Reply to comments of Anonymous Referee # 1:

Original comments are in *italic*, replies in <u>blue</u> and proposed new text is in normal font.

This paper presents a series of sensitivity tests with varying volatility and emission parameters to assess the performance of the CAMx model with VBS, regarding OA over Europe. The innovative elements of this paper can be significantly enriched and this work could provide an useful insight into the VBS approach. The first part of the paper is well-written but several issues emerge in the second part. The aim of the paper stated in the introduction (OA model performance with the use of VBS) is not served properly in the discussion section.

Thank you for your comments and suggestions to improve our manuscript. Our answers to questions follow below:

General comments

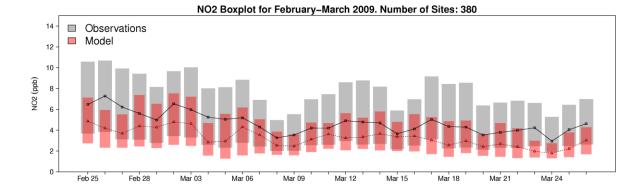
1. The main part of the discussion is performed over the base case S3. I recommend changing the base case to S1 and build S2 and S3 upon that. Emissions scenarios applied in section 3.3.2 could be named S1a and S1b. The authors could skip the re-naming if the structure of the manuscript changes to focus on OA performance with and without VBS. In that context the S1 (no VBS) to S3 (VBS) sequence is proper in that it shows the improvement when utilizing volatility schemes (see Figure 7).

We changed the naming convention of the different scenarios throughout the manuscript as also suggested by Referee 2. The new nomenclature follows below:

S1: NOVBS (without VBS, two-product organic aerosol scheme based on Strader, 1999)
S2: VBS_ROB (VBS organic scheme with volatility distribution proposed by Robinson et al., 2007)
S3: VBS_BC (Base case, VBS organic scheme with volatility distribution proposed by Tsimpidi et al., 2010 and Shrivastava et al., 2011)
S4: VBS_BC_2xBVOC (Doubled biogenic emissions based on VBS_BC)

S5: VBS_BC_2xBBOA (Doubled biomass burning emissions based on VBS_BC)

2. The statistical analysis of the model performance could be enhanced by metrics that show the evolution of a process. Time series and correlation could add to the manuscript.


We included correlation coefficients of all the species in Table 2 for all the investigated periods. In addition, time series of NO_2 and SO_2 were shown as well (Fig. S1) and discussed in the reply to the next comment (3).

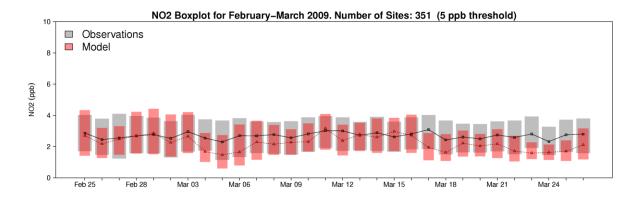

Species	Number of sites	Observed mean (ppb) (µg m ⁻³ for PM _{2.5})	Modelled mean (ppb) (μg m ⁻³ for PM _{2.5})	MB (ppb) (μg m ⁻³ for PM _{2.5})	МЕ (ppb) (µg m ⁻³ for PM _{2.5})	MFB [-]	MFE [-]	r
			June 2	2006				
СО	36	192.0	158.0	-34.2	80.7	-0.12	0.36	0.20
NO ₂	320	4.1	2.3	-1.9	2.2	-0.54	0.68	0.55
O ₃	460	42.3	51.2	8.9	10.8	0.21	0.24	0.57
PM _{2.5}	48	12.0	11.7	-0.3	4.5	-0.07	0.39	0.55
SO ₂	263	1.0	1.2	0.2	0.7	0.14	0.67	0.52
			Jan-Feb	2007				
СО	45	248.0	191.0	-57.8	107.0	-0.11	0.37	0.21
NO ₂	337	6.5	4.4	-2.2	3.2	-0.28	0.57	0.68
O ₃	455	23.5	35.8	12.3	12.6	0.48	0.49	0.61
PM _{2.5}	56	11.7	12.8	1.0	6.1	-0.04	0.56	0.69
SO ₂	271	1.3	1.7	0.4	1.1	0.36	0.75	0.46
			Sep-Oct	2008				
CO	53	208.0	136.0	-72.0	91.4	-0.31	0.48	0.27
NO ₂	370	5.3	3.7	-1.7	2.5	-0.28	0.56	0.62
O ₃	465	24.3	32.5	8.2	9.6	0.32	0.37	0.50
PM _{2.5}	90	13.0	14.1	1.0	5.7	<0.01	0.46	0.76
SO ₂	256	0.9	1.1	0.2	0.8	0.25	0.74	0.37
			Feb-Ma	r 2009				
СО	57	262.0	170.0	-91.6	119.0	-0.26	0.48	0.37
NO ₂	380	6.0	3.9	-2.0	2.8	-0.33	0.56	0.61
O ₃	488	32.7	33.0	0.2	7.1	0.02	0.23	0.55
PM _{2.5}	110	15.1	13.0	-2.1	6.4	-0.13	0.50	0.71
SO ₂	257	1.0	1.3	0.3	0.9	0.23	0.76	0.45

Table 2. Model gas phase and $PM_{2.5}$ performance for the EDIII field campaigns (based on VBS_BC).

3. Figure 1 of supplemental material denotes several areas of poor performance like complex terrain areas, coastal zones, Eastern Europe (specially of SO_2) and heavily industrialized/populated areas. The emissions are named as the culprit for the poor performance of the model regarding all gaseous species but O_3 . This leads to thoughts about the quality of the emission dataset and/or model resolution. Either which, this has to be somehow elaborated on, because the limitations of the emissions also affect the OA discussion and the overall aim of the paper. Other reasons could be nitrates overestimation in the case of NO_2 (if the results shown in figure 5 can be generalized) and insufficient conversion to sulfates in the case of SO_2 or even transport, wet and dry deposition of aged aerosols

Thank you for this remark which was also stressed by Referee 2. We elaborate more on this in section 3.1. We replaced Figure 1 of the supplemental material with daily average time series of NO_2 and SO₂ for the period in Feb-Mar 2009 (below). Moreover we reported daily average time series of NO_2 at stations not exceeding 5 ppb (~92% of the stations used in the top panel in Fig. S1) in order to remove the influence of polluted areas and local events in the proximity of rural-background stations which might be difficult to resolve (middle-panel in Fig. S1). The model performance improved significantly giving more confidence regarding the emissions dataset, with the NO₂ concentration still being under-predicted. We also included an emission map of NO for 1 March 2009 at 6 AM as an example (Figure S2). The spatial distribution of emissions looks reasonable and in line with other model exercises. High emissions of NO are predicted in the Benelux area, Po Valley, Germany and in some of the eastern European countries. High NO emissions due to ship traffic are also visible especially in the Mediterranean Sea. We added daily variations of modelled and measured SO₂ concentrations as well (lower-panel) for all available stations. In general also the daily variation of modeled and measured SO₂ concentrations agrees relatively well with each other with slight overestimation during the day. We agree with the referee that insufficient conversion to sulfate or too low deposition processes might indeed also explain the over-prediction of the SO₂. Paragraph 3.1 was extensively revisited to include the discussion above for the investigated species.

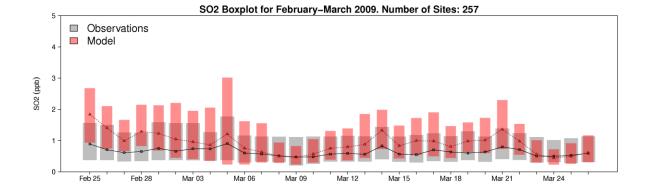


Figure S1. Comparison of modelled (VBS_BC) (red) and measured (grey) NO_2 (upper panel) and SO_2 (lower panel) concentrations at AirBase rural background sites (as in Table 2). The middle panel shows the comparison at stations where NO_2 concentrations do not exceed 5ppb. The extent of the bars indicates the 25th and 75th percentile. The black and red lines represent measured and modelled medians, respectively.

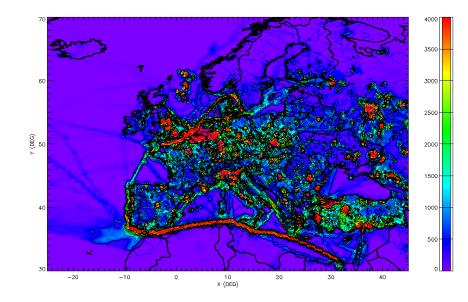


Figure S2. NO emissions in [mol/(h cell)] for 1 March 2009, at 6:00 AM

4. From the moment that the authors have discovered the reason for the 'good' performance of total PM2.5 (overestimation of inorganic aerosol fraction and underestimation of the organic one) I believe there is no merit in focusing on it in the discussion section (second paragraph of 3.1). This also goes for the abstract and conclusions section.

We agree and revised Section 3 as well as the abstract and conclusions as reviewer suggested. Paragraph 3.1 was extensively revisited by splitting it according to the different investigated species and shortened by removing figure 4 and the analysis at the stations of Casirate D'Adda and Ayia Marina.

5. The compensating effect (inorganic versus organic) has been confirmed for the period February - March 2009. Can the authors provide some arguments on whether this model behavior is effective on the other periods too and therefore affecting $PM_{2.5}$ performance throughout the year?

We included an evaluation of nitrate, sulfate, ammonium and organics for all the 4 periods at the rural station Payerne (Figure S4 below). There was a general tendency of overestimating the inorganic aerosol fraction and underestimating the organics in all periods. The bias for OA was approximately constant (~-60%) while the bias for SIA varied between 20% and 60%, being highest in spring and in fall (where high ammonia emissions are expected) causing a compensation effect during all the periods (difference of ±20% to from June 2006 to February-March 2009. Figure S5).

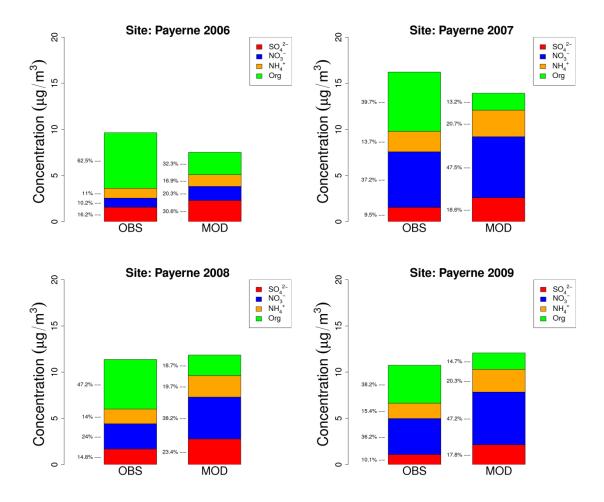


Figure S4. Comparison of observed (OBS) non-refractory PM_1 and modelled (MOD) $PM_{2.5}$ components at Payerne for all the investigated periods.

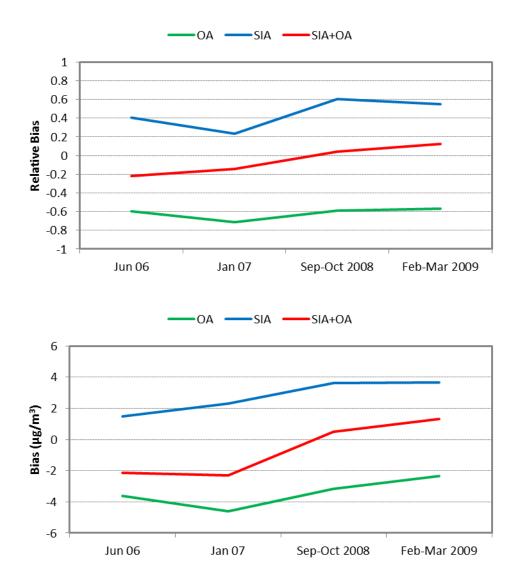


Figure S5. Absolute and relative bias for organic aerosol (OA), secondary organic aerosol (SIA) and OA+SIA in Payerne for all the investigated periods.

6. Paragraph 3.2 includes a discussion on the PM2.5 performance and sensitivity to ammonia and NOx emissions, large parts of which can be seen in Aksoyoglu et al, 2011. Please consider omitting parts or all of the analysis of paragraph 3.2 and redirect focus to the initial scope or include a satisfactory analysis of the new elements it has to offer.

We revised the section 3.2 as also suggested by Referee 2. We removed the discussion regarding the sources and annual distribution of NH_3 emissions as well as measured and modelled NH_3 comparisons at the site of Payerne. The discussion part regarding the model sensitivity to NO_x and NH_3 emission in Europe was also removed.

7. The scope of the paper is to assess what VBS scheme has to offer to OA modelling. The relative analysis is (very) limited to the small paragraph 3.3 (specifically only 3.3.1 since 3.3.2 is related to emissions).

We thank the Referee for this remark. We originally kept this section short because more detailed analysis of OA modeling with VBS is being prepared for a follow-up paper. We agree however with the referee and add section 3.3.3 to the revised manuscript.

3.3.3 OA components in summer and winter

Comparisons of primary organic fraction and secondary organic fraction at the rural site of Payerne during summer (June 2006) and winter (February-March 2009) periods are reported in Figure 10. During the winter period the VBS scheme better reproduced the primary and secondary organic aerosol components compared to the NOVBS case. In particular, For the VBS_ROB base case, total OA concentrations were lower compared to the NOVBS case, consistent with the study of Woody et al. (2016) where the same VBS scheme was applied to the US domain. The total OA concentrations in the base case (VBS_BC) and in the scenario with increased biomass burning emissions (VBS_BC_2xBBOA) were higher compared to NOVBS case, even though SOA and POA fractions were not correctly reproduced. Higher contribution from the primary fraction during winter periods was also predicted by the study of Koo et al. (2014) which deployed the same VBS scheme. Eventually, this might indicate that biomass burning precursors might be missing in this study, or that the oxidation pathways of primary organic material need to be improved in the model (up to 86% of the reacted primary organic material is still allocated in the primary set as oxidation proceeds, directly increasing the POA fraction).

Different behavior was observed for the summer period where the larger contribution of SOA to the total OA retrieved from measurements is also reproduced by the model, even though the total OA concentration was still underestimated. These results for summer are also in line with the study of Koo et al. (2014) for summer periods in the US domain carrying the same VBS scheme.

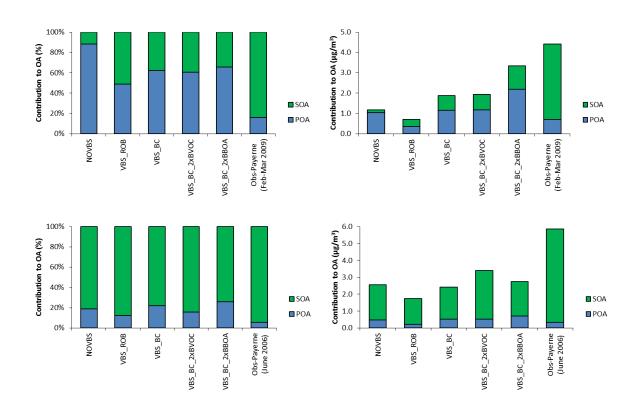


Figure 10. Relative (left) and absolute (right) contributions of predicted and measured POA and SOA fractions to the total OA mass at Payerne for February-March 2009 winter period (upper-panel) and June 2006 (lower-panel) and different model scenarios. NOVBS: (traditional non-volatile POA), VBS_ROB (Robinson et al., 2007), VBS_BC (Tsimpidi et al., 2010, Shrivastava et al., 2011), VBS_BC_2xBVOC (increased biogenic emissions relative to VBS_BC), VBS_BC_2xBBOA (increased biogenic emissions relative to VBS_BC), VBS_BC_2xBBOA (increased biogenic emissions relative to VBS_PMF.

Specific comments:

1. Definition of the statistical metrics can be put in appendix if needed. 2.

We agree and eliminated the formula in the main text.

2. Paragraph 3.1 needs splitting depending on the species. Also more discussion on the performance is needed (now based only on MB and ME).

We revised the section 3.1 as also suggested by Referee 2. We split the paragraph according to the species and added more discussion regarding model performance.

3. Figure 1 could be left out as it gives a schematic display of statistics already arithmetically mentioned in Table 2 (column 3 and 4 - observed and modelled means).

We agree and removed Figure 1 from the manuscript.

4. Please specify the time period that Figure 5 refers to (in figure caption).

We modified the caption as the following:

Figure 3. Comparison of modelled $PM_{2.5}$ (MOD) and observed non-refractory PM_1 (OBS) at 10 AMS sites in Europe during February-March 2009. Mace Head is reported only in Table 3 since the ammonium component is not available.

5. P35659 line 4. Please change 'Cypro' to 'Cyprus'

We removed the sentence containing the word.

6. Please restructure paragraph 3.2 if considered necessary to be included in the manuscript. It is very large and hard to follow.

We restructured the paragraph 3.2

7. Figure 6 Please increase the font (Axis, numbers)

We enlarged Figure in order to increase the readability.

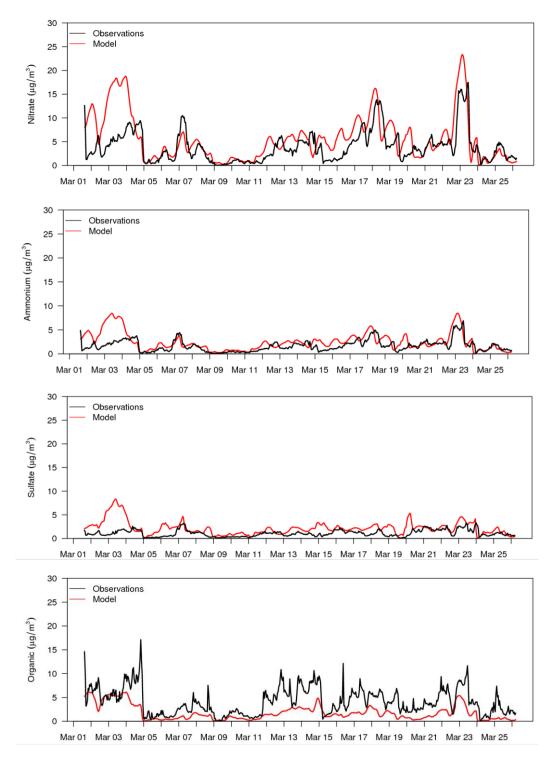


Figure 4. Comparison of observed and modelled nitrate, ammonium, sulfate and organic aerosol at Payerne for March 2009.

