indicate high (low) values.  4 

5 
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 1 

Fig. 5.  Maps of ozone [ppmv] (colors) overlaid with height (black lines) at 200 m intervals for 2 

days 20, 22, 24, 26, 28, and 30 of the truth run (TR). (a) – (f) are NH and (g) – (l) are SH. The 3 

plots for day 20 include longitude (latitude) grid lines at 90° (30°) intervals, with 0°, 90°, 180°, 4 

and 270° longitude marked. The hemispheric maximum and minimum heights are indicated by 5 

“H” and “L”, respectively. For each plot, red (blue) contours indicate high (low) ozone values. 6 
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 1 

Fig. 6. Sampling patterns for 24 h of (a) polar-orbiting ozone data and (b) pseudo-random height 2 

data. 3 
4 
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 1 

Fig. 7. Diagnostics from optimal runs of Experiment 1: Ozone only (L = 1500 km for EnKF-uv 2 

and L = 2500 km for EnKF-ψχ ).  (a) WEP [%], (b), (c), and (d) RMS errors for u [m s
-1

], v [m s
-

3 

1
], and z [m], respectively, (e) Imbalance [m], and (f) RMS error for q [ppmv]. EnKF-uv is red 4 

and EnKF-ψχ  is blue. Solid (dotted) lines indicate uninitialized (initialized) results (there are no 5 

dotted lines in (f) because the ozone error does not change, since the NMI is applied only to the 6 

dynamical fields). In (f) the ozone observation error standard deviation is indicated by the 7 

horizontal dotted line. Blue circles at day 0 indicate the initial values.  8 

9 
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 1 

Fig. 8. RMS errors for u [m s
-1

], v [m s
-1

], and z [m] (columns 1, 2, and 3, respectively) for 2 

gravity wave (GW) modes (row 1) and rotational wave (RW) modes (row 2) for the optimal runs 3 

of Experiment 1: Ozone only with EnKF-uv (red) and EnKF-ψχ  (blue). Solid (dotted) lines 4 

indicate uninitialized (initialized) results. 5 

6 
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 1 

Fig. 9. WEP [%] (row 1), RMS errors for u [m s
-1

], v [m s
-1

], z [m], and q [ppmv] (rows 2, 3, and 2 

5, respectively), and Imbalance [m] (row 4) as a function of localization length (L) for 3 

Experiments 1, 2, and 3 (columns 1, 2, and 3, respectively). Red is for EnKF-uv and blue is for 4 

EnKF-ψχ . Solid (dotted) lines indicate uninitialized (initialized) results (there are no dotted 5 

lines in row 5, because the ozone error does not change, since the NMI is applied only to the 6 

dynamical fields).  The optimal runs (i.e., maximum WEP) values are highlighted with squares 7 

(triangles) for uninitialized (initialized) results in row 1. 8 

 9 

 10 
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 1 

Fig. 10. RMS errors as a function of latitude for u [m s
-1

], v [m s
-1

], z [m], and q [ppmv] (rows 1, 2 

2, 3, and 4, respectively) for the optimal runs (as shown in Table 1 and in the highlighted squares 3 

of Fig. 9) of Experiments 1, 2, and 3 (columns 1, 2, and 3, respectively). Black lines show initial 4 

errors and red (blue) lines show EnKF-uv (EnKF-ψχ ) errors. Solid (dotted) lines indicate 5 

uninitialized (initialized) results (there are no dotted lines in row 4 because the ozone error does 6 

not change, since the NMI is applied only to the dynamical fields). 7 


