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yielded significantly lower deposition fluxes. GOM breakthrough may not occur in all cases. For
example, if there are temperature drops within the instrument, then GOM will deposit to the
walls (Gustin et al., 2013). Because of these issues, the authors conclude it is presently more

robust to interpret RM rather than PBM and GOM data separately.

3.3 GOM: Biases, interferences, and shedding light on the spatiotemporal variability of
GOM compounds in air

Based on laboratory and field studies, concentrations of GOM collected on the nylon and
cation exchange membranes are higher than those collected by the Tekran® system by 60-
1000% (Huang et al., 2014; Huang and Gustin, 2015a; 2015b). Laboratory and field experiments
have demonstrated the collection efficiency of KCI-coated denuders varies with environmental
conditions (O3, RH) and Hg(Il) compounds present in air. Below we discuss recent laboratory
experiments and field studies that have shaped our understanding of the limitations of GOM

measurement methods.

3.3.1 Ozone and relative humidity interferences

Laboratory experiments have confirmed O3 interferences for KCl-coated denuders and
relative humidity (RH) interferences for both denuders and nylon membranes (Lyman et al.,
2010a; McClure et al., 2014; Huang and Gustin, 2015b). Lyman et al. (2010a) found the
collection efficiency of HgCl, loaded on a KCI denuder was reduced by 3 to 37% when O3
concentrations were 6 to 100 ppbv. Lyman et al. (2010a Open Discussion) proposed reduction
was occurring on the denuder wall:

HgCl, + 203 > Hg® + 20, +CIO Equation 1.
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365  Their results also indicated less GOM was recovered as O3 exposure time increased (10 to 26%
366  removed from loaded denuders for 2.5 minutes, and 29 to 55% for 30 minutes at 30 ppbv).

367 In experiments similar to those performed for O3, McClure et al (2014) found RH had a
368  similar effect on HgBr; loaded on KClI-coated denuders. Huang and Gustin (2015a) permeated
369  HgBr;and water vapor into a Tekran® 2357/1130 system in ambient air and found collection
370  efficiencies dropped during the spikes of RH, and the denuder became passivated over time.

371 They found at RH of 21 to 62%:

372 RH=0.63 GOM loss% + 18.1, r>=0.49, p-value < 0.01. Equation 2.

373  Huang and Gustin (2015a) found a greater impact of relative humidity than Os.

374

375  3.2.2 Variability of RM composition and concentrations

376 Here we use comparisons of data collected with a variety of sampling methods to better
377  understand atmospheric Hg concentrations, and how measurement discrepancies vary with

378  environmental setting (e.g., RH and O3) and Hg(ll) compounds present in the ambient

379  atmosphere. This includes data collected as part of a large study in Florida (Peterson et al., 2012;
380  Gustinetal., 2012), the RAMIX field campaign (Gustin et al., 2013), recent comparison of KCI-
381  coated denuder data with the UNR active system (Huang et al., 2013; 2015), and laboratory

382  testing (Huang et al., 2013; Huang and Gustin, 2015a and b). For a historical review of additional
383 literature see the supplemental information in Gustin et al., 2013, Huang et al., 2014, and Sl this
384  paper.

385 Peterson et al. (2012) compared passive samplers and Tekran® data from three sites in
386  Florida. The region has high Hg wet deposition, but low GOM concentrations (on average 2-8 pg

387 m™ as measured by the Tekran® system). In general, the Aerohead or dry deposition sampling
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system (described above), showed higher deposition for GOM than that calculated using KCI-
coated denuder concentrations and a dry deposition model. Based on passive sampler uptake and
calculated deposition velocities, Peterson et al. (2012) suggested the difference could be
explained by the presence of different GOM compounds in the air (see Sl for additional detail).
Examining the data across all seasons, using three Hg measurement methods, criteria pollutants,
and meteorology, Gustin et al. (2012) concluded there were different GOM compounds in air
that were derived from different primary sources, sources producing different oxidants, and
variation across season.

