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Abstract  10 

It has been recently reported that the current 2015–2016 El Niño could become “one of the 11 

strongest on record”. To further explore this claim, we performed the new analysis described 12 

in detail in Varotsos et al. (2015) that allows the detection of precursory signals of the strong 13 

El Niño events by using a recently developed non-linear dynamics tool. In this context, the 14 

analysis of the Southern Oscillation Index time series for the period 1876–2015 shows that the 15 

running 2015–2016 El Niño would be rather a “moderate to strong” or even a “strong” event 16 

and not “one of the strongest on record”, as that of 1997–1998.  17 

 18 

1 Introduction 19 

El Niño/La Niña Southern Oscillation (ENSO) is an oceanic-atmospheric quasi-periodic 20 

phenomenon with several impacts on climate and weather not only in the tropical Pacific, but 21 

in many regions all over the world (Varotsos and Deligiorgi, 1991; Kondratyev and Varotsos, 22 

1995a,b; Klein et al., 1999; Xue et al., 2000; Eccles and Tziperman, 2004; Cracknell and 23 

Varotsos, 2007, 2011; Lin, 2007; Chattopadhyay and Chattopadhyay, 2011; Efstathiou et al., 24 

1998, 2011; Varotsos, 2013; Varotsos et al., 2009a, 2012, 2014a,b). The disastrous effects of 25 

the strong ENSO events necessitate their reliable short and long-term prediction (Latif et al., 26 

1998; Stenseth et al., 2003; Monks et al., 2009; Hsiang et al., 2011; Cheng et al., 2011; 27 

Barnston et al., 2012; Krapivin and Shutko, 2012; Tippett et al., 2012). In this context, 28 

Varotsos et al. (2015) presented a new method (see also Varotsos and Tzanis, 2012) for the 29 



 2 

detection of precursory signals of the strong El Niño events by using the entropy change in 1 

“natural time” (a new time domain, see Varotsos et al., 2002) under time reversal. The 2 

analysis of the Southern Oscillation Index (SOI) time series by using this modern method 3 

provided significant precursory signals of two of the strongest El Niño events (1982–1983 and 4 

1997–1998).  5 

Very recently, Klein (2015) reported that the running 2015–2016 El Niño could become “one 6 

of the strongest on record”. Furthermore, the Australian Government Bureau of Meteorology 7 

(BOM) in their report 8 

(http://www.bom.gov.au/climate/enso/archive/ensowrap_20150901.pdf) of 1 September 2015 9 

stated that “The 2015 El Niño is now the strongest El Niño since 1997–98” and moreover on 10 

29 September 2015 they reported that most international climate models indicate current El 11 

Niño (http://www.bom.gov.au/climate/enso/archive/ensowrap_20150929.pdf) “is likely to 12 

peak towards the end of 2015” as also reported on 8 October 2015 by the Climate Prediction 13 

Center, National Centers for Environmental Prediction, National Oceanic and Atmospheric 14 

Administration (NOAA)/National Weather Service 15 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_oct2015/ensodisc.pdf).  16 

In this study, we further explore these claims, by applying to the SOI time series the recently 17 

proposed analysis by Varotsos et al. (2015). The ability of accurate predictions of such severe 18 

natural events, like El Niño, is of crucial importance especially nowadays, where the global 19 

annual average temperature in 2015 reached the warmest on record values, which might be 20 

associated with the 2015 El Niño event (WMO, 2016).  21 

 22 

2 Results and discussion 23 

As mentioned in the previous section, we analyse the SOI time series (Troup, 1965; Power 24 

and Kociuba, 2011) for the period January 1876 – October 2015 by employing the method 25 

described in detail in Varotsos et al. (2015). More specifically, we conduct the analysis of the 26 

SOI monthly values by using the dataset, entitled “Monthly SOIPhase 1887 – 1989 Base”, 27 

(https://www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex/soidatafiles/index.php) 28 

derived from the Long Paddock site. It should be clarified that we use the monthly values of 29 

SOI, instead of the daily ones, as the latter introduce significant noise due to daily weather 30 

patterns variability. It should be noted here that El Niño and La Niña episodes are associated 31 

with negative and positive values of the SOI, respectively, and SOI = 32 
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[ ] SDDDarwinPATahitiPA )()(10 −× , where the Pressure Anomaly (PA) is the monthly mean 1 

minus long-term mean (1887–1989 base period) and SDD is the standard deviation of the 2 

difference (1887–1989 base period) of mean sea level pressure between Tahiti and Darwin. 3 

The method suggested by Varotsos et al. (2015) is based on the entropy change in natural time 4 

under time reversal ∆Si (e.g., see Varotsos et al., 2005, 2007, 2009b; Sarlis et al., 2010, 2011) 5 

calculated for a window size of i events (SOI monthly values). To this end, Varotsos et al. 6 

