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Explanation of size distribution shape clustering method

Each size distribution observation comprises 112 number concentrations, n,
corresponding to the discrete bins reported by the SMPS software on a logarithmic,
regularly spaced grid. Each observation is considered as a vector, X;, normalized
using the root sum of squared distance (Euclidean norm) to isolate the effect of size
distribution shape from the (strong) variability in total CN:

x; = {ny,ny, ..., ny12}
x; = x;/lx;1l2

The K-means algorithm seeks the optimal position of a predetermined number, k, of
centroid vectors, ¢; which minimizes the residual distance of observation vectors
assigned to that cluster set, C;, from the centroid. Centroids are initially randomly
assigned to observations and then temporary cluster assignments are made to the
closest centroid for each observation, x;. The centroid is then recalculated based on
the cluster members and the process is iterated until convergence. The method is
known to sometimes converge on local optima rather than global optima in some
cases and so the operation is repeated many times (>100) with different random
starting observations to check for global convergence.
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The resulting cluster centroids after convergence represent the mean size
distribution shape of the subset of observations attributed to that cluster.
Observations show a quasi-continuous nearest neighbor density in the regions
between the centroids, hence using the “hard” cluster associations (as per the
traditional K-means algorithm) creates an abrupt transition for observations which
lie close to the cluster boundary. Instead the cluster association is made “fuzzy”
using cluster assignment weights, wj. Weights are based on inverse squared
Euclidean distance to each centroid, cj, except where the square distance is greater
than the sum of squared distances via any other centroid, cp, in which case the
weight, wj, is zero. Weights are normalized such that w; =1.
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The chosen number of cluster centroids (4) was selected subjectively to balance the
improvement in model performance by increased numbers of clusters with the
simplicity of retaining as few as possible. The quality of the K-means model as the
number of centroids is changed can be visualized by the sum of residual distances
between observations and closest cluster centroid. This is shown in Figure S1. The
cluster centroids were also identified using only the data from the summer seasons
(PM and M) since these seasons contain the largest range of variability in the size
distribution shape. Repeating the K-means algorithm using the entire dataset finds
the clusters common in winter (FF and WN) but finds a hybrid of the more extreme
summertime clusters (N and CC) with the FF and WN clusters, respectively. Since
the goal is to be able to isolate features, the clusters based on the summer “training”
data are retained. Associations based on the fuzzy logic described above are then
assigned to all data.
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Figure S1: Performance of the K-means method as a function of the number of
centroids, k. The residual is measured as the Euclidean norm of the vector
difference between the observation and its allocated centroid and the mean is
generated over all “training” observations. For comparison, the performance of the
K-means model is shown for uncorrelated random noise and highlights the latent
structure of the observations.