Data from the RAMIX experiment also indicated the KCI-denuder measurements were
biased low through spikes of GOM (HgBr,) into a manifold. Ambient air RM concentrations
measured by the DOGHS were higher than those measured by the Tekran® system and this
instrument recovered 66% of the HgBr, spike during the Reno Atmospheric Mercury
Intercomparison eXperiment (RAMIX) (Gustin et al., 2013). The experiment also indicated RH
caused the denuders to become passivated over time (Gustin et al., 2013). Spike recoveries of
HgBr, by KCI-coated denuders were 2-to-5 times lower than that measured by the DOGHS, with
mean values for spikes ranging from 17 to 23% recovery. Replicate nylon membranes collected
30 to 50% more RM than the Tekran® system in ambient air. For a concise summary of the
results of the RAMIX DOHGS versus Tekran® data, and an explanation for a component of the
atmospheric chemistry occurring see the SI.

Figure 1 and Table 2 show correlations between specific GOM compounds
concentrations measured by the nylon and cation exchange membranes versus the KCI-coated
denuder in the Tekran® system (see Huang et al. (2013) for detail on the experimental setup).

These data demonstrate different compounds have different collection efficiencies by the
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denuder. Figure 1 shows the nylon membrane has equal efficiency for all Hg(ll) compounds
tested, and the cation exchange membrane quantitatively collects the Hg(Il) compounds
permeated. The collection efficiency of the cation exchange membrane relative to the KCI-
coated denuder in a Tekran® 1130 is HgBr; (1.6)>HgSO, (2.3)=HgCl; (2.4)>HgO (3.7)
>Hg(NOs3); (12.6).

Huang et al. (2013) compared field data collected using the Tekran® system and the

UNR active system. Cation-exchange membranes measured concentrations were 1.1-t0-3.7 times

greater than the nylon membranes, and 2-to-6 times greater than Tekran® RM values.

Substantial spatial and temporal variability in the difference between the cation-exchange

membrane and Tekran® RM values were observed. Thermal desorption profiles from the nylon

membranes indicate this is explained by variability in the Hg(I1) compounds present in air
(Huang et al., 2013; 2015).

Data collected using the UNR Active System can be compared to KCI-coated denuder
measurements in different areas and used for understanding the GOM concentrations and

chemistry for different areas.

4. Case study demonstrating how we can use past measurements to move forward

In light of the new information about interferences affecting GOM measurements, we
may begin to go back and re-examine features of past data that previously could not be
explained. Here we explore Weiss-Penzias et al. (2003) as a case study. They measured GEM,
GOM, and PBM at Cheeka Peak Observatory, Washington, US, in the marine boundary layer

and found “air of continental origin containing anthropogenic pollutants contained on average

5.3% lower GEM levels as compared with the marine boundary”. GOM and PBM concentrations
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in continental air were very low, 0 — 20 pg m™ and 1-4 pg m™, respectively. At the time, the
results were “difficult to reconcile”. Now we see that the change in GEM concentration during
local anthropogenic pollution events relative to the mean of monthly marine air (-60 to -270 pg
m™) in Weiss-Penzias et al. (2003) are similar to the disparity in concentrations measured during
RAMIX between the DOHGS and Tekran® RM measurement.

Retrospectively, we suggest the observed differences between the two air masses reported
can be explained by differences in the mix of oxidants and the resultant Hg(I1) compounds
formed. GOM and PBM were likely low due to lack of collection efficiency, interferences with
O3, and loss in the sampling line (see Sl for details of sampling set up). Significantly lower GEM
concentrations in the continental air are indicative of greater oxidation, which is supported by
decreases in GEM concentrations coincident with O3 increases. Eastern Washington is covered
by forests, which generate volatile organic compounds that could contribute to Oz and GOM
formation. The marine air masses likely contained HgBr, or HgCl, and the continental air Hg-O,
Hg-S, Hg-N compounds associated with industry, agriculture, and mobile sources. The capture
efficiency of HgBr, and HgCl; is greater than for O, S, and N compounds (Figure 1; Table 2).
The case study exemplifies how we can use the loss of GEM as a means of understanding the

amount of GOM present or produced in air.