(2015) converted the original SOI time series to a new one Qk = (SOIk + |min(SOI)|), where 7 

min(SOI) is the minimum value of SOI during the whole study period, keeping the temporal 8 

sequence of the events and not considering their time of occurrence. Hence, for each Qk value 9 

we calculate the ratio ( kχ ) of the order of its occurrence (k) and the total number (i) of events 10 

within the window, i.e. ikk =χ . The latter quantity, which replaces the conventional time 11 

(t), is natural time kχ  characterizing the k-th event (Varotsos et al., 2002). This way, 12 

Varotsos et al. (2015) introduced a new series the members of which are the pairs ( )
kk Q,χ  13 

where Qk > 0. Thus, one can define the quantity n

i

nkk QQp 1=Σ=  which can be considered 14 

as a probability, since it is positive and satisfies the condition ∑ =
=

i

n np
1

1  (Varotsos et al., 15 

2011). Under these assumptions, the average values of quantities, which are functions of 16 

natural time χ, can be evaluated by ∑ =
=

i

n nn pff
1

)()( χχ  and the entropy in natural time 17 

can be defined by χχχχ lnln −=S  (Varotsos et al., 2005, 2011). Τhe latter quantity 18 

changes to a value S– if, instead of the true sequence of events, one uses the time-reversed 19 

process that is described by 1
ˆ

+−==′
kikk ppTp , where T̂ denotes the time reversal operator in 20 

the window of i events. The quantity ∆Si (= S - S–) reveals the breaking of time-symmetry by 21 

capturing the difference in the dynamics as the system evolves from present to future and 22 

vice-versa. In short, it has been shown (e.g., see Varotsos et al., 2007, 2011) that positive 23 

values of ∆Si correspond to a decreasing time-series in natural time, and hence when ∆Si 24 

exceeds a certain threshold this reveals that SOI is approaching at small values indicating El 25 

Niño (Varotsos et al., 2015). Varotsos et al. (2015) have also shown (see their Fig. 4) that the 26 

most useful window size for this purpose is i = 20 events (months). In their prediction scheme, 27 

the monthly SOI values for the past 20 months are used for the calculation of ∆S20 (see the red 28 

crosses in Figs. 1 and 3) and compared with a threshold ∆Sthres, which can be determined on 29 
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the basis of Receiver Operating Characteristics (ROC, see Fawcett, 2006). ROC is a method 1 

for the visualization, evaluation, and selection of prediction schemes based on their 2 

performance, which is quantified by a plot of the hit rate vs. the false alarm rate obtained by 3 

the following procedure applied to the present case. When ∆S20 ≥ ∆Sthres, one issues an alarm 4 

that the value of SOI for the next month will be smaller than or equal to T (see the black 5 

broken line in Fig. 2). If this turns out to be true, then we have a true positive prediction. If 6 

∆S20 < ∆Sthres and the next month's SOI is larger than T, then we have a true negative 7 

prediction. All other combinations lead to errors (which are inevitable in stochastic 8 

prediction), which can be either false positive or false negative predictions. Figure 2 depicts 9 

the ROC curve obtained, when using ∆S20 as a predictor for the SOI value of the next month 10 

with T = -14 (which is the upper limit of the yellow area in Figs. 1 and 3 discussed below). 11 

This is a diagram of the hit rate (or True Positive rate, i.e., the number of true positive 12 

predictions over all cases with SOI ≤ T = −14) vs. the false alarm rate (or False Positive rate, 13 

i.e., the number of false positive predictions over all cases with SOI > -14) as we vary ∆Sthres. 14 

A method to estimate an appropriate value of ∆Sthres is that of iso-performance lines suggested 15 

by Provost and Fawcett (1998, 2001). In this scheme, a line of constant slope m (see the blue 16 

line in Fig. 2) is selected on the basis of the relative cost of false positive predictions over the 17 

cost of false negative predictions multiplied by the relative frequency of negatives over 18 

positives, i.e., see Eq. (1) of Fawcett (2006). As a typical selection we chose m = 1. We fitted 19 

ROC points with the red curve (having a simple analytical form 
d

cxxba ++ ) and 20 

determined the point at which the slope was unity. This leads to the ROC point indicated by 21 

an arrow in Fig. 2 and corresponds to ∆Sthres = 0.0035 (i.e., a value very close to that 0.00326 22 

presented in Table 1 of Varotsos et al (2015) for T = -15). Thus, in Figs. 1 and 3 when ∆S20 ≥ 23 

