

Supplement of

European air quality modelled by CAMx including the volatility basis set scheme

G. Ciarelli et al.

Correspondence to: S. Aksoyoglu (sebnem.aksoyoglu@psi.ch)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 6 Supplement

Table S1. Properties of the VBS space (adapted from Koo et al., 2014). Carbon numbers for
each volatility bin are calculated using the group-contribution of Donahue et al. (2011).

4

Basis sets	C* (µg m ⁻³)	Carbon oxidation state	Carbon Number	Oxygen Number	Hydrogen number	Molecular weight	OA/OC
	0	0.102	7	4.90	9.10	172	2.05
	1	-0.188	7.25	4.38	10.1	167	1.92
SV-OOA	10	-0.463	7.5	3.84	11.2	163	1.81
	100	-0.724	7.75	3.30	12.2	158	1.70
	1000	-0.973	8	2.74	13.3	153	1.59
	0	-1.52	17	2.69	31.3	278	1.36
HOA-like	1	-1.65	17.5	2.02	33.0	275	1.31
	10	-1.78	18	1.34	34.7	272	1.26
	100	-1.90	18.5	0.632	36.4	268	1.21
	1000	-2.00	19	0.0	38.0	266	1.17
	0	-0.704	10	4.32	15.7	205	1.71
	1	-1.02	11	3.60	18.4	208	1.58
BBOA-like	10	-1.29	12	2.85	21.1	211	1.47
	100	-1.52	13	2.08	23.9	213	1.37
	1000	-1.73	14	1.27	26.7	215	1.28

1 Table S2. Measured and modelled NH₃ monthly average concentrations at Payerne for June

2 2006 and February-March 2009. Measurement data "Ammoniak Immisionsmessungen in der

3 Schweiz" available on http://www.bafu.admin.ch/luft/00585/10770/index.html?lang=de.

4

Period	NH ₃ Model (µg m ⁻³)	NH_3 Observation (µg m ⁻³)	MB [-]
June 2006	4.7	5.0	-6%
March 2009	6.1	5.1	+20%

5

6 Table S3. Statistical analysis for nitrate for February-March 2009 at different AMS sites with

7 50% reduction of ammonia scenario.

8

	Mean	Mean modelled	Mean modelled	MB	MB
Site	observed	NO ₃	NO ₃ ⁻	Base case	50% red.
Sile	NO ₃ ⁻	Base case (S3)	50% red. NH ₃	(S3)	NH ₃
	(µg m ⁻³)	(µg m ⁻³)	(µg m ⁻³)	(µg m ⁻³)	(µg m ⁻³)
Barcelona	3.6	5.8	3.6	2.19	< 0.1
Cabauw	2.2	6.7	5.3	4.49	3.08
Chilbolton	2.7	4.0	2.7	1.33	< 0.1
Helsinki	1.0	1.9	0.7	0.93	-0.28
Hyytiälä	0.2	1.0	0.3	0.75	< 0.1
Mace Head	0.6	1.7	0.8	1.11	0.17
Melpitz	3.1	4.3	3.1	1.25	< 0.1
Montseny	3.1	5.9	3.2	2.83	< 0.1
Payerne	3.9	5.7	5.0	1.81	1.11
Puy de Dôme	0.9	2.7	2.0	1.81	1.15
Vavihill	2.8	3.7	2.3	0.89	-0.56

- 1 Table S4. Statistical analysis for the OA concentration and different sensitivity scenarios for
- 2 February-March 2009 periods at 11 AMS sites.
- 3

Site	Mean observed OA (µg/m3)	Mean modelled OA $(\mu g/m^3)$	MB (µg/m ³)	ME (µg/m ³)	MFB [-]	MFE [-]
		Scenario S1				
Barcelona	8.2	2.0	-6.25	6.27	-1.08	1.10
Cabauw	1.2	1.0	-0.27	0.52	-0.18	0.49
Chilbolton	2.4	0.6	-1.82	1.82	-1.14	1.15
Helsinki	2.7	2.0	-0.64	1.46	-0.21	0.64
Hyytiälä	1.3	0.6	-0.67	0.69	-0.69	0.72
Mace Head	0.8	0.2	-0.61	0.62	-0.71	0.90
Melpitz	1.5	0.5	-0.98	0.99	-0.86	0.88
Montseny	3.1	2.5	-0.53	1.69	-0.05	0.62
Payerne	4.1	1.1	-2.97	2.99	-1.03	1.07
Puy de Dôme	0.6	1.0	0.36	0.68	0.56	0.92
Vavihill	3.9	1.1	-2.79	2.79	-1.06	1.07
		Scenario S2				
Barcelona	8.2	1.3	-6.96	6.96	-1.39	1.39
Cabauw	1.2	0.4	-0.85	0.87	-0.96	1.01
Chilbolton	2.4	0.3	-2.10	2.10	-1.50	1.50
Helsinki	2.7	0.9	-1.73	1.76	-0.88	0.92
Hyytiälä	1.3	0.4	-0.90	0.90	-1.18	1.18
Mace Head	0.8	0.2	-0.54	0.57	-0.43	0.77
Melpitz	1.5	0.2	-1.26	1.26	-1.48	1.48
Montseny	3.1	1.6	-1.51	1.87	-0.51	0.78
Payerne	4.1	0.7	-3.44	3.44	-1.45	1.46
Puy de Dôme	0.6	0.5	-0.15	0.46	-0.14	0.81
Vavihill	3.9	0.4	-3.44	3.44	-1.61	1.61
		Scenario S3				