5. Advancing understanding using Hg measurements and models

Here we discuss several key scientific advancements that have come from comparing
models with speciated measurements, as well as the major questions left open by these studies.
The number of atmospheric models capable of simulating speciated Hg has multiplied over the

last decade (Table 3). Detailed discussion on model/measurement comparisons of RM can be
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found in Kos et al. (2013). Limitations and uncertainties of the models themselves have been
written about at length in original research articles on model intercomparisons (Bullock et al.,
2008; Pongprueksa et al., 2008; Lin et al., 2006). Fully acknowledging current limitations, there
have still been huge strides made in our scientific understanding of the processes controlling
GEM, GOM, and PBM cycling in the atmosphere including: marine boundary layer cycling,
plume chemistry, source-receptor relationships, gas-particle partitioning, and vertical
distribution.

Our understanding of speciated Hg cycling in the marine boundary layer (MBL) is one
example of Hg science advancing as a result of using measurements and models in combination.
GOM in the MBL has a diurnal pattern characterized by a midday peak and is depleted through
deposition at night (Laurier & Mason, 2007; Laurier et al., 2003; Sprovieri et al., 2003). The use
of observations and models together determined that the MBL has bromine photochemistry, and
was not affected by the hydroxyl (OH) radical. This drives the midday photochemical peak in
GOM concentrations in the MBL and that scavenging by sea-salt was driving rapid deposition at
night (Holmes et al., 2009; Selin et al., 2007; Obrist et al., 2010; Hedgecock and Pirrone, 2001,
2004; Hedgecock et al., 2003; Jaffe et al., 2005; Laurier and Masson 2007; Laurier et al., 2003;
Sprovieri et al., 2003) .

Model-observation comparisons consistently suggest models overestimate GOM surface
concentrations, sometimes by as much as an order of magnitude (Amos et al., 2012; Zhang et al.,
2012; Kos et al., 2013; Holloway et al., 2012; Bieser et al., 2014). The measurement-model
mismatch is now understood as being partly explained by a low sampling bias (see Section 3),
but this alone cannot reconcile the discrepancy. Reduction of GOM to GEM in coal-fired power

plant plumes (Edgerton et al., 2006; Lohman et al., 2006) has been invoked as a possible
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explanation (Amos et al., 2012; Zhang et al., 2012; Kos et al., 2013; Holloway et al., 2012;
Vijayaraghavan et al., 2008). The mechanism for in-plume reduction (IPR) remains speculative,
hindering inference about how in-plume reduction may vary with coal type, control technology,
or atmospheric composition. Results from recent field and laboratory data have been mixed,
providing evidence for and against IPR (Tong et al., 2014; Landis et al., 2014) (Deeds et al.,
2013). The speciation of anthropogenic emission inventories is also being revisited in order to
reconcile model-measurement RM mismatches (Wang et al., 2014; Bieser et al., 2014).
Improving our understanding of IPR and emission speciation has important implications for the
efficacy of domestic regulation such as the US EPA Mercury Air Toxics Standard and for
potentially attributing trends in Hg wet deposition over the US (Zhang et al., 2013).

Derived source-receptor relationships will also be sensitive to uncertainties in IPR and
emission speciation. On the whole, Hg models simulate wet deposition fluxes better than surface
GOM concentrations, contributing to the relatively high degree of consensus among source-
receptor studies. A comparison of source-receptor studies found models agreed within 10% in
terms of the attribution of total wet Hg deposition to a given continental region (e.g., Europe,
Asia) (AMAP/UNEP, 2013; Travnikov et al., 2010). Several source-receptor studies have
concluded domestic US emissions contribute ~20% to total Hg deposition over the contiguous
US (Selin and Jacob, 2008; Corbitt et al., 2011). Zhang et al. (2012) found that including IPR in
a model decreased the domestic contribution to wet deposition over the United States from 22 to
10%.

