

1 **Optical and microphysical characterization of aerosol**  
2 **layers over South Africa by means of multi-**  
3 **wavelength depolarization and Raman lidar**  
4 **measurements**

5

6 **E. Giannakaki<sup>1,a</sup>, P.G. van Zyl<sup>2</sup>, D. Müller<sup>3</sup>, D. Balis<sup>4</sup> and M. Komppula<sup>1</sup>**

7

8 (1){Finnish Meteorological Institute, P.O.Box 1627, FI-70211, Kuopio, Finland}

9 (2){Unit for Environmental Sciences and Management, North-West University,  
10 Potchefstroom, South Africa}

11 (3){School of Physics, Astronomy and Mathematics, University of Hertfordshire,  
12 Hatfield, United Kingdom}

13 (4){Laboratory of Atmospheric Physics, Thessaloniki, Greece}

14 <sup>a</sup> on leave from {Department of Environmental Physics and Meteorology, Faculty of  
15 Physics, University of Athens, Athens, Greece}

16

17 Correspondence to: Elina Giannakaki ([eleni.giannakaki@fmi.fi](mailto:eleni.giannakaki@fmi.fi))

18

19 **Abstract**

20 Optical and microphysical properties of different aerosol types over South Africa  
21 measured with a multi-wavelength polarization Raman lidar are presented. This study  
22 could assist in bridging existing gaps relating to aerosol properties over South Africa,  
23 since limited long-term data of this type is available for this region. The observations  
24 were performed under the framework of the EUCAARI campaign in Elandsfontein.  
25 The multi-wavelength Polly<sup>XT</sup> Raman lidar system was used to determine vertical  
26 profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients,  
27 Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical  
28 aerosol properties, i.e. effective radius and single scattering albedo were retrieved  
29 with an advanced inversion algorithm. Clear differences were observed for the  
30 intensive optical properties of atmospheric layers of biomass burning and  
31 urban/industrial aerosols. Our results reveal a wide range of optical and microphysical  
32 parameters for biomass burning aerosols. This indicates probable mixing of biomass  
33 burning aerosols with desert dust particles, as well as the possible continuous  
34 influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the  
35 lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the  
36 extinction-related Ångström exponent from 355 to 532 nm were  $52 \pm 7$  sr;  $41 \pm 13$ ;  
37  $0.9 \pm 0.4$  % and  $2.3 \pm 0.5$ , respectively for urban / industrial aerosols, while these  
38 values were  $92 \pm 10$  sr;  $75 \pm 14$ ;  $3.2 \pm 1.3$  % and  $1.7 \pm 0.3$  respectively for biomass  
39 burning aerosols layers. Biomass burning particles are larger and slightly less  
40 absorbing compared to urban / industrial aerosols. The particle effective radius were  
41 found to be  $0.10 \pm 0.03$   $\mu\text{m}$ ,  $0.17 \pm 0.04$   $\mu\text{m}$  and  $0.13 \pm 0.03$   $\mu\text{m}$  for urban/industrial,  
42 biomass burning, and mixed aerosols, respectively, while the single scattering albedo  
43 at 532 nm were  $0.87 \pm 0.06$ ,  $0.90 \pm 0.06$ , and  $0.88 \pm 0.07$  (at 532 nm), respectively for

44 these three types of aerosols. Our results were within the same range of previously  
45 reported values.

46

47 **1. Introduction**

48 Atmospheric aerosols of natural and anthropogenic origin contribute substantially to  
49 global climate variability (IPCC, 2013). Currently, the magnitude of the  
50 (anthropogenic) aerosol impact on climate causes the largest uncertainty on our  
51 knowledge of climate change (Forster et al., 2007). Large uncertainties exist due to  
52 the diversity, not only with respect to aerosol particle size, composition, sources and  
53 lifetime variation, but also with regard to the spatial and temporal distributions of  
54 aerosols. Thus, the impacts of aerosols on climate must be understood and quantified  
55 on a regional scale rather than on a global-average basis (Piketh et al., 2002).

56 High-quality aerosol measurements in the southern hemisphere are rather limited.  
57 South Africa is located at the southernmost tip of the African continent, extending  
58 from 22° S to 34° S latitude and from 16° E to 32° E longitude. Previous studies have  
59 indicated that South Africa is one of the countries in the world that is largely affected  
60 by aerosol load, due to various natural and anthropogenic sources (Piketh et al., 2000;  
61 Piketh et al., 2002; Formenti et al., 2002, 2003; Campbell et al., 2003; Eck et al.,  
62 2003; Freiman and Piketh, 2003; Ichoku et al., 2003; Ross et al., 2003; Winkler et al.,  
63 2008; Queface et al., 2011; Tesfaye et al., 2011; Venter et al., 2012; Tiitta et al.,  
64 2014). Intensive efforts have been undertaken during recent years to characterize  
65 aerosol pollution in South Africa. In general, previous studies pointed at the  
66 importance of regional circulation of air masses and seasonal pollutant variation. The  
67 optical properties of aerosols have been studied by means of sun photometers (e.g.  
68 Queface et al., 2011; Eck et al., 2003), *in situ* data (e.g. Laakso et al., 2012) and  
69 satellite observations (e.g. Tesfaye et al., 2011) in these studies, which are based on  
70 columnar aerosol optical properties. Ground-based Raman lidars provide vertically  
71 resolved information on the distribution and optical properties of aerosols. Giannakaki

72 et al. (2015) used Raman lidar data obtained over a one year period at Elandsfontein  
73 in South Africa ( $26^{\circ}15' S$ ,  $29^{\circ}26' E$ , 1745 m above sea level (a.s.l.)) to study the  
74 geometrical characteristics, intensive and extensive optical properties of free-  
75 tropospheric aerosol layers. In addition to these characteristics that can be determined  
76 with lidar data, multi-wavelength Raman lidar measurements can also be used to  
77 determine profiles of microphysical particle properties by using inversion algorithms  
78 (Twomey, 1977; Veselovskii et al., 2002, Müller et al., 2001). In this study we expand  
79 our study of aerosols in South Africa by providing information on the microphysical  
80 and optical properties of aerosol layers. This type of aerosol lidar observations are  
81 valuable for spaceborne lidars such as CALIPSO (Cloud-Aerosol Lidar and Infrared  
82 Pathfinder Satellite Observations) (e.g. Omar et al., 2009), since lidar ratio values for  
83 different aerosol types are required for reliable aerosol extinction retrievals.  
84 Therefore, this study could be useful for further improving lidar ratio selection-  
85 scheme algorithms used in spaceborne lidar missions.

86 Four long-term ground-based aerosol measurements were carried out at sites in  
87 economically growing countries in Asia, Africa and South America within the  
88 EUCAARI project (Kulmala et al., 2011), which included Elandsfontein in South  
89 Africa. The aim of EUCAARI was to characterize particles in terms of physical,  
90 optical and chemical aerosol properties. Here we report lidar observations that were  
91 performed at Elandsfontein. In particular, we discuss the optical and microphysical  
92 properties of aerosol layers that are caused by biomass burning and urban/industrial  
93 activities at the site. We present aerosol lidar ratios, particle linear depolarization  
94 ratios and Ångström exponents for biomass burning and urban/industrial aerosol  
95 layers measured with a multi-wavelength Raman lidar. The possible effect of desert  
96 dust particles on biomass burning aerosol layers in terms of the intensive optical and

97 microphysical properties is also addressed. In addition, effective radius and single-  
98 scattering albedo are calculated with an advanced inversion algorithm.

99 The paper is organized as follows: In section 2, the research site, the methodology  
100 used for the retrieval of optical and microphysical properties and the aerosol typing  
101 are introduced. As a case study, the arrival of a biomass burning aerosol layer over  
102 Elandsfontein is discussed in section 3. Section 4 presents the main findings of the  
103 optical and microphysical aerosol properties for selected biomass burning,  
104 urban/industrial and mixed aerosol layers. We close our contribution with a summary  
105 and conclusion in section 5.

106 **2. Location and Methodology**

107 **2.1. Measurement site**

108 The measurement site was located on a hill top at Elandsfontein ( $26^{\circ}15' S$ ,  $29^{\circ}26' E$ ,  
109 1745 m a.s.l.) in the Highveld region of South Africa. The station was located  
110 approximately 150 km east of the Johannesburg-Pretoria megacity, which is the  
111 largest metropolitan area in South Africa with a population of more than 10 million  
112 people (Lourens et al., 2012).

113 In South Africa, anthropogenic atmospheric emissions are predominantly the product  
114 of industrial activities and biomass burning (Ross et al., 2003). South Africa is the  
115 most industrialized country of the sub-continent – primarily due to the industrialized  
116 Highveld region (Freiman, 2003; Wenig et al., 2003). This region has clusters of  
117 industrial complexes and power plants between  $25.5^{\circ} S$ ,  $27.5^{\circ} E$  and  $27.0^{\circ} S$ ,  $30.5^{\circ} E$   
118 (Ross et al., 2003), which contributes significantly to aerosol and trace gases pollution  
119 (Freiman et al., 2003). Tropospheric NO<sub>2</sub> distributions derived with SCIAMACHY  
120 (SCanning Imaging Absorption spectroMeter for AtmosphericCHartographY) from  
121 August 2002 to March 2012 (Schneider et al., 2015) are presented in Figure 1. The  
122 tropospheric NO<sub>2</sub> column density of the Highveld region in South Africa is

123 comparable to that observed over central and northern Europe, eastern North America  
124 and Southeast Asia (Lourens et al., 2012).

125 In addition, emissions from biomass burning (wild fires) contribute significantly to  
126 regional emission loads (e.g. Giannakaki et al., 2015). Both, natural phenomena  
127 (lightning) and human induced activities are responsible for biomass burning  
128 (Edwards et al., 2006). The number of hotspots, with confidence levels between 80-  
129 100%, (<http://earthdata.nasa.gov/data/nrt-data/firms/active-fire-data>), in the latitude  
130 range between -40° and 40° and longitude range between -20° and 60° are plotted in  
131 Figure 2. The number of hotspots is averaged in terms of 3 months for the year 2010.  
132 Wild fires originate in the sub-equatorial central African region and progress  
133 southward (Roy et al., 2005). In southern Africa, the fires progress along a north-west  
134 to south-east track.

135 **2.2. Description of the lidar system and lidar data processing**

136 The transportable aerosol Raman lidar Polly<sup>XT</sup> that was operated remotely at  
137 Elandsfontain is described by Althausen et al. (2009) and Engelmann et al. (2016).  
138 Polly<sup>XT</sup> works with a Nd:YAG laser emitting at its primary wavelength of 1064 nm,  
139 which after frequency doubling and tripling emits at the wavelengths of 532 and 355  
140 nm, respectively. The receiver consists of a Newtonian telescope with a diameter of  
141 300 mm and a field of view of 1 mrad. Photomultiplier tubes (PMT) are used for the  
142 detection of the elastically backscattered photons at 355, 532 and 1064 nm, as well as  
143 the in-elastically backscattered photons at 387 and 607 nm that correspond to the  
144 Raman-shift by nitrogen molecules at 355 and 532 nm, respectively. Additionally, the  
145 cross-polarized component at 355 nm is detected and consequently allows for the  
146 determination of the linear particle depolarization ratio (also called depolarization  
147 ratio). To retrieve the particle depolarization ratio the Rayleigh calibration method  
148 was applied within the data analysis under the assumption of pure Rayleigh

149 depolarization in an aerosol-free height range (Behrendt and Nakamura, 2002). The  
150 vertical resolution of the signal profiles is 30 m and the raw data are typically stored  
151 as 30 s average values (20 Hz laser frequency). Data were collected on the web page  
152 of PollyNet (<http://polly.tropos.de>) where the “quicklooks” of all measurements are  
153 available.

154 Extinction and backscatter coefficient profiles at 355 and 532 nm, respectively, were  
155 obtained with the Raman method (Ansmann et al., 1992). To vertically retrieve the  
156 backscatter coefficient at 1064 nm we use Fernald-Klett method (Fernald, 1984; Klett,  
157 1981). With this method the particle backscatter coefficient is derived applying a  
158 backward iteration starting at a chosen reference height. The method requires  
159 independent information on the lidar ratio and on the reference value of the particle  
160 backscatter coefficient. The cases analyzed here are night-time measurements and the  
161 retrieved backscatter at 1064 nm was also evaluated by the Raman method (Ansmann  
162 et al., 1992) using also the signal from the Nitrogen Raman channel at the 607 nm. An  
163 overlap correction was applied on the basis of a simple technique proposed by  
164 Wandinger and Ansmann (2002). The depolarization ratio, i.e. the ratio of the cross-  
165 polarized to the parallel-polarized component of the backscatter coefficient (particles  
166 and molecules) at 355 nm was also calculated. The contribution of the molecules can  
167 easily be calculated, which then provides the linear particle depolarization ratio (Cairo  
168 et al., 1999; Murayama et al., 1999).