References

Koo, B., Knipping, E., Yarwood, G.: 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ, Atmos Environ., 95: 158-164., 2014.

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, Science, 315, 1259–1262, doi:10.1126/science.1133061, 2007.

Shrivastava, M., Fast, J., Easter, R., Gustafson Jr., W. I., Zaveri, R. A., Jimenez, J. L., Saide, P., and Hodzic, A.: Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach, Atmos. Chem. Phys., 11, 6639–6662, doi:10.5194/acp-11-6639-2011, 2011.

Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol formation in winter, Atmos. Environ., 33, 4849–4863, 1999.

Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525-546, doi:10.5194/acp-10-525-2010, 2010.

Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081-4100, doi:10.5194/acp-16-4081-2016, 2016.

Reply to comments of Anonymous Referee # 2:

Original comments are in *italic*, replies in <u>blue</u> and proposed new text is in normal font.

The paper describes the application and evaluation of the CAMx model with the Volatility Basis Set scheme used for formation of secondary organic aerosols. The study includes several sensitivity simulations varying the volatility and emission parameters of the organic species. In-general, the study goes along the same lines of several existing applications, some quoted by the authors in the introduction. In that sense, I found little new or innovative pieces in the paper. From the other side, such evaluation exercises are useful for collecting experience with the VBS approach. Till now, it falls short of demonstrating a major breakthrough in the models performance as a reward for high complexity and bulkiness.

The paper is comparatively well written except for the results section 3.

I however noticed a few omissions, some with potentially heavy consequences, which should be brought up.

Thank you for your comments and suggestions to improve our manuscript. Our answers to questions follow below:

General comments

1. The most-important omission is the analysis of the emission dataset. A potentially woeful problem, for instance, is seen from Figure 8, the S1 scenario. The concentration map evidently reproduces the emission distribution, which almost completely misses half of the countries. This is a major caveat of the input dataset, which, if confirmed by the explicit emission analysis, would disqualify the whole exercise: the authors would have to switch to another emission dataset.

Thank you for this remark. We improved the color scale as shown below in order to facilitate the visualization of countries where low OA concentrations are predicted, e.g. over Germany, Spain and UK. Emissions used in this study are based on the main European inventories TNO-MACC and EMEP which are widely used in European modelling studies. Details of the construction of emission inventory, improvements and uncertainties are discussed in Kuenen et al. (2014). We believe that the emission inventory used in this study is the best available in Europe, however, one should bear in mind its limitations. Using the same emission inventory, Bergström et al. (2012) showed that wood burning emissions in Sweden were underestimated during winter as also suggested by our results in this study.

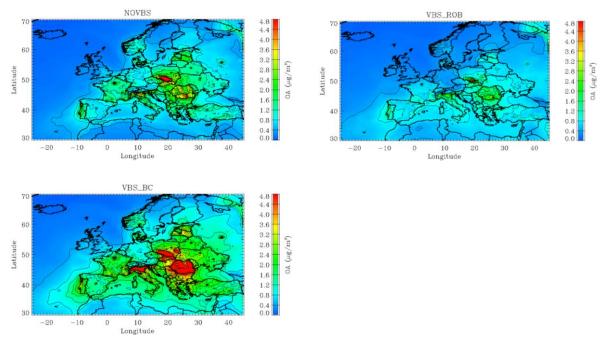
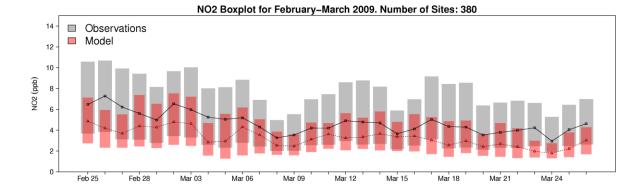
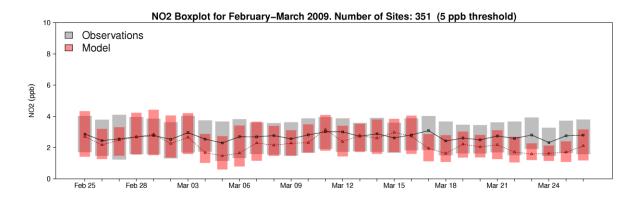




Figure 6. Predicted OA concentrations over Europe for the NOVBS, VBS_ROB and VBS_BC scenario in February-March 2009. Note that the color scale was limited to a maximum of 4.8 μ g m⁻³ to facilitate comparison of the panels.

2. From the other side, the authors fell to a frequent modeller's trap of blaming emission for poor model performance, often with thin supporting analysis. Some of these blames may be justified, some may be not. For instance, I found it hard to believe the long discussion in p. 35657, where the authors try to explain the strong systematic NO2 under-estimation – and blamed emission. I found an alternative and much simpler potential explanation: nitrates are strongly over-estimated in most of cases, which would probably make-up for the deficit and suggest problems in the model chemistry rather than emission.

Thank you for this remark. We revised Section 3.1 to make it clear that there might be more than one reason for the discrepancy between modeled and measured NO₂ concentrations. One of them is the difficulty in reproducing the PBL height correctly as discussed in detail by Bessagnet et al. (2016). On the other hand, although NO_x emission estimates in Europe are thought to have an uncertainty of about \pm 20%, the complete data set used in the inventories has much higher uncertainty (Kuenen et al., 2014). A recent study identified a significant discrepancy between emission estimates and actual flux measurements, with the highest underestimation being a factor of two in central London mainly due to under-representation of real world road traffic emissions (Vaughan et al., 2016). Most of the models within the EURODELTA III exercise underestimated NO₂ concentrations during the modeled periods (Bessagnet et al., 2016) especially during day time. The referee's potential explanation as over-estimated nitrate making up the deficit for NO₂ might certainly be a sound one. In addition to uncertainties in NO₂ emissions, there might also be too much HNO₃ in the model due to not enough deposition. Wet deposition of oxidized nitrogen was underestimated supporting the hypothesis of insufficient deposition leading to overestimation of nitrate. We added daily average time series of NO₂ for the period of Feb-Mar 2009 for the stations used in Table2 (Figure S1, below). Moreover we reported daily average time series of NO₂ at stations not exceeding 5 ppb (92% of the stations used in the top panel) in order to remove the influence of polluted areas in the proximity of rural-background stations that might be difficult to resolve (middle panel in Fig. S1). The model performance improved significantly giving more confidence regarding the emissions. One should also bear in mind that measurements might have interferences from other oxidized nitrogen compounds leading to too high NO₂ concentrations (Villena et al., 2012). We also included emission map of NO for 1 March 2009 at 6 AM as an example (Figure S2). Spatial distribution of emissions looks reasonable and in line with other model exercises. High emission of NO are predicted in the Benelux area, Po Valley, Germany and in some of the eastern European countries. High NO emissions due to ship traffic are also visible especially in the Mediterranean Sea.

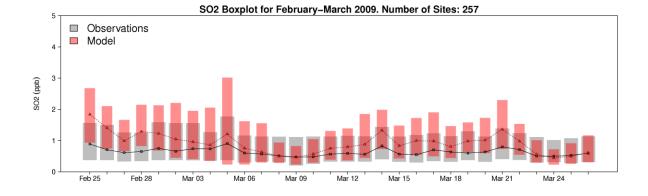


Figure S1. Comparison of modelled (red) and measured (grey) NO₂ and SO₂ concentrations at AirBase rural background sites and station not exceeding 5ppb of NO₂ concentration (central panel). The extent of the bars indicates the 25th and 75th percentile. The black and red lines are observed and modelled median, respectively. Based on base case (VBS_BC).

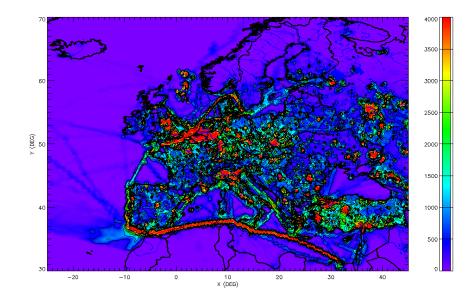


Figure S2. NO emissions in [mol/(h cell)] for 1 March 2009, at 6:00 AM

3. Another weakly presented component is the comparison with other studies. The TNO-MACC emission, EURODELTA, EUCAARI and Airbase archives are usual sources of information for numerous model exercises, not to mention MACC project itself, which covered the considered period with the ensemble of seven models and performed a detailed evaluation against the same Airbase. Numerical results and model scores are available. How does CAMx compare to these? In a couple of places, the authors mention conclusions of other studies but it has to be in a numerical form and made much more systematic.

It is true that comparison with other models was not emphasized strongly in the manuscript. This is because a very detailed evaluation of several models including CAMx for the same periods within EURODELTA III exercise is already available (Bessagnet et al., 2016). We agree, however with the referee's comment and added some more information in the revised manuscript.

Evaluation of the EURODELTA III model inter-comparison exercise showed that all models performed similarly for NO₂ in terms of correlation with values in the range 0.6-0.7, and the spatial correlation was much higher in the range 0.7-0.9 for all models (Bessagnet et al., 2016). There was a general underestimation in the afternoon. Additional analyses showed that NO₂ concentrations within the Paris area were well reproduced by CAMx showing a bias lower than 2 ppb, corresponding to less than 20% of the observed median concentration (Fig. 19 in Bessagnet et al., 2016). At the Po valley sites, on the other hand, NO₂ values were systematically underestimated. These analyses suggest that local emission sources and meteorological conditions such as reconstruction of the PBL diurnal cycle strongly influence NO₂ performance.

4. Among smaller things, I am missing the time correlation coefficient in the list of parameters. It is not only the absolute level that is to be verified, the expensive and complicated VBS mechanism is supposed to deliver better representation of the processes, thus improving the patterns and their evolution. The temporal correlation coefficient is arguably the best parameter to reflect it. Fractional error is good but less straightforward and intuitive parameter, also affected by bias. We included correlation of determination for the three scenarios (NOVBS, VBS_ROB, VBS_BC) in Figure 5 caption excluding the elevated sites of Puy de Dome and Montseny. R² values are improved when the VBS approach is taken into account (VBS_ROB and VBS_BC) with respect to the non-volatile organic scheme (NOVBS). The values are reported in the caption of Figure 5:

Figure 5. OA daily average scatter plots for S1, S2 and S3 scenarios for February-March 2009 for stations in Table 3. Solid lines indicate the 1:1 line. Dotted lines are the 1:2 and 2:1 lines. Boxplots indicate medians, 5th, 25th, 75th and 95th quantiles for observations (black) and sensitivity tests (red). The crosses represent the arithmetic means. R² is 0.55 for NOVBS, 0.64 for VBS_ROB and 0.59 for VBS_BC.

5. The naming convention is confusing. The base case is usually number one, from which the sensitivity cases are made. It may look like a small thing but while reading I had to again and again remind myself that S3 is, in fact, the base case.

We changed the naming convention of the different scenarios throughout the manuscript as also suggested by Referee 1. The new nomenclature follows below:

S1: NOVBS (without VBS, two-product organic aerosol scheme based on Strader, 1999)
S2: VBS_ROB (VBS organic scheme with volatility distribution proposed by Robinson et al., 2007)
S3: VBS_BC (Base case, VBS organic scheme with volatility distribution proposed by Tsimpidi et al., 2010 and Shrivastava et al., 2011)
S4: VBS_BC_2xBVOC (Double biogenic emission based on VBS_BC)
S5: VBS_BC_2xBBOA (Double biomass burning emission based on VBS_BC)

6. Section 3 is the problematic one from the presentation standpoint. The text is not structured, subsections are routinely comprised of just one huge paragraph without much logic. I would strongly recommend heavy editing of this section.

We agree and revised Section 3.

Specific comments

1. The title does not reflect the paper content. This is the model evaluation exercise, not the AQ assessment.

We changed the title of the paper to read:

Evaluation of European air quality by CAMx including the volatility basis set scheme

2. p. 35647, l.15. I found it strange to praise the model for PM2.5 score, which, as shown already in the next lines, is a result of error compensation (l.20).

We changed the sentence to the following:

CAMx reproduced both total concentrations and monthly variations of measured PM2.5 for all the four periods with average biases ranging from -2.1 to $1.0 \ \mu gm^{-3}$

3. p. 35648, I.1-3. No, it does not. The only piece shown is that the model appeared sensitive to scaling of the biogenic emission fluxes in one case and anthropogenic in another. The residential combustion is a hypothesis of the authors not directly supported by the study. It still sounds plausible and can be brought up in discussion but not in the abstract and not in the so categorical form.

Thanks for this remark. We will change the text p. 35647, I.15 of the paper to the following:

Further sensitivity tests with increased biogenic and anthropogenic emissions suggest that OA concentrations in Payerne were affected by changes in emissions from residential heating during the period of February–March 2009 whereas they were more sensitive to biogenic emissions in June 2006.

Moreover, the hypothesis of high contribution to OA from residential combustion in winter is supported by a recent modelling study performed in Europe by Denier van der Gon et al., 2015 for the same winter period (February-March 2009). In this study, an improved inventory with higher emissions from residential combustion by a factor of 2-3 compared to previously used inventories (EUCAARI) was tested in two CTMs with the VBS scheme (PMCAMx and EMEP). Authors concluded that the model performance for OA was improved when using the revisited wood burning emission inventory (Denier van der Gon et al., 2015. Figure8).

4. P. 35651, I.12-13. I did not understand: were the CAMx levels the same as the ones of IFS or not? If they were different, I would challenge the idea of neglecting the interpolation from the IFS levels. The issue should be clarified and explanations provided.

CAMx levels were the same as the ones in IFS. We modified the sentence as follows:

CAMx simulations used 33 terrain-following σ - levels up to about 8000 m a.g.l. as in the original IFS data

5. P. 35652- 35653. The emission discussion is unstructured and difficult to comprehend. Splitting the paragraphs to "main" species available from TNO-MACC, biogenics, etc, would help.

We agree and we split the paragraphs as suggested by the referee.

6. P.35652, I.14-17. How was the split made? As follows from the rest of the paper, amount of organic matter is one of the primary parameters of the study. This vague sentence is part of the most-important weakness of the paper mentioned above: the emission dataset is not analyzed and, as follows from this sentence, is not even presented properly.

Thanks for this remark. We added the following sentence to the manuscript:

 $PM_{2.5}$ and PM_{10} emissions were provided by EMEP and they were split to Elemental Carbon and Organic Matter using the fractions given by IIASA (International Institute for Applied Systems Analysis) per each source and country.

7. P.35653, l.1-10. I did not understand: did the authors run MEGAN themselves, including preparation of the land use specifications, emission factors, etc? From the text it seems so ("were prepared for this study") but then, what was wrong in the native MEGAN setup? And how the

changes suggested in this study modified/improved its performance? Did the authors make this analysis?

We regret the misunderstanding concerning biogenic emission calculations. We used the MEGAN model without any change of the model itself. The data needed to run the model (emission factors of relevant vegetation for our model domain) were retrieved from the MEGAN website (<u>http://lar.wsu.edu/megan/</u>), from MODIS satellite data (leaf area index, LAI) and adapted to the model domain resolution. The same meteorological variables as for CAMx simulations were used to run MEGAN.

8. P. 35654, I.4. "Further aging" from what stage? And why was the ageing stopped? Just because then the model over-estimates the SOA, as stated in the paper? But this cannot be the reason, it is artificial and model-dependent. Is there any physical/chemical ground or hypothesis?

Further reactions of gas-phase products from the first oxidation of biogenic and biomass burning precursors were not considered in the original version of the CAMx-VBS model because of some studies showing over-prediction of SOA especially in rural-areas due to ageing of biogenic SOA (Lane et al., 2008 and Murphy and Pandis, 2009). In this study our aim is to validate the original CAMx-VBS model and compare the results with previous studies performed in North America sharing the same setup (Koo et al., 2014). We will include and investigate the effect of ageing of BSOA in a follow-up study.

9. P. 35655, Statistical methods. These formulas are from textbook. One can put them to appendix for the sake of completeness but this sub-section definitely should be eliminated from the main paper.

We agree and we eliminated the formulas from the main text.

10. P. 35656- 35658. Almost two pages of plain unstructured text, all in one (!) paragraph. I tried several times and still had problems in pushing myself through it.

Paragraph 3.1 was extensively revisited by splitting it according to the different investigated species and shortened as also suggested by Referee 1.

11. P. 35656- 35658. It also looks like the authors do not really pay attention to the physical and statistical meaning of the metrics used. As said in the general comments, mean error is heavily controlled by bias when the latter is large. An independent quantity would be correlation coefficient.

We added correlation coefficients in Table 2 and revised the paragraph, as also suggested by Referee 1.

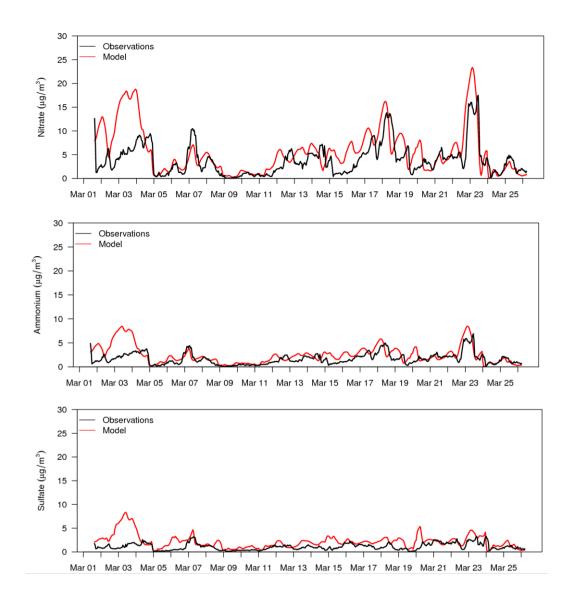
12. P. 35659, l.13. Another praising the model for meeting totals by a mere error compensation. Not sure if this is a big achievement.