An additional area of measurement-model study has been gas-particle partitioning of
GOM and PBM. Understanding gas-particle partitioning is important because gases and particles

are removed from the atmosphere by different physical processes. There is observational and
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laboratory evidence that gas-particle partitioning between GOM and PBM is driven by air
temperature and aerosol concentrations (Rutter and Schauer, 2007a and b; Steffen et al., 2014)
(Rutter et al., 2008; Amos et al., 2012; Chen et al., 2014). Implementing temperature-dependent
gas-particle partitioning in a global model increased simulated annual Hg deposition at higher
latitudes (Amos et al., 2012). Aircraft observations suggest gas-particle partitioning also plays a
major role in influencing the vertical profile of Hg, especially in the upper troposphere/lower
stratosphere (UTLS) (Swartzendruber et al., 2009; Lyman and Jaffe, 2012; Murphy et al., 2006).
Current gas-particle partitioning relationships are derived from surface data. PBM measurements
from the summit of Mt. Bachelor suggest these relationships do not capture PBM dynamics aloft
(Timonen et al., 2013). Effects of aerosol composition (Rutter and Schauer, 2007b), relative
humidity, or even repartitioning of RM within the Tekran® (see section 3.3) could potentially
contribute to this deficiency.

Oxidation also plays a central role in Hg cycling at the upper troposphere/lower
stratosphere boundary. Comparisons against vertical aircraft profiles of TGM consistently
suggest there is too little oxidation in models in the lower stratosphere (Zhang et al., 2012;
Holmes et al., 2010). Observations show that total Hg is depleted in the lower stratosphere
(Holmes et al., 2010; Lyman and Jaffe, 2012; Slemr et al., 2014), which is thought to be the
result of rapid oxidation of Hg(0) to Hg(ll), partitioning of Hg(l1) to sulfate aerosol, and
subsequent sedimentation of PBM (Lyman and Jaffe, 2012). Aircraft measurements over
Washington and Tennessee, US, found summertime GOM peaks between 2-4 km
(Swartzendruber et al., 2009; Brooks et al., 2014). Modeled GOM vertical profiles over the US

have a less pronounced peak and generally place it higher (4-6 km) (Bullock et al., 2008).
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Correctly modeling the vertical distribution of Hg, particularly GOM and PBM, is essential for
simulating deposition and hence Hg loading to surface ecosystems.

Chemistry remains one of the greatest uncertainties in Hg models. Improving
measurements to determine the chemistry can help determine the mechanism(s) at play. There is
still a general lack of rate coefficients and corresponding step-by-step reaction mechanisms
available. The estimated tropospheric lifetime of RM against deposition and reduction is 40 days
(Holmes et al., 2010), but the reduction pathway is highly uncertain (Subir et al., 2011;
Pongprueska et al., 2008), and the burden of RM in the free troposphere is uncertain by at least a
factor of two (Selin et al., 2008; De Simone et al., 2014). Improving our knowledge of the
reduction and oxidation rates in the atmosphere will allow models to better capture the vertical
distribution of Hg, and in turn better simulate Hg deposition. The recent AMAP/UNEP (2013)
assessment identified this as the highest priority for Hg models due to the importance in the Hg
exposure pathway.

A persistent issue is the ambiguity in comparing modeled Hg(Il) compounds to GOM and
PBM, which are operationally defined. Models either have a lumped Hg(ll) tracer or explicitly
resolve individual Hg(Il) compounds (Table 3). Since different Hg(ll) compounds have different
collection efficiencies by the KCI-denuder (Figure 1), this further confounds how to best
construct a GOM-like model quantity to compare against observations. An active dialogue
between experimentalists and modelers is encouraged as the community moves forward, so
modelers may implement Hg tracers that emulate the Hg compounds measured.