169 The uncertainties affecting the retrieval of extinction and backscatter coefficients, and  
170 thus the calculation of lidar ratio and Ångström exponents are mainly due: to the  
171 statistical error due to signal detection, the systematic error associated with the  
172 estimation of the atmospheric molecular number density from the pressure and  
173 temperature profiles, the systematic error associated with the evaluation of the aerosol

174 scattering wavelength dependence, the systematic error for overlap function, the  
175 errors introduced by operation procedure such as signal binning (smoothing) and  
176 averaging accumulating lidar returns. The overall relative errors of the lidar-derived  
177 aerosol properties range between 5%-15% for the backscatter coefficients, 10%-30%  
178 for the extinction coefficients, 20%-40% for the Ångström exponents, 15%-40% for  
179 the lidar ratios and approximately 5%-10% for the linear particle depolarization ratio  
180 (Hänel et al., 2012; Baars et al., 2016, Engelmann et al., 2016). A detailed discussion  
181 on the influence of aerosol optical depth errors to Ångström exponent errors can be  
182 found in Wagner et al., 2008.

183 The layer identification was based on the assumption that the optical properties should  
184 be relatively stable. This means that within a chosen height layer, the variability of the  
185 optical data should be less than the statistical uncertainty of the individual data points.  
186 In Table 1 we provide information regarding the elevated layers that were selected for  
187 the optical and microphysical aerosol characterization. The characterization of aerosol  
188 types will be discussed in section 2.4.

189  
190 **2.3. Retrieval of microphysical properties**

191 Microphysical particle properties are derived with an inversion algorithm that has  
192 been developed at the Leibniz Institute for Tropospheric Research. A detailed  
193 description of the inversion code is given by Müller et al (1999a, 1999b). A minimum  
194 of three backscatter coefficients (355, 532, and 1064 nm) and two extinction  
195 coefficients (355 and 532 nm), with measurement errors less than 30%, are required  
196 as input in order to obtain microphysical results that have reasonably low  
197 uncertainties (Müller et al., 2001). The selection of the individual inversion solutions  
198 is based on the concept that the back-calculated optical data should agree with the  
199 original data within the limits of the measurement errors, and that a pre-selected

200 discrepancy level, which is an output parameter of the inversion algorithm (Müller et  
201 al., 1999a), is not exceeded. The mean particle size in terms of the effective radius is  
202 then calculated along with the standard deviation from these selected individual  
203 solutions. One also obtains a range of complex refractive indexes by applying this  
204 method. The complex refractive index is a wavelength-independent quantity.  
205 Therefore, inversion can only provide a wavelength-independent value that represents  
206 the entire range of wavelengths from 355 – 1064 nm. The single-scattering albedo can  
207 then be calculated from the volume concentration distribution, which is another data  
208 product of the inversion algorithm, and the associated mean complex refractive index  
209 by means of a Mie scattering algorithm.

210 Uncertainties associated with the retrievals are in general <30% for effective radius.  
211 The real part of the complex refractive index is derived to an accuracy better than  
212  $\pm 0.1$ , while the imaginary part is obtained for its correct order of magnitude if the  
213 value is  $<0.01i$  (for larger values of the imaginary part the uncertainty is  $<50\%$ ). The  
214 single-scattering albedo can be calculated with an accuracy of  $\pm 0.05$ , if uncertainties  
215 of the input optical data are on average  $<10\text{--}15\%$ . A detailed error analysis is  
216 presented by Müller et al. (1999b, 2001) and Veselovskii et al., (2002, 2004).

217 **2.4. Aerosol classification**

218 The identification of the source of aerosol particles is possible with the synergetic use  
219 of in-situ and satellite measurements, as well as utilizing model estimations.

220 The HYSPLIT\_4 (Hybrid Single Particle Langrangian Integrated Trajectory) model  
221 (Draxler and Hess, 1997) was used to compute backward air mass trajectories  
222 employing the kinematic approach and by using the re-analysed National Oceanic and  
223 Atmospheric Administration (NOAA) dataset with a resolution of  $2.5^\circ \times 2.5^\circ$  (latitude,  
224 longitude) as input. Four-day backward trajectories were selected, because they  
225 extend far enough back in time and distance to cover the main source regions

226 suspected to affect the region investigated. The trajectories were calculated for the  
227 center of the layer observed and for the time of the lidar measurement.

228 The number of fire hotspots is given by Moderate Resolution Imaging  
229 Spectroradiometer (MODIS) collection-5 active-fire product data (Giglio, L. et al.,  
230 2010). The number of hotspots, obtained from MODIS for four days prior to each of  
231 the measurements, was superimposed on the trajectory analysis map in order to detect  
232 the presence of smoke particles over our site for the cases analyzed.

233 Trace gases were measured as part of routine air quality monitoring at the site by the  
234 national electricity supplier, i.e. Eskom. A Thermo Electron 43C SO<sub>2</sub> analyser and a  
235 Thermo Electron 42i NO<sub>x</sub> analyser were used to measure SO<sub>2</sub> and NO<sub>x</sub> respectively.

236 H<sub>2</sub>S was measured with a Thermo Electron 43A SO<sub>2</sub> analyzer with a Thermo Electron  
237 340 converter. 15-minute data were averaged for the extent of measurement time for  
238 each of the measurements periods (Table 1). For instances where the combined use of  
239 trajectory analysis and fire hotspots did not indicate the presence of biomass burning  
240 aerosols we checked whether the measured NO<sub>x</sub>, SO<sub>2</sub> or H<sub>2</sub>S concentrations were  
241 higher than the seasonal mean values of that measured for the entire period of the  
242 EUCAARI campaign. These seasonal mean values are presented in Laakso et al.  
243 (2012). In addition, when the trace gases concentrations were lower than the mean  
244 seasonal values measured during the EUCAARI campaign and biomass-burning  
245 activity or desert dust advection were absent, we checked if the daily concentration of  
246 the trace gases exceeded the mean critical values.

247 There were also cases that indicated desert dust aerosol particles in addition to the  
248 smoke, which originated either from the Kalahari or the Namibia desert that could  
249 have additionally contributed to the aerosol loads. Therefore, the measured aerosol  
250 optical properties determined for these cases were attributed to a mixing state where

251 smoke particles were possible to be mixed with desert dust aerosols. Additional  
252 mixing with urban / industrial aerosols is also possible.

253 An example of a measurement of biomass burning aerosols is discussed in the  
254 subsequent section in order to demonstrate the methodology used to derive the optical  
255 and microphysical aerosol properties.

256  
257 **3. Biomass burning aerosols on 1<sup>st</sup> October 2010 at Elandsfontein,**  
258 **South Africa**

259 In this section we will study a geometrically deep layer that extends up to 2.1 km  
260 height above ground level (AGL) as observed on the 1<sup>st</sup> of October 2010. The  
261 atmospheric structure, in terms of range corrected signals, is quite stable which  
262 indicates similar optical properties throughout the layer  
263 (<http://polly.tropos.de/?p=bilder&lambda=1064&Jahr=2010&Monat=10&Tag=1&Ort=11#bildanker>). High backscatter returns are observed on the day when the  
264 measurement is conducted in relation to the previous and the next day (as can be  
265 already seen in Figure 4 (a) – light green).

266 MODIS fire hotspots product reveal that several fires were active during the period  
267 28<sup>th</sup> of September 2010 – 1<sup>st</sup> of October 2010 as shown in Figure 3 (a). In Figure 3  
268 (b), four-day backward trajectories arriving at Elandsfontein on 1<sup>st</sup> of October 2010 at  
269 00:00 are presented. The trajectories are computed for arrival heights of the bottom,  
270 center and top of the observed layer. The trajectory analysis along with MODIS fire  
271 hotspots reveals that the air masses are highly possible to carry smoke particles at  
272 Elandsfontein on the day of the measurement.

273 In Figure 4 the optical lidar profiles are presented. The backscatter and extinction  
274 maximum at all three wavelengths were observed within the 0.9 to 1.9 km height  
275 range. High values of the lidar ratio of  $96 \pm 5$  sr at 355 nm and  $89 \pm 5$  sr at 532 nm

277 indicate that the smoke particles inside this layer were most likely highly light-  
278 absorbing . The Ångström exponent, related to extinction between 355 and 532 nm,  
279 was  $1.8 \pm 0.1$ , which points to comparably small particles and indicative of fresh  
280 smoke (eg. Müller et al., 2005). A constant particle depolarization ratio in the order  
281 of 4% is observed at 355 nm throughout the layer. The lack of significant vertical  
282 variability of the lidar ratio, the Ångström exponent and the particle depolarization  
283 ratio suggests the presence of the same type (biomass burning) of aerosols throughout  
284 the layer.

285 The mean values of extinction (at 355 and 532 nm) and backscatter coefficients (at  
286 355, 532 and 1064 nm) were calculated within the defined layer and were used as  
287 input in the inversion algorithm. Effective radius, complex refractive index and  
288 single-scattering albedo were calculated with the microphysical inversion code. An  
289 effective radius of  $0.15 \pm 0.02 \mu\text{m}$  was determined, while the single-scattering albedo  
290 was approximately 0.86 at 532 nm that indicates relatively strong-absorbing aerosols.

#### 291 **4. Results and Discussion**

292 We performed optical lidar data analysis, microphysical retrievals and aerosol typing  
293 for each of the thirty eight aerosol layers listed in Table 1 in the same way as  
294 presented in the example in section 3. Each aerosol layer in Table 1 was classified  
295 into one of the three aerosol types, i.e. urban/industrial, biomass burning, and mixed  
296 aerosols after thorough visual inspection of the backward trajectories, MODIS  
297 hotspots fires products and in-situ aerosol observations, as explained in section 2.4.  
298 Table 2 summarizes the mean intensive optical properties (lidar ratio at 355 and 532  
299 nm, depolarization ratio at 355 nm and Ångström exponent related to extinction  
300 between 355 and 532 nm) presented together with the associated standard deviations,  
301 ranges (minimum and maximum values) and medians.

302 Figure 5 presents the particle lidar ratios at 355 nm versus the extinction-related  
303 Ångström exponent for urban/industrial (black), biomass burning (red) aerosol layers  
304 as well as for the mixed aerosol layers (green). Different aerosol types occupy  
305 different areas in the Ångström-exponent–lidar-ratio plot. Aerosols from urban and  
306 industrial activities are on average characterized by larger Ångström exponents than  
307 (pure or mixed) biomass burning aerosols. The lidar ratios of biomass burning  
308 aerosols are among the highest compared to literature with a mean value of  $92 \pm 10$  sr  
309 (e.g. Müller et al., 2007; Nicolae et al, 2013; Amiridis et al., 2009). Urban / Industrial  
310 aerosol layers were found to have lower lidar ratio values in the range between 41 and  
311 59 sr at 355 nm. Our results indicate that biomass burning aerosols have lower lidar  
312 ratios when they are mixed either with desert dust aerosols or with urban / industrial  
313 aerosols. This might be due to the non-spherical shape of desert dust that may have a  
314 significant effect on the lidar ratio. Model calculations show that a deviation from the  
315 spherical shape can efficiently increase particle backscattering and thus lower the lidar  
316 ratio (Mishchenko et al., 1997), which was also confirmed by Müller et al. (2003).  
317 Ångström exponent values of these aerosols ranged from 1.6 to 2.5, with a mean value  
318 of  $2.0 \pm 0.4$ , which is larger (smaller particles) than the mean value of  $1.7 \pm 0.3$  we  
319 observed for ‘pure’ biomass burning aerosols. The role that hot air close to the surface  
320 of the earth plays in generating these dust size distribution is not well understood  
321 (Nisantzi et al., 2014). Wind stress close to the surface may be very complex and the  
322 sudden release of all the moisture in the hot soil particles may strongly influence the  
323 cracking of larger particles into smaller ones and thus lead to a much more  
324 complicated size distribution than observed during desert dust outbreaks (Mamouri et  
325 al., 2014).