We could not find the above comment in the text. We will change the text p. 35659, l.16 to l.18 of the paper to the following:

The modelled average total non-refractory PM2.5 (sum of nitrate, sulfate, ammonium and OA) concentrations match the measurements with a few exceptions (Fig. 5 and Table 3).

13. P. 35659 – 35661. . . and another 2.5 pages in a single-paragraph of unstructured text.

We modified and shorten the Section 3.2 as also suggested by Referee 1.


14. P. 35665, I.20. . . . and again "total PM2.5 was modelled very well", for a change without a reference to error compensation. I have strong difficulties with such presentation style.

We revised that part in the Conclusions by merging points 1 and 3 together as shown below:

Although total PM_{2.5} mass concentrations and its variations were well reproduced by the model in all four periods, comparisons with AMS measurements for the February–March 2009 period revealed that the good agreement between model and measurements was most of the time due to overestimation of the inorganic fraction, especially NO₃⁻, and underestimation of OA. Sensitivity tests with reduced NH₃ emissions generally reduced the positive bias in NO₃⁻ suggesting potential uncertainties in NH₃ emissions and their seasonal variability.

15. Figure 6: what panels are for what parameter? The axis font is much too small to figure it out.

We increased the fonts.

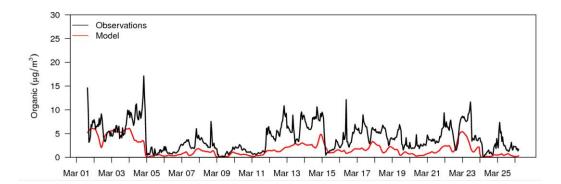


Figure 4. Comparison of observed and modelled nitrate, ammonium, sulfate and organic aerosol at Payerne for March 2009.

References

Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., and Simpson, D.: Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol, Atmos. Chem. Phys., 12, 8499–8527, doi:10.5194/acp-12-8499-2012, 2012.

Bessagnet, B., Pirovano, G., Mircea, M., Cuvelier, C., Aulinger, A., Calori, G., Ciarelli, G., Manders, A., Stern, R., Tsyro, S., García Vivanco, M., Thunis, P., Pay, M.-T., Colette, A., Couvidat, F., Meleux, F., Rouïl, L., Ung, A., Aksoyoglu, S., Baldasano, J. M., Bieser, J., Briganti, G., Cappelletti, A., D'Isodoro, M., Finardi, S., Kranenburg, R., Silibello, C., Carnevale, C., Aas, W., Dupont, J.-C., Fagerli, H., Gonzalez, L., Menut, L., Prévôt, A. S. H., Roberts, P., and White, L.: Presentation of the EURODELTA III intercomparison exercise – Evaluation of the chemistry transport models performance on criteria pollutants and joint analysis with meteorology, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-736, in review, 2016.

Koo, B., Knipping, E., Yarwood, G.: 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ, Atmos Environ., 95: 158-164., 2014.

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier van der Gon, H. A. C.: TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling, Atmos. Chem. Phys., 14, 10963-10976, doi:10.5194/acp-14-10963-2014, 2014.

Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, Atmos. Environ., 42, 7439–7451, doi:10.1016/j.atmosenv.2008.06.026, 2008.

Murphy, B. N. and Pandis, S. N.: Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemical transport model, Environ. Sci. Technol., 43, 4722–4728, 2009.

Vaughan, A.R., Lee, J.D., Misztal, P.K., Metzger, S., Shaw, M.D., Lewis, A.C., Purvis, R.M., Carslaw, D.C., Goldstein, A.H., Hewitt, C.N., Davison, B., Beevers, S.D., Karl, T.G., 2016. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories. Faraday Discuss. doi:10.1039/C5FD00170F

Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149-159, doi:10.5194/amt-5-149-2012, 2012.

1 **Evaluation of European air quality modelled by CAMx**

2 including the volatility basis set scheme

3

G. Ciarelli¹, S. Aksoyoglu¹, M. Crippa^{1,*}, J. L. Jimenez^{2,3}, E. Nemitz⁴, K. Sellegri⁵,
 M. Äijälä⁶, S. Carbone^{7,**}, C.Mohr⁸, C. O'Dowd⁹, L. Poulain¹⁰, U. Baltensperger¹,

6 and A. S. H. Prévôt¹

- 7 [1]{Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI,
 8 Switzerland}
- 9 [2]{Cooperative Institute for Research in Environmental Sciences, University of Colorado,
- 10 Boulder, CO 80309, USA}
- 11 [3]{Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309,

12 USA}

- 13 [4]{Center for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK}
- 14 [5]{Laboratoire de Météorologie Physique CNRS UMR6016, Observatoire de Physique du
- 15 Globe de Clermont-Ferrand, Université Blaise Pascal, 63171 Aubière, France}
- 16 [6]{University of Helsinki, Department of Physics, Helsinki, Finland}
- 17 [7]{Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503,00101 Helsinki, Finland}
- 19 [8]{Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research.
 20 Germany}
- 21 [9]{School of Physics and Centre for Climate & Air Pollution Studies, Ryan Institute,
- 22 National University of Ireland Galway, University Road, Galway, Ireland }
- [10]{Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318
 Leipzig, Germany}
- [*]{now at: Joint Research Centre, Institute for Environment and Sustainability, I-21020 Ispra
 (Va) JRC, Italy}
- 27 [**]{now at: Institute of Physics, University of São Paulo, Rua do Matão Travessa R, 187,
- 28 05508-090 São Paulo, S.P., Brazil}
- 29 Correspondence to: S. Aksoyoglu (sebnem.aksoyoglu@psi.ch)

30 Abstract

Four periods of EMEP (European Monitoring and Evaluation Programme) intensive 31 32 measurement campaigns (June 2006, January 2007, September-October 2008 and February-33 March 2009) were modelled using the regional air quality model CAMx with VBS (Volatility 34 Basis Set) approach for the first time in Europe within the framework of the EURODELTA-35 III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February-March 2009 and June 2006 to investigate the 36 37 uncertainties in emissions as well as to improve the modelling of organic aerosols (OA). Model performance for selected gas phase species and PM2.5 was evaluated using the 38 39 European air quality database Airbase. Sulfur dioxide (SO_2) and ozone (O_3) were found to be 40 overestimated for all the four periods with O_3 having the largest mean bias during June 2006 and January-February 2007 periods (8.93 pbb and 12.30 ppb mean biases, respectively). In 41 42 contrast, nitrogen dioxide (NO₂) and carbon monoxide (CO) were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations 43 of PM_{2.5} very well for all the four periods with average biases ranging from -2.1 $\frac{3}{4}$ µg m⁻³ to 44 1.04 µg m⁻³. Comparisons with AMS (<u>a</u>Aerosol <u>m</u>Mass <u>s</u>Pectrometer) measurements at 45 different sites in Europe during February-March 2009, showed that in general the model over-46 47 predicts the inorganic aerosol fraction and under-predicts the organic one, such that the good 48 agreement for $PM_{2.5}$ is partly due to compensation of errors. The effect of the choice of 49 volatility basis set scheme (VBS) on OA was investigated as well. Two sensitivity tests with 50 volatility distributions based on previous chamber and ambient measurements data were 51 performed. For February-March 2009 the chamber-case reduced the total OA concentrations 52 by about 43% on average. On the other hand, a test based on ambient measurement data 53 increased OA concentrations by about 47% for the same period bringing model and 54 observations into better agreement. Comparison with the AMS data at the rural Swiss site 55 Payerne in June 2006 shows no significant improvement in modelled OA concentration. 56 Further sensitivity tests with increased biogenic and anthropogenic emissions suggest that OA 57 in Payerne was largely were affected dominated by changes in emissions from residential 58 heating -emissions during the February-March 2009 whereas it was more sensitive to period 59 and by biogenic precursors in June 2006.

60

61 **1 Introduction**

62 Air pollution is known to cause damage to human health, vegetation and ecosystems. It is one 63 of the main environmental causes of premature death. Only in Europe, more than 400,000 64 premature deaths were estimated in 2011 with $PM_{2.5}$ (particles less than 2.5 μ m in aerodynamic diameter) having the highest relative risk for health damage (WHO, 2014a). Air 65 66 quality models help understanding the processes taking place between emission sources and 67 pollutant concentrations at receptor sites. They are very useful to define control strategies for 68 future legislation. In spite of large improvements in recent years, Chemical Transport Models 69 (CTMs) have still some uncertainties (Solazzo et al., 2012a). Various air quality model 70 intercomparison exercises were successfully carried out over the last decades to determine 71 uncertainties in chemical and physical processes governing particulate matter and its 72 precursors (Solazzo et al., 2012a; Bessagnet et al., 2014). However, a large variability in 73 particulate matter concentrations was found between different models indicating process 74 parameterization as one of the main reasons for such discrepancies. Moreover, recent studies 75 based on AMS (Aerosol Mass Spectrometer) measurements at different sites in Europe, 76 revealed that the organic fraction dominates the non-refractory PM₁ composition (Crippa et 77 al., 2014). Organic aerosol (OA) can be found in the atmosphere from direct emission by 78 various sources, such as fossil fuel combustion by road vehicle engines or residential wood 79 combustion. Direct emissions of OA are typically referred to as primary organic aerosol 80 (POA) whereas gas-to-particle conversion is referred to as secondary organic aerosol (SOA). 81 Formation mechanisms of SOAs are not very well known yet and their representation in 82 CTMs is still challenging (Hallquist et al. 2009; Fountoukis et al., 2011; Bergstrom et al., 83 2012; Li et al., 2013; Langmann et al., 2014; Tsigaridis et al., 2014). In one of our recent 84 aerosol modelling studies we compared model PM2.5 prediction with PM1 AMS 85 measurements for different sites (Payerne and Zürich) and periods (summer and winter) in 86 Switzerland. We found that particulate matter was generally well reproduced by the model 87 with the SOA fraction being under-predicted and POA over-predicted (Aksoyoglu et al., 88 2011). Traditional CTMs treat POA as non-volatile. Some studies however have revealed the 89 semi-volatile nature of POA, through its dynamic equilibrium of organic aerosol with its gas 90 phase, and the importance of semi-volatile (SVOC) and intermediate volatility (IVOC) 91 organic compounds as SOA precursors (Donahue et al., 2006; Robinson et al., 2007; Cappa 92 and Jimenez, 2010). To describe the absorptive partitioning and ongoing oxidation of the 93 atmospheric material, a volatility basis set (VBS) where organic species are organized into

94 surrogates according to their volatility was developed (Donahue et al., 2011, 2012a,b). Air 95 quality models updated with VBS scheme started being used (Lane et al., 2008; Murphy and Pandis, 2009; Hodzic et al., 2010; Fountoukis et al., 2011; Bergström et al., 2012; Murphy et 96 97 al., 2012; Jo et al., 2013; Zhang et al., 2013; Athanasopoulou et al., 2013; Fountoukis et al., 98 2014). Bergström et al. (2012) reported an EMEP model study over Europe for the 2002-2007 99 period using different assumptions regarding partitioning and aging processes. They could not 100 reproduce the measured OA levels in winter suggesting that residential wood combustion 101 inventories might be underestimated in different parts of Europe. Fountoukis et al. (2014) 102 applied the PMCAMx model to simulate EUCAARI (Kulmala et al., 2009, 2011) and EMEP 103 (Tørseth et al., 2012) campaigns in Europe. They could reproduce most of PM₁ daily average 104 OA observations within a factor of two, with the February-March 2009 period having the 105 largest discrepancies. Zhang et al. (2013) deployed the CHIMERE model with the VBS 106 framework during the MEGAPOLI summer campaign in the Greater Paris region for July 107 2009. They found a considerable improvement in predicted SOA concentrations which might 108 be even overestimated depending on the emission inventory used. In our study, we applied 109 the regional air quality model CAMx with the VBS scheme for the first time in Europe within 110 the framework of EURODELTA-III model intercomparison exercise. In addition to the base 111 case configuration used in the exercise, more sensitivity tests with the VBS scheme for winter 112 and summer episodes were performed together with a general evaluation of the four EMEP

113 field measurement campaigns.

114 **2 Method**

115 2.1 The EURODELTA-III exercise

The EURODELTA-III (EDIII) framework is a European model intercomparison exercise between several modelling teams sharing both efforts and technical knowledge in order to reduce model uncertainties and to improve understanding of the performances. It contributes to the scientific work of the United Nations Economic Commission for Europe (UNECE) Task Force on Measurement and Modelling (TFMM) within the Convention on Long-range Transboundary Air Pollution (CLRTAP). In the first phase of the EDIII exercise, 4 periods of the EMEP field measurement campaigns were chosen in order to evaluate the model results:

- 123 1 June 30 June 2006
- 8 January 4 February 2007
- 125 17 September 15 October 2008

• 25 February – 26 March 2009

Multiple models were applied on a common domain and driven with the same input data provided by the National Institute for Industrial Environment and Risks (INERIS). However, for some models, different meteorology, boundary conditions and emissions data such as biogenic emissions were used (Bessagnet et al., 2014).

131

132 2.2 Modelling method

133 2.2.1 CAMx

134 The Comprehensive Air quality Model with extensions, CAMx-VBS (CAMx5.41_VBS, 135 kindly provided by ENVIRON before its public release) was used in this study. The model 136 domain consisted of one grid with a horizontal resolution of 0.25° x 0.25°. The latitude and longitude grid extended from 25.125°W to 45.125°E and 29.875°N to 70.125°N resulting in 137 138 281 x 161 grid cells covering the whole of Europe. Hourly four-dimensional meteorological 139 fields for wind speed and direction, pressure, temperature, specific humidity, cloud cover and 140 rain required by CAMx simulations were calculated from ECMWF IFS (Integrated Forecast 141 System) data at 0.2° resolution. Vertical diffusivity coefficients were estimated following the 142 Kz approach of O'Brien (1970) using PBL depth profiles as available in IFS data. CAMx 143 simulations used 33 terrain-following σ -levels up to about 8000 m above ground level, as in the original IFS data... No vertical interpolation of the original IFS data was performed. The 144 145 lowest layer was about 20 m thick. MACC (Monitoring Atmospheric Composition and 146 Climate) reanalysis data were used to initialize initial and the boundary condition fields 147 (Benedetti et al., 2009; Inness et al., 2013). Elemental carbon, organic aerosol, dust and 148 sulfate were used to model aerosol species at the boundaries of the domain. One half of the 149 OA was assumed to be secondary organic aerosol (SOA) and the other half primary organic 150 aerosol (POA), as recommended in the EDIII exercise. Photolysis rate inputs were calculated using the TUV radiative transfer and photolysis model (Madronich, 2002). The required 151 152 ozone column densities to determine the spatial and temporal variation of the photolysis rates were extracted from TOMS data (NASA/GSFC, 2005). Removal processes as dry and wet 153 154 deposition were simulated using the Zhang resistance model (Zhang et al., 2003) and a 155 scavenging model approach for both gases and aerosols (ENVIRON, 2011), respectively. For 156 the gas phase chemistry the Carbon Bond (CB05) mechanism (Yarwood et al., 2005) with 156 157 reactions and up to 89 species was used. Partitioning of inorganic aerosols (sulfate, nitrate, 158 ammonium, sodium and chloride) was performed using the ISORROPIA thermodynamic 159 model (Nenes et al., 1998). Aqueous sulfate and nitrate formation in cloud water was 160 simulated as well using the RADM aqueous chemistry algorithm (Chang et al., 1987).