Barcelona	8.2	3.1	-5.11	5.15	-0.80	0.82
Cabauw	1.2	1.1	-0.14	0.53	-0.13	0.50
Chilbolton	2.4	0.7	-1.70	1.70	-1.09	1.10
Helsinki	2.7	2.9	0.26	1.64	0.08	0.62
Hyytiälä	1.3	1.0	-0.28	0.52	-0.48	0.60
Mace Head	0.8	0.4	-0.38	0.43	-0.29	0.70
Melpitz	1.5	0.5	-0.95	0.98	-0.94	0.97
Montseny	3.1	3.9	0.88	1.88	0.31	0.57
Payerne	4.1	1.8	-2.33	2.43	-0.85	0.90
Puy de Dôme	0.6	1.4	0.78	0.96	0.68	0.91
Vavihill	3.9	1.4	-2.53	2.53	-1.04	1.04
		Scenario S4				
Barcelona	8.2	3.3	-4.98	5.03	-0.77	0.80
Cabauw	1.2	1.1	-0.11	0.54	-0.12	0.50
Chilbolton	2.4	0.7	-1.67	1.68	-1.08	1.09
Helsinki	2.7	2.9	0.26	1.64	0.08	0.62
Hyytiälä	1.3	1.0	-0.28	0.52	-0.48	0.60
Mace Head	0.8	0.4	-0.37	0.42	-0.29	0.70
Melpitz	1.5	0.5	-0.92	0.97	-0.92	0.96
Montseny	3.1	4.1	1.02	1.96	0.33	0.58
Payerne	4.1	1.8	-2.27	2.39	-0.83	0.88
Puy de Dôme	0.6	1.5	0.86	1.04	0.70	0.93
Vavihill	3.9	1.4	-2.51	2.51	-1.03	1.03
		Scenario S5				
Barcelona	8.2	4.8	-3.43	3.91	-0.45	0.56
Cabauw	1.2	1.7	0.45	0.81	0.20	0.55
Chilbolton	2.4	1.0	-1.40	1.42	-0.87	0.89
Helsinki	2.7	5.0	2.32	2.93	0.50	0.75
Hyytiälä	1.3	1.9	0.59	0.96	0.07	0.54
Mace Head	0.8	0.5	-0.26	0.36	-0.23	0.68

Melpitz	1.5	0.9	-0.59	0.85	-0.55	0.70
Montseny	3.1	6.2	3.11	3.37	0.67	0.73
Payerne	4.1	3.2	-0.94	1.90	-0.37	0.57
Puy de Dôme	0.6	2.8	2.16	2.24	1.11	1.18
Vavihill	3.9	2.6	-1.31	1.93	-0.60	0.72

2 Table S5. Statistical analysis for the OA concentration and different sensitivity scenarios for

3 June 2006 period at Payerne site.

Mean observed OA	Mean modelled OA	MB	ME	MFB	MFE
(μg/m3)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	[-]	[-]
6.03	2.56	-3.47	3.54	-0.91	0.93
6.03	1.74	-4.29	4.29	-1.11	1.11
6.03	2.43	-3.6	3.62	-0.85	0.86
6.03	3.4	-2.63	2.78	-0.63	0.66
6.03	2.75	-3.28	3.32	-0.75	0.76
	Mean observed OA (μg/m3) 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03	Mean observed OA (μg/m3) Mean modelled OA (μg/m ³) 6.03 2.56 6.03 1.74 6.03 2.43 6.03 3.4 6.03 2.75	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

8 Figure S1: Spatial distribution of mean error for NO₂ (left) and SO₂ (right) for the January9 February 2007 episode for all Airbase stations with 80% of daily measurement available.
10 Units are in ppb.

O3 for AirBase Site: IE0031R

O3 for AirBase Site: IE0031R 120 Observations Site: IE0031R Model 100 80 O3 (ppb) 60 40 20 0 Sep 17 Sep 20 Sep 23 Sep 26 Sep 29 Oct 02 Oct 05 Oct 08 Oct 11 Oct 14

O3 for AirBase Site: IE0031R

4 Figure S2. Comparison of modelled (base case, S3) and measured O_3 mixing ratios at Mace

- 1 Head (IE0031R) for the four simulated periods: from top to bottom: June 2006, January-
- 2 February 2007, September-October 2008, February-March 2009.

Figure S3. Comparison of modelled (base case, S3) and measured PM_{2.5} concentrations at
Viznar (ES0007R) in Southern Spain for September-October 2008 (top) and at Ayia Marina
(CY0002R) in Cyprus for February-March 2009 (bottom).

9 Figure S4. Monthly ammonia emission factor profiles for Switzerland as available in the10 EDIII exercise.

Figure S5. Comparison of observed and modelled temperature (°C), wind speed (m s⁻¹),
 specific humidity (g/kg) and wind direction (°C) comparisons at Payerne in February-March
 2009.

Figure S6. Modelled planetary boundary layer height at Payerne (red) and convective
boundary layer height derived from Payerne soundings (stars). Units are meters above ground
level.

- 1 Figure S7. Comparison of observed and modelled temperature (°C), wind speed (m s⁻¹),
- 2 specific humidity (g/kg) and wind direction (°C) comparisons at Payerne in June 2006.

Figure S8. Observed and modelled OA concentrations using 5 scenarios at AMS sites for the
period February-March 2009: Boxplots indicate medians, 5th, 25th, 75th and 95th quantiles for
observations (black) and sensitivity tests (red). The crosses represent the arithmetic means.

2 Figure S9. Observed and modelled OA using 5 scenarios at Payerne sites for the period June

- 3 2006: Boxplots indicate median, 5th, 25th, 75th and 95th quantile for observations (black) and
- 4 sensitivity tests (red). The crosses represent the arithmetic means.