326 It is evident from Figure 5 that Ångström exponent values for the different aerosol  
327 types overlap. Therefore, another intensive aerosol property, the linear particle  
328 depolarization ratio, which is an indicator of non-spherical particles, was also used.  
329 Figure 6 shows the lidar ratio at 355 nm versus the depolarization ratio at the same  
330 wavelength for the three aerosol types. Different clusters of data pairs can be  
331 identified. Lower depolarization ratio values were found for urban/industrial aerosol  
332 layers. These aerosol layers are also characterized by lower lidar ratios and thus the  
333 data points representing urban / industrial pollution occupy the lower left region in  
334 Figure 5. Significantly larger particle linear depolarization ratios with a mean of  $8.3 \pm$   
335 0.7 % were found for mixed aerosols. Typical desert dust aerosol depolarization ratios  
336 determined in field measurements performed in the northwestern corner of the Sahara  
337 ranged from 30 to 35% at 532 nm with a mean value of  $31 \pm 3\%$  (Freudenthaler et al.,  
338 2009). In addition, particle depolarization ratios ranging between 30 to 35% were also  
339 observed for Asian desert dust (Sugimoto et al., 2003, Shimizu et al., 2004, Shin et  
340 al., 2015) and desert dust originating from Middle East dust sources (Mamouri et al.,  
341 2013). Depolarization ratios of the mixtures of biomass burning aerosols and desert  
342 dust particles determined for African biomass burning and dust mixtures ranged  
343 between 8 – 26% at 532 nm (Weinzierl et al., 2011, Tesche et al., 2009). Therefore  
344 depolarization values reported in this study are at the lower end of these values. This  
345 observed difference can be attributed to the different contribution of desert dust  
346 particles to the biomass burning plume. However, we should also note that the  
347 geometrical shape of the dust particles over the Kalahari desert could be different  
348 from the shape of Saharan dust. Also, the possible influence of the background urban  
349 / industrial aerosols in the mixture should be kept in mind.

350 A wide range of (lower) depolarization ratios and lidar ratios was found for biomass  
351 burning aerosols. This observed variability can be attributed to differences in the  
352 chemical composition of the particles that depends on the source region, relative  
353 humidity in the atmosphere, the type of fire, or the combined effect of these factors. In  
354 addition, the mixing of the biomass burning aerosols with maritime or even  
355 urban/industrial background aerosols cannot be excluded as a possible reason for the  
356 variability of lidar ratio and depolarization ratio values.

357 Several statistics of lidar ratios and Ångström exponents for different aerosol types in  
358 the world are available for comparison. Figure 7 provides some of the general  
359 literature with regard to the lidar ratios values at 355 nm and Ångström exponents of  
360 urban/industrial and biomass-burning aerosols, as well as for mixtures of biomass  
361 burning and desert dust aerosols. To interpret the x-axis of the Figure 7 one should  
362 also look the Table 4. It is evident from Figure 7 that intensive aerosol properties are  
363 in good agreement with values found from other studies.

364 The lidar ratio at 355 nm, in particular, shows similar values for urban / industrial  
365 aerosols in various regions of the world. Ångström exponent values found for  
366 urban/industrial particles in this study are at the upper limit of results previously  
367 published for this aerosol type, which indicates slightly smaller particles at  
368 Elandsfontein that can most probably be ascribed by differences in the emission  
369 sources. The depolarization ratio is at the lower limit indicating spherically shaped  
370 anthropogenic particles.

371 The lidar ratio for biomass burning aerosol layers is within the range of previously  
372 reported values, although the values tend to be more at the upper limit of the reported  
373 values. The Ångström exponents are in very good agreement with previous studies.  
374 Müller et al. (2007) studied the growth of free-tropospheric forest fire smoke particles

375 and indicated that the Ångström exponent decreases with the duration of transport.  
376 The Ångström exponent values found in this study ( $1.7 \pm 0.3$ ) corresponds to travel  
377 times of the biomass burning aerosols between 1 and 3 days, which is confirmed by  
378 back-ward trajectory analysis. The characteristics of biomass burning emissions in the  
379 subtropical South African region vary according to the type of fuel burned (vegetation  
380 type), meteorology and combustion phase (Ross et al., 2003). For example, flaming  
381 grass fires produce smoke with more soot compared to smoke emitted from  
382 smoldering wood and bush fires (Posfai et al., 2003). Thus differences in the chemical  
383 composition of the particles might be one of the reasons for the observed large lidar  
384 ratio.

385 For the mixed aerosols the lidar ratio values reported here are in very good agreement  
386 with previous studies for the mixture of desert dust and biomass burning aerosols. The  
387 contribution of desert dust particles within the observed biomass burning plumes is  
388 probably lower, thus resulting in a lower depolarization ratio and larger Ångström  
389 exponent than what has been reported in literature for biomass burning mixed with  
390 dust as mentioned previously. Groß et al. (2011) reported neutral wavelength-  
391 dependence of the particle depolarization ratios for mixed dust and smoke layers for  
392 which Ångström exponents varied between 0.12 and 0.16, while Tesche et al. (2011)  
393 reported wavelength-independent linear particle depolarization ratios of 0.12-0.18 at  
394 355, 532 and 710 nm for mixed dust and smoke layers. In that sense our results on  
395 particle depolarization ratios at 355 nm are similar to results from these studies  
396 reporting linear particle depolarization ratio at 532 nm.

397 In Figure 9 the effective radius against the Ångström exponent is plotted. In general  
398 the plot shows the same features already noted for Figure 5. On average the largest  
399 aerosols are determined for biomass burning aerosols (red) with an effective radius of

400 0.17 ± 0.04  $\mu\text{m}$ . Particles from anthropogenic pollution (black) are smaller with a  
401 mean effective radius of 0.1 ± 0.03  $\mu\text{m}$ . Our results indicate that the influence of  
402 Kalahari desert dust on biomass burning plumes leads to smaller particles compared  
403 to pure biomass burning aerosols with a mean effective radius of 0.13 ± 0.03  $\mu\text{m}$ .  
404 Mean microphysical properties i.e. effective radius, single scattering albedo and  
405 complex refractive index are listed with their associated standard deviations, ranges  
406 (minimum and maximum values) and medians in Table 3. The particles in the  
407 biomass-burning aerosol layers show a mean effective radius of 0.17 ± 0.04  $\mu\text{m}$ ,  
408 which is within the range of values reported in previous studies for biomass burning  
409 aerosols. Reid et al. (1998) reported count median diameter values ranging from 0.12  
410  $\mu\text{m}$  for fresh particles to 0.21  $\mu\text{m}$  for aged particles near rain-forest fires in Brazil.  
411 Radke et al. (1988) obtain values of approximately 0.22  $\mu\text{m}$  for particles from forest  
412 fires in North America. Wandinger et al. (2002) found larger biomass burning  
413 aerosols with an effective radius of approximately 0.25  $\mu\text{m}$ . Effective radii in the  
414 range between 0.19 and 0.44  $\mu\text{m}$  were found for biomass burning aerosol layers  
415 resulting from long-range transport across Romania (Nicolae et al., 2013). Müller et  
416 al, (2007) presented values ranging between 0.13 and 0.15 nm for plumes ageing  
417 between one to three days.  
418 The three types of aerosols cover a wide range of single-scattering albedo values as  
419 shown in Table 3. The mean single-scattering albedo for biomass burning aerosol is  
420 0.90 ± 0.06 (at 532 nm). Lower single scattering albedos are reported in literature for  
421 fresh biomass burning particles in Europe. Nicolae et al. (2013) reported a value of  
422 0.78 ± 0.02, while Reid et al. (1998) found that single scattering albedo ranges  
423 between 0.74 and 0.77 for fresh smoke. Previous studies show that aged biomass  
424 burning layers are characterized by larger single scattering albedos. For example,

425 Murayama et al. (2004) found a value of  $0.95 \pm 0.06$  at 532 nm, while Noh et al.  
426 (2009) reported single scattering albedos of 0.92 at the same wavelength. Therefore  
427 our results indicate moderately absorbing particles resulting from fresh or medium  
428 aged (less than 3 days) biomass burning aerosols.

429 For the mixed aerosols we determined lower mean scattering-albedos of  $0.88 \pm 0.07$ ,  
430 which is slightly higher than the mean single-scattering albedo of  $0.87 \pm 0.06$   
431 determined for urban/industrial aerosol layers. Laakso et al. (2012) reported values of  
432  $0.84 \pm 0.08$  (637 nm) at ground level at Elandsfontein, South Africa. Quaface et al.  
433 (2011) determined significantly larger values of 0.91 and 0.89 at 440 nm and 670 nm,  
434 respectively, from AERONET data collected at Skukuza in South Africa. Our results  
435 indicate that elevated anthropogenic aerosol layers from urban and industrial activities  
436 are characterized by stronger light-absorption.

437 Complex refractive indexes are also reported in Table 3. Real parts of the complex  
438 refractive index of these particles are mostly  $> 1.5$ , while imaginary parts vary from  
439  $0.007i$  to  $0.04i$ . Lower real parts of the refractive index are found for biomass burning  
440 aerosols compared to the urban/industrial particulates with values ranging from 1.35  
441 to 1.57. The imaginary parts of the refractive index of biomass burning aerosol layers  
442 are  $< 0.03i$  (with the exception of one case that shows an imaginary refractive index  
443 of  $0.046i$ ). A large variation of refractive indices for the real and imaginary parts is  
444 observed for mixed aerosols. This might allude to the different levels of contribution  
445 of Kalahari desert dust to biomass burning aerosol layers.

446

## 447 **5. Summary and Conclusions**

448 Thirty eight aerosol layers of urban/industrial, biomass burning, and mixed aerosols  
449 were studied with regard to their optical and microphysical properties at

450 Elandsfontein, South Africa. The combination of Raman lidar observations with  
451 backward trajectory analysis, satellite fire observations and *in situ* data allowed for  
452 source identification of the elevated aerosol layers. Measurements of the lidar ratios  
453 and depolarization ratios are presented in order to assist in the separation of  
454 anthropogenic, biomass burning, and mixtures of aerosols.

455 A wide range of optical (lidar ratio and depolarization ratio) and microphysical (single  
456 scattering albedo, complex refractive index) properties was determined for biomass  
457 burning aerosols, indicating differences in chemical composition. Aerosols from  
458 urban and industrial activities are on average characterized by larger Ångström  
459 exponents than (pure or mixed) biomass burning aerosols. Lidar ratios for biomass  
460 burning aerosols are among the highest found in literature with a mean value of  $92 \pm$   
461 10 sr, while the anthropogenic aerosols are characterized by lower lidar ratios in the  
462 range between 41 and 59 sr at 355 nm. Ångström exponents were found to be similar  
463 for all types of aerosol types under study, with slightly larger values determined for  
464 anthropogenic aerosols. Mean effective radii of  $0.17 \pm 0.04 \mu\text{m}$  and  $0.1 \pm 0.03 \mu\text{m}$   
465 were calculated for biomass burning and urban / industrial aerosols, respectively. We  
466 have also shown that in certain instances biomass burning aerosols may contain a  
467 small amount of desert dust particles resulting in higher depolarization ratios and  
468 lower lidar ratios than the values reported for pure biomass burning aerosols.  
469 Moderately absorbing particles were found for biomass burning layers with a mean  
470 single scattering albedo of  $0.9 \pm 0.06$ . Mixed aerosols were found more absorbing  
471 with a mean single-scattering albedo of  $0.88 \pm 0.07$ . A slightly lower mean single-  
472 scattering albedo of  $0.87 \pm 0.06$  was found for urban / industrial aerosol layers.  
473 However, this value was larger than the values reported for the same site from

474 ground-based in-situ measurements. Our optical and microphysical results for the  
475 analyzed aerosol types agreed very well with similar studies reported in literature.  
476 Ground-based lidar networks provide information on the vertical and horizontal  
477 distribution of optical aerosol properties in a systematic and statistically significant  
478 manner. Different lidar networks that are globally distributed observe aerosols in  
479 Europe, South America, Asia and North America. The analysis of lidar measurements  
480 presented here could assist in bridging existing gaps with regard to our knowledge of  
481 the vertical distribution of optical and microphysical aerosols in the South African  
482 atmosphere, since limited long-term data of this nature is available for this region. Our  
483 results could also be useful for lidar ratio selection schemes needed for elastic-  
484 backscatter lidars. In that sense our findings could be used in advancing lidar  
485 algorithms used for present and/or future satellite lidar missions.

486

487  
488 **ACKNOWLEDGMENTS**

489 This work has been partly supported by the European Commission 6<sup>th</sup> Framework  
490 program under the EUCAARI project (contract no. 036833-2). Elina Giannakaki  
491 acknowledges the support of the Academy of Finland (project no. 270108). The  
492 authors acknowledge the staff of the North-West University for valuable assistance  
493 and routine maintenance of the lidar. We also acknowledge Eskom and Sasol for their  
494 logistical support for measurements at Elandsfontein.