161 **2.2.2 Emissions**

162 Anthropogenic emissions

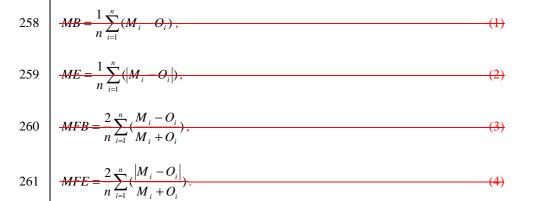
163 Annual total gridded anthropogenic emissions were prepared and provided by INERIS for the 164 EDIII exercise, which is based on a merging process of data-bases from different sources, i.e. 165 TNO-MACC (Kuenen et al., 2011), EMEP (Vestreng et al., 2007), GAINS (The Greenhouse 166 Gas and Air Pollution Interactions and Synergies). For specific countries where TNO-MACC emissions were missing (Iceland, Liechtenstein, Malta and Asian countries), the EMEP $0.5^{\circ} \times$ 167 168 0.5° emissions were used and re-gridded using adequate proxies such as "artificial land-use" 169 and EPER (European Pollutant Emission Register) data (http://www.eea.europa.eu/) for 170 industries. Total primary particle emissions were made available by EMEP in two different 171 size ranges: below 2.5µm (fine) and between 2.5µm and 10µm (coarse). Total emissions were 172 later split to estimate the amount of elemental carbon, and organic matter for each of the 10 173 SNAP codes (Selected Nomenclature for Air Pollution) and country. The final emission 174 inventory thus compiled consisted of 6 gas species namely methane, carbon monoxide, 175 ammonia, sulfur oxides, non-methane volatile organic compounds and nitrogen oxides and 6 176 categories of particulate matter classes: fine elemental carbon (EC2.5), coarse elemental 177 carbon (EC10), fine primary organic material (fine POA), coarse primary organic material 178 (coarse POA), fine other primary particulate material (non-carbonaceous) and coarse other 179 primary particulate material (non-carbonaceous). $PM_{2.5}$ and PM_{10} emissions were provided by 180 EMEP and they were split to elemental carbon and organic matter using the fractions given by 181 IIASA (International Institute for Applied Systems Analysis) for each source and country. 182 Total non-methane volatile organic compounds were split for the CB05 mechanism using the 183 recommendations of Passant (2002). Hourly, weekly and monthly time profiles as in the 184 EURODELTAII exercise were applied to total annual anthropogenic emissions. 185

186

188 Biogenic emissions

189 Biogenic VOC emissions were calculated using the Model of Emissions of Gases and 190 Aerosols from Nature MEGANv2.1 (Guenther et al., 2012). This model is driven by 191 meteorological variables such as hourly temperature, solar radiation, humidity, wind speed, 192 soil moisture and land cover data including leaf area index (LAI) and plant function type 193 (PFT) as available in the Community Land Model 4.0. 8-Days average satellite data at 0.25° x 194 0.25° resolution were pre-processed and made available from the TERRA/MODIS satellite 195 system. Sixteen plant function types including needle-leaved evergreen, needle-leaved 196 deciduous, broad-leaved evergreen, broad-leaved deciduous, grass and crop for different 197 climatic zones were prepared for this study at 0.25° x 0.25° resolution together with the global 198 emission factors of α -pinene, β -pinene, 3-carene, isoprene, limonene, 232-methylbutenol-, 199 myrcene, NO_x, t- β -ocimene and sabinene. Common BVOC species such as isoprene, terpene, sesquiterpene, xylene and toluene were obtained for each hour and cell in the domain. 200

201 2.2.3 VBS scheme


202 A new volatility basis set (VBS) scheme is available in the CAMx model to describe changes 203 in oxidation state and volatility. A total of four basis set simulates the evolution of organic 204 aerosol in the atmosphere (Koo et al., 2014). POA emissions were split in HOA-like and 205 BBOA-like emissions and allocated in two different basis sets. HOA-like emissions include 206 emissions from all SNAP sectors except SNAP2 (non-industrial combustion plants) and 207 SNAP10 (agriculture) which were assigned to BBOA-like emissions. Two other sets were 208 used in the model to allocate secondary organic aerosol from anthropogenic (i.e. xylene and 209 toluene) (ASOA) and biogenic (i.e. isoprene, monoterpene and sesquiterpene) (BSOA) 210 gaseous precursors. These two sets also allocate oxidation products of POA vapours, from 211 each of the two primary sets (HOA-like and BBOA-like). The 2D volatility space retrieved by 212 Donahue et al. (2011; 2012a,b) was used to distribute the organic molecular structures for 213 each of the volatility bins and different sets (Table S1). Five volatility bins represent the range of semi-volatile organic compounds (SVOCs) ranging from $10^{-1} \ \mu g \ m^{-3}$ to $10^3 \ \mu g \ m^{-3}$ in 214 saturation concentrations (C*). Oxidation processes are modelled by shifting C* by a factor of 215 10 in the next lower volatility bin, increasing the oxidation state and reducing the carbon 216 number to account for fragmentation. OH reaction rates are assumed to be 4 x 10⁻¹¹ cm³ 217 molecule⁻¹ s⁻¹ for the reaction of semi-volatile primary vapors with OH and 2 x 10^{-11} for 218 219 further aging of ASOA and POA vapours from HOA-like emissions. More details about the

220 VBS parameterization in CAMx can be found in Koo et al. (2014). Further aging of BSOA is 221 not considered in this study based on previous modelling results showing over-prediction of 222 OA when such process is taken into account (Lane et al., 2008; Murphy and Pandis, 2009). 223 This implies that also further aging of POA vapours from BBOA-like emissions was not 224 considered since it is performed in the same basis set. In this work we focus on the effects of a 225 VBS framework on the total OA fraction. Aging processes and alternative VBS implementations will be discussed together with SOA and POA components in a following 226 227 paper (Ciarelli et al. in prep). Three sensitivity tests were performed with different 228 assumptions on the volatility distributions (Table 1):

- S1NOVBS: Primary organic aerosol was assumed to be non-volatile. Biogenic (isoprene, monoterpenes and sesquiterpenes) and anthropogenic (xylene, toluene and other aromatics) volatile organic compounds (VOCs) were used as precursors for secondary organic aerosol. Partitioning of condensable gases to secondary organic aerosol was calculated using a semi-volatile equilibrium approach (Strader, 1999).
- S2VBS ROB: Primary organic aerosol was assumed to be volatile and undergo chemical oxidation. The volatility distribution estimated by Robinson et al. (2007) was applied to HOA-like and BBOA-like emissions. Emissions of intermediate volatility organic compounds (IVOCs) were assumed to be 1.5 times those of primary organic aerosol (POA) as suggested by Robinson et al. (2007).
- 239 **<u>\$3VBS_BC</u>**: Primary organic aerosol was assumed to be volatile and undergo 240 chemical oxidation using the approach of Shrivastava et al. (2011) and Tsimpidi et al. 241 (2010). The total primary emissions are roughly 3 times higher than in **S2VBS ROB.** 242 Different volatility distributions were applied for HOA and BBOA-like emissions. 243 IVOCs were assumed to be 1.5 times the amount of POA. This implies that for this scenario the SVOC + IVOC mass added is equal to 7.5 times the initial amount of 244 POA. This represents the base case scenario used to evaluate gas phase and PM_{2.5} 245 246 model performance.
- Based on the <u>S3VBS_BC</u>-base case scenario, two other sensitivity tests were performed with respect to emissions:
- **<u>\$4VBS_BC_2xBVOC</u>**: Increased BVOCs emissions by a factor of 2.
- **<u>\$5VBS_BC_2xBBOA</u>**: Increased BBOA-like emissions by a factor of 2.

251 2.3 Statistical methods

Statistical procedures as available in the Atmospheric Model Evaluation Tool (AMET, Apple et al., 2010) were used in this study to evaluate model performance. Daily ambient measurements of main gas phase species i.e. O_3 , NO_2 , CO, SO_2 and fine particulate matter (PM_{2.5}) were extracted from the Airbase database in Europe and statistics reported in terms of mean bias (MB), mean error (ME), mean fractional bias (MFB) and-mean fractional error (MFE) and correlation coefficient (r).÷

where M_i presents the modelled value, O_i the observations and *n*-the total number of data 262 points. Due to the coarse grid resolution, only rural-background stations, defined as stations 263 264 far from city sources of air pollution with pollution levels determined by the integrated 265 contribution from all sources upwind of the station (ETC/ACC, 2004/7), with at least 80% 266 daily average observations available were considered for the statistical analysis. For PM2.5 this resulteds in 48 stations available for June 2006, 56 for January-February 2007, 90 for 267 September-October 2008 and 110 stations for February-March 2009. PM_{2.5} components were 268 269 further evaluated for the February-March 2009 period where comprehensive high resolution AMS measurements at 11 European sites were available, i.e., at Barcelona, Cabauw, 270 271 Chilbolton, Helsinki, Hyytiälä, Mace Head, Melpitz, Montseny, Payerne, Puy de Dôme and Vavihill (Crippa et al., 2014). 272

273

274 3 Results and discussions

275 3.1 Model evaluation

Model performance metrics for gas phase species CO, NO₂, O₃ and SO₂ as well as for PM_{2.5}
are reported in Fig.1 and Table 2 and they refer to the base case <u>VBS BCS3</u>.

278 NO₂ and O₃

279 SO_2 and O_3 concentrations were found to be over predicted for all the four periods with a mean fractional bias ranging from 14% to 36% for SO₂ and from 2% to 48% for O₃. Both O₃ 280 281 and SO₂-over predictions were higher during the January February 2007 periods. The mean 282 error (ME) in SO₂ concentrations increases at stations located close to coastal areas. 283 especially near large harbors such as Lisbon, Marseille, Barcelona and in Eastern countries of 284 the domain (Fig. S1). Most of the SO2 emissions arise from high stack point sources which 285 have injection heights of few hundred meters. It might be that the vertical distribution of SO2 286 might affect the model performance in particular near the harbors and coastal areas where 287 ship emissions were allocated in the second layer of the model domain (extending from ~20 to 288 50 m above ground level) whereas they can reach up to 58 meters in deep draft vessels (SCG, 289 2004) and also undergo plume rise. On the other hand NO₂ and CO werewas found to be 290 under-predicted for all the four periods with mean fractional bias between -54% and -28% for 291 NO₂ and 31% and 11% for CO. and NO₂ concentrations wasbeing particularly under-292 predicted during June 2006. whereas CO had the largest bias during the September-October 293 2008 simulation. Evaluation of the EURODELTA III model inter-comparison exercise 294 showed that all models performed similarly for NO_2 in terms of correlation with r values in 295 the range 0.6-0.7 and the spatial correlation was much higher in the range 0.7-0.9 for all 296 models (Bessagnet et al., 2016) with a general underestimation in the afternoon. The under-297 prediction in NO₂ concentrations performance could be influenced by several factors:

 <u>-</u> Uncertainties in the emission inventories. Although NO_x emission estimates in Europe are thought to have an uncertainty of about ± 20%, the complete data set used in the inventories has much higher uncertainty (Kuenen et al., 2014). A recent study identified a significant discrepancy between emission estimates and actual flux measurements, with the highest underestimation being a factor of two in central London mainly due to under-representation of real world road traffic emissions (Vaughan et al., 2016)

305 \underline{T} he relatively coarse resolution of the domain which may result in too low NO_x 306 emissions or isolated local events that the model cannot resolve. We report daily 307 average time series of NO₂ for the period of Feb-Mar 2009 for stations in Table 2 as 308 well as daily average time series of NO2 for stations not exceeding 5 ppb (which 309 represents 92% of the stations in Table 2) (Figure S1). The model performance for 310 NO2 significantly improved when the 5 ppb threshold was applied to the dataset. An 311 emission map of NO for 1 March 2009 at 6 AM is reported in Figure S2. High 312 emissions of NO are predicted in the Benelux area, Po Valley, Germany and in some 313 of the eastern European countries. High NO emissions due to ship traffic are also 314 visible especially in the Mediterranean Sea

- Possible positive artefacts in the chemiluminescence methods for measuring NO₂ may also occur when NO₂ is catalytically converted to NO on the molybdenum surface leading to an over-prediction of measured NO₂ concentrations (Steinbacher et al., 2007; Villena et al., 2012)-
- Moreover, an evaluation of planetary boundary layer height (PBLH) within the EDIII
 shows that although the PBLH was quite well represented in general in the ECMWF
 IFS meteorological fields, CAMx tends to under-estimate the night-time minima and
 to over-estimate some daytime peaks, <u>over-predicting the dilution of day time NO₂</u>
 <u>concentrations</u>, whereas the wind speed was relatively well reproduced (Bessagnet et
 al., 2016).
- 325 Especially in June 2006, when the photochemical activity is higher, the general under-326 prediction of NO_x in the whole domain reduces the O_3 titration potential during the night time. 327 O_3 concentrations were found to be over-predicted for all the four periods with a mean 328 fractional bias ranging from 2% to 48%. Especially in June 2006, when the photochemical 329 activity is higher, the general under-prediction of NO_x in the whole domain reduces the O_3 330 titration potential during night time.
- 331 Model performance for O_3 is also strongly influenced by long-range transport especially 332 during the winter periods when the local chemical production of O_3 is limited. MACC 333 analysis data at 1.125° x 1.125° were used in this study to map O_3 four-dimensional data at 334 the boundary of the domain. Figure S<u>3</u>2 shows the model performance at the Mace Head 335 station located on the west coast of Ireland for all the four periods. Especially in January-336 February 2007 O₃ concentrations were found to be over-predicted by about 10 to 20 ppb

337 indicating that boundary conditions for O₃ were probably not well represented. In June 2006 338 and September-October 2008 O₃ was relatively well captured at Mace Head suggesting that 339 the observed positive bias in O_3 concentrations might arise from insufficient NO_x emissions to 340 undergo titration during night time as well as not correctly represented planetary boundary 341 layer dynamics. In February-March 2009 the model tends to under-predict the O_3 342 concentration at Mace Head and overall the O_3 model performance shows the lowest bias 343 (2%). Eventually, the under-prediction of O_3 in the boundary condition may counteract the 344 already mentioned deficiencies related to insufficient NO_x emissions. Evaluation of O₃ 345 vertical profiles at stations located near the boundaries of the domain show that even though 346 the model follows the measured O₃ vertical profiles, it has difficulties to catch the inversion 347 between the low and middle troposphere around 2.3 km above ground levels with O3 348 concentrations under 2 km being over predicted (Bessagnet et al., 2014).

349 SO₂ and CO

- <u>SO₂ concentrations were found to be slightly over-predicted for all the four periods with a</u>
 mean fractional bias ranging from 14% to 36% for SO₂. The daily variations of modelled and
 <u>measured SO₂ concentrations for February-March 2009 are reported as well in Figure S1</u>
 (lower-panel) for the stations in Table 2. In general, the daily variations of modelled and
 <u>measured SO₂ concentrations agree relatively well with each other throughout the period.</u>
- Most of the SO₂ emissions arise from high stack point sources which have injection heights of a few hundred meters. It might be that the vertical distribution of SO₂ might affect the model performance in particular near the harbors and coastal areas where ship emissions were allocated in the second layer of the model domain (extending from ~20 to 50 m above ground level) whereas they can reach up to 58 meters in deep draft vessels (SCG, 2004) and also undergo plume rise. Insufficient conversion to sulfate or too low deposition processes might also positively bias the model performance for SO₂.
- Finally, CO was slightly under-predicted for all periods (mean fractional bias between -11% and -31%), with highest values during the September-October 2008 period (-31%). The late
 summer-fall period is known to be influenced by agricultural open field burning activities
 which might be missing from standard emission inventories.
- In general, for both SO₂ and CO, the model showed lower correlation coefficients with
 respect to other gas-phase species (*r* values from 0.20 and 0.37 for CO and from 0.37 to 0.52
 for SO₂).

369 **PM**_{2.5}

Of all investigated variables, CAMx shows the best statistical performance for PM2.5. For all 370 371 four periods the acceptable model performance criteria recommended by Boylan and Russell 372 (2006) for aerosols were met (MFE \leq +75 % and -60 % < MFB < +60 %). The fractional bias 373 ranges from less than 1% in September-October 2008 up to -13% in February-March 2009. 374 Also the recommended model performance goals (MFE \leq +50% and -30% < MFB < +30%) 375 were met for all periods except for January 2007. Modelled average PM_{2.5} concentrations are 376 shown in Fig. 21. A different spatial distribution is seen for summer and winter. In June 2006 377 the model predicts higher concentrations in the southern part of the domain especially over the Mediterranean Sea and North Africa (up to 35 μ g m⁻³). On the other hand, the highest 378 concentrations were predicted in the Po valley area (above 40 µg m⁻³) and in the southern part 379 380 of Poland during January-February 2007. During the two colder periods (2007 and 2009) elevated concentrations of around 15 µg m⁻³ are also visible close to urban areas such as Paris 381 and Moscow. Figure 3-2 shows PM_{2.5} variations at Airbase rural-background sites in terms of 382 medians, 25th and 75th percentiles. In all the four periods CAMx is able to reproduce the 383 384 observed monthly variation very well with some over-prediction occurring mainly from the 14th to the 17th of January 2007 and towards the end of 2008 period. Figure 4 shows PM_{2.5} 385 comparisons in terms of daily average scatterplots. CAMx is able to capture the concentration 386 differences between the four periods with lower peak concentrations of around 40 µg m⁻³ in 387 June 2006 and several high pollution events with concentrations around 60 70 µg m⁻³ for the 388 other periods. For some days in January-February 2007 CAMx strongly over-predicts PM2.5 389 with predicted concentrations around 100 µg m⁻³. The latter occurs mainly at one station 390 located in Italy i.e. Casirate d'Adda (Airbase code IT1464A) with the highest over prediction 391 on the 17th of January. During the 7th and 8th of March 2009 CAMx strongly under predicts at 392 the EMEP stations of Avia Marina in Cyprus (Airbase code CY0002R), most likely due to a 393 Saharan dust event not captured by the model (Fig. S3). A similar situation was found at 394 Viznar in Southern Spain (Airbase code ES0007R) on the 11th and 12th of October 2008 with 395 observed PM25-concentration above 100 ug m⁻³. This time CAMx was able to capture the 396 Saharan dust episode but not its magnitude (Fig. S3). 397

398 3.2 Detailed evaluation of PM_{2.5} components in February-March 2009

399 The modelled concentrations of non-refractory $PM_{2.5}$ components were compared against 400 aerosol mass spectrometer measurements at eleven European sites for the February-March 401 2009 period (Crippa et al., 2014). Even though the AMS measures particles with a diameter D402 $< 1 \mu m$, the difference between the non-refractory PM₁ and total PM_{2.5} mass is in general 403 rather small as shown in Aksoyoglu et al. (2011), at least for situations without exceedingly 404 high air pollution and situations when sea salt makes large relative contribution to PM_{2.5}. The 405 modelled average total non-refractory PM_{2.5} (sum of nitrate, sulfate, ammonium and OA) 406 concentrations match the measurements quite well with a few exceptions (Fig. 5-3 and Table 407 3). The model is able to reproduce both high concentrations observed at the urban site 408 Barcelona and low ones at remote sites like Hyytiälä, Finland. Concentrations of inorganic 409 aerosols are over-predicted and OA are under-predicted at most of the stations (with similar 410 behavior during the other investigated periods, Figure S4 and Figure S5). Very similar results 411 were also presented by other recent studies (Knote et al., 2011). The effect of different 412 schemes to treat OA is discussed in Sect. 3.3. At the Cabauw site nitrate was the most 413 dominant species (Mensah et al., 2012). Especially at this site the model strongly over-414 predicts in particular the nitrate (NO₃) fraction (by a factor of 3). This site is located in a high 415 NH₃ and NO_x emission area. Emissions of NH₃ mainly arise from agricultural activities and 416 just a minor fraction from the transportation sectors. Figure S4 shows the seasonal distribution 417 of the annual NH3_emissions from agriculture, as provided in the EDIII exercise for Switzerland. High NH₃ emissions are therefore expected in March April. A comparison with 418 419 (available ammonia measurements at http://www.bafu.admin.ch/luft/00585/10770/index.html?lang=de) at the Paverne site revealed 420 421 that the model predicts ammonia reasonably well in June 2006 but that there is a significant overestimation in March 2009 suggesting that the modelled emissions might be too high in 422 423 spring (Table S2). A sensitivity test with 50% reduction in ammonia emissions significantly 424 improved the modelled NO_3^- concentrations at almost all sites (Table S3S2) suggesting 425 potential uncertainties in NH₃ emissions and their seasonal variability. The lowest effect was found at Payerne, in Switzerland where reducing ammonia emissions by half led to a decrease 426 427 in NO3⁻ by about 12%. These results are in line with previous studies suggesting that aerosol 428 formation during winter is more sensitive to NH3 emissions in most of Europe whereas in the 429 Swiss Plateau it is more limited by NO_x emissions (Aksoyoglu et al. 2011). Indeed, oOther 430 potential reasons for the over-prediction of NO_3^- could be related to uncertainties in removal 431 process of HNO₃ as well as dry deposition velocity of NH₃. Substantial over-predictions were 432 found at the higher altitude site of Montseny and Puy de Dôme when compared with first 433 model layer concentrations (ca. 200 and 800 meters a.s.l. respectively at these sites). These