Recent papers have used a 3-fold correction factor to adjust the GOM concentrations measured
by the Tekran® system to calculate dry deposition using models in the Western United States

and Florida (cf. Huang and Gustin, 2015a; Huang et al. 2015). Use of this correction factor is

24



548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

based on the discrepancy between denuder measurements in the field and cation exchange
membranes dry deposition measurements and concentrations collected using the UNR active
system. Weiss-Penzias et al. (2015) found the GEOS-Chem model overestimated RM/GEM by a
factor of 2.8 compared to Tekran® RM/GEM, which is roughly in line with this correction
factor. These field observations were collected in dry and humid conditions, and at Os
concentrations typically observed in the atmosphere. Additional consideration could be based on

the RH and O3 concentrations, and the potential GOM compounds in the air.

6. Outstanding issues

Mercury is present in the atmosphere at pg m™ to ng m, and the capability to measure it
is a substantial analytical accomplishment. Ongoing measurements of atmospheric Hg will be
key in evaluating the environmental benefit of regulation on behalf of the Minimata Convention.

Here we reviewed the current state of the science for measuring and modeling
atmospheric Hg concentrations. Recent laboratory and field investigations have shown numerous
artifacts and environmental interferences can affect measurement methods. Some environments
such as those with low humidity and O3 may be less susceptible to sampling interferences than
others. In light of new information about the limitations of sampling methods, we may revisit
and better explain certain features of previous data sets and measurement-model comparison.

Fundamental research is needed on measurement methods and the atmospheric chemistry
of Hg. We need to obtain agreement between several methods for understanding the chemical
forms and compounds in the air. Only through comparison of multiple calibrated measurements

can results be determined to be accurate.

Identifying the chemical compounds of RM in the atmosphere is a top priority.
Understanding the final oxidation products are key for resolving questions regarding Hg
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chemistry. Knowing the dominant compounds would help with the design of measurement
methods and determination of deposition velocities. Thermal desorption shows promise and mass

spectrometry may be a way to verify compounds.

Development of a standard, field-deployable calibration system is needed. This system
should provide spikes into ambient air and allow for studying sampling efficiencies and artifacts

associated with ambient air. Lack of calibration is currently a major shortcoming.

A pyrolyzer should be used at the inlet of the 2537 if the goal is to measure TAM. The
way the Tekran® 1130/1135 system is configured to capture GOM first and then PBM is the best
method to measure these two compounds. However, given the difficulty of separating GOM
from PBM, we recommend interpreting the sum of RM instead of PBM alone until separation is

improved.

A measurement system that collects GOM on a denuder material that has been
demonstrated to work for all compounds of GOM, and separate measurement on a filter using a
cation-exchange membrane could be used for measurement of GOM and RM. Then PBM could
be determined by difference. Due to negative artifacts during long sampling times measurements

should be done for < 24 h.

A new passive sampler design is needed that quantitatively determines concentrations
and is calibrated. Use of a computational fluid dynamics model to help design the sampler could
be one successful way forward. Passive samplers and surrogate surfaces have longer time
resolution (1 day to 1 week), but are relatively inexpensive and easy to operate and could provide
an alternative measure of GOM concentrations and dry deposition fluxes in large-scale sampling

networks once the above issues are resolved.
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Table captions.

Table 1. Pros and cons of automated and passive methods used to make Hg measurements.
Table 2. Regression equations comparing nylon membrane and cation exchange membrane
measured GOM concentrations versus those measured by the denuder using the University of

Nevada, Reno (UNR) laboratory manifold system and charcoal scrubbed air.

Table 3. Atmospheric models with speciated mercury .

Figure captions.

Figure 1. Correlation between GOM concentrations measured by KCl-coated denuder versus the
nylon and cation exchange membranes in activated charcoal scrubbed air. Modified from Huang et
al. (2013).

Figure 2. Thermal desorption profiles generated by permeating different Hg compounds. Modified
from Huang et al. (2013). Percent indicates the amount released relative to the total. Profiles were
developed in activated charcoal scrubbed air. Compounds being permeated may not be the exact
compound in the permeation tube, and this needs to be verified.