495

496 **REFERENCES**

497 Alados Arboledas, L., Müller, D., Guerrero Rascado, J. L., Navas Guzmán, F., Pérez  
498 Ramírez, D., and Olmo, F. J.: Optical and microphysical properties of fresh biomass  
499 burning aerosol retrieved by Raman lidar, and star and sun-photometry, *Geophys.*  
500 *Res. Lett.*, 38, L01807, doi:10.1029/2010GL045999, 2011.

501 Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and  
502 Komppula, M.: Portable Raman Lidar Polly<sup>XT</sup> for Automated Profiling of Aerosol  
503 Backscatter, Extinction, and Depolarization, *J. Atmos. Ocean. Technol.*, 26, 2366-  
504 2378, doi: 10.1175/2009jtech1304.1, 2009.

505 Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E.,  
506 and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern  
507 Europe determined from UV-Raman lidar measurements, *Atmos. Chem. Phys.*, 9,  
508 2431-2440, doi:10.5194/acp-9-2431-2009, 2009.

509 Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.:  
510 Independent measurement of extinction and backscatter profiles in cirrus clouds by  
511 using a combined Raman elastic-backscatter lidar, *Appl. Optics*, 31, 7113-7131, doi:  
512 10.1364/AO.31.007113, 1992.

513 Ansmann, A., Engelmann, R., Althausen, D., Wandinger, U., hu, M., Zhang, Y., and  
514 He, Q.: High aerosol load over the Pearl River Delta, China, observed with Raman  
515 lidar and Sun photometer, *Geophys. Res. Lett.*, 32, L13815, doi:  
516 10.1029/2005GL023094, 2005.

517 Ansmann A., Baars, H., Tesche, M., Müller, D., Althausen, D., Engelmann, R.,  
518 Pauliquevis, T., and Artaxo, P.: Dust and smoke transport from Africa to South  
519 America : Lidar profiling over Cape Verde and the Amazon rainforest, *Geophys. Res.*  
520 *Lett.*, 36, L11802, doi:10.1029/2009GL037923, 2009.

521 Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Artaxo, P., Pauliquevis, T.,  
522 and Souza, R.: Further evidence for significant smoke transport from Africa to  
523 Amazonia, *Geophys. Res. Lett.*, 38, L20 802, doi: 10.1029/2011GL049200, 2011.

524 Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Heese, B., Müller, D., Artaxo,  
525 P., Paixao, M., Pauliquevis, T., and Souza, R.: Aerosol profiling with lidar in Amazon  
526 Basin during the wet and dry season, *J. Geophys. Res.*, 117, D21201, doi:  
527 10.1029/2012JD018338, 2012.

528 Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M.,  
529 Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y.,  
530 Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A.,  
531 Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E.,  
532 Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F.,  
533 Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T.,  
534 Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G.,  
535 Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of  
536 PollyNET: an emerging network of automated Raman-polarization lidars for  
537 continuous aerosol profiling, *Atmos. Chem. Phys.*, 16, 5111-5137, doi:10.5194/acp-  
538 16-5111-2016, 2016.

539 Balis, D.S., Amiridis, V., Zerefos, C., Gerasopoulos, E., Andreae, M., Zanis, P.,  
540 Kazantidis, A., Kazadzis, S. and Papayannis A.: Raman lidar and Sun photometric  
541 measurements of aerosol optical properties over Thessaloniki, Greece during a  
542 biomass burning episode 2003, *Atmos. Environ.*, 37(32), 4529–4538,  
543 doi:10.1016/S1352-2310(03)00581-8, 2003.

544 Burton, S.P., Ferrare, R.A., Hostetler, C.A., Hair, J.W., Rogers, R.R., Obland, M.D.,  
545 Butler, C.F., Cook, A.I., Harper, D.B., and Froyd, K.D.: Aerosol classification using  
546 airborne High Spectral Resolution Lidar measurements – methodology and examples,  
547 *Atmos. Meas. Tech.*, 5, 73-98, doi: 10.5194/amt-5-73-2012, 2012.

548 Burton, S.P., Ferrare, R.A., Vaughan, M.A., Omar, A.H., Rogers, R.R., Hostetler,  
549 C.A., and Hair, J.W.: Aerosol classification from airborne HSRL and comparisons  
550 with the CALIPSO vertical feature mask, *Atmos. Meas. Tech.*, 6, 1397-1412,  
551 doi:10.5194/amt-6-1397-2013, 2013.

552 Cairo, F., Di Donfrancesco, G., Adriani, A., Pulvirenti, L. and Fierli, F.: Comparison  
553 of various linear depolarization parameters measured by lidar, *Appl. Opt.* 38, 4425-  
554 4432, doi: 10.1364/AO.38.004425, 1999.

555 Campbell, J. R., Welton, E. J., Spinhirne, J. D., Ji, Q., Tsay, S. C., Piketh, S. J.,  
556 Barenbrug, M., and Holben, B. N.: Micropulse lidar observations of tropospheric  
557 aerosols over northeastern South Africa during the ARREX and SAFARI 2000 dry  
558 season experiments, *J. Geophys. Res.*, 108, D13, 8497, doi: 10.1029/2002jd002563,  
559 2003.

560 Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT 4 modeling system,  
561 NOAA Tech Memo, ERL ARL-224, 24, NOAA, Silver Spring, Md., 1997.

562 Eck, T. F., Holben, B. N., Ward, D. E., Mukelabai, M. M., Dubovik, O., Smirnov, A.,  
563 Schafer, J. S., Hsu, N. C., Piketh, S. J., Queface, A., Le Roux, J., Swap, R. J., and  
564 Slutsker, I.: Variability of biomass burning aerosol optical characteristics in southern  
565 Africa during the SAFARI 2000 dry season campaign and a comparison of single  
566 scattering albedo estimates from radiometric measurements, *J. Geophys. Res.*, 108,  
567 D13, 8477, doi: 10.1029/2002jd002321, 2003.

568 Edwards, D.P., Emmons, L.K., Gille, J.C., Chu, A., Attie, Giglio, L., Wood, S.W.,  
569 Haywood, J., Deeter, M.N., Massie, S.T., Ziskin, D.C., and Drummond, J.R.:  
570 Satellite-onserved pollution from Southern Hemisphere biomass burning, *J. Geophys.*  
571 *Res.*, 111, doi: 10.1029/2005JD006655, 2006.

572 Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A.,  
573 Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis,  
574 I., Linné, H., and Ansmann, A.: The automated multiwavelength Raman polarization  
575 and water-vapor lidar PollyXT: the neXT generation, *Atmos. Meas. Tech.*, 9, 1767–  
576 1784, doi:10.5194/amt-9-1767-2016, 2016.

577 Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., and Andreae, M.  
578 O.: Inorganic and carbonaceous aerosols during the Southern African Regional  
579 Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical  
580 properties, and emission data for smoke from African biomass burning, *J. Geophys.*  
581 *Res.*, 108, D13, 16, doi: 10.1029/2002jd002408, 2003.

582 Formenti, P., Winkler, H., Fourie, P., Piketh, S., Makgopa, B., Helas, G., and  
583 Andreae, M. O.: Aerosol optical depth over a remote semi-arid region of South Africa

584 from spectral measurements of the daytime solar extinction and the nighttime stellar  
585 extinction, *Atmos. Res.*, 62, 11-32, doi: 10.1016/s0169-8095(02)00021-2, 2002.

586 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood,  
587 J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and  
588 Dorland, R. V.: Changes in atmospheric constituents and in radiative forcing. *Climate  
589 Change 2007: The Physical Science Basis. Contribution of Working Group I to the  
590 Fourth Assessment Report of the Intergovernmental Panel on Climate Change*,  
591 Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 129–234, 2007.

592 Freiman, M. T., and Piketh, S. J.: Air transport into and out of the industrial Highveld  
593 region of South Africa, *J. Appl. Meteorol.*, 42, doi: 10.1175/1520-  
594 0450(2003)042<0994:ATIAOO>2.0.CO;2, 994-1002, 2003.

595 Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A.,  
596 Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C.,  
597 Gasteiger, J., Garhammer, M., and Seefeldner, M.: Depolarization ratio pro- filing at  
598 several wavelengths in pure Saharan dust during SAMUM 2006, *Tellus B*, 61, 165–  
599 179, doi:10.1111/j.1600- 0889.2008.00396.x, 2009.

600 Giannakaki, E., Balis, D. S., Amiridis, V., and Zerefos, C.: Optical properties of  
601 different aerosol types: seven years of combined Raman-elastic backscatter lidar  
602 measurements in Thessaloniki, Greece, *Atmos. Meas. Tech.*, 3, 569-578, doi:  
603 10.5194/amt-3-569-2010, 2010.

604 Giannakaki, E., Pfüller, A., Korhonen, K., Mielonen, T., Laakso, L., Vakkari, V.,  
605 Baars, H., Engelmann, R., Beukes, J.P., Van Zyl, P.G., Josipovic, M., Tiitta, P.,  
606 Chiloane, K., Piketh, S., Lihavainen, H., Lehtinen, K.E.J., and Komppula, M.: One  
607 year of Raman lidar observations of free-tropospheric aerosol layers over South  
608 Africa, *Atmos. Chem. Phys.*, 15, 5429-5442, doi: 10.5194/acp-15-5429-2015, 2015.

609 Giglio, L., Randerson, J. T., van der Werf, G.R., Kasibhatla, P. S., Collatz, G. J.,  
610 Morton, D. C., and DeFries, R. S.: Assessing variability and long-term trends in  
611 burned area by merging multiple satellite fire products, *Biogeosciences*, 7, 1171-1186,  
612 doi: 10.5194/bg-7-1171-2010, 2010.

613 Groß, S., Esselborn, M., Weinzierl, B., Wirth, M., Fix, A., and Petzold, A.: Aerosol  
614 classification by airborne high spectral resolution lidar observations, *Atmos. Chem.*  
615 *Phys.*, 13, 2487-2505, doi: 10.5194/acp-13-2487-2013, 2013.

616 Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M., Ansmann, A.,  
617 Althausen, D., and Seefeldner, M.: Characterization of Saharan dust, marine aerosols  
618 and mixtures of biomass-burning aerosols and dust by means of multi-wavelength  
619 depolarization and Raman lidar measurements during SAMUM 2, *Tellus B*, 63,706-  
620 724, doi: 10.1111/j.1600-0889.2011.00556.x, 2011.

621 Hänel, A., Baars, H., Althausen, D., Ansmann, A., Engelmann, R., and Sun, Y. J.:  
622 One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station:  
623 Beijing plume and seasonal variation, *J. Geophys. Res.*, 117, D13201,  
624 doi:10.1029/2012JD017577, 2012.

625 Heese, B., Althausen, D., Baars, H., Bohlmann, S., and Deng, R.: Aerosol properties  
626 over Southeastern China from multiwavelength Raman and depolarization lidar  
627 measurements, in: Reviewed and Revised Papers of 27th ILRC International Laser Radar  
628 Conference, 5–10 July 10 2015, New York, USA, 2015.

629 Ichoku, C., Remer, L. A., Kaufman, Y. J., Levy, R., Chu, D. A., Tanre, D., and  
630 Holben, B. N.: MODIS observation of aerosols and estimation of aerosol radiative  
631 forcing over southern Africa during SAFARI 2000, *J. Geophys. Res.*, 108, 13, doi:  
632 10.1029/2002jd002366, 2003.

633 Illingworth, A.J., Barker, H.W., Beljaars, A., Ceccaldi, M., Chepfer, H., Cole, J.,  
634 Delanoë, J., Domenech, C., Donovan, D.P., Fukuda, S., Hirakata, M., Hogan, R.J.,  
635 Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T.Y., Nishizawa, T.,  
636 Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M., Wandinger, U.,  
637 Wehr, T., and Van Zadelhoff, G.-J.: THE EARTHCARE SATELLITE: The next step  
638 forward in global measurements of clouds, aerosols, precipitation and radiation,  
639 Bulletin of the American Meteorological Society (BAMS),  
640 doi: <http://dx.doi.org/10.1175/BAMS-D-12-00227.1>, 2015.

641 IPCC: The Physical Science Basis, Contribution of Working Group I to the Fifth  
642 Assessment Report of the Intergovernmental Panel on Climate Change, edited by :

643 Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels,  
644 A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,  
645 United Kingdom and New York, NY, USA, 2013.

646 Kanitz, T., Ansmann, A., Engelmann, R., and Althausen, D.: North-south cross  
647 sections of the vertical aerosol distribution over the Atlantic Ocean from  
648 multiwavelength Raman/polarization lidar during Polarstern cruises, *J. Geophys.*  
649 *Res.*, 118, 2643-2655, doi: 10.1002/jgrd.50273, 2013.

650 Kanitz, T., Engelmann, R., Heinold, B., Baars, H., Skupin, A., and Ansmann A.:  
651 Tracking the Saharan Air Layer with shipborne lidar across the tropical Atlantic,  
652 *Geophys. Res. Lett.*, 41, 1044-1050, doi: 10.1002/2013GL058780,  
653 <http://dx.doi.org/10.1002/2013GL058780>, 2014.