Formatted: Font: Italic

435 winter periods. At the Montseny site, the relatively coarse resolution of the model could also influence model performance since the site is located in a complex area about 50 km north-436 east of Barcelona (Pandolfi et al., 2014). Sulfate concentrations (SO_4^{2-}) were over-predicted at 437 almost all sites and especially at Mace Head suggesting that long-range transport of SO₄²⁻ 438 439 might be positively biased. Modelled and observed hourly concentrations of NO_3^- , SO_4^{2-} , ammonium ($NH_4^{-\pm}$) and OA at 440 Paverne are reported in Fig. 6-4 for March 2009 together with meteorological parameters in 441 Fig. S6.- The period was characterized by south westerly winds until the 15th of March, north-442 easterly winds between the 15th and 24th of March, and again by south westerly winds until 443 the end of the simulation (Fig. S5). Temperature was rarely above 10 °C during day time and 444 mostly around or slightly below 0 °C at night, with higher temperatures observed between the 445 15th and 20th of March. Specific humidity was between about 4 and 5g/kg. Low wind speeds 446 (below 2 m s⁻¹) were observed during the first part of the simulation and higher values 447 exceeding 6 m s⁻¹-around the 9th of March and throughout the end of the simulation. The 448 449 model was able to reproduce the meteorological parameters very well for most of the time. 450 The temperature was slightly under-predicted at both night and day-times (with a maximum 451 of -2 °C) whereas both the monthly variation and the absolute values of wind speed and specific humidity were reproduced well with a few under-predictions of high wind-speed (6th 452 and 11th of March and towards the end of the simulation). The model was able to capture the 453 three NO₃⁻ and NH₄^{\pm} peaks observed around the 7th, 18th and 23rd of March with a general 454 slight over-prediction throughout the whole period. Indeed, the under-prediction in 455 456 temperature during day and night time could partially explain the over-prediction of the NO3⁻ 457 fraction with more NO₃⁻ partitioning to the aerosol phase which also apply to the other stations used in this study. An evaluation of modelled temperature at the European scale for 458 459 the February-March 2009 period confirmed that the model systematically under-predicted the 2 meter surface temperature (Bessagnet et al., 2014). All the inorganic components were over-460 predicted during the first four days of March 2009 with a peak around the 3rd of March. The 461 modelled (PBLH) is reported in Fig. S6 together with the convective boundary layer (CBL) 462 height estimated from Payerne sounding data. The model exhibits very low PBLH during the 463 night until the 5th of March. In contrast, from the 5th of March until the 11th of March PBLH at 464 night was relatively higher, around a few hundred meters. At the same time the NO2-465 concentration was reproduced more closely, with the peak around 7th of March being under-466

sites located at about 720 and 1465 meters a.s.l., are sometimes not within the PBLH during

467 estimated. From the 12^{th} until the 19^{th} of March the modelled PBLH again showed very low 468 values at night with the NO₃⁻ concentration being slightly over predicted. This might suggests 469 that a too shallow PBLH at night could be the reason for such over prediction.-, indicating 470 that the PBLH was probably not correctly reproduced by the model during this period. 471 Although the temporal variation was captured, concentrations of OA were under-predicted 472 throughout all the simulation (4.1 µg m⁻³ and 1.8 µg m⁻³ observed and modelled average 473 concentrations). Analysis of the OA fraction is discussed in the next section.

474 3.3 Organic aerosols

475 3.3.1 Sensitivity of OA to the VBS scheme

476 In this section, effects of different parameterizations of the organic aerosol module on the 477 modelled OA concentrations are discussed. The scatter plots in Fig. 7-5 show a comparison of 478 daily average OA concentrations against the same AMS measurements as in Table 3 during 479 February-March 2009. Statistics for each scenario are reported in Table 4. When the semi-480 volatile dynamics of primary organic aerosol is not taken into account (scenario S1NOVBS), 481 the model under-predicts OA concentrations (MFB: -66%) with an observed and modelled average concentrations of $\frac{2.963.0}{2.963.0}$ µg m⁻³ and 1.18-2 µg m⁻³ respectively. In the $\frac{S2-VBS}{S}$ ROB 482 scenario POA emissions are allowed to evaporate following the volatility distribution 483 484 proposed by Robinson et al. (2007) and to undergo chemical oxidation. In this case modelled 485 OA concentrations decrease by about 43% with respect to S1NOVBS, predicting an average OA concentration of $0.767 \,\mu\text{g m}^{-3}$. On the other hand, the S3-VBS BC scenario improves the 486 OA model performance increasing the OA concentrations by about 47% with respect to 487 SHNOVBS. Predicted OA concentrations are found to be 1.73 µg m⁻³ on average (MFB: -488 47%). Similar behavior during winter periods was also shown in recent studies where the 489 490 same VBS scheme was applied in the U.S. domain (Koo et al., 2014). Figure 8-6 shows the 491 modelled total OA concentration over Europe using S1NOVBS, S2-VBS ROB and S3 492 VBS_BC scenarios. The model predicts high OA values in the Eastern part of the domain as 493 well as over Portugal, France and the Po Valley (S3VBS BC). Some hot-spots around large 494 urban areas are also visible, i.e., Paris and Moscow. Higher OA concentrations in the southern 495 part of the domain are observed in the S3-VBS_BC case, likely because of higher temperature 496 and more OH radicals available in that part of the domain leading to an increase in the total 497 organic mass upon reaction with organic vapours. This is in line with the results of 498 Fountoukis et al. (2014) for the February-March 2009 period even though their study predicts 499 lower concentration over the Po valley. Even though model input data and parameterizations are not the same, the S3-VBS BC case in particularly, uses a very similar volatility 500 501 distribution as in Fountoukis et al. (2014). Our study predicts relatively lower OA 502 concentrations (MFB: -0.47, MFE: 0.79) compared to those reported by Fountoukis et al. 503 (2014) (MFB: 0.02, MFE: 0.68) for February-March 2009. Unlike Fountoukis et al. (2014) 504 our study does not include fire emissions and marine organic aerosol which may partially 505 explain the differences. Figure 9-7 shows hourly modelled and observed OA concentration at 506 Payerne for March 2009 and June 2006. In March 2009 S2-VBS ROB results are lower than 507 those in <u>\$1-NOVBS</u> whereas OA concentrations in <u>\$3-VBS_BC</u> case are higher (see Supplementary Fig. S8 and Table <u>S4-S3</u> for average concentrations and statistics). In June 508 2006, the OA mass in S2-VBS ROB is lower than those in S1-NOVBS while S3-VBS BC 509 predicts similar concentrations as the S1-NOVBS scenario (2.43 μ g m⁻³ and 2.56 μ g m⁻³, 510 respectively, Fig. S9 and Table \$554). It has to be noted that the \$1-NOVBS scenario predicts 511 512 slightly lower OA concentration for June 2006 in Payerne with respect to our previous application (Aksoyoglu et al., 2011), mainly because of a different biogenic model being used 513 514 which yields lower monoterpene and sesquiterpene emissions. Since both BVOCs and 515 BBOA-like emissions are highly uncertain, sensitivity tests with increased biogenic and 516 anthropogenic emissions were performed and results discussed in the next section (3.3.2).

517

518 **3.3.2 Sensitivity of OA to BBOA-like and BVOC emissions**

519 Emissions of BVOCs compounds (i.e. monoterpenes, isoprene and sesquiterpenes) were 520 doubled in scenario S4VBS BC 2xBVOC, whilst primary organic aerosol emissions from 521 SNAP2 and SNAP10 (BBOA-like) were doubled in scenarios S5VBS BC 2xBBOA, with 522 other emissions and processes represented as in S3VBS BC. Figure 10-8 shows modelled and 523 observed OA daily average concentrations for the S3VBS BC, S4VBS BC 2xBVOC and 524 S5VBS_BC_2xBBOA scenarios across the sites. Statistics for each scenario are reported in Table 5. Increasing biogenic emissions by a factor of two during February-March 2009 525 resulted in almost no change in the predicted total OA (1.7 $\frac{3}{4}$ µg m⁻³ and 1.78 µg m⁻³ for the $\frac{53}{4}$ 526 <u>VBS BC</u> -and <u>S4 VBS BC 2xBVOC</u> scenarios, respectively). On the other hand, doubling 527 528 the BBOA-like emissions (S5VBS BC 2xBBOA) during the same period strongly increased the predicted OA mass (up to 2.84 μ g m⁻³ on average). As a result the mean fractional bias 529

530 decreased further, from -47% to -12% averaged across the sites. This could eventually confirm other studies where substantial under-predictions in residential wood burning 531 532 emissions were underlined (e.g., Bergström et al., 2012). A few points above the 2:1 lines in S5 VBS BC 2xBBOA mainly belong to the sites of Montseny, Puy de Dôme and Helsinki. 533 534 During winter periods, it is likely that elevated stations such Montseny and Puy de Dôme are 535 most of the time above the PBLH, as suggested by previous studies for Puy de Dôme (Freney 536 et al., 2011), whereas model concentrations are extracted from the first layer of the model. In 537 Helsinki, BBOA emissions seem to be overestimated or the dispersion underestimated in the 538 model.

Comparison with a warmer period in June 2006 is reported as well for Payerne where AMS 539 540 measurements were also available (Fig. 119). In February-March 2009 increasing BBOA-like 541 emissions (S5VBS_BC_2xBBOA) reduced the fractional bias from -85% in S3VBS_BC to -542 37% (Table S₃₄) with an over-prediction occurring during 1-5 of March (Fig. <u>149</u>, upper 543 panel). As already discussed in Section 3.2, it is likely that the vertical mixing processes were 544 not correctly represented by the model since also the inorganic components were over-545 predicted for the same period. Almost no change in the predicted OA mass was found when biogenic emissions were doubled (scenario_<u>-\$4VBS_BC_2xBVOC</u>) (Fig. <u>119</u>, upper panel) 546 547 due to lower BVOCs emission during winter periods. Increasing BVOCs emissions in June 548 2006 increased the predicted OA mass at Payerne site especially during the 12-16 June and 549 towards the end of the simulation period, where higher concentrations and temperature (Fig. 550 S7) were also observed (Fig. 119, -lower panel). In contrast, similar OA concentrations were predicted in Payerne for S3VBS BC and S5VBS BC 2xBBOA -during June 2006 (with 551 averages of 2.43 μ g m⁻³ and 2.875 μ g m⁻³ respectively). This is in line with a very recent 552 553 source apportionment study based on ACSM (aerosol chemical speciation monitor) measurements performed in Zürich for 13 months (February 2011 - February 2012) which 554 555 revealed substantial differences between the winter (February-March) and summer (June-August) f_{44} / f_{43} space (organic mass fraction measured at mass to charge ratio 44 and 43) 556 557 indicating that summer OOA (oxygenated organic aerosol) is strongly influenced by biogenic 558 emission and winter OOA by biomass burning emission (Canonaco et al., 2015). Increased 559 OA concentrations at Payerne in June 2006 with increased biogenic emissions were also 560 found in other modelling studies. Bergström et al. (2012) used the VBS framework with 561 different assumptions regarding aging processes and compared the model results for June 562 2006 with the AMS results at Payerne. In their study the total OA was found to be underpredicted with lower bias observed when aging processes were taken into account and biogenic emissions were increased by a factor of 3. Even though their model differs from ours in various aspects (number of volatility bins, aging processes parameterization and input data) in two of their scenario without aging of biogenic SOA Bergström et al. (2012) predicted an average OA concentration ranging from 2.6 μ g m⁻³ to 3.4 μ g m⁻³ which is similar to our base case <u>S3VBS_BC</u> and <u>S4_VBS_BC_2xBVOC</u> scenario (2.43 μ g m⁻³ and -3.4 μ g m⁻³, respectively, Table <u>S5S4</u>).

570 3.3.3 OA components in summer and winter

571 Comparisons of the primary and secondary organic fraction at the rural site of Payerne during 572 summer (June 2006) and winter (February-March 2009) periods are reported in Figure 10. 573 During the winter period the VBS scheme better reproduced the primary and secondary 574 organic aerosol components compared to the NOVBS case. In particular, For the VBS_ROB 575 base case, total OA concentrations were lower compared to the NOVBS case, consistent with 576 the study of Woody et al. (2016) where the same VBS scheme was applied to the US domain. 577 The total OA concentrations in the base case (VBS_BC) and in the scenario with increased 578 biomass burning emissions (VBS_BC_2xBBOA) were higher compared to NOVBS case, 579 even though SOA and POA fractions were not correctly reproduced. Higher contribution from 580 the primary fraction during winter periods was also predicted by the study of Koo et al., 2014 which deployed the same VBS scheme. Eventually, this might indicate that biomass burning 581 precursors might be missing in this study, or that the oxidation pathways of primary organic 582 583 material need to be improved in the model (up to 86% of the reacted primary organic material 584 is still allocated in the primary set as oxidation proceeds, directly increasing the POA 585 fraction). 586 Different behavior was observed for the summer period where the larger contribution of SOA

to the total OA retrieved from measurements is also reproduced by the model, even though
 the total OA concentration was still underestimated. These results for summer are also in line
 with the study of Koo et al. (2014) for summer periods in the US domain using the same VBS
 scheme.

592 4 Conclusions

593 A modelling study using the regional air quality model CAMx with VBS (Volatility Basis 594 Set) scheme was performed for the first time in Europe within the EURODELTA-III model 595 intercomparison exercise. An evaluation for the main gas phase species and $PM_{2.5}$ for four different periods was performed using the European air quality database Airbase as well as 596 597 AMS (Aerosol Mass Spectrometer) measurements. The period in February-March 2009 was 598 further analyzed in more detail using different assumptions regarding the volatility of emitted 599 organic aerosol and emissions of precursor. The main findings of this study are summarized 600 below:

601	 Although total PM_{2.5} mass concentrations and its variations were well reproduced by
602	the model in all four periods, comparisons with AMS measurements for the February-
603	March 2009 period revealed that the good agreement between model and
604	measurements was most of the time due to overestimation of the inorganic fraction,
605	especially NO3, and underestimation of OA. Sensitivity tests with reduced NH3
606	emissions generally reduced the positive bias in NO3 ⁻ suggesting potential
607	uncertainties in NH3 emissions and their seasonal variability. Total PM2.5 was
608	modelled very well. The concentration gradients between the four investigated
609	episodes were captured by the model. A few episodes of over prediction for $PM_{2.5}$
610	were found in the Po valley region. Some days with high PM _{2.5} loads for stations close
611	to the southern border of the domain were not captured by the model, probably
612	because of missing representation of Saharan dust events.

•

613

I

614 In general, for all the four periods, the model under-predicted NO₂ and CO ٠ concentrations especially during winter periods likely because of insufficient 615 616 emissions...On the other hand, O3 was found to be over-predicted likely because of 617 insufficient NO_x to undergo titration during night-time chemistry or not well captured vertical mixing processes and concentrations at the boundaries. SO2 was over-618 619 predicted especially near coastal areas, presumably mainly because of uncertainties in 620 high stack point sources ships stack height representation in the model or too low 621 deposition processes, and in the eastern part of the domain where larger emissions are 622 occurring.

 Comparisons with AMS measurements for the February March 2009 period suggested that the model is able to capture the total non refractory PM₄-mass. However, the inorganic fraction, especially NO₃⁻, being over predicted and the OA under predicted.
 Sensitivity tests with reduced NH₃-emissions generally reduced the positive bias in NO₃⁻ suggesting potential uncertainties in NH₃ emissions and their seasonal variability.

- Including evaporation and oxidation processes of primary organic particles with the volatility distribution proposed by Robinson et al. (2007) lowered the modelled OA mass both in winter and summer periods. On the other hand, the adjustment of the scheme by Robinson et al. (2007) suggested by Shrivastava et al. (2011) and Tsimpidi et al. (2010) brings model and observations into better agreement by reducing the negative bias for OA by about 29% (MFB) in winter.
- Sensitivity tests with increased BVOCs and BBOA-like emissions suggested that 635 636 emissions from residential heating represent an important contributor to total OA 637 during winter periods (February-March 2009). The model under-predicted the winter OA concentrations (MFB -47% for base case S3VBS_BC) more than gas phase 638 639 pollutants e.g. NO₂ (Table 2). Eventually, increasing BBOA-like emissions by a factor of 2 brought model and observation to a reasonably good agreement even though the 640 641 model still under-predicts the OA fraction (-12% MFB). This underlines the necessity 642 to better constrain emission inventories with a focus on residential heating. Also the 643 implementation of the VBS scheme for domestic wood burning, which substantially 644 influences both the primary and secondary organic aerosol, should be evaluated.
- A summer period was simulated as well and results were compared at Payerne. In June 645 646 2006, the current VBS implementation could not explain the discrepancy between 647 modelled and observed OA. During this period the difference between the model and 648 measurements is likely to be related to BVOCs emissions which are uncertain and 649 difficult to constrain with measurements. In this case the model was sensitive to an 650 increase in biogenic emissions especially during periods with higher temperature and OA concentrations. The latter could confirm the importance of BVOC precursors in 651 summer in Payerne and the way to correctly represent their evolution in the 652 653 atmosphere.

