

Supplement of

Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai

X. Gong et al.

Correspondence to: X. Yang (yangxin@fudan.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 1. SP2 data analysis and a way to enhance the LEO-fit accuracy

The SP2 data were analyzed using PSI v4.100 (Martin Gysel, Paul Scherrer Institute, 5232
Villigen, Switzerland) for the IGOR Pro software package (Wavemetrics, Inc., Portland, OR, USA).

5 The small particles are not necessarily heated to full incandescence in SP2. Therefore, one can 6 get a peak that is smaller than it should be for a small mass of BC because the particle is not 7 getting sufficiently hot. Furthermore, a high-gain on the narrowband detector, as used in this 8 work, can introduce a decrease for the smallest particle sizes. The color ratio could possibly help 9 with this issue. The color ratio was calculated from the ratio of the broadband to narrowband 10 signals (Moteki and Kondo, 2010). We excluded BC-containing particles with color ratio in 11 excess of 3.0 from analysis. This improved the LEO-fit accuracy, especially for small core 12 BC-containing particles.

13

14 **Table S1**. Symbols and abbreviations

Symbol or abbreviation	Meaning
BC	Black carbon
D _c	The black carbon core diameter
D _p	The entire particle diameter
D _{ME}	Mass equivalent diameter
D _{va}	The vacuum aerodynamic diameter
SP2	Single-particle soot photometer
SPAMS	Single particle aerosol mass spectrometer
sccm	Standard-state cubic centimeter per minute
АСТ	Absolute coating thickness
RCT	Relative coating thickness

17 Figure S1. A schematic diagram of the calibration and measurement system. The DMA, CPC,

18 SP2 and SPAMS represent Differential Mobility Analyzer, Condensation Particle Counter,

19 Single Particle Soot Photometer, and Single Particle Aerosol Mass Spectrometer, respectively.

Figure S2. The average detection efficiencies in each BC size-bin at fixed laser intensity (1750 mA). Whiskers represent the standard deviation of the values in each size bin. In order to understand the mass and number size distribution of ambient BC particles, here we transformed the mass equivalent diameter (D_{MEV}) of Aquadag[®] BC to D_{MEV} of ambient BC according to their mass and different density

Figure S3. A comparison between the measured CO and BC mass concentration.

Figure S4. A comparison of the SPMAS-detected and SP2-detected internally-mixed
BC-containing particles.

Figure S5. A comparison of the SPMAS-detected and SP2-detected biomass burning
BC-containing particles.

41 References

Moteki, N., and Kondo, Y.: Dependence of laser-induced incandescence on physical
properties of black carbon aerosols: Measurements and theoretical interpretation, Aerosol
Sci. Technol., 44, 663-675, 2010.

45