Figure 3. Figure 7 from Weiss-Penzias et al. (2003). Reprinted with permission from Weiss-Penzias
etal. 2003, Copyright 1 September 2003 American Chemical Society.

Table 1. Pros and cons of automated and integrative methods used to make Hg measurements.

Hg form Pros Cons Suggestion/comment
measured/detecti S
on limit
Automated
Tekran 2537- GEM or TGM Low detection | Inlet Suggest using a
gold traps 0.5 ng m™ ambient | limit, 2.5to 5 | configuration | pyrolyzer at the inlet
air minute will impact if TAM measurement
resolution, whether is desired.
there is a measuring
calibration GEM or TGM
source, Requires fairly
standardized | trained
by AMNet technicians,
and CAMNet | stable




(cf. Prestbo electrical
and Gay, source, regular
2009) calibration and
checks
Tekran 1130- GOM Good time No calibration | New method needs to
KCI denuder 1pgm? resolution source, be developed that
(1 to 2 hours) | coating measures all forms in
denuders air and is not impacted
needs to be by relative humidity
done by one and ozone. A different
operator, does | denuder coating
not measure would be useful.
all the GOM
in air
Tekran 1135- PBM Good time Positive Filter method may be
quartz filter and | 1 pg m? resolution artifact due to | best and suggest using
chips (1to 2 hours) | measurement | cation exchange
of GOM that | membranes
passes through
the denuder,
not all PBM is
measured due
to select grain
size capture
Lumex GEMor TGM in Good time Older version | Good for industrial
air resolution has issues with | and field applications
Total Hg in liquids | (seconds) stability. See
and solids Field portable | SI.
<1 ng m* for air if | Allows for
averaged over 5 measurement
minutes of Hg
concentration
sin
environmental
media in the
field
Gardias GEM or TGM Good time Requires
0.5ngm? resolution trained
(2.5 minutes) | operators
DOHGS GEM and TGM Good time Requires Useful as a research
80 pg m™ resolution highly trained | instrument
(2.5 minutes) | operators and
stable
environment
Laser GEM Fast time Requires Useful as research
resolution highly trained | instrument




(seconds) operators and | Could be configured
a stable to measure RM and
environment, | GEM
Manual Active
GOM Mist GOM Complicated Useful as a research
Chamber Blank: 20-50 pg operation instrument, needs to
Need acidified | be re-evaluated
solution
Direct PBM Easy Acrtifacts from
Particulate Probably GOM operation GOM
Matter Sampler partition,
Measurement choice of
filters
important to
consider as
well as length
of sampling
line and
collection time
UNR Active GOM Easy Potentially Good for networks,
System ~30 pg m* operation, some PBM and it could be used to
Useful for measured help calibrate
quantifying measurements made
GOM and the by the Tekran.
chemical
forms in air.
Manual
Passive systems
GEM Passive GEM or TGM Easy Long time Good for worldwide
Sampler 10-80 pg m® operation resolution network
GOM Passive GOM Easy Long time Needs a new design
sampler- 2.3-5pgm operation resolution
concentration
GOM Passive GOM Easy Long time Good for worldwide
sampler- Minor PBM operation resolution network
deposition 0.02-0.24 pg m? h™ | Real Hg
! loading to
ecosystem

Table 2. Regression equations comparing nylon membrane and cation exchange membrane
measured GOM concentrations versus those measured by the denuder using the UNR laboratory
manifold system and charcoal scrubbed air.