656

657

658 Acknowledgements

659 We thank the EURODELTA-III modelling community, especially INERIS for providing various model input data. We are grateful to ENVIRON for providing the CAMx-VBS code 660 661 before its public release. Calculations of land use data were performed with the Swiss 662 National Supercomputing Centre (CSCS). Ammonia measurements were provided kindly by 663 FUB. We thank D. Oderbolz for developing the CAMxRunner framework to ensure 664 reproducibility and data quality among the simulations and sensitivity tests. We thank M. Tinguely for the visualization software. We also thank G. Pirovano for helping with the pre-665 666 processing of Airbase data. This study was financially supported by the Swiss Federal Office of Environment (FOEN). JLJ was supported by NSF AGS-1360834 and EPA STAR 667 668 83587701-0. We thank D.A. Day for analysis on the DAURE dataset. Erik Swietlicki for the 669 Vavihill dataset, A. Kiendler-Scharr for Cabauw AMS data, Evelyn Freney for the Puy de 670 Dôme dataset.

672 References

Aksoyoglu, S., Keller, J., Barmpadimos, I., Oderbolz, D., Lanz, V. A., Prévôt, A. S. H., and
Baltensperger, U.: Aerosol modelling in [^] Europe with a focus on Switzerland during summer
and winter episodes, Atmos. Chem. Phys., 11, 7355–7373, doi:10.5194/acp-11-7355-2011,
2011.

677

Athanasopoulou, E., Vogel, H., Vogel, B., Tsimpidi, A. P., Pandis, S. N., Knote, C., and
Fountoukis, C.: Modeling the meteorological and chemical effects of secondary organic
aerosols during an EUCAARI campaign, Atmos. Chem. Phys., 13, 625-645, doi:10.5194/acp13-625-2013, 2013.

682

Appel, K.W., Gilliam, R.C., Davis, N., Zubrow, A., and Howard, S.C.: Overview of the
Atmospheric Model Evaluation Tool (AMET) v1.1 for evaluating meteorological and air
quality models, Environ. Modell. Softw., 26, 4, 434-443, 2011.

686

Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R.J., Fisher, M., Flentje, H.,
Huneeus, N., Jones, L., Kaiser, J.W., Kinne, S., Mangold, A., Razinger, M., Simmons, A.J.,
Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather
Forecasts Integrated Forecast System: 2. data assimilation. J. Geophys. Res. 114, D13205,
2009.

692

Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H., Yttri, K. E., and Simpson, D.:
Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS)
framework: application of different assumptions regarding the formation of secondary organic
aerosol, Atmos. Chem. Phys., 12, 8499–8527, doi:10.5194/acp-12-8499-2012, 2012.

697

Bessagnet, B., Colette, A., Meleux, F., Rouïl, L., Ung, A., Favez, O., Cuvelier, C., Thunis, P.,
Tsyro, S., Stern, R., Manders, A., Kranenburg, R., Aulinger, A., Bieser, J., Mircea, M.,

700 Briganti, G., Cappelletti, A., Calori, G., Finardi, S., Silibello, C., Ciarelli, G., Aksoyoglu, S.,

701	Prévôt, A., Pay, MT., Baldasano, J. M., García Vivanco, M., Garrido, J. L., Palomino, I.,
702	Martín, F., Pirovano, G., Roberts, P., Gonzalez, L., White, L., Menut, L., Dupont, J.C.,
703	Carnevale, C., and Pederzoli, A.: The EURODELTA III exercise "Model evaluation with
704	observations issued from the 2009 EMEP intensive period and standard measurements in
705	Feb/Mar 2009", MSC-W Technical Report, 2014.
706	
707	Bessagnet, B., Pirovano, G., Mircea, M., Cuvelier, C., Aulinger, A., Calori, G., Ciarelli, G.,
708	Manders, A., Stern, R., Tsyro, S., García Vivanco, M., Thunis, P., Pay, MT., Colette, A.,
709	Couvidat, F., Meleux, F., Rouïl, L., Ung, A., Aksoyoglu, S., Baldasano, J. M., Bieser, J.,
710	Briganti, G., Cappelletti, A., D'Isodoro, M., Finardi, S., Kranenburg, R., Silibello, C.,
711	Carnevale, C., Aas, W., Dupont, JC., Fagerli, H., Gonzalez, L., Menut, L., Prévôt, A. S. H.,
712	Roberts, P., and White, L.: Presentation of the EURODELTA III inter-comparison exercise -
713	Evaluation of the chemistry transport models performance on criteria pollutants and joint
714	analysis with meteorology, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-736, 2016.
715	
716	Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals,
717	and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.
718	
719	Canonaco, F., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: Seasonal differences in
720	oxygenated organic aerosol composition: implications for emissions sources and factor
721	analysis, Atmos. Chem. Phys., 15, 6993-7002, doi:10.5194/acp-15-6993-2015, 2015.
722	
723	Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic
724	aerosol, Atmos. Chem. Phys., 10, 5409-5424, doi:10.5194/acp-10-5409-2010, 2010.
725	
726	Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R.,
727	and Walcek, C. J.: A three-dimensional eulerian acid deposition model : Physical concepts
728	and formulation, J. Geophys. Res., 92, 14681–14700, 1987.

730	Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G.,
731	Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E.,
732	Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A.,
733	Kortelainen, AM., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E.,
734	O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri,
735	K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic
736	aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2
737	based source apportionment approach, Atmos. Chem. Phys., 14, 6159- 6176,
738	doi:10.5194/acp-14-6159-2014, 2014.

- 739
- 740 Donahue, N., Robinson, A., Stanier, C., and Pandis, S.: Coupled Partitioning, Dilution, and
- 741 Chemical Aging of Semivolatile Organics, Environ. Sci. Technol., 40, 2635–2643, 2006.
- 742

754

<sup>Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional
volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11,
3303–3318, doi:10.5194/acp-11-3303-2011, 2011.</sup>

⁷⁴⁷ Donahue, N. M., Henry, K. M., Mentel, T. F., Kiendler-Scharr, A., Spindler, C., Bohn, B., 748 Brauers, T., Dorn, H. P., Fuchs, H., Tillmann, R., Wahner, A., Saathoff, H., Naumann, K. H., 749 Mohler, O., Leisner, T., Muller, L., Reinnig, M. C., Hoffmann, T., Salo, K., Hallquist, M., 750 Frosch, M., Bilde, M., Tritscher, T., Barmet, P., Praplan, A. P., DeCarlo, P. F., Dommen, J., 751 Prevot, A. S. H., and Baltensperger, U.: Aging of biogenic secondary organic aerosol via gas-752 phase OH radical P. Natl. 109. reactions, Acad. Sci., 13503-13508, 753 doi:10.1073/pnas.1115186109, 2012a.

<sup>Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional
volatility basis set – Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys.,
12, 615–634, doi:10.5194/acp-12-615-2012, 2012b.</sup>

ETC/ACC, Improvement of classifications European monitoring stations for AirBase - A
 quality control, Technical Paper 2004/7.

761

762 Environ: User's Guide, Comprehensive Air Quality Model with Extensions (CAMx), Version
763 5.40, Environ International Corporation, California, 2011.

764

765 Freney, E. J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J. M.,

Colomb, A., Prévôt, A. S. H., and Laj, P.: Seasonal variations in aerosol particle composition
at the puy-de-Dôme research station in France, Atmos. Chem. Phys., 11, 13047-13059,
doi:10.5194/acp-11-13047-2011, 2011.

Fountoukis, C., Racherla, P. N., Denier van der Gon, H. A. C., Polymeneas, P.,
Charalampidis, P. E., Pilinis, C., Wiedensohler, A., Dall'Osto, M., O'Dowd, C., and Pandis,

771 S. N.: Evaluation of a three-dimensional chemical transport model (PMCAMx) in the

European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11,

- 773 10331–10347, doi:10.5194/acp-11-10331-2011, 2011.
- 774

Fountoukis, C., Megaritis, A. G., Skyllakou, K., Charalampidis, P. E., Pilinis, C., Denier van
der Gon, H. A. C., Crippa, M., Canonaco, F., Mohr, C., Prévôt, A. S. H., Allan, J. D., Poulain,
L., Petäjä, T., Tiitta, P., Carbone, S., Kiendler-Scharr, A., Nemitz, E., O'Dowd, C., Swietlicki,
E., and Pandis, S. N.: Organic aerosol concentration and composition over Europe: insights
from comparison of regional model predictions with aerosol mass spectrometer factor
analysis, Atmos. Chem. Phys., 14, 9061-9076, doi:10.5194/acp-14-9061-2014, 2014.

781

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K.,
and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1
(MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci.

785 Model Dev., 5, 1471–1492, doi:10.5194/gmd-5-1471-2012, 2012.

786

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M.,
Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H.,

- Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A.,
 Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H.,
 Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of
- secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236,
- 793 doi:10.5194/acp-9-5155- 2009, 2009.
- 794
- Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L.,
 and Fast, J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile
 and intermediate volatility primary organic compounds to secondary organic aerosol
 formation, Atmos. Chem. Phys., 10, 5491-5514, doi:10.5194/acp-10-5491-2010, 2010.
- 799 Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C.,
- 800 Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro,
- 801 J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão,
- 802 J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut,
- J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis:
 an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073-4109,
- doi:10.5194/acp-13-4073-2013, 2013.
- 806
- Jo, D. S., Park, R. J., Kim, M. J., and Spracklen, D. V.: Effects of chemical aging on global
 secondary organic aerosol using the volatility basis set approach, Atmos. Environ., 81, 230–
 244, doi:10.1016/j.atmosenv.2013.08.055, 2013.
- 810
- Knote, C., Brunner, D., Vogel, H., Allan, J., Asmi, A., Äijälä, M., Carbone, S., van der Gon,
 H. D., Jimenez, J. L., Kiendler-Scharr, A., Mohr, C., Poulain, L., Prévôt, A. S. H., Swietlicki,
 E., and Vogel, B.: Towards an online-coupled chemistry-climate model: evaluation of trace
 gases and aerosols in COSMO-ART, Geosci. Model Dev., 4, 1077-1102, doi:10.5194/gmd-41077-2011, 2011.
- 816
- Koo, B., Knipping, E., Yarwood, G.: 1.5-Dimensional volatility basis set approach for
 modeling organic aerosol in CAMx and CMAQ, Atmos Environ., 95: 158-164., 2014.

Kuenen, J. J. P., Denier van der Gon, H. A. C., Visschedijk, A., Van der Brugh, H., and Van
Gijlswijk, R.: MACC European emission inventory for the years 2003–2007, TNO report

- 822 TNO- 060-UT-2011-00588, TNO, Utrecht, 2011.
- 823
- 824 Kulmala, M., Asmi, A., Lappalainen, H. K., Carslaw, K. S., Pöschl, U., Baltensperger, U.,
- 825 Hov, Ø., Brenquier, J.-L., Pandis, S. N., Facchini, M. C., Hansson, H.-C., Wiedensohler, A.,
- 826 and O'Dowd, C. D.: Introduction: European Integrated Project on Aerosol Cloud Climate and
- 827 Air Quality interactions (EUCAARI) integrating aerosol research from nano to global
- scales, Atmos. Chem. Phys., 9, 2825–2841, doi:10.5194/acp-9-2825-2009, 2009.
- 829 Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J.-L., Facchini, M.
- 830 C., Hansson, H.-C., Hov, Ø., O'Dowd, C. D., Pöschl, U., Wiedensohler, A., Boers, R.,
- 831 Boucher, O., de Leeuw, G., Denier van der Gon, H. A. C., Feichter, J., Krejci, R., Laj, P.,
- 832 Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C., Riipinen, I., Schulz, M.,
- 833 Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo,
- 834 P., Baars, H., Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M., Burkhart, J. F.,
- 835 Canonaco, F., Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S.,
- 836 Fischer, M., Fjaeraa, A. M., Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger,
- 837 T., Harrison, R. M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A., Hõrrak,
- 838 U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A.,
- 839 Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L.,
- 840 Laaksonen, A., Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V., Makkonen, R.,
- 841 Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W. T.,
- 842 Nemitz, E., O'Donnell, D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar, J. J., Pio, C.,
- 843 Plass-Duelmer, C., Prévôt, A. S. H., Pryor, S., Reddington, C. L., Roberts, G., Rosenfeld, D.,
- 844 Schwarz, J., Seland, Ø., Sellegri, K., Shen, X. J., Shiraiwa, M., Siebert, H., Sierau, B.,
- 845 Simpson, D., Sun, J. Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J.
- 846 P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S.,
- 847 Worsnop, D. R., van Zadelhoff, G.-J., Zardini, A. A., Zhang, K., van Zyl, P. G., Kerminen,
- 848 V.-M., S Carslaw, K., and Pandis, S. N.: General overview: European Integrated project on
- 849 Aerosol Cloud Climate and Air Quality interactions (EUCAARI) integrating aerosol

research from nano to global scales, Atmos. Chem. Phys., 11, 13061–13143, doi:10.5194/acp11-13061-2011, 2011.

852

Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, Atmos. Environ., 42, 7439–7451, doi:10.1016/j.atmosenv.2008.06.026, 2008.

856

Langmann, B., Sellegri, K., and Freney, E.: Secondary organic aerosol formation during June
2010 in Central Europe: measurements and modelling studies with a mixed thermodynamickinetic approach, Atmos. Chem. Phys., 14, 3831-3842, doi:10.5194/acp-14-3831-2014, 2014.

Li, Y. P., Elbern, H., Lu, K. D., Friese, E., Kiendler-Scharr, A., Mentel, Th. F., Wang, X. S.,
Wahner, A., and Zhang, Y. H.: Updated aerosol module and its application to simulate
secondary organic aerosols during IMPACT campaign May 2008, Atmos. Chem. Phys., 13,

- 863 6289-6304, doi:10.5194/acp-13-6289-2013, 2013.
- 864

Madronich, S.: The Tropospheric Visible Ultra-violet (TUV) model web page, National
Center for Atmospheric Research, Boulder, CO., http://www.acd.ucar.edu/TUV/, 2002.

867

Mensah, A. A., Holzinger, R., Otjes, R., Trimborn, A., Mentel, Th. F., ten Brink, H., Henzing,
B., and Kiendler-Scharr, A.: Aerosol chemical composition at Cabauw, The Netherlands as
observed in two intensive periods in May 2008 and March 2009, Atmos. Chem. Phys., 12,
4723-4742, doi:10.5194/acp-12-4723-2012, 2012.

872

Murphy, B. N. and Pandis, S. N.: Simulating the formation of semivolatile primary and
secondary organic aerosol in a regional chemical transport model, Environ. Sci. Technol., 43,
4722–4728, 2009.

876

Murphy, B. N., Donahue, N. M., Fountoukis, C., Dall' Osto, M., O'Dowd, C., KiendlerScharr, A., and Pandis, S. N.: Functionalization and fragmentation during ambient organic

aerosol aging: application of the 2-D volatility basis set to field studies, Atmos. Chem. Phys.,
12, 10797-10816, doi:10.5194/acp-12-10797-2012, 2012.

881

882 NASA/GSFC, Total ozone mapping spectrometer: http://toms.gsfc.
883 nasa.gov/ozone/ozone.html, 2005.

884

Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium
model for multiphase multicomponent inorganic aerosols, Aquatic Geochemistry, 4, 123–152,
1998.

888

Pandolfi, M., Querol, X., Alastuey, A., Jimenez, J.L., Jorba, O., Day, D., Ortega, A., Cubison,
M.J., Comerón, A., Sicard, M., Mohr, C., Prévôt, A.S.H., Minguillón, M.C., Pey, J.,
Baldasano, J.M., Burkhart, J.F., Seco, R., Peñuelas, J., Van Drooge, B.L., Artiñano, B., Di
Marco, C., Nemitz, E., Schallhart, S., Metzger, A., Hansel, A., Lorente, J., Ng, S., Jayne J.,
and Szidat, S.: Effects of sources and meteorology on particulate matter in the Western
Mediterranean Basin: an overview of the DAURE campaign, J. Geophys. Res. Atmos., 119
http://dx.doi.org/10.1002/2013JD021079, 2014.

896

Passant, N. R.: Speciation of UK emissions of non-methane volatile organic compounds,
AEA Technology, Culham, 289, 2002.

899

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M.,
Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols:
Semivolatile Emissions and Photochemical Aging, Science, 315, 1259–1262,
doi:10.1126/science.1133061, 2007.

904

Shrivastava, M., Fast, J., Easter, R., Gustafson Jr., W. I., Zaveri, R. A., Jimenez, J. L., Saide,
P., and Hodzic, A.: Modeling organic aerosols in a megacity: comparison of simple and

907 complex representations of the volatility basis set approach, Atmos. Chem. Phys., 11, 6639–
908 6662, doi:10.5194/acp-11-6639-2011, 2011.