0.0035 the alarm is set on for the SOI value of the next month.  24 

The time progress of the SOI monthly values as well as the entropy change in natural time 25 

under time reversal (for the window length i = 20 months) ∆S20 are depicted in Fig. 1 (as well 26 

as in Fig. 3). Beyond the information gained from the exploration of the ∆S20 dynamics and in 27 

order to further identify if 2015–2016 El Niño could be characterized as a “very strong” one 28 

or even more as “one of the strongest on record”, we followed the classification and 29 

characterization of the past El Niño events given by BOM 30 

(http://www.bom.gov.au/climate/enso/enlist/). The coloured areas in Figs. 1 and 3 represent 31 

the mean minimum negative values of SOI along with the 1σ standard deviation bands for the 32 
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two cases of “weak, weak to moderate, moderate, moderate to strong” (green band) and 1 

“strong, very strong” (yellow band) El Niño events. 2 

As can be clearly seen in Fig. 3, the SOI values during the last three months remain in the 3 

green band and in the limits of the yellow one, indicating that 2015 El Niño should be rather 4 

characterized as a “moderate to strong” or even “strong” event and not “one of the strongest 5 

on record”, as also shown by comparing with the El Niño events of 1982–1983 and 1997–6 

1998. Furthermore, the variation of ∆S20 during the 2015 El Niño in comparison with 1982–7 

1983 and 1997–1998 El Niño events is not as sharp, confirming that the undergoing El Niño 8 

event is not “one of the strongest on record”. In order to estimate the extent of this variation, 9 

we plot with the black curve in Fig. 4 the probability density function (PDF) of ∆S20 obtained 10 

from the estimator ∑
=
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)( , where Oi are the observed values of 11 

∆S20 since the beginning of our study, N is the total number of these observations, the kernel 12 

K(x) is non-zero only when 1<x  having the value ( )21
4

3
)( xxK −=  and bN is related with the 13 

standard deviation σ of the observed ∆S20 values by 34.0/25.10 NbN σ=  as suggested by 14 

Mercik et al. (1999). We observe in Fig. 4 that only rarely ∆S20 exceeds the value of 0.02, 15 

which can be also verified by the red histogram obtained for ∆S20 using the TISEAN package 16 

(Hegger et al., 1999) (also plotted in Fig. 4). In the latter histogram, the minimum non-zero 17 

height is observed in the bar that includes the value ∆S20 = 0.02 covering the range up to 18 

approximately 0.0205. To detect when ∆S20 exceeds the latter value, we plot with blue crosses 19 

the time series of ∆S20 vs. time, which can be read in the right axis of Fig. 4. We see (blue 20 

arrows in Fig. 4) that 0205.020 >∆S  is observed only in the three strong El Niño events of 21 

1905-1906, 1982-1983 and 1997-1998. This inequality, however, is not fulfilled in the current 22 

case (2015–2016 El Niño), since the currently observed values are close to 0.01, i.e., 23 

markedly smaller than the value of 0.0205. 24 

 25 

3 Conclusions 26 

Recent reports indicate that 2015–2016 El Niño event could become “one of the strongest on 27 

record” or could be already characterized as “the strongest El Niño since 1997–98”. In order 28 

to investigate these assertions, we analyzed the SOI time series for the period January 1876 – 29 
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October 2015 by using the method described in Varotsos et al. (2015) based on the entropy 1 

change in natural time under time reversal. The results obtained indicate that the undergoing 2 

2015–2016 El Niño event should be rather characterized as a “moderate to strong” or even 3 

“strong” event and not “one of the strongest on record”. 4 
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Figure captions 1 

 2 

Figure 1. The entropy change ∆S20 in natural time for the window length i = 20 months (red 3 

line, left scale) along with SOI monthly values (blue line, right scale) for the period January 4 

1980 – October 2015. The alarm is set on (black line), when ∆S20 exceeds the threshold value 5 

∆Sthres = 0.0035.  6 

 7 

Figure 2. The hit rate vs. false alarm rate when using ∆S20 as a predictor for the SOI value of 8 

the next month. The ROC point indicated by the arrow has been selected so that the slope of 9 

the tangent of the analytical fitting of the ROC points indicated by the red curve has unit slope 10 

and hence it corresponds to the m = 1 iso-performance line of the ROC space (e.g., see 11 

Fawcett, 2006; Provost and Fawcett, 1998, 2001). 12 

 13 

Figure 3. As in Fig. 1, but only for the 1982–1983, 1997–1998 (the two strongest in the last 14 

century) and the current 2015–2016 El Niño events.  15 

 16 

Figure 4. The PDF of ∆S20 (black curve, left scale) together with the corresponding histogram 17 

(red bars, left scale) obtained from the time series of ∆S20, which is also plotted vs. time (blue 18 

crosses, right scale) along the vertical axis. The arrows indicate when ∆S20 exceeds 0.0205 19 

and are labeled by the corresponding ongoing strong El Niño events. 20 
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