654 Klett, J.D.: Stable analytical inversion solution for processing lidar returns, *Appl.*  
655 *Optics*, 20, 211-220, doi: 10.1364/AO.20.000211, 1981.

656 Komppula, M., Mielonen, T., Arola, A., Korhonen, K., Lihavainen, H., Hyvärinen, A.  
657 P., Baars, H., Engelmann, R., Althausen, D., Ansmann, A., Müller, D., Panwar, T. S.,  
658 Hooda, R. K., Sharma, V. P., Kerminen, V. M., Lehtinen, K. E. J., and Viisanen, Y.:  
659 Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI  
660 site close to New Delhi in India - Seasonal characteristics of the aerosol vertical  
661 structure, *Atmos. Chem. Phys.*, 12, 4513-4524, doi: 10.5194/acp-12-4513-2012, 2012.

662 Kulmala, M., et al., General overview: European Integrated project on Aerosol Cloud  
663 Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from  
664 nano to global scales, *Atmos. Chem. Phys.*, 11, 13061-13143, doi: 10.5194/acp-11-  
665 13061-2011, 2011.

666 Laakso, L., Vakkari, V., Virkkula, A., Laakso, H., Backman, J., Kulmala, M., Beukes,  
667 J. P., van Zyl, P. G., Tiitta, P., Josipovic, M., Pienaar, J. J., Chiloane, K., Gilardoni,  
668 S., Vignati, E., Wiedensohler, A., Tuch, T., Birmili, W., Piketh, S., Collett, K., Fourie,  
669 G. D., Komppula, M., Lihavainen, H., de Leeuw, G., and Kerminen, V. M.: South  
670 African EUCAARI measurements: seasonal variation of trace gases and aerosol  
671 optical properties, *Atmos. Chem. Phys.*, 12, 1847-1864, doi: 10.5194/acp-12-1847-  
672 2012, 2012.

673 Lourens, A. S. M., Butler, T. M., Beukes, J. P., van Zyl, P. G., Beirle, S., Wagner, T.  
674 K., Heue, K. P., Pienaar, J. J., Fourie, G. D., and Lawrence, M. G.: Re-evaluating the  
675 NO<sub>2</sub> hotspot over the South African Highveld, *S. Afr. J. Sci.*, 108, doi: 54-59,  
676 10.4102/sajs.v108i11/12.1146, 2012.

677 Mamouri, R. E., Ansmann, A., Nisantzi, A., Kokkalis, P., Schwarz,  
678 A. and Hadjimitsis D.: Low Arabian dust extinction-to-backscatter  
679 ratio, *Geophys. Res. Lett.*, 40, 4762-4766, doi:10.1002/grl.50898, 2013.

680 Mamouri, R.E. and Ansmann, A.: Fine and coarse dust separation with polarization  
681 lidar, *Atmos. Meas. Tech.*, 7, 3717-3735, doi:10.5194/amt-7-3717-2014, 2014.

682 Mishchenko, M., Travis, L.D., Kahn, R.A. and West, R.A.: Modeling phase functions  
683 for dustlike tropospheric aerosols using a shape mixture of randomly oriented  
684 polydisperse spheroids, *J. Geophys. Res.*, 102, 16831-16847, 1997.

685 Müller, D., Wandinger, U. and Ansmann, A.: Microphysical particle parameters from  
686 extinction and backscatter lidar data by inversion with regularization: theory, *Appl.*  
687 *Opt.* 38, 2346–2357, 1999a.

688 Müller, D., Wandinger, U. and Ansmann, A.: Microphysical particle parameters from  
689 extinction and backscatter lidar data by inversion with regularization: simulation,  
690 *Appl. Opt.* 38, 2358–2368, 1999b.

691 Müller, D., Wandinger, U., Althausen, D., and Fiebig, M.: Comprehensive particle  
692 characterization from three-wavelength Raman-lidar observations, *Appl. Opt.*, 40,  
693 4863–4869, doi:10.1364/AO.40.004863, 2001.

694 Müller, D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, D., Dubovik, O.,  
695 Eckhardt, S., Stohl, A.: Saharan dust over a central European EARLINET-AERONET  
696 site: combined observations with Raman lidar and Sun photometer, *J. Geophys. Res.*,  
697 108, doi:10.1029/2002JD002918, 4345, 2003.

698 Müller, D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, D. and Stohl,  
699 A.: Raman lidar observations of aged Siberian and Canadian forest fire smoke in the  
700 free troposphere over Germany in 2003: Microphysical particle characterization, *J.*  
701 *Geophys. Res.*, 110, D17201, doi:10.1029/2004JD005756, 2005.

702 Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U., Althausen, D., and  
703 Pissani, G.: Aerosol-type dependent lidar raios observed with Raman lidar, *J.*  
704 *Geophys. Res.*, 12, D16202, doi:10.1029/2006JD008292, 2007.

705 Murayama, T., Okamoto, H., Kaneyasu, N., Kamataki, H., Miura, K., Application of  
706 lidar depolarization measurement in the atmospheric boundary layer : Effects of dust  
707 and sea-salt particles, *J. Geophys. Res.*, 104, 31781-31792, doi:  
708 10.1029/1999JD900503, 1999.

709 Murayama, T., Masonis, S. J., Redemann, J., Aderson, T. L., Schmid, B., Living J. M,  
710 Russell, P. B., Huebert, B., Howell, S. G., McNaughton, C. S., Clarke, A., Abo, M.,  
711 Shimizu, A., Sugimoto, N., Yabuki, M., Kuze, H., Fukagawa, S., Maxwell-Meier K.,  
712 Weber, R. J., Orsini, D.A., Blomquist, B., Bandy, A., and Thornton, D.: An  
713 intercomparison of lidar-derived aerosol optical properties with airborne  
714 measurements near Toko during ACE-Asia, *J. Geophys. Res.*, 108, D23, 8651, doi:  
715 10.1029/2002JD003259, 2003.

716 Murayama, T., Müller, D., Wada, K., Shimizu, A., Sekigushi, M., and Tsukamoto, T.:  
717 Characterization of Asian dust and Siberian smoke with multi-wavelength Raman  
718 lidar over Tokyo, Japan in spring 2003, *Geophys. Res. Lett.*, 31, L23103, doi:  
719 10.1029/2004GL021105, 2004.

720 Nicolae, D., Nemuc, A., Müller, D., Talianu, C., Vasilescu, J., Belegante L., and  
721 Kolgotin, A.: Characterization of fresh and aged biomass burning events using  
722 multiwavelength Raman lidar and mass spectrometry, *J. Geophys. Res.*, 118, 2956-  
723 2965, doi:10.1002/jgrd.50324, 2013.

724 Nisantzi, A., Mamouri, R.E., Ansmann, A., and Hadjimitsis, D.: Injection of mineral  
725 dust into the free troposphere during fire events observed with polarization lidar at  
726 Limassol, Cyprus, *Atmos. Chem. Phys.*, 14, 12155-12165, doi: 10.5194/acp-14-  
727 12155-2014, 2014.

728 Noh, Y. M., Müller, D., Shin, D. H., Lee, H. L., Jung, J. S., Lee, K. H., Cribb, M., Li,  
729 Z., and Kim Y. J.: Optical and microphysical properties of severe haze and smoke  
730 aerosol measured by integrated remote sensing techniques in Gwangju, Korea, *Atmos.*  
731 *Environ.*, 43, 879–888, doi:10.1016/j.atmosenv.2008.10.058, 2009.

732 Omar, A., Winker, D., Vaughan, M., Hu, Y., Trepte, C., Ferrare, R., Lee, K.,  
733 Hostetler, C., Kittaka, C., Rogers, R., Kuehn, R., and Liu, Z.: The CALIPSO  
734 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. *J. Atmos.*  
735 *Oceanic Technol.*, 26, doi: <http://dx.doi.org/10.1175/2009JTECHA1231.1> 1994–  
736 2014, 2009.

737 Piketh, S. J., Swap, R. J., Maenhaut, W., Annegarn, H. J., and Formenti, P.: Chemical  
738 evidence of long-range atmospheric transport over southern Africa, *J. Geophys. Res.*,  
739 107, D24, 4817, doi: 10.1029/2002jd002056, 2002.

740 Piketh, S. J., Tyson, P. D., and Steffen, W.: Aeolian transport from southern Africa  
741 and iron fertilization of marine biota in the South Indian Ocean, *S. Afr. J. Sci.*, 96,  
742 244–246, 2000.

743 Pósfai, M., Simonics, R., Li, J., Hobbs, P. V., and Buseck, P. R.: Individual aerosol  
744 particles from biomass burning in southern Africa: 1. Compositions and size  
745 distributions of carbonaceous particles, *J. Geophys. Res.*, 108, 2156-2202, doi:  
746 10.1029/2002JD002291, 2003.

747 Preißler, J., Bravo-Aranda, J. Wagner, F., Granados-Muñoz, M. J., Navas-Guzmán,  
748 F., Guerrero-Rascado, J.L., Lyamani, H., and Alados-Arboledas, L.: Optical  
749 properties of free tropospheric aerosol from multi-wavelength Raman lidars over the  
750 southern Iberian Peninsula, in: Proceedings of the 9th International Symposium on  
751 Tropospheric Profiling, l’Aquila, Italy (September 3-7, 2012), doi:ISBN 978-90-  
752 815839-4-7, 2012.

753 Preißler, J., Wagner, F., Guerrero-Rascado, J.L., and Silva, A.M.: Two years of free-  
754 tropospheric aerosol layers observed over Portugal by lidar, *J. Geophys. Res.*, 118,  
755 3676-3686, doi:10.1002/jgrd.50350, 2013.

756 Queface, A. J., Piketh, S. J., Eck, T. F., Tsay, S. C., and Mavume, A. F.: Climatology  
757 of aerosol optical properties in Southern Africa, *Atmos. Environ.*, 45, 2910–2921, doi:  
758 10.1016/j.atmosenv.2011.01.056, 2011.

759 Radke, L.F., Heggs, D.A., Lyons, H., Brook, C.A., Hobbs, P.V., Weiss, R., and  
760 Rasmussen, R.: Airborne measurements on smoke from biomass burning, in *Aerosols*

761 and Climate, edited by Hobbs, P.V. and McCormick, M. P., Deepak, A., Hampton,  
762 VA, USA, 411–422, 1998.

763 Reid, J.S., Koppmann, R., Eck, T.F, and Eleuterio, D. P. : A review of biomass  
764 burning emissions, part II. Intensive physical properties of biomass burning particles,  
765 *Atmos. Chem. Phys.*, 5, 799-825, doi: 10.5194/acp-5-799-2005, 2005.

766 Reid, J. S., and P. V. Hobbs: Physical and optical properties of smoke from individual  
767 biomass fires in Brazil, *J. Geophys. Res.*, 103, 32013–32031, doi:  
768 10.1029/98JD00159, 1998.

769 Ross, K. E., Piketh, S. J., Bruintjes, R. T., Burger, R. P., Swap, R. J., and Annegarn,  
770 H. J.: Spatial and seasonal variations in CCN distribution and the aerosol-CCN  
771 relationship over southern Africa, *J. Geophys. Res.*, 108, D13, 8481, doi:  
772 10.1029/2002JD002384, 2003.

773 Roy, D.P., Frost, P.G.H., Justice, C.O., Landmann, T., Le Roux, J.L., Gumbo, K.,  
774 Makungwa, S., Dunham, K., du Toit, R., Mhwandagara, K., Zacarias, A., Tacheba,  
775 B., Dube, O.P., Pereira, J.M.C., Mushove, P., Morisette, J.T., Santhana-Vannan S.K.,  
776 and Davies, D.: The Southern Africa Fire Network (SAFnet) regional burned-area  
777 product-validation protocol, *Int. J. Remote Sens.*, 26, 4265-4292, 2005

778 Roy, D. P., Boschetti, L., Justice, C. O. and Ju, J.: The collection 5 MODIS burned  
779 area product – Global evaluation by comparison with the MODIS active fire product,  
780 *Remote Sens. Environ.*, 112, 3960-3707, doi: 10.1016/j.rse.2008.05.013, 2008.

781 Schneider, P., Lahoz, W. A., and van der A, R.: Recent satellite-based trends of  
782 tropospheric nitrogen dioxide over large urban agglomerations worldwide, *Atmos.*  
783 *Chem. Phys.*, 15, 1205–1220, 2015.