909

910	Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran, M. D., Appel, K
911	W., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel, C., Coll, I., Ferreira, J., Forkel, R.
912	Francis, X. V., Grell, G., Grossi, P., Hansen, A. B., Miranda, A. I., Nopmongcol, U., Prank
913	M., Sartelet, K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R.
914	Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.: Operational model evaluation for
915	particulate matter in Europe and North America in the context of AQMEII, Atmos. Environ.
916	53, 75-92, doi:10.1016/j.atmosenv.2012.02.045, 2012a.
917	

918 Starcrest Consulting Group, LLC, Starcrest Consulting Group, LLC.: Port-Wide Baseline Air

919 Emissions Inventory. Prepared for the Port of Los Angeles, California, 2004.

- 920
- 921 Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S., Buchmann, B., Ordóñez,
- 922 C., Prevot, A. S. H., and Hueglin, C.: Nitrogen Oxides Measurements at Rural Sites in
- 923 Switzerland: Bias of Conventional Measurement Techniques, J. Geophys. Res., 2007.
- 924
- Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol
 formation in winter, Atmos. Environ., 33, 4849–4863, 1999.
- 927
- 928 Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., 929 Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., 930 Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. 931 J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., 932 Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H, Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. 933 W., Mihalopoulos, N., Morcrette, J.-J., Müller, J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. 934 L., O'Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, 935 J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., 936 Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G.,

937 938 939	von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-2014, 2014.
940	
941 942 943 944 945	Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525-546, doi:10.5194/acp-10-525-2010, 2010.
946 947 948 949 950	Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, doi:10.5194/acp-12-5447-2012, 2012.
951 952 953 954	Vestreng, V., Myhre, G., Fagerli, H., Reis, S., and Tarrasón, L.: Twenty-five years of continuous sulphur dioxide emission reduction in Europe, Atmos. Chem. Phys., 7, 3663-3681, doi:10.5194/acp-7-3663-2007, 2007.
955 956 957 958 959	Vaughan, A.R., Lee, J.D., Misztal, P.K., Metzger, S., Shaw, M.D., Lewis, A.C., Purvis, R.M., Carslaw, D.C., Goldstein, A.H., Hewitt, C.N., Davison, B., Beevers, S.D., Karl, T.G., Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories. Faraday Discuss. doi:10.1039/C5FD00170F, 2016
960 961 962	Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Interferences of commercial NO ₂ instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149-159, doi:10.5194/amt-5-149-2012, 2012.
963 964 965	WHO, Burden of disease from Ambient Air Pollution for 2012 - Summary of results, 2014a.

966	Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Updates to the Carbon Bond Chemical
967	Mechanism: CB05 Yocke & Company, Novato, CA 94945RT-04-00675, 2005.

969	Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in
970	air-quality models, Atmos. Chem. Phys., 3, 2067–2082, doi:10.5194/acp-3-2067-2003, 2003.

971

972 Zhang, Q. J., Beekmann, M., Drewnick, F., Freutel, F., Schneider, J., Crippa, M., Prevot, A. 973 S. H., Baltensperger, U., Poulain, L., Wiedensohler, A., Sciare, J., Gros, V., Borbon, A., 974 Colomb, A., Michoud, V., Doussin, J.-F., Denier van der Gon, H. A. C., Haeffelin, M., 975 Dupont, J.-C., Siour, G., Petetin, H., Bessagnet, B., Pandis, S. N., Hodzic, A., Sanchez, O., 976 Honoré, C., and Perrussel, O.: Formation of organic aerosol in the Paris region during the 977 MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model, Atmos. Chem. Phys., 13, 5767-5790, doi:10.5194/acp-13-5767-2013, 978 979 2013.

5 Figures and Tables

982 Table 1. Volatility distributions used for different scenarios.

Scenarios	POA emission sources	Emission fraction for volatility bin with C* of					
Scenarios	POA emission sources	0	1	10	100	1000	
Scenario1NOVBS	HOA-like BBOA-like	1.00					
(non-volatile CAMxv5.40)		1.00	-	-	-	-	
Scenario2VBS_ROB	HOA-like	0.09	0.09	0.14	0.18	0.5	
(Robinson et al., 2007)	BBOA-like	0.09	0.09	0.14	0.18	0.5	
Scenario3VBS_BC							
(Tsimpidi et al.,	HOA-like	0.40	0.26	0.40	0.51	1.43	
2010 and Shrivastava et al., 2011)	BBOA-like	0.27	0.27	0.42	0.54	1.50	

985 Table 2. Model and DM erformance for the EDIII field 200 S3).

986

987

Species	Number of sites	Observed mean (ppb) (µg m ⁻³ for PM- ₂₋₅)	Modelled mean (ppb) (µg m⁻³for PM-₂₋₅)	MB (ppb) (µg m ⁻³ for PM- ₂₅)	ME (ppb) (µg m ⁻² for РМ- ₂₋₅)	MFB [-]	MFE [-]
			June	2006			
CO	36	192.0	158.0	-34.20	80.70	-0.12	0.36
$\frac{NO_2}{2}$	320	4.1	2.3	-1.87	2.24	-0.54	0.68
Θ_3	4 60	4 2.3	51.2	8.93	10.80	0.21	0.2 4
PM _{2.5}	48	12.0	11.7	-0.30	4.46	-0.07	0.39
SO 2	263	1.0	1.2	0.20	0.74	0.14	0.67
			Jan-F	eb 2007			
CO	45	248.0	191.0	-57.80	107.00	-0.11	0.37
NO ₂	337	6.5	4.4	-2.17	3.16	-0.28	0.57
Q 3	4 55	23.5	35.8	12.30	12.60	0.48	0.4 9
PM _{2.5}	56	11.7	12.8	1.04	6.06	-0.04	0.50
SO 2	271	1.3	1.7	0.38	1.09	0.36	0.7
			Sep C	Oct 2008			
co	53	208.0	136.0	-72.00	91.40	-0.31	0.48
$\frac{NO_2}{2}$	370	5.3	3.7	-1.67	2.50	-0.28	0.50
Θ_3	4 65	24.3	32.5	8.17	9.58	0.32	0.3
PM _{2.5}	90	13.0	14.1	1.03	5.69	<0.01	0.4
SO 2	256	0.9	4.4	0.20	0.76	0.25	0.7/
			Feb N	lar 2009			
CO	57	262.0	170.0	-91.60	119.00	-0.26	0.48
$\frac{NO_2}{2}$	380	6.0	3.9	-2.03	2.78	-0.33	0.5(
Q 3	488	32.7	33.0	0.22	7.14	0.02	0.23
PM _{2.5}	110	15.1	13.0	-2.13	6.37	-0.13	0.50
SO 2	257	1.0	1.3	0.31	0.86	0.23	0.76

989 Table 2. Model gas phase and PM_{2.5} performance for the EDIII field campaigns (base case 990 VBS BC).

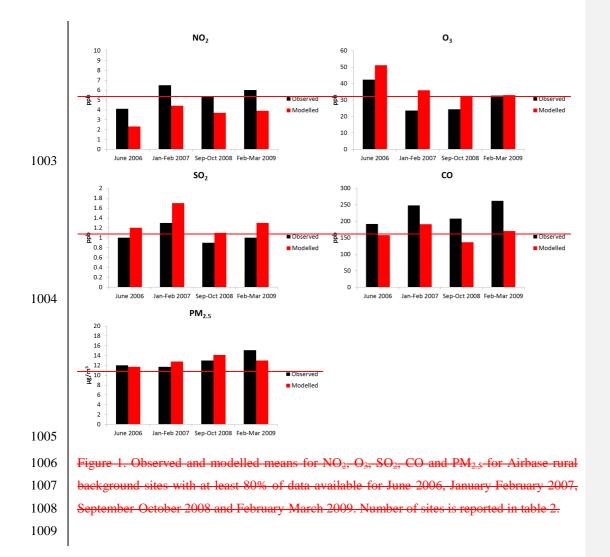
<u>Species</u>	<u>Number of</u> <u>sites</u>	<u>Observed</u> mean (ppb) (μg m ⁻³ for PM _{2.5})	<u>Modelled</u> <u>mean</u> (<u>ppb)</u> (μg m ⁻³ for <u>PM_{2.5})</u>	<u>MB</u> (ppb) (μg m ⁻³ for <u>PM _{2.5})</u>	<u>МЕ</u> <u>(ppb)</u> (µg m ⁻³ for <u>PM _{2.5})</u>	<u>MFB</u> [-]	<u>MFE</u> [-]	ŗ
				June 2006				
<u>CO</u>	<u>36</u>	<u>192.0</u>	<u>158.0</u>	<u>-34.2</u>	<u>80.7</u>	<u>-0.12</u>	<u>0.36</u>	<u>0.20</u>
<u>NO2</u>	<u>320</u>	<u>4.1</u>	<u>2.3</u>	<u>-1.9</u>	<u>2.2</u>	<u>-0.54</u>	<u>0.68</u>	<u>0.55</u>
<u>O</u> ₃	<u>460</u>	<u>42.3</u>	<u>51.2</u>	<u>8.9</u>	<u>10.8</u>	<u>0.21</u>	<u>0.24</u>	<u>0.57</u>
<u>PM</u> _{2.5}	<u>48</u>	<u>12.0</u>	<u>11.7</u>	<u>-0.3</u>	<u>4.5</u>	<u>-0.07</u>	<u>0.39</u>	<u>0.55</u>
\underline{SO}_2	<u>263</u>	<u>1.0</u>	<u>1.2</u>	<u>0.2</u>	<u>0.7</u>	<u>0.14</u>	<u>0.67</u>	<u>0.52</u>
Jan-Feb 2007								
<u>CO</u>	<u>45</u>	<u>248.0</u>	<u>191.0</u>	<u>-57.8</u>	<u>107.0</u>	<u>-0.11</u>	<u>0.37</u>	<u>0.21</u>
\underline{NO}_2	<u>337</u>	<u>6.5</u>	<u>4.4</u>	<u>-2.2</u>	<u>3.2</u>	<u>-0.28</u>	<u>0.57</u>	<u>0.68</u>
<u>O</u> ₃	<u>455</u>	<u>23.5</u>	<u>35.8</u>	<u>12.3</u>	<u>12.6</u>	<u>0.48</u>	<u>0.49</u>	<u>0.61</u>
<u>PM</u> _{2.5}	<u>56</u>	<u>11.7</u>	<u>12.8</u>	<u>1.0</u>	<u>6.1</u>	<u>-0.04</u>	<u>0.56</u>	<u>0.69</u>
\underline{SO}_2	<u>271</u>	<u>1.3</u>	<u>1.7</u>	<u>0.4</u>	<u>1.1</u>	<u>0.36</u>	<u>0.75</u>	<u>0.46</u>
				<u>Sep-Oct 2008</u>				
<u>CO</u>	<u>53</u>	<u>208.0</u>	<u>136.0</u>	<u>-72.0</u>	<u>91.4</u>	<u>-0.31</u>	<u>0.48</u>	<u>0.27</u>
<u>NO2</u>	<u>370</u>	<u>5.3</u>	<u>3.7</u>	<u>-1.7</u>	<u>2.5</u>	<u>-0.28</u>	<u>0.56</u>	<u>0.62</u>
<u>O</u> ₃	<u>465</u>	<u>24.3</u>	<u>32.5</u>	<u>8.2</u>	<u>9.6</u>	<u>0.32</u>	<u>0.37</u>	<u>0.50</u>
<u>PM</u> _{2.5}	<u>90</u>	<u>13.0</u>	<u>14.1</u>	<u>1.0</u>	<u>5.7</u>	<u><0.01</u>	<u>0.46</u>	<u>0.76</u>
\underline{SO}_2	<u>256</u>	<u>0.9</u>	<u>1.1</u>	<u>0.2</u>	<u>0.8</u>	<u>0.25</u>	<u>0.74</u>	<u>0.37</u>
				<u>Feb-Mar 2009</u>				
<u>CO</u>	<u>57</u>	262.0	<u>170.0</u>	<u>-91.6</u>	<u>119.0</u>	<u>-0.26</u>	<u>0.48</u>	<u>0.37</u>
<u>NO</u> 2	<u>380</u>	<u>6.0</u>	<u>3.9</u>	<u>-2.0</u>	<u>2.8</u>	<u>-0.33</u>	<u>0.56</u>	<u>0.61</u>
<u>O</u> ₃	<u>488</u>	<u>32.7</u>	<u>33.0</u>	<u>0.2</u>	<u>7.1</u>	<u>0.02</u>	<u>0.23</u>	<u>0.55</u>
<u>PM</u> _{2.5}	<u>110</u>	<u>15.1</u>	<u>13.0</u>	<u>-2.1</u>	<u>6.4</u>	<u>-0.13</u>	<u>0.50</u>	<u>0.71</u>
\underline{SO}_2	<u>257</u>	<u>1.0</u>	<u>1.3</u>	<u>0.3</u>	<u>0.9</u>	0.23	<u>0.76</u>	<u>0.45</u>

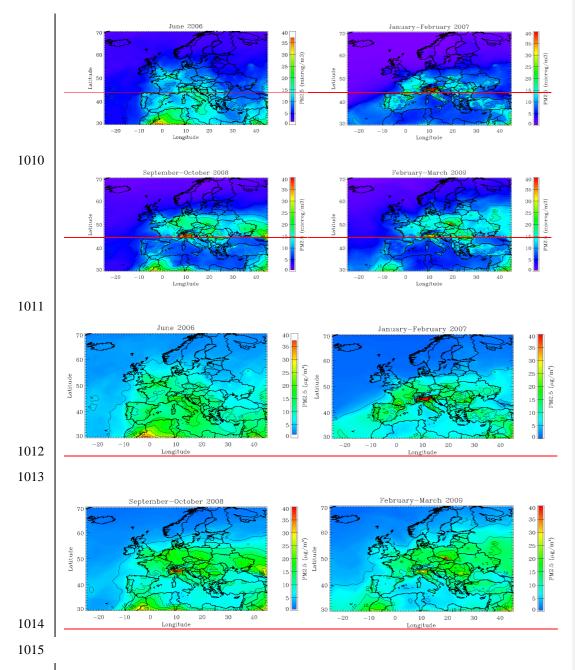
994Table 3. Statistical analysis of nitrate, ammonium, sulfate and organic aerosol in base case995(\$3VBS BC) for February-March 2009 at different AMS sites.

Site	Mean observed $(\mu g/m^3)$	Mean modelled $(\mu g/m^3)$	MB μg m ⁻³	ME μg m ⁻³	MFB [-]	MF [-]
		NO ₃				
Barcelona	3.6	5.8	2.19	3.98	0.35	0.9
Cabauw	2.2	6.7	4.49	4.58	0.85	1.0
Chilbolton	2.7	4.0	1.33	2.21	0.02	0.7
Helsinki	1.0	1.9	0.93	1.30	0.29	0.9
Hyytiälä	0.2	1.0	0.75	0.83	0.21	1.0
Mace Head	0.6	1.7	1.11	1.12	0.14	0.7
Melpitz	3.1	4.3	1.25	2.41	0.35	0.7
Montseny	3.1	5.9	2.83	4.31	0.38	1.0
Payerne	3.9	5.7	1.81	2.83	0.34	0.6
Puy de Dôme	0.9	2.7	1.81	2.17	1.13	1.3
Vavihill	2.8	3.7	0.89	2.17	0.14	0.7
		NH_4^{\pm}				
Barcelona	1.6	2.5	0.92	1.41	0.42	0.7
Cabauw	1.0	2.7	1.73	1.75	0.95	0.9
Chilbolton	1.3	2.0	0.68	1.02	0.39	0.6
Helsinki	0.8	1.3	0.52	0.59	0.51	0.6
Hyytiälä	0.4	0.8	0.43	0.48	0.55	0.7
Melpitz	1.4	2.1	0.72	1.11	0.45	0.6
Montseny	1.7	2.6	0.92	1.58	0.39	0.7
Payerne	1.7	2.5	0.80	1.15	0.36	0.5
Puy de Dôme	0.7	1.2	0.51	0.87	0.83	1.0
Vavihill	1.6	1.9	0.38	0.90	0.17	0.5
		${SO_4}^{2-}$				
Barcelona	2.7	2.3	-0.44	1.25	-0.19	0.4
Cabauw	1.0	2.1	1.13	1.34	0.73	0.8
Chilbolton	1.3	2.2	0.91	1.33	0.45	0.7
Helsinki	2.4	2.2	-0.24	0.92	-0.04	0.4
Hyytiälä	1.4	1.7	0.26	0.73	0.09	0.5
Mace Head	0.4	1.2	0.83	0.89	1.04	1.1
Melpitz	1.1	2.2	1.15	1.40	0.54	0.7
Montseny	1.4	2.3	0.97	1.19	0.55	0.6

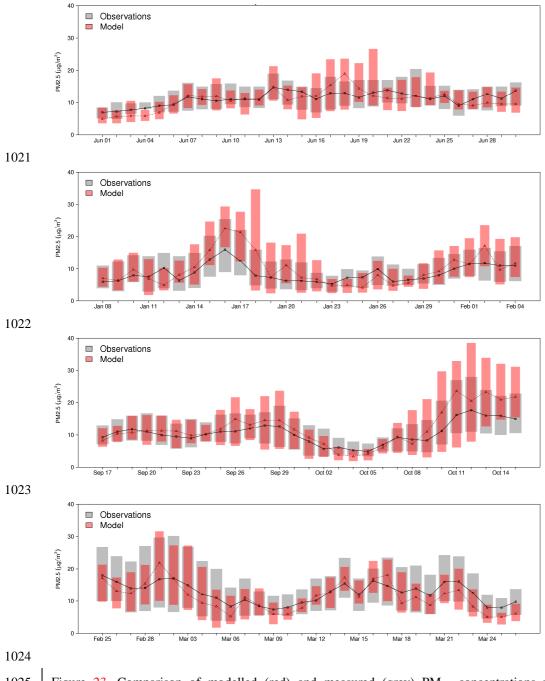
Payerne	1.1	2.1	1.06	1.16	0.62	0.70
Puy de Dôme	0.4	1.1	0.77	0.82	1.14	1.19
Vavihill	1.6	2.3	0.73	1.05	0.18	0.54
		OA				
Barcelona	8.2	3.1	-5.11	5.15	-0.80	0.82
Cabauw	1.2	1.1	-0.14	0.53	-0.13	0.50
Chilbolton	2.4	0.7	-1.70	1.70	-1.09	1.10
Helsinki	2.7	2.9	0.26	1.64	0.08	0.62
Hyytiälä	1.3	1.0	-0.28	0.52	-0.48	0.60
Mace Head	0.8	0.4	-0.38	0.43	-0.29	0.70
Melpitz	1.5	0.5	-0.95	0.98	-0.94	0.97
Montseny	3.1	3.9	0.88	1.88	0.31	0.57
Payerne	4.1	1.8	-2.33	2.43	-0.85	0.90
Puy de Dôme	0.6	1.4	0.78	0.96	0.68	0.91
Vavihill	3.9	1.4	-2.53	2.53	-1.04	1.04

998 Table 4. Statistical analysis of OA for <u>S1NOVBS</u>, <u>S2VBS_ROB</u> and <u>-S3VBS_BC</u> scenarios

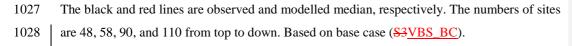

999 for the 11 AMS sites for February-March 2009.