HgCl, HgBr, HgO Hg(NO3), HgSO,

Nylon y=1.6x
membrane (y) +0.002 y=1.7x+0.01 y=1.8x+0.02 y=1.4x+0.04 y=19x-0.1
KCI denuder r’=0.97, r’=0.99, n=10  r’=0.99, n=8 r>=0.90, n=12 r’=0.6, n=12

(x) n=12

Cation-

msﬁgﬂgiy) y=24x+01  y=L6x+02  y=37x+01  y=12.6x-0.02 y:02.031x
KCI denuder r“=0.58, n=9 r‘=0.86, n=5 r=0.99, n=6 r‘=0.50, n=6 r2:095, =18

(x)




Table 3. Atmospheric models with speciated mercury

Explicit or lumped

Model Name Domain Type Hg(ll) References
GRAHM Global 3D, Explicit (HgCly, Dastoor &Larocque [2004];
Eulerian HgO) Ryaboshopka et al. [2007a,b]; Dastoor
et al. [2008]; Durnford et al. [2010];
Kos et al. [2013]; Dastoor et al. [2014]
GEOS-Chem  Global® 3D, Bulk Hg(ll) Selin et al. [2008]; Selin & Jacob
Eulerian [2008]; Holmes et al. [2010]; Corbitt
etal., [2011]; Amos et al., [2012];
Zhang et al., [2012]; Chen et al.
[2014]; Kikuchi et al [2013]
CMAQ-Hg Continental US 3D, Explicit (HgCly, Bullock & Brehme [2002];
Eulerian HgO) Vijayaraghavan et al. [2008];
Holloway et al. [2012]; Bash et al.
[2014]
GLEMOS Variable, global to 3D, Lumped Travnikov & Ryaboshapko (2002,
regional Eulerian EMEP report); Travnikov (2010)
ECHMERIT  Global 3D, HgO(g), HICly(g), De Simone et al., (2014); Jung et al.
Eulerian lumped HY(I1)(aq) (2009)
WRF-Chem  Regional 3D, Lumped Gencarellia et al 2014
Eulerian
MSCE-Hg- Northern 3D, HgO(y), HICly(g), Travnikov and Ryaboshapko (2002);
Hem Hemisphere Eulerian lumped HY(I1)(aq) Travnikov (2005); Travnikov O. and
[lyin 1. (2009)
ADOM North America, 3D, HgO(g), HICly(g), Petersen et al. (2001)
Europe Eulerian lumped Hg(11)(aq)
DEHM Northern 3D, HgO(g), HICly(g), Christensen et al. (2004); Skov et al.
Hemisphere Eulerian lumped Hg(11)(aq) (2004, EST)
WoRM3 Global 2D, Multi-  Lumped Qureshi et al. (2011)

media



PHANTAS
HYSPLIT
TEAM

CTM-Hg

REMSAD

EMAP

Arctic
Global
North America

Global

North America

Europe

Box model

3D,
Lagrangian
3D,
Eulerian
3D,
Eulerian

3D,
Eulerian
3D,
Eulerian

Detailed, explicit
Hg(1l) compounds
HgO(g),HYClz(),
lumped HG(I1) (aq)
HgO(g),HYClz(),
lumped Hg(I1)(aq)
HgO(g),HYClz(),
lumped HG(I1) (aq)

Explicit (HgCly,
HgO)
Lumped

Toyota et al. (2014)

Cohen et al. 2004

Bullock et al. 2008; 2009

Shia et al 1999; Seigneur et al. 2001,
2004; 2003; 2006; Lohman et al.,
2008

Bullock et al. 2008; 2009

Syrakov et al., 1995

% The standard GEOS-Chem has a global domain with the option to have a nested high-resolution simulation over North America
[Zhang et al., 2012]
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Figure 1. Correlation between GOM concentrations measured by KCl-coated denuder versus the nylon and cation exchange
membranes in activated charcoal scrubbed air. Modified from Huang et al. (2013).
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Figure 2.. Thermal desorption profiles generated by permeating different Hg compounds.
Modified from Huang et al. (2013). Percent indicates the amount released relative to the
total. Profiles were developed in activated charcoal scrubbed air. Compounds being

permeated may not be the exact compound in the permeation tube and this needs to be
verified.
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Figure 3. Figure 7 from Weiss-Penzias et al. (2003). Reprinted with permission from
Weiss-Penzias et al. 2003, Copyright 1 September 2003 American Chemical Society.
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