784 Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N.,  
785 Aoki, K., Uchiyama, A., and Yamazaki, A.: Continuous observations of Asian dust  
786 and other aerosols by polarization lidars in China and Japan during ACE-Asia, *J.*  
787 *Geophys. Res.*, 109, D19S17, doi:10.1029/2002JD003253, 2004.

788 Shin, S.-K., Müller, D., Lee, C., Lee, K. H., Shin, D., Kim, Y. J. and Noh, Y. M.:  
789 Vertical variation of optical properties of mixed Asian dust/pollution plumes

790 according to pathway of air mass transport over East Asia, *Atmos. Chem. Phys.*, 15,  
791 6707-6720, doi:10.5194/acp-15-6707-2015, 2015.

792 Sugimoto, N., Uno, I., Nishikawa, M., Shimizu, A., Matsui, I., Dong, X., Chen, Y.,  
793 and Quan, H.: Record heavy Asian dust in Beijing in 2002: Observations and model  
794 analysis of recent events, *Geophys. Res. Lett.*, 30, 1640, doi:10.1029/2002GL016349,  
795 2003.

796 Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R., Freudenthaler,  
797 V., and Groß, S.: Vertically resolved separation of dust and smoke over Cape Verde  
798 using multiwavelength Raman and polarization lidars during Saharan Mineral Dust  
799 Experiment 2008, *J. Geophys. Res.*, 114, D13202, doi:10.1029/2009JD011862, 2009.

800 Tesche, M., Gross, S., Ansmann, A., Müller, D., Althausen, D., Freudenthaler, V., and  
801 Esselborn, M.: Profiling of Saharan dust and biomass-burning smoke with  
802 multiwavelength polarization Raman lidar at Cape Verde, *Tellus B*, 63, available at:  
803 <http://www.tellusb.net/index.php/tellusb/article/view/16360> (last access: 14 December  
804 2015), 2011.

805 Tesfaye, M., Sivakumar, V., Botai, J., and Tsidu, G. M.: Aerosol climatology over  
806 South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR)  
807 data, *J. Geophys. Res.*, 116, D20216, doi: 10.1029/2011jd016023, 2011.

808 Tiitta, P., Vakkari, V., Croteau, P., Beukes, J. P., van Zyl, P. G., Josipovic, M.,  
809 Venter, A. D., Jaars, K., Pienaar, J. J., Ng, N. L., Canagaratna, M. R., Jayne, J. T.,  
810 Kerminen, V.-M., Kokkola, H., Kulmala, M., Laaksonen, A., Worsnop, D. R., and  
811 Laakso, L.: Chemical composition, main sources and temporal variability of PM1  
812 aerosols in southern African grassland, *Atmos. Chem. Phys.*, 14, 1909–1927, doi:  
813 10.5194/acp-14-1909-2014, 2014.

814 Twomey, S.: *Introduction to the Mathematics of Inversion in Remotes Sensing and  
815 Indirect Measurements*, Elsevier Scientific, New York, 1977.

816 Venter, A. D., Vakkari, V., Beukes, J. P., van Zyl, P. G., Laakso, H., Mabaso, D.,  
817 Tiitta, P., Josipovic, M., Kulmala, M., Pienaar, J. J., and Laakso, L.: An air quality

818 assessment in the industrialised western Bushveld Igneous Complex, South Africa, S.  
819 Afr. J. Sci., 108, 1059, doi: 10.4102/sajs.v108i9/10.1059, 2012.

820 Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., and  
821 Whiteman, D.N.: Inversion with regularization for the retrieval of tropospheric  
822 aerosol parameters from multiwavelength lidar sounding, Appl. Opt. 41, 3685–3699,  
823 2002.

824 Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Franke, K., and Whiteman, D.  
825 N.: Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol  
826 size distribution, Appl. Opt., 43, 1180-1195, 2004.

827 Wandinger, U., and Ansmann, A.: Experimental determination of the lidar overlap  
828 profile with Raman lidar, Appl. Opt., 41, 511-514, doi: 10.1364/AO.41.000511, 2002.

829 Wagner, F. and Silva, A. M.: Some considerations about Ångström exponent  
830 distributions, Atmos. Chem. Phys., 8, 481-489, doi:10.5194/acp-8-481-2008, 2008.

831 Wandinger, U., Müller, D., Böckmann, C., Althausen, D., Matthias, V., Bösenberg,  
832 J., Weiß, V., Fiebig, M., Wendisch, M., Stohl, A., Ansmann A., Optical and  
833 microphysical characterization of biomassburning and industrial-pollution aerosols  
834 from multiwavelength lidar and aircraft measurements, J. Geophys. Res., 107, 8125,  
835 doi:10.1029/2000JD000202, 2002.

836 Weinzierl B., Sauer, D., Esselborn, M., Petzold, A., Veira, A., Rose, M., Mund, S.,  
837 Wirth, M., Ansmann, A., Tesche, M., Gross, S., and Freudenthaler, V.: Microphysical  
838 and optical properties of dust and tropical biomass burning aerosol layers in the Cape  
839 Verde region – an overview of the airborne in situ and lidar measurements during  
840 SAMUM-2, Tellus, 63B, 589-618, doi: 10.1111/j.1600-0889.2011.00566.x, 2011.

841 Wenig, M., Spichtinger, N., Stohl, A., Held, G., Beirle, S., Wagner, T., Jahne, B. and  
842 Platt, U.: Intercontinental transport of nitrogen oxide pollution plumes, Atmos.  
843 Chem. Phys., 3, 387-393, 2003.

844 Winkler, H., P. Formenti, D. J. Esterhuyse, R. J. Swap, G. Helas, H. J. Annegarn, and  
845 Andreae, M.O. : Evidence for large-scale transport of biomass burning aerosols from

846 sunphotometry at a remote South African site: *Atmos. Environ.*, 42, 5569-5578, doi:  
847 10.1016/j.atmosenv.2008.03.031, 2008.

848

849

850 **TABLES**

851 **Table 1.** Aerosol type, time and altitude range of aerosol layers used for optical and microphysical  
 852 aerosol characterization

853

| <b>aerosol source</b>     | <b>date</b>      | <b>time [UTC]</b> | <b>height [m]</b> | <b>Extinction Coefficient [Mm-1]</b> |               |
|---------------------------|------------------|-------------------|-------------------|--------------------------------------|---------------|
|                           |                  |                   |                   | <b>355 nm</b>                        | <b>532 nm</b> |
| <b>urban / industrial</b> | 25 March 2010    | 18:00 – 19:50     | 2100 – 2670       | 196 ± 18                             | 75 ± 12       |
|                           | 25 March 2010    | 18:00 – 19:50     | 2790 – 3450       | 190 ± 36                             | 68 ± 14       |
|                           | 25 March 2010    | 18:00 – 19:50     | 1560 – 1980       | 260 ± 6                              | 78 ± 12       |
|                           | 16 April 2010    | 21:20 – 23:54     | 1980 – 2250       | 147 ± 13                             | 58 ± 9        |
|                           | 16 April 2010    | 21:20 – 23:54     | 2280 – 2520       | 129 ± 10                             | 39 ± 4        |
|                           | 16 April 2010    | 21:20 – 23:54     | 2610 – 3180       | 196 ± 43                             | 81 ± 14       |
|                           | 14 May 2010      | 18:00 – 00:00     | 930 – 1360        | 238 ± 37                             | 127 ± 25      |
|                           | 15 May 2010      | 18:30 – 20:20     | 1380 – 1860       | 196 ± 26                             | 86 ± 19       |
|                           | 15 May 2010      | 18:30 – 20:20     | 2250 – 2700       | 81 ± 7                               | 28 ± 3        |
|                           | 30 November 2010 | 17:15 – 18:00     | 960 – 1300        | 121 ± 6                              | 44 ± 13       |
|                           | 30 November 2010 | 17:15 – 18:00     | 1350 – 1920       | 146 ± 26                             | 50 ± 11       |
|                           | 30 June 2010     | 17:00 – 18:00     | 1420 – 1620       | 101 ± 5                              | 34 ± 5        |
|                           | 30 June 2010     | 17:00 – 18:00     | 1650 – 1830       | 71 ± 11                              | 37 ± 7        |
| <b>biomass burning</b>    | 10 January 2011  | 19:15 – 20:15     | 1890 – 2160       | 303 ± 45                             | 146 ± 31      |
|                           | 13 January 2011  | 21:00 – 22:00     | 1200 – 1800       | 342 ± 24                             | 163 ± 17      |
|                           | 13 January 2011  | 21:00 – 22:00     | 1920 – 2250       | 267 ± 42                             | 158 ± 29      |
|                           | 13 January 2011  | 21:00 – 22:00     | 2430 – 2880       | 199 ± 23                             | 68 ± 12       |
|                           | 1 October 2010   | 00:10 – 01:00     | 1090 – 1900       | 331 ± 9                              | 158 ± 8       |
|                           | 5 October 2010   | 18:10 – 23:10     | 1115 – 1750       | 432 ± 62                             | 227 ± 37      |
|                           | 5 October 2010   | 18:10 – 23:10     | 1980 – 2700       | 256 ± 18                             | 132 ± 15      |
|                           | 6 October 2010   | 20:00 – 00:00     | 1175 – 1540       | 277 ± 27                             | 142 ± 5       |
|                           | 6 October 2010   | 20:00 – 00:00     | 1565 – 2160       | 214 ± 14                             | 111 ± 11      |
|                           | 6 October 2010   | 20:00 – 00:00     | 2190 – 2520       | 152 ± 6                              | 85 ± 16       |
|                           | 6 October 2010   | 20:00 – 00:00     | 2610 – 2820       | 121 ± 19                             | 80 ± 6        |
|                           | 21 October 2010  | 01:30 – 02:30     | 880 – 1530        | 261 ± 28                             | 131 ± 20      |
|                           | 21 October 2010  | 01:30 – 02:30     | 1685 – 2280       | 168 ± 7                              | 66 ± 16       |
|                           | 21 October 2010  | 01:30 – 02:30     | 2400 – 2880       | 171 ± 30                             | 70 ± 14       |
| <b>mixed aerosols</b>     | 22 August 2010   | 00:00 – 01:00     | 1205 – 1565       | 340 ± 13                             | 162 ± 8       |
|                           | 22 August 2010   | 00:00 – 01:00     | 1685 – 1920       | 354 ± 5                              | 190 ± 8       |
|                           | 22 August 2010   | 02:00 – 03:00     | 1115 – 1535       | 335 ± 6                              | 163 ± 10      |
|                           | 22 August 2010   | 02:00 – 03:00     | 1745 – 2250       | 331 ± 15                             | 170 ± 4       |
|                           | 16 August 2010   | 17:00 – 18:00     | 1115 – 1445       | 316 ± 24                             | 151 ± 9       |
|                           | 16 August 2010   | 19:00 – 20:00     | 995 – 1265        | 296 ± 7                              | 157 ± 11      |
|                           | 18 August 2010   | 19:00 – 20:00     | 1175 – 1355       | 154 ± 9                              | 75 ± 4        |