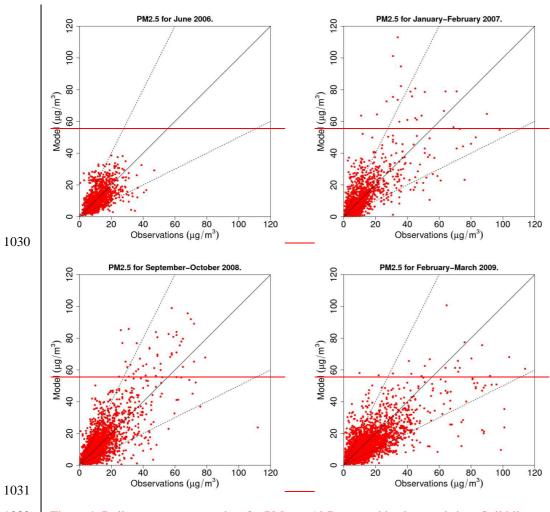

Scenario	Mean observed OA (µg m ⁻³)	Mean modelled OA (µg m ³)	MB (μg m ⁻³)	ME (μg m ⁻³)	MFB [-]	MFE [-]
<u>S1NOVBS</u>	<u>3.0</u> 2.96	<u>1.2</u> 1.18	<u>-1.8</u> -1.78	<u>2.0</u> 2.04	-0.66	0.88
<u>S2VBS_ROB</u>	<u>3.0</u> 2.96	<u>0.7</u> 0.67	<u>-2.3</u> -2.29	<u>2.4</u> 2.35	-1.08	1.19
S3 <u>VBS_BC</u> (base case)	<u>3.0</u> 2.96	<u>1.7</u> 1.73	<u>-1.2</u> -1.23	<u>1.8</u> 1.83	-0.47	0.79

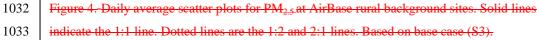
1000

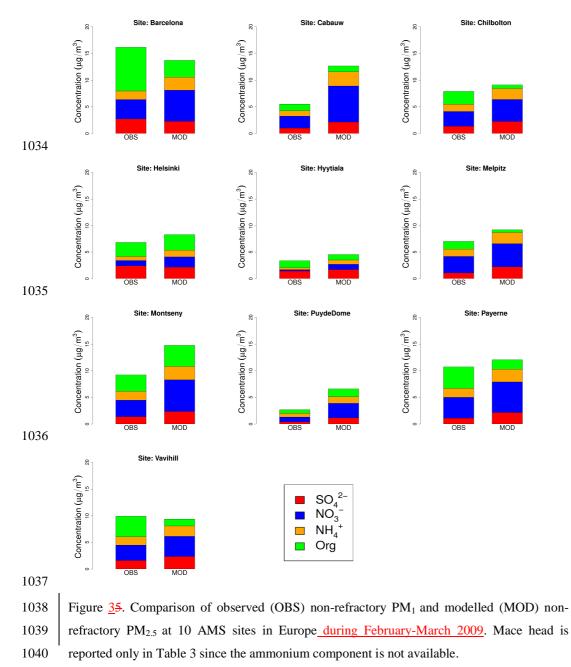

1001Table_-5._-Statistical analysis of OA for_-S3VBS_BC, _-S4VBS_BC_2xBVOC and1002S5VBS_BC_2xBBOA scenarios for the 11 AMS sites for February-March 2009.

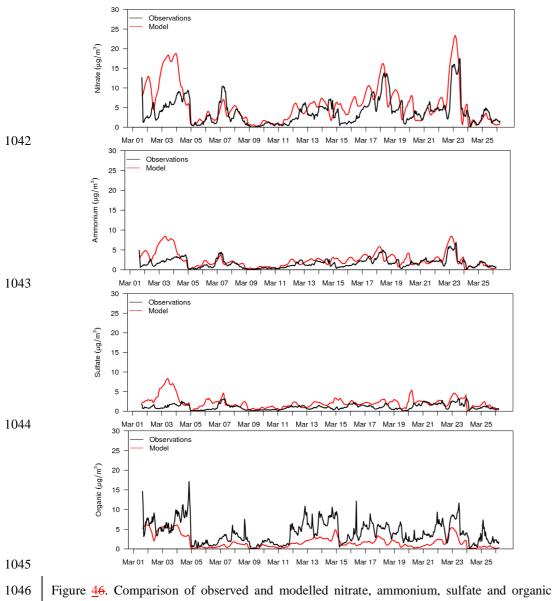
Scenario	Mean observed OA (µ-g_m ⁻³)	Mean modelled OA (µg m ³)	MB (μg m ⁻³)	ME (μg m ⁻³)	MFB MFE [-] [-]
<u>S3_VBS_BC</u>	3.0 2.96	1.7 1.73	-1.2 -1.23	1.8 1.83	-0.47 0.79
(base case)	<u>510</u> 2190	<u></u> /0	1120	<u>110</u> 1100	
<u>VBS_BC_2xBVOC</u> S4	<u>3.0</u> 2.96	<u>1.8</u> 1.78	<u>-1.2</u> -1.17	<u>1.8</u> 1.82	-0.46 0.78
<u>VBS_BC_2xBBOA</u> S5	<u>3.0</u> 2.96	<u>2.8</u> 2.84	<u>-0.1</u> -0.11	<u>1.9</u> 1.91	-0.12 0.69

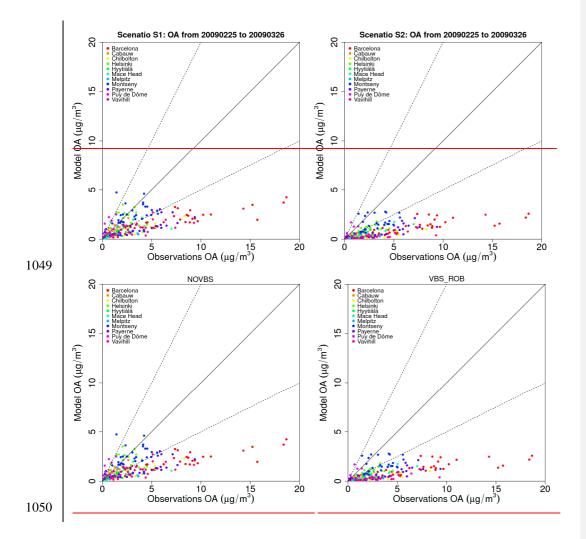


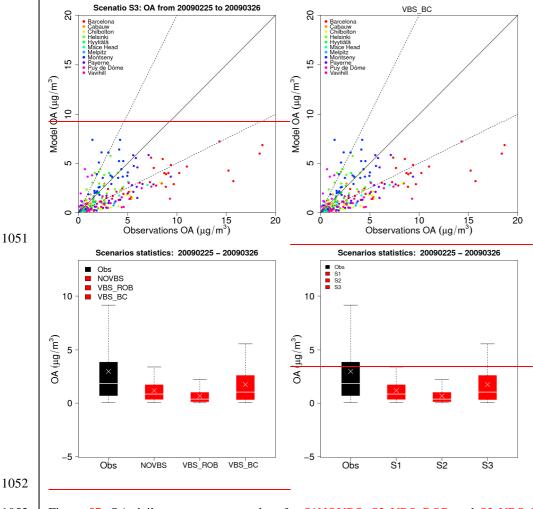

1016Figure 12. Modelled average $PM_{2.5}$ concentrations for June 2006, January-February 2007,1017September-October 2008 and February-March 2009 (top to bottom) based on the base case1018(\$3VBS_BC). Note that the color scale was limited to maximum of 40 µg/m³ to facilitate1019comparison of the panels.




1025Figure 23. Comparison of modelled (red) and measured (grey) $PM_{2.5}$ concentrations at1026AirBase rural background sites. The extent of the bars indicates the 25th and 75th percentile.







1046Figure 46. Comparison of observed and modelled nitrate, ammonium, sulfate and organ1047aerosol at Payerne for March 2009.

1053Figure 57. OA daily average scatter plots for S1NOVBS, S2-VBS_ROB and S3-VBS_BC1054scenarios for February-March 2009 for stations in Table 3. Solid lines indicate the 1:1 line.1055Dotted lines are the 1:2 and 2:1 lines. Boxplots indicate medians, 5th, 25th, 75th and 95th1056quantiles for observations (black) and sensitivity tests (red). The crosses represent the1057arithmetic means. R^2 is 0.55 for NOVBS, 0.64 for VBS ROB and 0.59 for VBS BC1058(excluding the elevated sited of Puy de Dôme and Montseny).

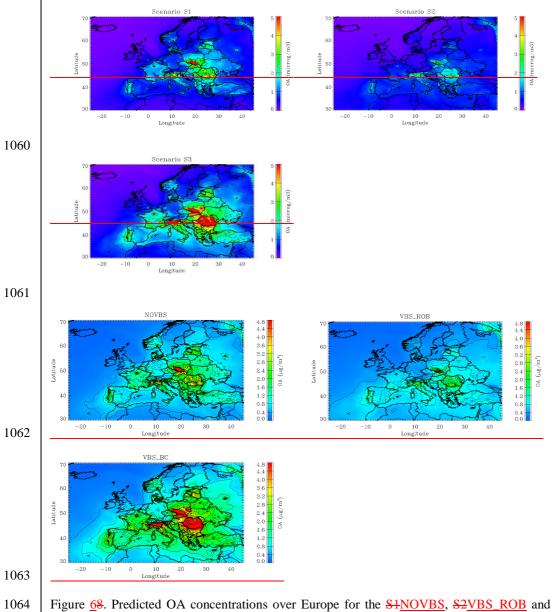
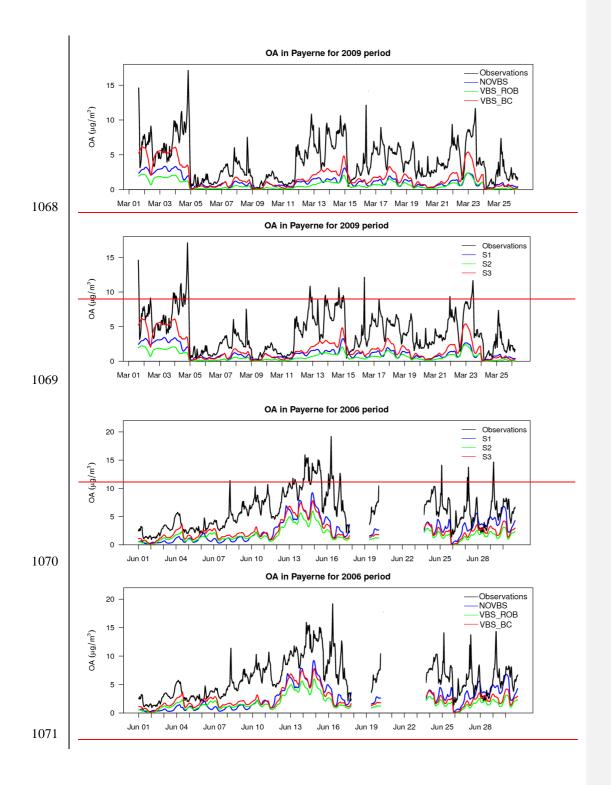
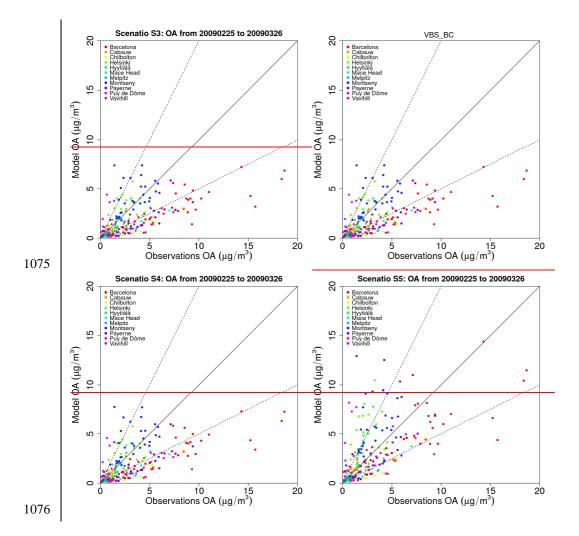
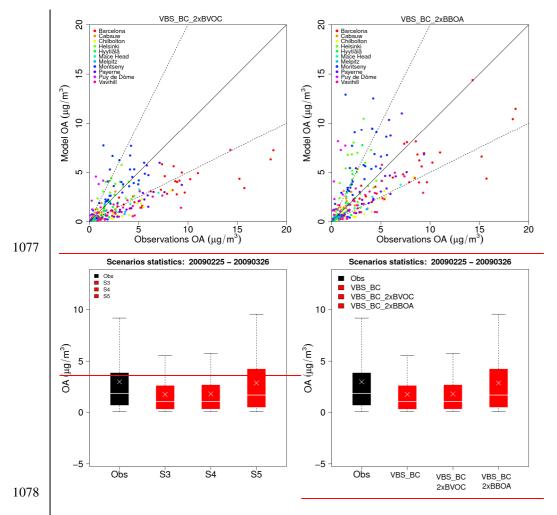
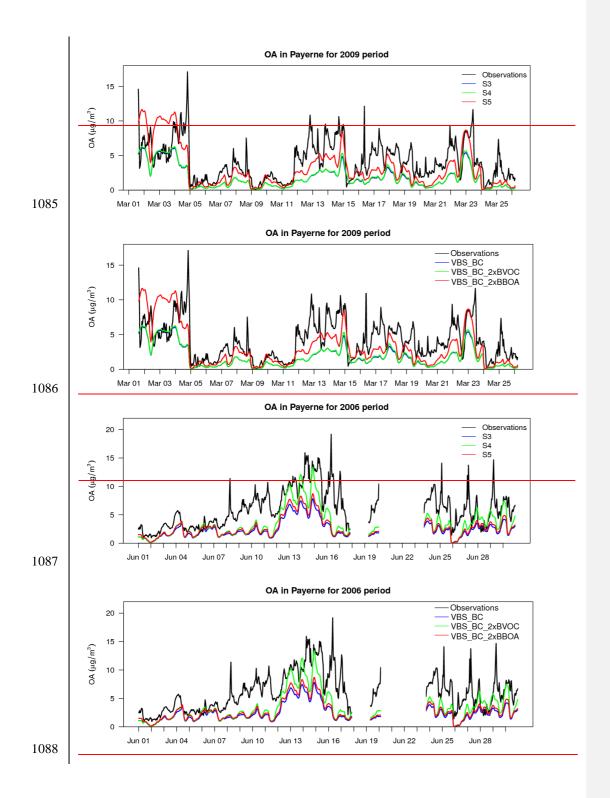
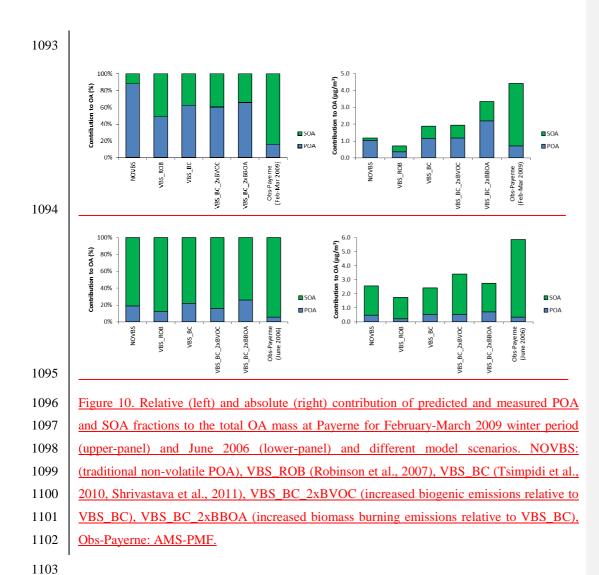





Figure <u>68</u>. Predicted OA concentrations over Europe for the <u>S1NOVBS</u>, <u>S2VBS_ROB</u> and <u>S3VBS_BC</u> scenario in February-March 2009. Note that the color scale was limited to maximum of <u>4.85</u> μ g/m³ to facilitate comparison of the panels.



1072	Figure <u>79</u> . Predicted and observed total OA for scenarios <u>S1NOVBS</u> , <u>S2-VBS_ROB</u> and <u>S3</u>
1073	<u>VBS_BC</u> in March 2009 (upper panel) and June 2006 (lower panel) at Payerne.



1079 Figure_<u>-810</u>. OA daily average scatter plots for <u>\$3VBS_BC</u>, <u>VBS_BC_2xBVOC</u>\$4 and
1080 <u>\$5VBS_BC_2xBBOA</u> scenarios for February-March 2009 for stations in Table 3. Solid lines
1081 indicate the 1:1 line. Dotted lines are the 1:2 and 2:1 lines. Boxplots indicate medians, 5th,
1082 25th, 75th and 95th quantiles for observations (black) and sensitivity tests (red). The crosses
1083 represent the arithmetic means.

1089 Figure <u>119</u>. Predicted and observed total OA for scenarios <u>\$3VBS_BC</u>,
1090 <u>VBS_BC_2xBVOC</u>\$4 and <u>VBS_BC_2xBBOA</u>\$5 in March 2009 (upper panel) and June
1091 2006 (lower panel) at Payerne.