854

855

856

857

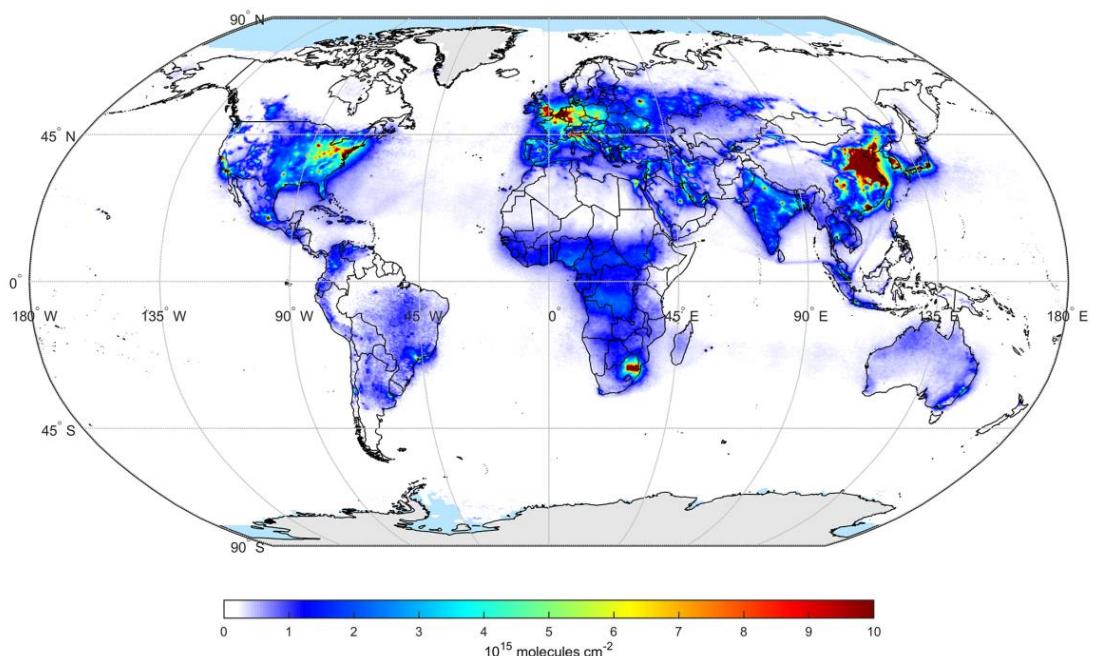
858  
859  
860  
861

**Table 2.** Mean value  $\pm$  standard deviation of aerosol lidar ratio at 355, particle depolarization ratio and  
Ångström exponent related to extinction between 355 and 532 nm for the examined aerosol types, as  
well as value of range and median

| aerosol source                                                        | mean $\pm$ stdv | range     | median |
|-----------------------------------------------------------------------|-----------------|-----------|--------|
| <b>lidar ratio at 355 nm [sr]</b>                                     |                 |           |        |
| urban / industrial                                                    | 52 $\pm$ 7      | 41 – 59   | 54     |
| biomass burning                                                       | 92 $\pm$ 10     | 81 – 119  | 88     |
| mixed aerosols                                                        | 74 $\pm$ 11     | 59 – 90   | 73     |
| <b>lidar ratio at 532 nm [sr]</b>                                     |                 |           |        |
| urban / industrial                                                    | 41 $\pm$ 13     | 23 – 74   | 38     |
| biomass burning                                                       | 75 $\pm$ 14     | 47 – 92   | 79     |
| mixed aerosols                                                        | 46 $\pm$ 13     | 33 – 68   | 40     |
| <b>particle depolarization ratio at 355 nm [%]</b>                    |                 |           |        |
| urban / industrial                                                    | 0.9 $\pm$ 0.4   | 0.3 – 1.7 | 1.0    |
| biomass burning                                                       | 3.2 $\pm$ 1.3   | 1.2 – 5.7 | 2.7    |
| mixed aerosols                                                        | 8.3 $\pm$ 0.7   | 7.3 – 9.1 | 8.1    |
| <b>ångström exponent related to extinction between 355 and 532 nm</b> |                 |           |        |
| urban / industrial                                                    | 2.3 $\pm$ 0.5   | 1.3 – 3.0 | 2.4    |
| biomass burning                                                       | 1.7 $\pm$ 0.3   | 1.0 – 2.4 | 1.7    |
| mixed aerosols                                                        | 2.0 $\pm$ 0.4   | 1.6 – 2.5 | 2.0    |

862  
863  
864

**Table 3.** Mean value  $\pm$  standard deviation of effective radius and single-scattering albedo for the  
examined aerosol types, as well as range and median.

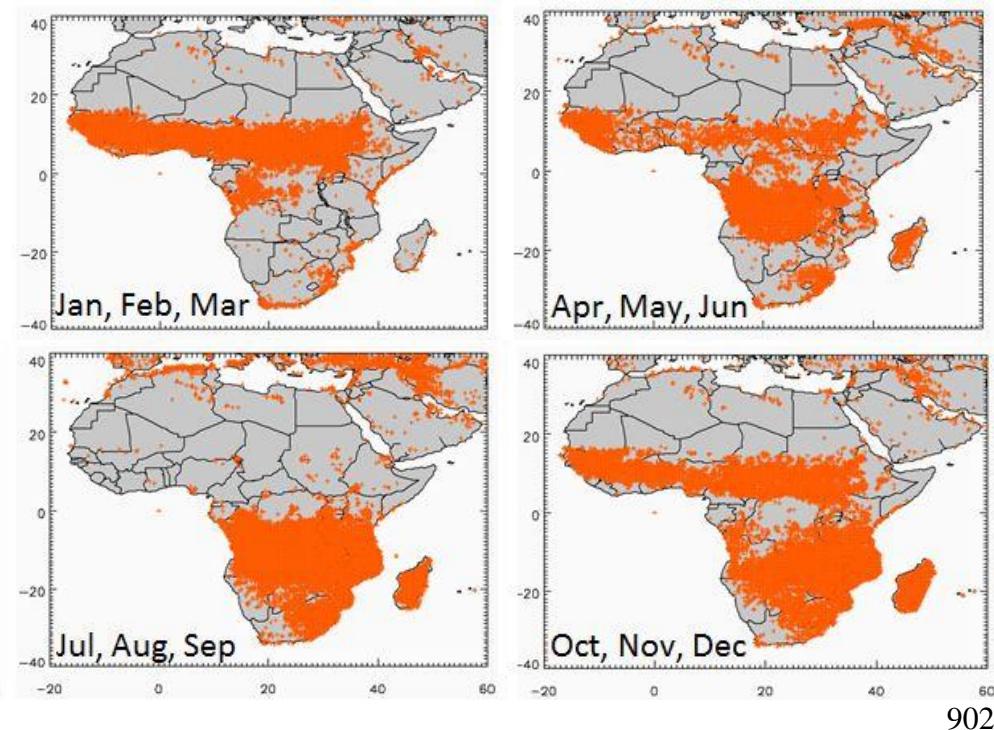

| Aerosol Source                                     | mean $\pm$ stdv                            | range                                    | median                    |
|----------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------|
| <b>effective radius [<math>\mu\text{m}</math>]</b> |                                            |                                          |                           |
| urban / industrial                                 | 0.10 $\pm$ 0.03                            | 0.07 – 0.16                              | 0.09                      |
| biomass burning                                    | 0.17 $\pm$ 0.04                            | 0.11 – 0.28                              | 0.17                      |
| mixed aerosols                                     | 0.13 $\pm$ 0.03                            | 0.09 – 0.19                              | 0.13                      |
| <b>single-scattering albedo at 532 nm</b>          |                                            |                                          |                           |
| urban / industrial                                 | 0.87 $\pm$ 0.06                            | 0.75 – 0.96                              | 0.88                      |
| biomass burning                                    | 0.90 $\pm$ 0.06                            | 0.77 – 0.98                              | 0.90                      |
| mixed aerosols                                     | 0.88 $\pm$ 0.07                            | 0.76 – 0.95                              | 0.89                      |
| <b>complex refractive index</b>                    |                                            |                                          |                           |
| urban / industrial                                 | 1.61 ( $\pm$ 0.11) + 0.021 ( $\pm$ 0.010)i | 1.47 – 1.78 (RRI)<br>0.007 – 0.039 (IRI) | 1.64 (RRI)<br>0.020 (IRI) |
| biomass burning                                    | 1.43 ( $\pm$ 0.07) + 0.016 ( $\pm$ 0.011)i | 1.35 – 1.57 (RRI)<br>0.002 – 0.046 (RRI) | 1.40 (RRI)<br>0.015 (IRI) |
| mixed aerosols                                     | 1.52 ( $\pm$ 0.15) + 0.022 ( $\pm$ 0.015)i | 1.33 – 1.74 (RRI)<br>0.004 – 0.046 (IRI) | 1.56 (RRI)<br>0.019 (IRI) |

865  
866

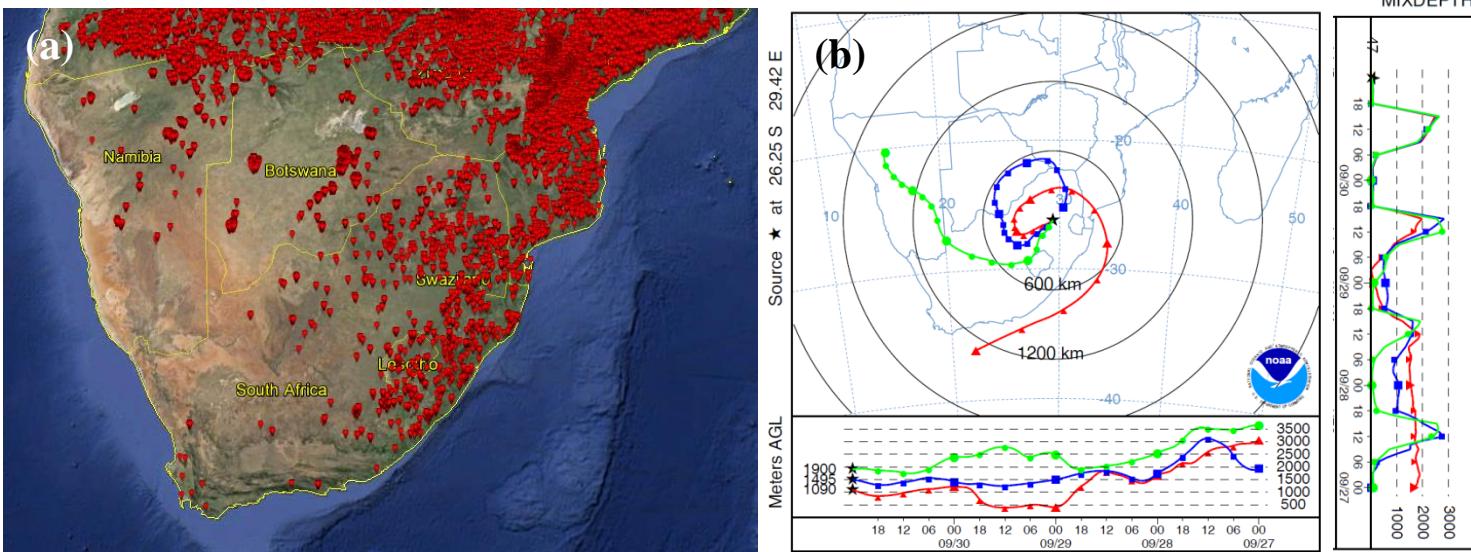
867  
868**Table 4.** The code used in Figure 7 and the respective reference.

| Code | Reference                |
|------|--------------------------|
| A03  | Anderson et al., 2003    |
| A05  | Ansmann et al., 2005     |
| A09a | Ansmann et al., 2009     |
| A09b | Amiridis et al., 2009    |
| A11  | Arboledas et al., 2011   |
| B03  | Balis et al., 2003       |
| B12a | Baars et al., 2012       |
| B12b | Burton et al., 2012      |
| B13  | Burton et al., 2013      |
| G10  | Giannakaki et al., 2010  |
| G11  | Groß et al., 2011        |
| G13  | Groß et al., 2013        |
| G16  | This study               |
| H15  | Hesse et al., 2015       |
| I15  | Illingworth et al., 2015 |
| K14  | Kanitz et al., 2014      |
| K12  | Kompulla et al., 2012    |
| M05  | Müller et al., 2005      |
| M07  | Müller et al., 2007      |
| M04  | Murayama et al., 2004    |
| M13  | Murayama et al., 2013    |
| N13  | Nicolae et al., 2013     |
| P12  | Preißler et al., 2012    |
| P13  | Preißler et al., 2013    |
| R98  | Reid et al., 1998        |
| T11  | Tesche et al., 2011      |
| W02  | Wandinger et al., 2002   |
| W11  | Weinzierl et al., 2011   |
| X08  | Xie et al., 2008         |

869  
870  
871  
872  
873  
874

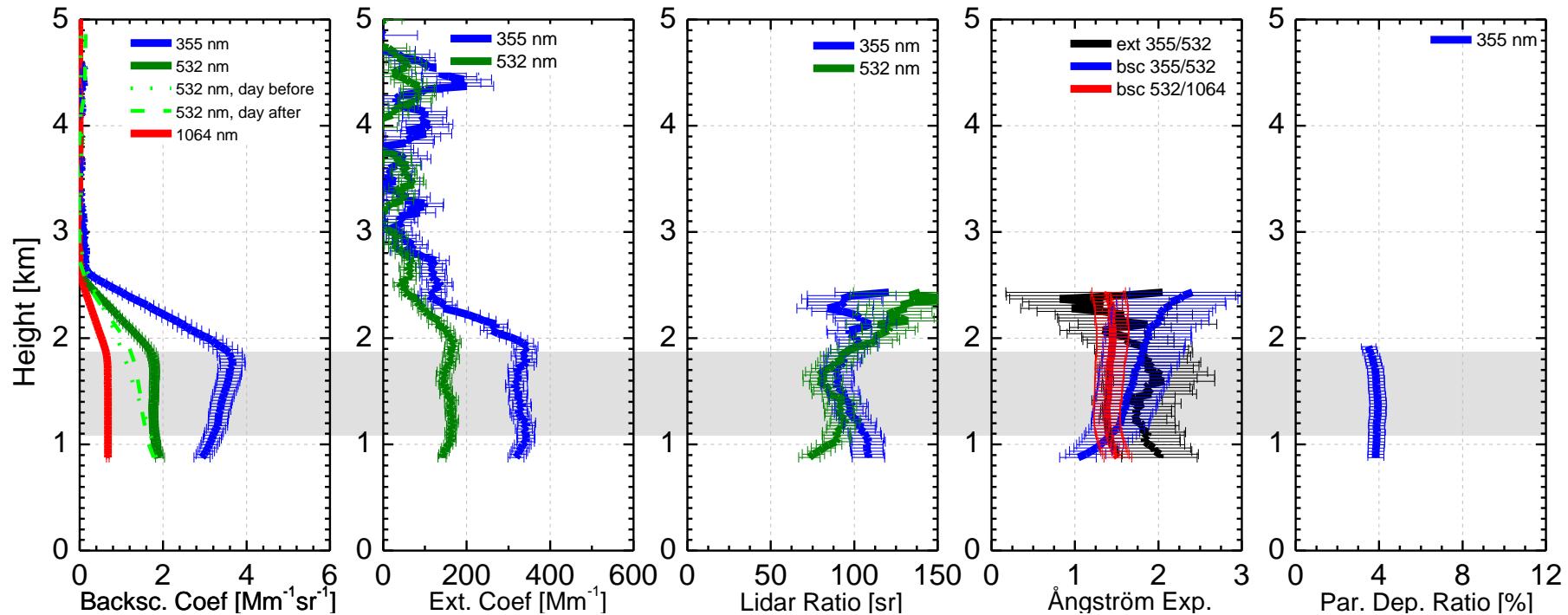

**FIGURES**

876


877

878

879 **Figure 1.** Global map of long-term average tropospheric NO<sub>2</sub> column derived from  
880 SCIAMACHY data from August 2002 to March 2012 (Schneider et al., 2015)  
881




903 **Figure 2.** Number of fire hotspots with confidence levels between 80-100% averaged  
904 in terms of 3 months for the year 2010 in the latitude range between  $-40^{\circ}$  and  $40^{\circ}$  and  
905 longitude range between  $-20^{\circ}$  and  $60^{\circ}$



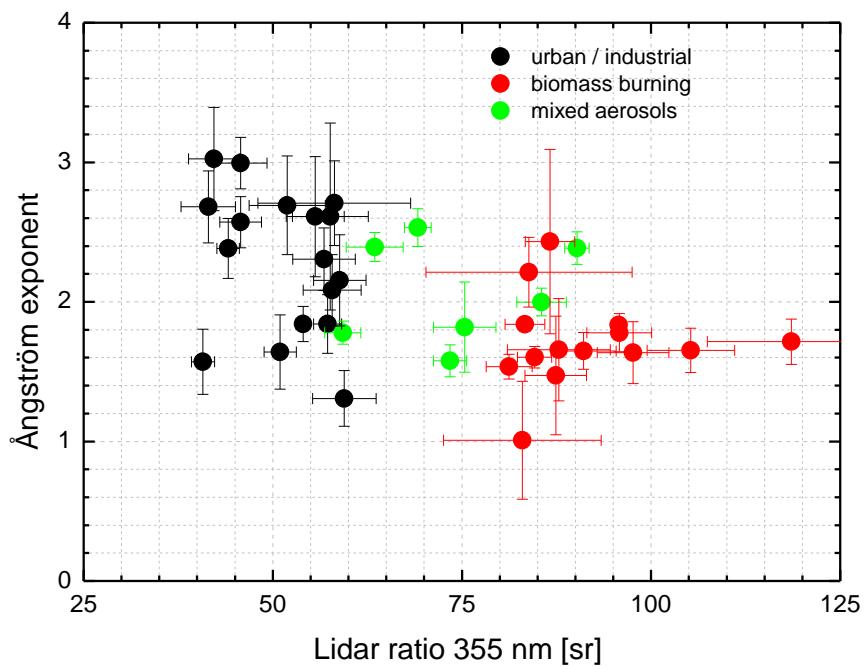
**Figure 3.** MODIS fire hotspots for the period 28 September 2010 – 01 October 2010 and for the latitude range between  $-35^{\circ}$  and  $-15^{\circ}$  W and the longitude range between  $10^{\circ}$  and  $40^{\circ}$  S (a). Four-day backward trajectories arriving at Elandsfontein on 1 October 2010 at 00:00 for arrival height of the bottom (1090 m), center (1495 m) and top (1900 m) of the aerosol layer observed (b).

927

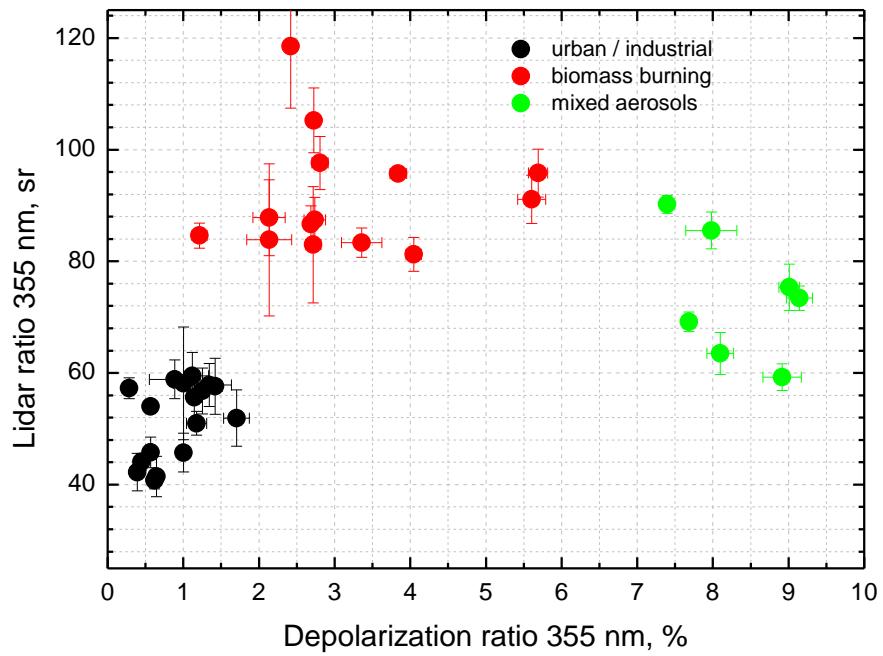


928

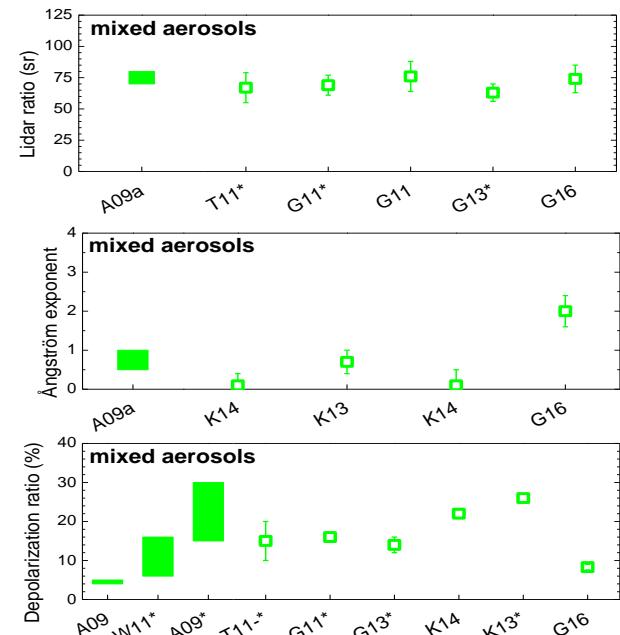
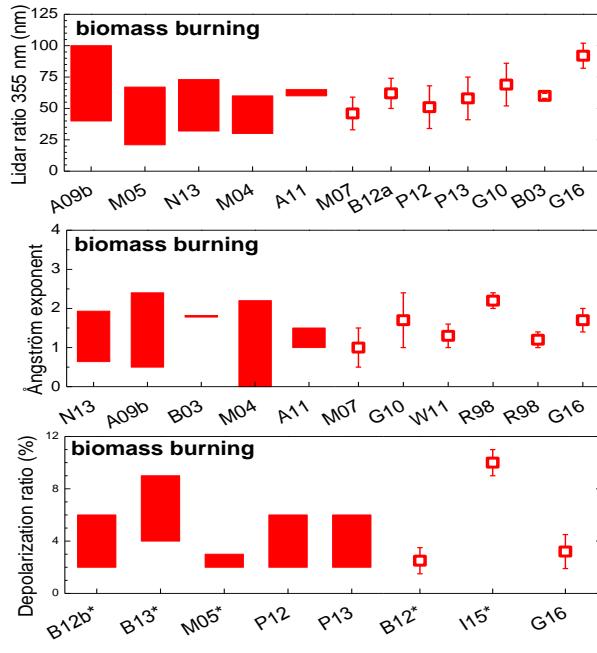
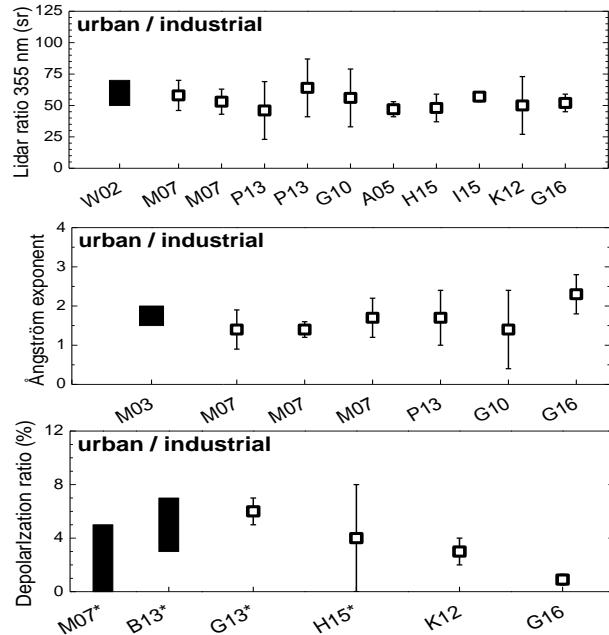
929

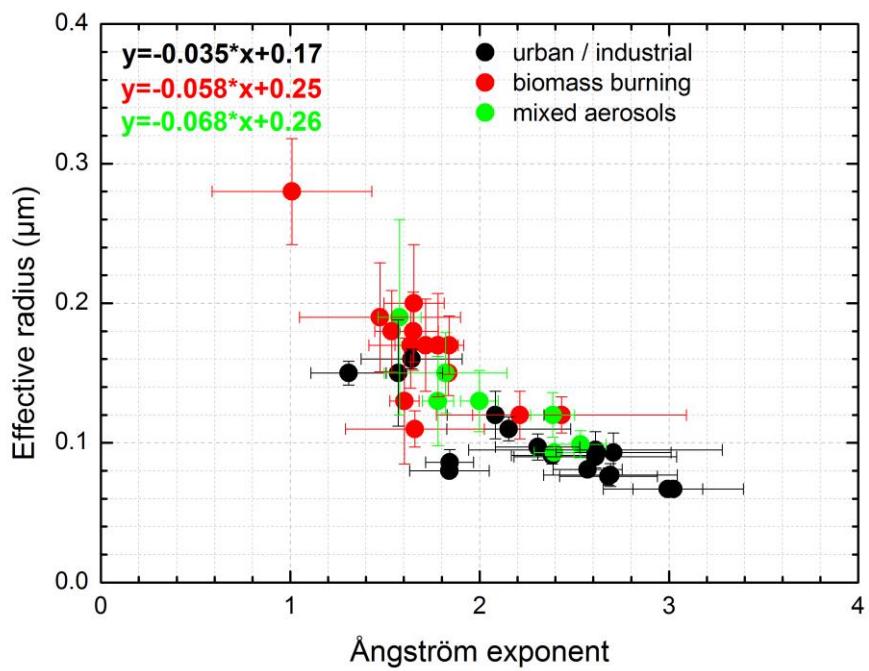

930

931


932

**Figure 4.** Backscatter coefficients, extinction coefficients, lidar ratios, Ångstrom exponents and particle depolarization ratio at Elandsfontein on 1 October 2010, 00:10 – 03:59 UTC




933  
934  
935




936  
937 **Figure 5.** Lidar ratio at 355 nm versus the extinction-related Ångström exponent from  
938 355 to 532 nm for the three aerosol types investigated in our study  
939



**Figure 6.** Lidar ratio at 355 nm versus the depolarization ratio at 355 nm for the three aerosol types investigated in our study





950  
951 **Figure 7.** Effective radius versus Ångström exponent for the three aerosol types  
952 investigated in our study.  
953